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Abstract

The standard reinforcement learning (RL) framework faces the problem of transfer
learning and exploration with sparse rewards. To address these problems, a large
number of heterogeneous intrinsic motivation have been proposed, like reaching
unpredictable states or unvisited states. Yet, it lacks a coherent view on these
intrinsic motivations, making hard to understand their relations as well as their
underlying assumptions. Here, we propose a new taxonomy of intrinsic motivations
based on information theory: we computationally revisit the notions of surprise,
novelty and skill learning and identify their main implementations through a short
review of intrinsic motivations in RL. Our information theoretic analysis paves
the way towards an unifying view over complex behaviors, thereby supporting the
development of new objective functions.

1 Introduction

Intrinsic motivation (IM) aims to describe to natural drive of children to explore their environment
and acquire new skills. Simply stated, intrinsic motivation is about doing something for its inherent
satisfaction rather than to get a positive feedback from the environment Ryan and Deci (2000). Taking
inspiration from the psychological concept, numerous intrinsic motivations have been introduced
in RL: an agent learns by trials and errors to maximize its expected discounted cumulative intrinsic
rewards. They show tremendous improvements on sparse rewards tasks and transfer learning with
respect to standard RL methods Eysenbach et al. (2018); Bellemare et al. (2016). For example, one
can incite an agent to reach unvisited states Bellemare et al. (2016).

In practice, there is no consensus on a qualitative definition of intrinsic motivations, such that one can
name “intrinsic" any task-agnostic rewards. Two issues result from this absence of a common theory:
1- there is a plethora of heterogeneous IMs; 2- the core mechanisms that underpin their success is
unclear. In practice, it makes hard to identify relevant avenues of works.

Here, we bound important results in IMs to information theoretic objectives. We identify three
important information theoretic objectives and relate them to psychological concepts as well as the
current deep RL literature. First, we define the surprise as the expected information gain over true
forward models and highlight that, under harmful approximations, it encompasses intrinsic rewards
based on the expected information gain, prediction error or learning progress. Second, we revisit
novelty as actively learning representations and exhibit that it is currently maximized through two
lines of works, one based on variational inference and one with k-nearest neighbors. Third, we
introduce the skill learning objective and find that either discriminator based or states-goals based
methods maximize it. We expect our computational taxonomy to play a crucial role in understanding
the principles that underlie complex behaviors, and thus to help building intrinsically motivated
agents.
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Surprise: I(S′; ΦT |h, S,A)

Formalism IG over forward model Prediction error Learning progress
Rewards DKL(p(Φ|h, s, a, s′)||p(Φ|h)) ||s′ − ŝ′||22 ∆||s′ − ŝ′||22

Novelty: I(S;Z)

Formalism K-nearest neighbors Variational inference
Rewards − log ||s′ − nnk(Sb, s

′)||2 − log qd(s
′|z) +DKL(qe(z|s′)||p(z))

Skill learning: I(G;u(T ))

Formalism Fixed goal distribution Goal-state achievement Diverse goals
Rewards log p(g|s′) −||sg − s′||22 (1 + αskew) log p(sg)

Table 1: Summary of our taxonomy of intrinsic motivations in DRL. Please, refer to the corresponding
sections for more details about methods and notations.

2 Background

Reinforcement learning. In a Markov Decision Process (MDP), an agent interacts with an un-
known environment in the following way: the agent gets a state s0 ∈ S that follows an initial state
distribution p0(s). Its policy π selects actions a ∈ A to execute depending on its current state s ∈ S,
a ∼ π(·|s). Then, a new state is returned according to the transition dynamics φT , s′ ∼ p(·|s, a, φT ).
The agent repeats the procedure until it reaches a particular state or exceeds a fixed number of steps
T . In RL, the agent learns a policy π to maximize the expected cumulative discounted reward given
at each time step by the reward function R(st, at, st+1). In goal-conditioned RL, the reward function
and the policy πg both depends on a given goal.

Information theory. Here, we provide the basics about information theory. The Shannon entropy
quantifies the mean necessary information to determine the value of a random variable. Let X be a
random variable with a law of density p(X) satisfying the normalization and positivity requirements,
we define its entropy by H(X) = −

∫
X
p(x) log p(x)dx.

The mutual information allows to quantify the information contained in a random variable X about
an other random variable Y and is defined by I(X;Y ) = H(X)−H(X|Y ).

3 Three information theoretic objectives

In this section, we explain our three information theoretic objectives and shortly review the main
approaches they encompass. Table 1 sums up our findings.

3.1 Surprise

In this section, we assume the agent learns either a forward model of the environment parameterized
by φ ∈ Φ. The forward model computes the next-state distribution conditioned on a tuple state-action
p(S′|S,A, φ). Typically, φ can be the parameters of a neural network. Trying to approximate the true
model, the agent maintains an approximate distribution p(Φ|h) of models, where ht = h refers to the
ordered history of interactions ((s0, a0, s1), . . . , (st−1, at−1, st)).

In this paper, we adopt the definition of Itti and Baldi (2009), which defines surprise as the discrep-
ancy between a prior distribution of beliefs and the posterior probability distribution following an
observation. In our formalism, we assume that there is a distribution of true models p(ΦT ) that
underpins the transition function of the environment T . In contrast with Φ, this is a property of the
environment. One can see this distribution as a Dirac distribution if only one model exists or as a
categorical distribution of several forward models. We define the expected information gain over the
true models:

IG(h,A, S′, S,ΦT ) = I(S′; ΦT |h,A, S) = H(ΦT |h,A, S)−H(ΦT |h,A, S, S′) (1a)

= E(s,a)∼p(·|h), φT∼p(·),s′∼p(·|s,a,φT ) log p(s′|s, a, h, φT )− log p(s′|s, a, h). (1b)

We found three approximations of our formalism of surprise.
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Surprise as prediction error. First, we can assume that the true forward model is a deterministic
forward model, i.e log p(s′|s, a, h, φT ) = Const. Then, assuming a Gaussian probability distribution,
we end up with (cf. Appendix A.1):

IG(h,A, S′, S,ΦT ) ∝ E(s,a)∼p(·|h), s′∼p(·|s,a,φT )
φ∼p(·|h), φT∼p(·)

||s′ − ŝ′||22 + Const (2)

where ŝ′ is the prediction of state following (s, a). Several works implement such objective using the
ground state space or a learnt representation Ermolov and Sebe (2020); Pathak et al. (2017); Kim
et al. (2019). Despite the simplicity, their underlying assumption makes them sensitive to stochastic
transitions Burda et al. (2019).

Surprise as learning progress. One can also relax the determinism constraint and set

log p(s′|s, a, h, φT )− log p(s′|s, a, h) ≈ log p(s′|s, a, h′)− log p(s′|s, a, h) = ∆||s′ − ŝ′||22 (3)

where h′ concatenates h with an arbitrary number of additional interactions (cf. Appendix A.2). Such
loss is called the learning progress and has also been used several times in the literature because it
is more robust to stochastic transitions than prediction errors Schmidhuber (1991); Oudeyer et al.
(2007); Kim et al. (2020). However, we are not aware of an application to complex RL environments.

Surprise as prediction disagreement. By assuming Φ ≈ ΦT , it is also possible to approximate
the surprise by a form of prediction disagreement:

IG(h,A, S′, S,ΦT ) ≈ E φ∼p(·|h,s,a,s′), φT∼p(·)
(s,a)∼p(·|h),s′∼p(·|s,a,h,φT )

log p(s′|s, a, h, φ)− log p(s′|s, a, h) (4a)

= E φ∼p(·|h,s,a,s′), φT∼p(·)
(s,a)∼p(·|h),s′∼p(·|s,a,h,φT )

log p(s′|s, a, h, φ)− log
∑
φ∈Φ

p(s′|φ, h, s, a)p(φ|h). (4b)

where we simply marginalize out the φ in the right-hand term. This amounts to compute the difference
of prediction among the forward models. Similar equations have been investigated in Shyam et al.
(2019); Pathak et al. (2019); Yao et al. (2021); Sekar et al. (2020).

Surprise as expected information gain. By extending Φ ≈ ΦT to the expectation part, we can
further increase the approximation to match the expected information gain Sun et al. (2011), used as
an intrinsic motivation Houthooft et al. (2016); Achiam and Sastry (2017):

IG(h,A, S′, S,ΦT ) = E(s,a)∼p(·|h),s′∼p(·|s,a,h,φT )DKL(p(Φ|h, s, a, s′)||p(Φ|h)) (5)

The last two approaches are computationally expensive as they require either 1- several forward
models or 2- having a tractable probability distribution over forward models. We consider a density
of a model rather than a forward model, Equation 5 amounts to maximize the pseudo-count Martin
et al. (2017); Ostrovski et al. (2017) (cf. Bellemare et al. (2016)).

3.2 Novelty

Barto et al. (2013) defend that an observation is novel when a representation of it is not “close
enough” to any representation found in memory. Following this definition, we propose to formalize
novelty seeking behaviors as those that actively maximize I(S;Z) = H(S)−H(S|Z) where Z is
a low-dimensional space (|Z| ≤ |S|). This objective is commonly known as the infomax principle
Linsker (1988); in our case, it amounts to actively learning a representation of the environment. Most
of the works focus on actively maximizing the entropy of state distribution while a representation
learning function minimizesH(S|Z). Furthermore, if one assumes that Z = S, the infomax principle
collapses to an entropy maximization H(S). Thus, we will focus on the maximization of H(S).

Novelty with variational inference The most evident way to maximize the entropy of states
consists in maximizing H(ρ(s)) where ρ(s) = p(s|ρ) approximates the state-visitation probability
distribution. But computing ρ(s) is challenging in high-dimensional state spaces. Several methods
propose to estimate ρ(s) using variational inference Zhang et al. (2021); Lee et al. (2019); Pong et al.
(2020) based on variational autoencoder architectures. Assuming z is a compressed latent variable,
p(z) a prior distribution and qd a neural network that ends with a Gaussian with a unit-diagonal
co-variance matrix:

log ρ(s′) ' − log qd(s
′|z) +DKL(qe(z|s′)||p(z)) = R(s, a, s′) (6)
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Novelty with k-nearest neighbors It is also possible to approximate the entropy of a distribution
using samples and their k-nearest neighbors (k-nn) Singh et al. (2003); Kraskov et al. (2004).
Assuming nnk(Sb, si) is a function that outputs the k-th closest state to si in the set Sb, the unbiased
approximation can be written as:

− log ρ(s′) ∝ − log ||s′ − nnk(Sb, s
′)||2 = R(s, a, s′). (7)

Intuitively, it means that the entropy is proportional to the average distance between states and their
neighbors. Few methods provably relate to such estimations, but several approaches take advantage
of the distance between state and neighbors to generate intrinsic rewards Tao et al. (2020); Yarats
et al. (2021); Seo et al. (2021). In practice, k-nn methods are simpler than variational methods as they
do not require to fit a model. They achieve SOTA results on the hard exploration task Montezuma’s
revenge Bougie and Ichise (2020); Badia et al. (2019)

3.3 Skill learning

In our everyday life, nobody has to think about having to move his arm muscles to grasp an object.
A command to take the object is just issued. This can be done because an acquired skill can be
effortlessly reused. Skill abstraction denotes the ability of an agent to learn a representation of diverse
skills. We formalize skill learning as maximizing the mutual information between the goal g ∈ G
and some of the rest of the contextual states u(τ) ∈ u(T ), denoted as I(G;u(T )) where τ ∈ T is a
trajectory and u a function that extracts a subpart of the trajectory (last state for example). Most of
works maximize I(G;S) = H(G)−H(G|S) so that we will refer to this objective.

Skill learning with a discriminator The first approach Florensa et al. (2017); Eysenbach et al.
(2018); Zhang et al. (2020); Baumli et al. (2021); Sharma et al. (2020); Choi et al. (2021); Aubret et al.
(2020); Hansen et al. (2020) assumes the goal space is arbitrarily provided except for the semantic
meaning of a goal. In this setting, the agent samples goals uniformly from G (maximal H(G)), and it
progressively assigns all possible goals to a part of the state space. To do this assignment, the agent
learns a discriminator that approximates q(g|s) ≈ p(g|s) and maximizes with q and the its skills:

−H(G|S) = Eg∼p(g),s∼πg log q(g|s), R((sg, s, a, s
′) = log q(g|s) (8)

such that each skill strives to reach the area assigned to it by the discriminator.

Skill learning as reaching states-goals Another set of works considers that the goal space is the
state space (G = Sg) and separately maximize −H(Sg|S) and H(Sg). Let’s start with the first term.
If log p(sg|s′) is modelled as an unparameterized Gaussian with a unit-diagonal co-variance matrix,
we have log p(sg|s′) ∝ −||sg − s′||22 + Const so that one can reward an agent according to Levy
et al. (2019); Zhao et al. (2019); Nachum et al. (2018); Kim et al. (2021); Nair et al. (2018); Li et al.
(2021b) (where s can also be replaced by a learnt representation):

R(sg, s, a, s
′) = −||sg − s′||22. (9)

Let us now consider the maximization of H(Sg). It can be maximized by over-sampling low-density
state-goals Warde-Farley et al. (2019); Pitis et al. (2020); Zhao and Tresp (2019); Aubret et al. (2021);
Li et al. (2021a). This can be formalized Pong et al. (2020) as having a high-level agent that samples
goals to maximize:

R(sg) = (1 + αskew) log p(sg) (10)

where αskew < 0 determines the weight of low-density state-goals.

4 Conclusion

Is there an information theoretic principle that supports the emergence of complex behaviors Our
analysis supports that crucial behaviors like exploration and skill learning are explained by three
information theoretic objectives maximization. We argued for the relation between our unifying
objective to notions of psychology like novelty, surprise or skill learning. As such, we expect that our
results will favor the design of new information theoretic open-ended learners. Future works may
refine our Skill learning objective, tackle the problem of unifying our three objectives or may try to
encompass more works like bottleneck research (McGovern and Barto, 2001).
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A Appendix

A.1 Surprise as prediction error

To avoid the need of the true forward model in our surprise definition, the agent can omit the left-hand
term of Equation 1b by assuming the true forward model is modelled as a deterministic forward
model. In this case, we can write:

I(S′; ΦT |h,A, S) ∝ E(s,a)∼p(·|h),φT∼p(·)
s′∼p(·|s,a,φT )

− log p(s′|s, a, h) (11a)

= E(s,a)∼p(·|h), φT∼p(·)
s′∼p(·|s,a,φT )

− log
∑
φ∈Φ

p(s′|h, s, a, φ)p(φ|h) (11b)

≥ E φT∼p(·), (s,a)∼p(·|h)
s′∼p(·|s,a,φT ),φ∼p(·|h)

− log p(s′|h, s, a, φ) (11c)

where we applied the Jensen inequality in Equation 11c and φT ∼ p(·) is fixed. One can model
p(s′|h, s, a, φ) with a unit-variance Gaussian distribution in order to obtain a tractable loss. This way,
we have:

E (s,a)∼p(·|h), φT∼p(·)
s′∼p(·|s,a,φT ), φ∼p(·|h)

− log p(s′|φ, h, a, s) ≈ E(s,a)∼p(·|h), s′∼p(·|s,a,φT )
φ∼p(·|h), φT∼p(·)

− log
1

(2π)d/2
e−0.5(s′−ŝ′)T (s′−ŝ′)

(12a)

∝ E(s,a)∼p(·|h), s′∼p(·|s,a,φT )
φ∼p(·|h), φT∼p(·)

||s′ − ŝ′||22 + Const

(12b)
where

ŝ′ = arg max
s′′∈S

p(s′′|h, a, s, φ) (13)

represents the mean prediction and φ parameterizes a deterministic forward model. Following the
objective, we can extract a generic intrinsic reward as:

R(s, a, s′) = ||f(s′)− f(ŝ′)||22. (14)

A.2 Surprise as learning progress

Let’s analyze the following approximation:

log p(s′|s, a, h, φT )− log p(s′|s, a, h) ≈ log p(s′|s, a, h′)− log p(s′|s, a, h). (15)

As h′ becomes large enough and the agent updates its forward model, its forward model converges to
the true transition model. Formally, if one stochastic forward model can describe the transitions, we
can write:

lim
|h′|→inf

p(s′|s, a, h′) = lim
|h′|→inf

∑
Φ

p(s′|s, a, h′, φ)p(φ|h′)

= p(s′|s, a, h′, φT ). (16a)
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Finally, applying the procedure of Appendix A.1 in both terms of Equation 15, we end up with

R(s, a, s′) = ∆||s′ − ŝ′||22, (17)

i.e, the change of prediction error caused by some interactions.

A.3 Surprise as expected information gain

Let’s approximate our surprise by the expected information gain:

IG(h,A, S′, S,Φ) ≈ IG(h,A, S′, S,ΦT ). (18)

Then, the expected information gain Sun et al. (2011); Little and Sommer (2013) over a forward or
density model parameterized by φ can be formulated as:

IG(h,A, S′, S,Φ) = I(S′; Φ|h,A, S) = E (s,a)∼p(·|h)
s′∼p(·|s,a,h)

DKL(p(Φ|h, s, a, s′)||p(Φ|h)) (19a)

≈ E (s,a)∼π
s′∼p(·|s,a,h,φT )

DKL(p(Φ|h, s, a, s′)||p(Φ|h)) (19b)

9
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