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ABSTRACT

Predicting drug-target interactions is a tremendous challenge for drug develop-
ment and lead optimization. Recent advances include training algorithms to learn
drug-target interactions from data and molecular simulations. Here we utilize
Evolutionary Scale Modeling (ESM-2) models to establish a Transformer protein
language model for drug-target interaction predictions. Our architecture, LEP-
AD, combines pre-trained ESM-2 and Transformer-GCN models predicting bind-
ing affinity values. We report new best-in-class state-of-the-art results compared
to competing methods such as SimBoost, DeepCPI, Attention-DTA, GraphDTA,
and more using multiple datasets, including Davis, KIBA, DTC, Metz, ToxCast,
and STITCH. Finally, we find that a pre-trained model with embedding of proteins
(the LED-AD) outperforms a model using an explicit alpha-fold 3D representa-
tion of proteins (e.g., LEP-AD supervised by Alphafold). The LEP-AD model
scales favorably in performance with the size of training data. Code available at
https://github.com/adaga06/LEP-AD

1 INTRODUCTION

Successful drug development requires a solid understanding of the molecular mechanisms underly-
ing the drug’s mechanism of action. One of the most crucial components of this understanding is the
identification of Drug-Target Interactions (DTI), which determine if a chemical compound would
affect a particular target/protein, called binding affinity. Binding affinity is decisive in determining
drug efficacy and safety and identifying specific target proteins.

Despite the importance of identifying DTIs, it remains a challenging task due to the heterogeneous
nature of targets, sparsity of data, inter-individual variability, and an incomplete understanding of
molecular mechanisms. Investigators have turned to computational methods that integrate molec-
ular modeling, computer simulations, and experimental data to address these challenges. Such ap-
proaches strive to gain insights into the molecular details of drug-target interactions, predict binding
affinity, and thereby guide the selection of drug candidates before clinical trials.
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This paper presents a new approach, “LEP-AD”, where we combine a deep latent embedding of pro-
teins using a language model with a graph-based representation of drugs with attention as computed
in a Transformer model.

In this paper, we evaluate the performance of LEP-AD against existing state-of-the-art methods and
demonstrate its ability to predict binding affinity between drugs and target proteins accurately. The
results of our experiments indicate that LEP-AD provides significant improvements over previous
methods in terms of accuracy and speed. Overall, our findings demonstrate the potential of LEP-AD
to serve as a valuable tool for drug discovery and development, providing insights into molecular
mechanisms of drug-target interactions and guiding the selection of drug candidates for clinical
trials.

2 RELATED WORK

The prediction of binding affinity, or the binding strength between a drug and its target in the body,
is a crucial aspect of drug discovery and development. Accurate binding affinity predictions can
help identify the most promising drug candidates, optimize the design of new drugs, and reduce the
cost and time of drug development. The high computational cost of methods based on molecular
dynamics and quantum mechanics, despite the reliable results, limits their use in high-throughput
screening. And those based on molecular docking have faster computation suffering from low ac-
curacy. A growing number of researchers have favored deep learning methods as they provide a
better trade-off between computational cost and accuracy Nguyen et al. (2019) Öztürk et al. (2018).
Traditional machine learning methods, such as decision trees, random forests, and support vector
machines, have also been widely used for binding affinity predictions in the past Kinnings et al.
(2011) Iskar et al. (2012) Corsello et al. (2017). However, these methods rely on hand-crafted fea-
tures and have limited ability to capture the complex and diverse relationships between drugs and
targets. The end-to-end deep learning based methods Tsubaki et al. (2019b) are based on artificial
neural networks, which are designed to automatically learn the complex relationships between drugs
and targets from large amounts of data. Deep learning approaches for binding affinity prediction in-
clude convolutional neural networks (CNNs) Öztürk et al. (2018), long short-term memory networks
(LSTMs) Abbasi et al. (2020) Mukherjee et al., self-attention mechanisms Shin et al. (2019b), and
generative adversarial networks (GANs) Zhao et al. (2020).

Despite the advantages of deep learning-based methods, they also have some limitations. One of the
major limitations is that these methods typically convert drug compounds into string representations,
such as SMILES (Simplified Molecular Input Line Entry System) strings, which do not preserve the
topological information of the drug molecules. The function of proteins greatly depends on their
tertiary structures and, consequently, the binding affinity – for example, the size, characteristics, and
number of protein pockets and cavities can affect the binding significantly. This can lead to the loss
of important structural information and result in decreased accuracy in binding affinity predictions.
Not having access to many proteins with structural information has also been an obstacle to de-
veloping such methods. After introducing the concept of graph neural network (GNN) researchers
start using it for predicting DTIs because of its impressive performance, high interpretability and
the fact that GNNs are generally less sensitive to the choice of atomic descriptors, unlike traditional
feature engineering-based ML models Nguyen et al. (2019). Graph neural networks can capture the
topological information of drug molecules and can be seen as a way to capture important structure
information with reasonable computational cost in contrast to other architectures such as CNN. In
these Structurally aware GNN methods such as GraphDTA Nguyen et al. (2019), the chemical struc-
tures of drugs are represented as graphs, where atoms are represented as nodes, interactions between
atoms are represented as edges, and proteins are represented as strings. Graph neural networks, such
as graph convolutional networks (GCNs), graph attention networks (GATs), and graph isomorphism
networks (GINs), are then applied to predict binding affinity. These methods have shown promising
results in improving the accuracy of binding affinity predictions by incorporating the topological
information of drug molecules.

In this study, we present a novel approach, LEP-AD, which takes into account for the latent struc-
ture of proteins for the prediction of drug-target interactions. Our approach has been shown to sig-
nificantly improve results compared to the state-of-the-art methods. Since previous studies have
attempted to utilize pretrained Alphafold and Evolutionary Sequence Model (ESM) approaches
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Kalakoti et al. (2022), these earlier and smaller models have not been able to match the current state-
of-the-art performance in the prediction of drug-target interactions. To this end, we also assessed the
performance of LEP-AD model supervised by the Alphafold model, thus taking the tertiary protein
structure into account. We compare our results with KronRLS Cichonska et al. (2017), Cichon-
ska et al. (2018), SimBoost He et al. (2017), DeepDTA Öztürk et al. (2018), Mt-Dti Shin et al.
(2019a), DeepCPI Tsubaki et al. (2019a), WideDTA Öztürk et al. (2019), GANsDTA Zhao et al.
(2020), AttentionDTA Zhao et al. (2019), 1D-CNN Majumdar et al. (2021), DeepGS Lin (2020),
and GraphDTA Nguyen et al. (2019).

3 METHOD

The proposed LEP-AD encoder-decoder architecture is designed to predict protein-ligand binding
affinity, as shown in Figure 1. The encoding part of the model consists of two modules. The first

Figure 1: LEP-AD Model Architecture

module extracts topological information from drug molecules, while the second module extracts se-
quential information from target proteins. To prepare protein sequences for machine learning algo-
rithms, we convert them into a numerical representation by transforming the protein sequence into a
numerical form. We explored the intuition that the tertiary protein structures would be advantageous
for our prediction problem. To this end, we utilized the ESM-2 Lin et al. (2022) pre-trained model
with 3B parameters. We also have implemented and used methods such as Alphafold-2, Openfold,
and Fastfold on a smaller dataset. We refer to this model as LEP-AD supervised by Alphafold.

The ESM-2 model generates latent representations of each amino acid in the protein sequence,
thus yielding a compact, non-3D representation of the entire protein sequence through a global max
pooling operation. To capture the topological information of drug compounds, each drug/small com-
pound was represented using its Simplified Molecular Input Line Entry System (SMILES) notation.
This is converted into a graph representation using open-source chemical informatics software RD-
Kit. We apply GCN Kipf & Welling (2016) and Transformer Vaswani et al. (2017) calculations to
the attention matrix in the Graph Transformer Shi et al. (2020). Propagating features from one layer
to the next GCN layers follows:

H(l+1) = σ
(
D−1AH(l)W (l)

)
(1)

The Transformer equation for calculating attention across the value vector is ⟨q, k⟩ = exp
(

qT k√
d

)
.

Applying these GCN propagating layers to Transformers, we have Shi et al. (2020) the attention
matrix from their Graph Transformer is:
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Their model Shi et al. (2020) unifies both label propagation and feature propagation within a shared
message-passing framework. This framework Shi et al. (2020) incorporates attention mechanism
into the graph neural network layers using scalar dot product attention across the value vector

H(0) = X + Ŷ Wd and H(l+1) = σ
(
((1− β)A∗ + βI)H(l)W (l)

)
This second module captures the topological information about the drug by applying self-attention
mechanisms over the nodes of the graph representation of the SMILES notation. The output from
both modules is concatenated and fed into a fully connected layer to predict the binding affinity
between the drug and target.

The decoder part of the model is a regression model, with three layers that take the protein and drug
representations as inputs and predict the binding affinity.

In summary, the LEP-AD architecture captures crucial information for drug-target interaction pre-
diction by extracting topological information from drug molecules and sequential information from
target proteins. The combination of a graph representation of the SMILES notation and Transformer-
based GCN layers enhances the model’s performance and produces more accurate results.

4 EXPERIMENTS

4.1 DATASET

We used Davis Davis MI (2011), KIBA Tang et al. (2014), Drug Target Commons (DTC) Tang
(2018), Metz Metz (2011), ToxCast Tox and STITCH Kuhn (2007) datasets for our experiments as
summarized in Table 1.

Table 1: Dataset statistics

Dataset
# of drugs

(compounds)
# of targets

proteins
Total number of

drug-target pairs used
Davis (kd) 68 442 30056

KIBA 2111 229 118254
DTC (pki) 5983 118 67894
Metz (pki) 1471 170 35307

ToxCast (AC50) 7657 328 342869
STITCH 724471 15258 1244420

4.2 BASELINES

We used GraphDTA Nguyen et al. (2019) as a baseline model. Additional baseline models include
KronRLS Cichonska et al. (2017), Cichonska et al. (2018), SimBoost He et al. (2017), DeepDTA
Öztürk et al. (2018), Mt-Dti Shin et al. (2019a), DeepCPI Tsubaki et al. (2019a), WideDTA Öztürk
et al. (2019), GANsDTA Zhao et al. (2020), AttentionDTA Zhao et al. (2019), 1D-CNN Majumdar
et al. (2021), DeepGS Lin (2020).

4



Published at the MLDD workshop, ICLR 2023

4.3 EVALUATION METRIC

MSE is a commonly used metric to measure the difference between the predicted value and the real
value. For n samples, the MSE is calculated as the average of the sum of the square of the difference
between the predicted value p (i = 1, 2,. . . ,n) and the real value y. A smaller MSE means that the
predicted values of the sample are closer to the real values.

MSE =
1

n

n∑
i=1

(pi − yi)
2 (4)

We use the r2 metric (r2m = r2(1−
√

r2 − r20)) Roy et al. (2013) to evaluate prediction performance
of Quantitative Structure-Activity Relationship (QSAR) models. The predictions of a QSAR model
are deemed acceptable if its r2 value is equal to or greater than 0.5. Here r2 and r20 and the squared
correlation coefficient values between the ground truth and the predicted values with and without
intercept, respectively.

CI measures the distinction between the predicted value and the real value in the analysis, calculated
as

CI =
1

Z

∑
dx>dy

h(bx − by) (5)

4.4 HYPERPARAMETERS

To ensure fairness in our comparison, we employed the same set of training and testing examples
from the Nguyen et al. (2019) database, as well as the same performance metrics - Mean Square
Error (MSE, where lower values are preferred) and Concordance Index and r2m(where higher values
are preferred). For the baseline methods, we present the performance metrics as reported in the
Nguyen et al. (2019) database. The hyper-parameters utilized in our experiments are outlined in
Table 2, and were selected a priori based on our previous modeling experience without any further
tuning.

Table 2: Hyper-parameters used in our experiments

Hyperparameter Settings
Learning rate 0.0005

Batch Size 512
Optimizer Adam

Loss MSE
Dropout 0.2

Transformer GCN Layers[Drug] [8 heads(78-78),4 heads(624-156),2 heads(624-312)]
Linear Layers[Drug] [624,1024,128]

ESM-2 dimensions [3B parameters,36 layers] 2560
Linear Layers [2688,1024,512,1]

5 RESULTS

We evaluate the performance of all models across all datasets reported in Tables 3,4 and 5 using the
concordance index (CI), r2m index, and mean squared error (MSE). Additionally, we evaluated the
impact of replacing the pretrained ESM model with Alphafold2 on the performance of our predictive
model. While Alphafold2 (LEP-AD supervised by Alphafold) demonstrated improved accuracy in
predicting protein structures compared to the current state of the art, the improvement was competi-
tive compared to the previous model. More details about this model are in Appendix. Interestingly,
the pretrained ESM model yielded an additional improvement (Table 3). Furthermore, the process
of generating multiple sequence alignments (MSA) using Alphafold2 resulted in slower processing
times. The results of our evaluation are presented in Table 3, which were obtained using the Davis
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dataset. Despite the potential for better performance with Alphafold2, we ultimately chose to retrain
the pretrained ESM-2 model for our predictive model due to its higher speed, better scalability, and
better overall performance.

Table 3: Performance comparison of LEP-AD against all other baseline models using Davis (pKd)
and KIBA data

Davis (pKd ) KIBA
Model MSE CI r2m MSE CI r2m

KronRLS 0.379 0.869 0.407 0.411 0.782 0.342
SimBoost 0.282 0.873 0.644 0.222 0.836 0.629
DeepDTA 0.261 0.878 0.630 0.194 0.863 0.673

MT-DTI (Wo-FT) 0.268 0.875 0.633 0.220 0.844 0.584
MT-DTI 0.245 0.887 0.665 0.193 0.882 0.738
DeepCPI 0.293 0.867 0.607 0.211 0.852 0.657
WideDTA 0.262 0.886 0.633 0.179 0.875 0.675
GANsDTA 0.276 0.881 0.653 0.224 0.866 0.775

Attention-DTA 0.245 0.887 0.657 0.162 0.882 0.735
1D-CNN − − − 0.700 − −
DeepGS 0.252 0.880 0.686 0.193 0.860 0.684

GraphDTA (GCN) 0.254 0.880 − 0.139 0.889 −
GraphDTA (GAT) 0.245 0.881 − 0.139 0.891 −

GraphDTA (GAT GCN) 0.232 0.892 0.662 0.179 0.866 0.671
GraphDTA (GIN) 0.229 0.893 0.649 0.147 0.882 0.684

LEP-AD(supervised by Alphafold) 0.228 0.894 0.692 0.133 0.893 0.752
LEP-AD* 0.222 0.896 0.723 0.135 0.895 0.780

Table 4: Performance comparison of LEP-AD against all other baseline models on data from DTC
(pki) and Metz (pki)

DTC (pki) Metz (pki)
Model MSE CI r2m MSE CI r2m

GraphDTA (GCN) 0.317 0.878 0.812 0.317 0.801 0.620
GraphDTA (GAT) 0.200 0.857 0.790 0.333 0.795 0.602

GraphDTA (GAT GCN) 0.195 0.859 0.788 0.393 0.775 0.549
GraphDTA (GIN) 0.176 0.876 0.798 0.317 0.800 0.645

LEP-AD* 0.171 0.881 0.830 0.292 0.810 0.682

Table 5: Performance comparison LEP-AD of against all other baseline models on data from Tox-
Cast (pki) and STITCH (pki)

ToxCast (AC50) STITCH
Model MSE CI r2m MSE CI r2m

GraphDTA (GCN) 0.316 0.917 0.561 1.022 − 0.424
GraphDTA (GAT) 0.317 0.917 0.566 − − −

GraphDTA (GAT GCN) 0.346 0.911 0.535 − − −
GraphDTA (GIN) 0.324 0.915 0.555 − − −

LEP-AD* 0.316 0.918 0.572 0.986 0.745 0.461

It is noteworthy that, even in larger datasets, there was a considerable enhancement in the squared
correlation coefficient (also referred to as the coefficient of determination, or r2m) metric, while the
mean squared error (MSE) and concordance index showed less improvement, while r2m shows a clear
increasing trend in all the datasets mentioned above. Our method showed significant improvement in
the R2 metric, with an increase of around 2% for the ToxCast and DTC, around 4% for the STITCH
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dataset and Metz, and around 5% for the Davis datasets compared to the second-best method. These
results suggest that our method could be a strong candidate for the state-of-the-art model predicting
binding affinity.

This disparity in improvement between the r2 and other metrics could be due to a stronger linear
relationship between the ground truth and predicted values contributing to the enhancement in r2,
while the MSE and concordance index is more sensitive to factors such as outliers or factors not
captured by the linear relationship between the ground-truth and predicted values.

Figure 2: a.)Training loss per batch. b.)Validation loss(MSE) to ensure that the model is not over-
fitting. c.) Concordance Index (CI) plot as an evaluation metric on validation data. d.) r2m plot on
validation data.
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6 CONCLUSION

Here we demonstrate the potential of using a sizeable pre-trained protein language model and mod-
eling as a comprehensive approach to uncover molecular mechanisms underlying drug-target inter-
actions. Interestingly, using a pretrained model appeared to be advantageous compared to explicitly
using a 3D protein representation. This observation is also advantageous since using a pretrained
embedding approach scales, as of now, better compared to computationally intensive 3D calculation.
It remains to be investigated whether using a large library of precomputed 3D structures could be
competitive with a pretrained embedding strategy. By analyzing larger datasets and validating our
results through additional experiments, we aim to improve our method further and gain a deeper
understanding of these mechanisms. In particular, our study reveals that there is a need to dissect
the relationship between the size of the data and the performance when different metrics are used.
Specifically, an analysis where methods fail using additional metrics could provide clues for further
enhancement of our DTI method.

Our results have already shown new state-of-the-art performance using several key metrics and data
sets. Accurately predicting drug-target interactions can revolutionize drug development by leading
to the selection of more promising drug candidates and the optimization of their properties before
clinical trials. This, in turn, can significantly improve the success rate of drug development and
result in the discovery of new, more effective, and safer drugs.

In summary, we believe that our future work will continue to shape the future of drug development
and improve human health by discovering new and effective treatments for a wide range of diseases.
Our results demonstrate our method’s potential to impact this field significantly and ultimately ben-
efit human health.
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tion of drugÄı̀target binding affinity using attention model. In 2019 IEEE International Confer-
ence on Bioinformatics and Biomedicine (BIBM), pp. 64–69, San Diego, CA, USA, Novem-
ber 2019. IEEE. ISBN 9781728118673. doi: 10.1109/BIBM47256.2019.8983125. URL
https://ieeexplore.ieee.org/document/8983125/.
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A APPENDIX

Figure 3: LEP-AD-Variant with supervised Alphafold2 model

Methods: The novel aspect of this model lies in the encoding of proteins. To encode the pro-
teins, we employed the Alphafold2 method to generate the predicted distance matrix. From
the 442 proteins in the Davis dataset, some were obtained directly from the Alphafold database
(https://alphafold.ebi.ac.uk) while others were generated using the method proposed by Ahdritz et al.
(2022). We used this implementation with its default parameters. After generating the predicted pro-
tein structure, we normalized it and applied a cutoff to convert it into a binary matrix, resulting in a
contact map, which is an unweighted and undirected graph adjacency matrix. In a manner similar
to the drug graph, we fed the protein contact map into the Transformer-GCN network to obtain the
latent representation of each node in the protein contact map.

Figure 4: Validation Loss(MSE) plot of LEP-AD-Variant with supervised Alphafold2 model
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Figure 5: CI plot of LEP-AD-Variant with supervised Alphafold2 model
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