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Figure 1: Visualization of different data augmentation methods. Column 2-4: CutMix, MixUp, and
SaliencyMix interpolate two images at the pixel level. Column 5-7: DiffuseMix, DA-Fusion, and
Diff-Mix utilize generative models to make semantic modifications to the input image. Column 8:
Our proposed method, De-DA, fuses image-mixing with generative data augmentation. De-DA edits
the class-dependent part of one image using a generative model, then mixes it with another image’s
class-independent part to create a realistic and diverse image.

ABSTRACT

Recent advancements in image mixing and generative data augmentation have
shown promise in enhancing image classification. However, these techniques face
the challenge of balancing semantic fidelity with diversity. Specifically, image
mixing involves interpolating two images to create a new one, but this pixel-
level interpolation can compromise fidelity. Generative augmentation uses text-to-
image generative models to synthesize or modify images, often limiting diversity
to avoid generating out-of-distribution data that potentially affects accuracy. We
propose that this fidelity-diversity dilemma partially stems from the whole-image
paradigm of existing methods. Since an image comprises the class-dependent part
(CDP) and the class-independent part (CIP), where each part has fundamentally
different impacts on the image’s fidelity, treating different parts uniformly can
therefore be misleading. To address this fidelity-diversity dilemma, we introduce
Decoupled Data Augmentation (De-DA), which resolves the dilemma by sepa-
rating images into CDPs and CIPs and handling them adaptively. To maintain fi-
delity, we use generative models to modify real CDPs under controlled conditions,
preserving semantic consistency. To enhance diversity, we replace the image’s CIP
with inter-class variants, creating diverse CDP-CIP combinations. Additionally,
we implement an online randomized combination strategy during training to gen-
erate numerous distinct CDP-CIP combinations cost-effectively. Comprehensive
empirical evaluations validate the effectiveness of our method.

1 INTRODUCTION

Data augmentation is extensively employed to enhance neural network performance. Traditional
data augmentation, such as random shifting, cropping, and rotation, are widely used due to their
simplicity and effectiveness, becoming standard practice in nearly all training algorithms. Recently,
two innovative types of data augmentation have shown potential for improving image classification:
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• Image-Mixing Data Augmentation. Generate augmented images by integrating two or
more randomly picked natural images at the pixel or feature level, creating virtual data
between classes. The online combination paradigm allows for the efficient production of
many images with extensive pixel-level variations at a low cost, yet the images often look
unrealistic and face fidelity problems, as noted by (Kang & Kim, 2023; Islam et al., 2024).

• Generative Data Augmentation. This method leverages generative models to create im-
ages using prompts generated manually or via textual inversion to align with class labels.
However, as noted by (Islam et al., 2024), this method is not yet mature for data-rich learn-
ing scenarios. Crafting prompts that ensure model-generated images match the actual data
distribution is difficult, requiring expert knowledge to describe class objects and challenges
in capturing the dataset’s style. Additionally, textual inversion often leads to limited im-
age diversity due to information loss, reducing the diversity of the generated images, as
mentioned by (Wang et al., 2024). Both forms of prompt guidance encounter issues of
misalignment or limited variation, resulting in limited performance improvements.

Readers can refer to Figure 1 for examples of various data augmentation methods. It is evident that
a trade-off exists between semantic fidelity and diversity in these methods. Naturally, the question
arises: ’How can semantic fidelity be preserved while simultaneously enhancing diversity?’

The prevailing practice of treating images as indivisible units in existing data augmentation meth-
ods presents a fundamental obstacle to achieving both fidelity and diversity. This whole-image
paradigm, while enriching diversity, often results in excessive and detrimental variations to class-
dependent objects, severely compromising fidelity. In contrast, viewing images from a disentangled
perspective could alleviate this challenge by applying distinct strategies to class-dependent parts
and class-independent parts: a conservative strategy on CDPs to maintain fidelity and an aggressive
strategy on CIPs to enhance diversity.

Based on this insight, we propose a novel data augmentation framework, Decoupled Data Aug-
mentation (De-DA), which addresses the fidelity-diversity dilemma through a decoupling strategy.
Specifically, we first separate images into class-dependent parts (CDPs) and class-independent parts
(CIPs) using SAM (Kirillov et al., 2023), and then tailor our adaptive strategies for respective parts
according to their distinct characteristics. To preserve semantic fidelity, we use class identifiers de-
rived from intra-class CDPs as conditions to edit real CDPs with controlled strength, elaborately
varying them while preserving their semantic consistency. To encourage diversity, we replace the
original CIP of the images with a random CIP sampled from an inter-class image. Furthermore, we
adopt an online randomized combination strategy, pairing one CDP (real or synthetic) with one CIP
(cross-class real CIPs) at random positions and transformations to provide the model with various
combinations during the training stage, further enhancing diversity. In summary, both conserva-
tively translated CDPs and real CIPs align with the actual data, ensuring that the generated images
maintain fidelity, while the semantic edits on CDPs and diverse CDP-CIP combinations significantly
enrich variety.

Compared to previous image-mixing methods, De-DA fuses CDPs and CIPs at the semantic level
rather than the pixel level, thereby enhancing fidelity. De-DA also distinguishes itself from other
generative methods via applying textual inversion (Gal et al., 2022) and SDEdit (Meng et al., 2021)
to isolated CDPs instead of the entire image, thus avoiding the negative effects of noisy information
in the image. Furthermore, De-DA’s decouple-and-combine paradigm enables the production of
more images at a lower cost than prior generative methods. Our contributions include:

• De-DA shows a solution to the fidelity-diversity dilemma in previous data augmentation
methods by decoupling images into class-dependent parts and class-independent parts and
managing these parts adaptively.

• To our knowledge, we are the first to apply textual inversion and SDEdit to isolated CDPs
instead of entire images in the field of data augmentation, which minimizes the negative
impact from the noisy information in the images. Additionally, we propose truncated-
timestep textual inversion to reduce the computational burden, enhancing practicability.

• Extensive experiments on domain-specific classification, multi-label classification, and
data-scarce learning scenarios comprehensively validate the effectiveness of De-DA.
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Table 1: Comparing data augmentation methods on fidelity and diversity.

Image-Mixing Generative Image-Mixing + Generative

Mixup 2018 CutMix 2019 Real-Guidance 2023 DA-Fusion 2024 Diff-Mix 2024 DiffuseMix 2024 De-DA (ours)
Mixing Pixel-Wise Patch-Wise — — — Mask-Wise Semantic-Wise

Prompt — — Label Description Derived from
Intra-Class Images

Derived from
Inter-Class Images Style Prompt Derived from

Intra-Class CDPs

Fidelity Low Low High High Medium High High
Diversity High High Medium Low High Medium High

Figure 2: Illustration of the mechanisms of different data augmentation methods. Row 1: Image-
mixing methods, such as Mixup (Zhang et al., 2018) and CutMix (Yun et al., 2019) create mixed
images through pixel-level interpolation. DiffuseMix (Islam et al., 2024) uses style prompts (e.g.,
”Sunset”) to transform input images, generating varied-style images which are then concatenated to
form a hybrid image. DA-Fusion (Trabucco et al., 2024) uses the intra-class identifier V1image, while
Diff-Mix (Wang et al., 2024) employs an another class’s identifier V2image to translate natural images
with SDEdit, but these methods face issues of limited variety or constrained fidelity. Row 2: Our
proposed De-DA maintains fidelity by editing CDPs conditioned with V1CDP through a transparency
image-to-image diffusion pipeline which is specifically designed for handling transparent images. It
also enhances diversity by replacing CIPs and applying random transformations to CDPs, resulting
in faithful and diverse images.

2 RELATED WORK

Image-mixing and generative data augmentation methods are two approaches akin to De-DA. Table
1 offers an overview of prominent image-mixing and generative data augmentation methods, with
Figure 2 depicting their mechanisms.

Image-Mixing Data Augmentation. Image mixing is a non-generative data augmentation tech-
nique used during training to provide classifiers with numerous mixed images, which helps smooth
decision boundaries and enhance image classification (Zhang et al., 2018). Early methods, such
as Mixup (Zhang et al., 2018) and CutMix (Yun et al., 2019), create new images by linearly com-
bining two images at the pixel or patch level. However, this mixing can compromise the semantic
integrity of class-specific objects. To address this, advanced approaches like SaliencyMix (Uddin
et al., 2020), SnapMix (Huang et al., 2021), PuzzleMix (Kim et al., 2020a), CoMixup (Kim et al.,
2020b), and GuidedMixup (Kang & Kim, 2023) use saliency maps to ensure important regions are
preserved. Despite this guidance, class-specific objects may still be distorted, producing virtual im-
ages that deviate significantly from the actual data distribution, resulting in limited semantic fidelity.
In contrast, De-DA addresses this issue by combining CDPs and CIPs at the semantic level, rather
than at the pixel level, to preserve fidelity.

Generative Data Augmentation. Generative data augmentation leverages advanced text-to-image
models to create new images. Initial research (He et al., 2023) demonstrates that text-to-image diffu-
sion can generate synthetic data that effectively enhances classification performance in data-scarce
scenarios, particularly when conditioned on detailed class descriptions. Azizi et al. (2023) improved
generation quality by fine-tuning diffusion models on ImageNet, leading to better classification per-
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Figure 3: The pipeline of De-DA. Left: (1) Images are decoupled into CDPs and CIPs. Missing
regions in each CIP are inpainted, creating a pool of inter-class inpainted CIPs. (2) Truncated-
Timestep Textual Inversion (TTTI) are applied to the real CDPs to efficiently learn the class-
specific identifiers V1,V2, . . . for each class. These identifiers are then used to semantically modify
real CDPs into new synthetic CDPs. Right: (3) CDPs and CIPs are combined by pairing a real
or synthetic CDP (with probability 1 − psyn or psyn) with a randomly selected CIP to create a new
image. With probability pmix, an inter-class CDP is added to generate a mixed-CDPs image.

formance. Bansal & Grover (2023); Yuan et al. (2022) utilized style prompts to synthesize images
for improving domain adaptation. Subsequent studies explored various prompt enhancement tech-
niques. For instance, Li et al. (2024) added image captions to prompts for better distribution align-
ment, while Yu et al. (2023) employed large language models to create diverse and detailed prompts
at scale. However, these methods often struggle to produce in-distribution images due to the black-
box nature of generative models and challenges in accurately describing the abstract characteristics
of datasets. Consequently, they do not significantly enhance domain-specific classification tasks,
where similar data distributions between different classes increase the likelihood of generating im-
ages with ambiguous labels. To address this issue, researchers leverage textual inversion (Gal et al.,
2022) to learn class identifiers from real images, bypassing the difficulties of prompt design. Using
these learned class identifiers, DA-Fusion (Meng et al., 2021) employs SDEdit to modify real sam-
ples into new ones with controlled generation strength, ensuring semantic consistency but limited
variation. Diff-Mix (Wang et al., 2024) augments images with inter-class personalized identifiers
to vary the images’ backgrounds while maintaining a faithful foreground. However, there is a non-
negligible probability of producing unexpected images with unfaithful foregrounds and unchanged
backgrounds, necessitating the use of CLIP as a filter to remove problematic samples. DiffuseMix
(Islam et al., 2024) uses manually crafted style prompts, such as ”Sunset,” to vary input images and
concatenate two varied-style images into a hybrid image. However, the diversity in DiffuseMix is
primarily reflected images’ style, with limited variation in images’ semantic content. We conclude
that existing generative data augmentation methods often sacrifice either diversity or fidelity. De-DA
mitigates this issue through a decoupling strategy, effectively controlling CIP to diversify and CDP
to maintain fidelity.

3 DECOUPLED DATA AUGMENTATION

De-DA is a framework designed to address the fidelity-diversity trade-off through a decoupling
strategy. As illustrated in Figure 3, it initially separates class-dependent parts (CDPs) and class-
independent parts (CIPs) using SAM, which forms the foundation of De-DA. De-DA employs class
identifiers derived from intra-class CDPs to conditionally edit real CDPs, then pairs a real or syn-
thetic CDP with randomly selected CIPs to create new images.

Decoupling Images into CDPs and CIPs. The initial phase of De-DA involves separating train-
ing samples into class-dependent parts and class-independent parts, as the basement of our De-DA.
Practically, we utilize Lang-SAM (Kirillov et al., 2023)1, an off-the-shelf, prompt-based segmen-

1Lang-SAM (https://github.com/luca-medeiros/lang-segment-anything) is a
prompt-guided segmentation tool based on GroundingDINO (Zuwei Long, 2023) and SAM (Kirillov et al.,
2023).
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tation tool, to obtain segmentation masks for class-dependent parts using domain or class name
prompts (e.g., ”bird” for CUB-200-2011). If multiple CDP masks are generated in one image, they
are aggregated into a single mask to ensure complete coverage of the CDP. Masked regions are la-
beled as CDPs, while remaining image portions are classified as CIPs. We apply alpha pyramid
image blending to fill the missing areas in the segmented CIPs.

Conservative Generation of CDP. Following prior research (Trabucco et al., 2024; Zhou et al.,
2023), we use textual inversion to derive identifiers for each class and employ SDEdit to transform
natural images conditioned on these prompts. Unlike previous methods, our approach applies tex-
tual inversion and SDEdit solely to the class-dependent parts (CDPs) rather than the entire image.
This strategy addresses two critical issues: (1) Learning class prompts from CDPs ensures that the
derived concept accurately corresponds to class-specific objects. (2) Applying SDEdit to CDPs pre-
vents interference from class-independent parts, enhancing SDEdit’s performance. This contrast is
shown in Figure 4. However, applying textual inversion and SDEdit to CDPs is challenging, as
traditional methods are only designed for RGB images. To accommodate transparent CDPs, we
employ LayerDiffuse (Zhang & Agrawala, 2024), which equips diffusion models with a dedicated
transparency encoder and decoder capable of encoding the alpha channel into latents and decoding
latents into RGBA images. Specifically, our transparency image-to-image pipeline operates as
follows: we first add noise ϵ ∼ N (0, 1) to real CDPs (indicated by xref

0 ) at timestep ⌊Ts⌋, where
s ∈ [0, 1] indicates the generation strength (s = 0 refers no editing and s = 1.0 indicates generation
from scratch), followed by denoising:

x⌊STs⌋ =
√
α̃⌊STs⌋x

ref
0 +

√
1− α̃⌊STs⌋ϵ (1)

Denoise x⌊STs⌋ using LayerDiffuse reverse diffusion conditioned on the learned identifier VCDP (we
will discuss later), starting from the timestep ⌊Ts⌋ to 0, yielding the final edited CDP x0.

xt−1 = xt − ϵθ (xt, t,VCDP) , t = ⌊STs
⌋, . . . , 1 (2)

Here, VCDP is the class identifier derived from each class’s real CDPs using textual inversion. To al-
leviate the computational cost of textual inversion, we apply truncated-timestep textual inversion
tailored for SDEdit. In this method, the prompts are trained only on the timestep from 0 to ⌊STs

⌋
instead of all timesteps, promoting quicker convergence. Formally, truncated-timestep textual inver-
sion learns VCDP by

VCDP = argmin
c

Et∈[0, ⌊STs⌋] [∥ϵ− ϵθ(xt, c, t)∥] (3)

Inter-class Random Sampling of Class-Independent Parts. Our approach to handling Class-
Independent Parts (CIPs) derives from observations of real datasets. Specifically, real datasets ex-
hibit significant intra-class uniformity but restricted cross-class diversity. For example, in the CUB-
200-2011 dataset (Wah et al., 2011), 90% of Common Yellowthroat images feature branches in the
background. Albatross images often show water surfaces, while Jaeger images typically capture
them in flight. Based on these observations, we propose an intra-class CIP sampling strategy rather
than generating new CIPs. This method sufficiently enhances the CIP diversity of synthetic images
and has proven effective in our experiments. The inter-class CIP replacement strategy offers two
main advantages: (1) it is computationally efficient and avoids producing out-of-distribution CIPs,
which can occur with generative data augmentation; and (2) CIP replacement can generate numerous
images with the same CDPs but different CIPs, thereby enabling the trained model to better focus
on critical regions of the images, which is validated in experiments 4.2.

Online Randomized Combination. During the training phase, we combine CDPs and CIPs by
selecting a CDP and a CIP at random. The CDP is randomly resized and pasted onto a random posi-
tion on the CIP, with specific random transformations applied to generate a new image. This random
placement enables the model to learn position-independent features effectively. Additionally, two
different CDPs are occasionally mixed with one CIP to create new multi-label samples, resulting in
semantic interpolations between two classes. The weight of each label is proportional to the pixel
area of the respective CDPs, following the implementation of CutMix (Yun et al., 2019). Compared
to interpolations created by image-mixing data augmentation, our semantic interpolations appear
more realistic and maintain semantic fidelity. Experiments (Section 4.3) confirm that the random-
ized combination and CDP mixing strategies could lead to performance improvements. Besides
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Figure 4: Examples illustrate the differences between applying SDEdit to the entire images and
the pure CDPs. We observe that in generative methods, the background can negatively affect the
performance of SDEdit. Row 1: The generative model misinterprets a person in red clothing in the
background as the bird’s crest. Row 2: A person in the background is mistakenly integrated into the
bird during SDEdit, reducing the fidelity of the translated image. Row 3: Ice in the background is
misrepresented as birds. In contrast, the right three columns showcase images generated by De-DA.
De-DA involves applying textual inversion and SDEdit to isolated CDPs, facilitating modifications
to avian features like feathers, eyes, and legs without altering their labels. By focusing on isolated
CDPs, De-DA effectively mitigates the influence of background noise on the translation process.

superior generation quality, the decouple-and-combine prototype of De-DA can produce a substan-
tially larger number of images with high efficiency compared to generative methods. Specifically,
suppose each class consists of M training samples. If we generate K synthetic CDPs for each real
CDP, we can obtain a total of CM(1 + K) different CDP-CIP combinations (C is the number of
classes) for that image, where 1 + K is the total number of real and synthetic CDPs derived from
that real CDP and CM is the total number of different CIPs.

4 EXPERIMENTS

In this section, we comprehensively analyze De-DA by answering the following questions:

Q1: Can De-DA outperform other methods in conventional classification tasks?

Q2: Can De-DA still surpass other methods in various settings such as data-scarce scenarios?

Q3: How do the modules in our approach and the hyperparameters affect our method’s performance?

To answer Q1, in Section 4.1, we compare De-DA to peer methods across different domain-specific
datasets. In Section 4.2, we address Q2 by examining its performance in data-scarce scenarios,
multi-label classification, and a replaced-background dataset, demonstrating the performance gains
of De-DA in various contexts. For Q3, we conduct extensive ablation studies on each module and
hyperparameter to assess their impacts and explain our chosen settings in Section 4.3.

4.1 COMPARISON ON CONVENTIONAL CLASSIFICATION

Experimental Setting. We tested data augmentation methods on three classical domain-specific
datasets: CUB-200-2011 (Wah et al., 2011), Aircraft (Maji et al., 2013), and Stanford Cars (Krause
et al., 2013), following the experimental settings of DiffuseMix (Wang et al., 2024) and Diff-Mix
(Wang et al., 2024). Experiments are conducted using three smaller models—ResNet-18 (He et al.,
2016), ResNet-50 (He et al., 2016), and DenseNet121 (Huang et al., 2017)—as well as a large
pretrained model, ViT-B/16 (Dosovitskiy et al., 2021). To ensure fairness, we adhere to prior work
for our training implementations. For the small models, we followed the GuidedMix implementation
(Kang & Kim, 2023), training from scratch with cross-entropy loss.2 For ViT-B/16, we follow Diff-
Mix, fine-tuning the ViT model with label smoothing loss. Unless otherwise specified, in De-DA,
we set the expansion multiplier for each real CDP to 3. The generation strength for textual inversion

2Our results might differ from Diff-Mix for small models (ResNet-18, ResNet-50) because we trained from
scratch, whereas Diff-Mix began with a pretrained model.
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Table 2: (Training from scratch) Conventional classification on domain-specific dataset. We bolden
the highest and underline the second highest.

Resnet-18@448 Resnet-50@448 DenseNet-121@448

Method CUB Aircraft Car CUB Aircraft Car CUB Aircraft Car Avg.

Vanilla(CVPR’2016) 72.78 72.52 89.44 72.54 71.53 91.32 78.20 76.09 90.60 79.45
Mixup (ICLR’2018) 74.73 73.12 88.41 75.96 74.17 90.04 79.41 78.94 91.36 80.68 (+1.23)
CutMix (ICCV’2019) 70.35 72.91 89.39 74.77 73.51 90.93 79.93 78.43 91.74 80.33 (+0.88)
SaliencyMix(ICLR’2020) 70.62 70.36 87.71 72.92 73.54 90.52 78.72 78.25 91.67 79.37 (-0.08)
Co-Mixup (ICLR’2020b) 77.25 72.22 89.44 79.41 75.70 90.81 80.89 78.91 90.44 81.68 (+2.23)
Guided-AP(AAAI’2023) 77.77 75.64 89.62 78.65 73.48 89.35 78.15 78.73 90.97 81.38 (+1.93)
Guided-SR(AAAI’2023) 77.27 76.75 89.52 78.77 77.38 91.01 81.27 80.56 91.22 82.75 (+3.30)
Real-Guidance (ICLR’2023) 67.81 63.07 84.87 68.54 66.40 87.63 75.08 75.76 91.46 75.62 (-3.83)
DiffuseMix(CVPR’2024) 73.13 70.03 88.68 74.40 73.37 90.60 79.15 76.00 91.56 79.66 (+0.21)
DA-Fusion(ICLR’2024) 70.30 64.03 88.17 72.16 65.68 89.47 78.49 71.38 91.21 76.77 (-2.68)
Diff-Mix (CVPR’2024) 76.32 77.65 92.35 77.58 79.21 93.72 81.41 83.83 93.68 83.97 (+4.52)
De-DA 80.07 82.06 92.23 80.82 84.79 93.04 83.60 86.77 93.52 86.32 (+6.87)

Table 3: Accuracy of finetuning on Vit-B/16.

Method CUB Aircraft Car Avg.

Vanilla(CVPR’2016) 89.37 83.50 94.21 89.03
CutMix(ICCV’2019) 90.52 83.50 94.83 89.62 (+0.59)
SaliencyMix(ICLR’2020) 89.94 83.24 93.47 88.88 (-0.15)
Co-Mixup(ICLR’2020b) 88.81 82.76 93.12 88.23 (-0.80)
Guided-AP(AAAI’2023) 88.65 82.79 92.99 88.14 (-0.89)
Guided-SR(AAAI’2023) 89.80 84.24 93.56 86.70 (+0.17)
Real-Guidance(ICLR’2023) 89.54 83.17 94.65 89.12 (+0.09)
DiffuseMix(CVPR’2024) 89.26 83.29 93.56 88.70 (-0.33)
DA-Fusion(ICLR’2024) 89.40 81.88 94.53 88.60 (-0.43)
Diff-Mix(CVPR’2024) 90.05 84.33 95.09 89.82 (+0.79)
De-DA 90.62 84.01 95.15 89.93 (+0.90)

Table 4: 10-shot test accuracy on CUB-200-2011.
Method Resnet18 Resnet50 DenseNet121 Avg.

Vanilla(CVPR’2016) 30.32 26.86 38.18 31.79
Mixup(ICLR’2018) 34.31 33.00 34.43 33.91 (+2.12)
CutMix(ICCV’2019) 24.96 22.23 22.90 23.36 (-8.42)
SaliencyMix(ICLR’2020) 25.27 23.97 23.94 24.39 (-7.39)
Co-Mixup(ICLR’2020b) 37.50 28.56 38.44 34.83 (+3.05)
Guided-AP(AAAI’2023) 40.44 34.35 41.82 38.87 (+7.08)
Guided-SR(AAAI’2023) 38.18 36.71 41.16 38.68 (+6.90)
Real-Guidance(ICLR’2023) 24.56 23.82 34.98 27.79 (-4.00)
DiffuseMix(CVPR’2024) 36.05 33.97 45.27 38.43 (+6.64)
DA-Fusion(ICLR’2024) 26.67 25.16 34.78 28.87 (-2.92)
Diff-Mix(CVPR’2024) 45.75 38.79 48.42 44.32 (+12.53)
De-DA 54.52 49.53 56.97 53.67 (+21.88)

Table 5: Classification result on out-of-distribution dataset Waterbird Sagawa* et al. (2020), each
image is crafted by combine CUB-200-2011’s foregrounds with the background from Places Zhou
et al. (2017). Higher accuracy represents higher background robustness.

Method (Waterbird, Water) (Waterbird, Land) (Landbird, Land) (Landbird, Water) Avg.

Vanilla(CVPR’2016) 59.50 56.70 73.48 73.97 70.19
Mixup(ICLR’2018) 66.67 61.37 74.28 75.52 72.52 (+2.33)
CutMix(ICCV’2019) 62.46 60.12 73.39 74.72 71.23 (+1.04)
Real-Guidance (ICLR’2023) 61.06 56.08 70.73 71.40 68.29 (-1.9)
DiffuseMix(CVPR’2024) 63.08 57.48 71.35 74.46 70.11 (-0.08)
DA-Fusion(ICLR’2024) 60.90 58.10 72.94 72.77 69.90 (-0.29)
Diff-Mix(CVPR’2024) 63.83 63.24 75.64 74.36 72.47 (+2.28)
De-DA 67.72 67.32 78.40 78.85 76.17 (+5.98)

and SDEdit is fixed at s = 0.4. During training with De-DA, nautral images are replaced with
augmented data with a probability paug = 0.5. For CDP-CIP combinations, the probability of using
mixed CDP pmix is 0.5, and the synthetic CDP is used with a probability psyn = 0.25.

Peer Methods. We compare De-DA with ten peer methods, including six image-mixing and four
generative approaches. The image-mixing methods include: (1) Mixup (Zhang et al., 2018), which
linearly combines pairs of images and their labels; (2) CutMix (Yun et al., 2019), which replaces a
portion of one image with a patch from another; (3) SaliencyMix (Uddin et al., 2020); (4) Co-Mixup
(Kim et al., 2020b); and (5) Guided-AP and (6) Guided-SR (Kang & Kim, 2023), which use saliency
maps to guide the mixing process, alleviating the issue of corrupted class-specific objects. The gen-
erative methods include: (1) Real-Guidance (He et al., 2023), which augments the dataset using
label-name guidance at a fixed low strength s = 0.1; (2) DiffuseMix (Islam et al., 2024), which
creates hybrid images from different conditional prompts using fractal blending; (3) DA-Fusion
(Trabucco et al., 2024), which augments images with identifiers learned from intra-class images at
random strengths s ∈ {0.25, 0.5, 0.75, 1.0}. (4) Diff-Mix (Wang et al., 2024), which augments im-
ages with the identifiers learned from other classes’ images at random strengths s ∈ {0.5, 0.7, 0.9}.
Both Real-Guidance and Diff-Mix additionally make use of the large vision-language model CLIP
Radford et al. (2021) to evaluate label confidence, aiding in the filtering of distorted images. We
set the expansion multiplier for all augmented methods and adjust the augmentation probability paug
according to each method’s recommendation.

Comparison on Conventional Classification. Table 2 presents the test accuracy of various aug-
mentation strategies across three domain-specific datasets. All methods use an input resolution of
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Figure 5: (a) Comparison on multi-label classification. (b) Comparison on diversity by PSNR.

448 and are trained from scratch. The results indicate the following: (1) De-DA consistently out-
performs other data augmentation methods on CUB-200-2011 and Aircraft by a significant margin.
Specifically, De-DA achieves test accuracies of 80.07% and 82.06%, exceeding the second-highest
accuracy by notable margins of 2.3% and 4.41%, respectively, with ResNet-18. (2) De-DA does not
surpass Diff-Mix in test accuracy on Stanford Cars. We hypothesize this is due to the class-specific
object occupying most of the image area in Stanford Cars, making the CIP replacement strategy
less effective for performance gains in this dataset. (3) Generative augmentation methods like DA-
Fusion and Real-Guidance do not enhance accuracy, suggesting that the standard use of diffusion
for image editing is limited in its ability to improve accuracy due to restricted diversity.

Comparison on Fine-Tuning on Large Models. Table 3 reports the accuracy of different meth-
ods on large model fine-tuning with an input resolution of 384. The results indicate: (1) De-DA
consistently demonstrates superior performance compared to other methods. (2) The improvement
of De-DA over the second-highest method is less pronounced than when training from scratch.

4.2 COMPARISONS ON VARIOUS TASKS

To evaluate performance in data-scarce scenarios, we create a version of the CUB-200-2011 dataset
by randomly selecting 10 images per class, following the settings of DiffuseMix (Islam et al., 2024).
To assess how data augmentation aids in learning background-robust features, we test accuracy on
the Waterbird dataset, which combines bird foregrounds from CUB-200-2011 with backgrounds
from the Places dataset (Zhou et al., 2017). Here, (Waterbird, Water) indicates (the type of bird,
the type of background). We further compare De-DA to other methods on the multi-label classifi-
cation dataset Pascal (Everingham et al., 2010) to validate its performance in improving multi-label
classification. Additionally, we demonstrate that De-DA is compatible with other data augmentation
techniques, such as RandAugment(Cubuk et al., 2020).

Comparison in Data-Scarce Scenarios. The results on the data-scarce CUB-200-2011 dataset are
shown in Table 4. We observe that De-DA significantly outperforms all other methods, achieving
an accuracy of 54.52% on ResNet-18, which is 8.77% higher than the second-best method. This
remarkable improvement is due to the substantially larger number of augmented images generated
by De-DA’s online combination strategy, which compensates for the lack of data. Furthermore,
compared to image-mixing methods that also produce a large number of mixed images, De-DA
shows significant improvement, demonstrating that the images generated by De-DA are much more
effective due to their high diversity and fidelity.

Comparison on Background Robustness. Table 5 presents the experimental results on the Wa-
terbird dataset, which evaluates the model’s robustness against background replacement, rather than
relying on the background. De-DA clearly outperforms other methods in all categories, achieving an
average improvement of 5.98%, which is 3.70% higher than the second-best method, Diff-Mix. This
validates our earlier statement that De-DA helps the model learn CIP-independent features, enabling
the model to focus on the class-specific object for classification.

Comparison on Multi-Label Classification. Figure 5a compares different methods on a multi-
label classification. De-DA achieves 23.02% on ResNet-18 and 22.05% on ResNet-50, surpassing
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Figure 6: Visual examples of different generative data augmentation methods.

all other methods by a non-trivial margin, demonstrating that De-DA can effectively improve multi-
label classification through mixed-CDPs augmented samples.

Comparing Diversity of Generative Data Augmentation. Figure 5b quantitatively compares
De-DA to other generative methods using Peak Signal-to-Noise Ratio (PSNR). A lower PSNR
value indicates higher diversity. The results show that De-DA achieves greater diversity than the
other methods. Figure 6 presents the examples of different generative data augmentation methods,
validating our aforementioned statement. Specifically, we observe that (1) DiffuseMix diversifies
images from a stylistic perspective rather than a semantic level. While it shows robustness to ad-
versarial noise, it is less effective in improving test accuracy. (2) Real-Guidance slightly modifies
images using SDEdit at a low strength. Although it maintains semantic consistency, it struggles
with background invariance. (3) Da-Fusion has the same issue as Real-Guidance. (4) Diff-Mix uses
identifiers from other classes to transform the input image, aiming to vary the background while pre-
serving the semantic fidelity of the foreground. However, it often significantly alters the foreground
greatly without effectively diversifying the background.

CUB Aircraft Car
80
82
84
86
88
90
92

Ac
cu

ra
cy

(%
)

De-DA
De-DA+RandAug

Figure 7: Compatibility of De-DA
with RandAugment.

Compatibility with Traditional Data Augmentation. We
evaluate the compatibility of De-DA with RandAugment
(Cubuk et al., 2020), as shown in Figure 7. The results indicate
that combining De-DA with RandAugment outperforms using
De-DA alone, indicating that De-DA and traditional data aug-
mentation RandAugment are two mutually reinforcing mech-
anisms. The result validates the extensibility of De-DA.

4.3 ABLATION STUDIES

Experimental Setting. We first evaluate the impact of each
hyperparameter of De-DA on CUB-200-2011 with ResNet-18.
Then, to evaluate the contribution of each component of our
approach, an ablation study is conducted by incrementally adding each component. We focused on
components including synthetic CDP, CIP replacement, the randomized combination and the CDP
mixing technique. The experimental baseline model is ResNet-18 and the dataset is Aircraft.

Ablation on Hyperparameters. The impact of the De-DA’s hyperparameters is shown in Figure
8. The experimental results lead to the following conclusions: (1) The performance of De-DA
improves as paug increases from 0.00 to 0.50, peaking at 0.5, indicating that a balanced approach of
using both generated and original data is optimal. (2) The highest performance for three datasets
is observed at Psyn = 0.25. Using either no synthetic CDP or only synthetic CDPs results in a
performance decline. (3) We observe that CDP mixing leads to significant improvement on CUB-
200-2011 at pmix = 0.25, demonstrating that CDP mixing effectively boosts classification. (4) A
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Figure 8: (a) Impact of the probability of replacing real data with augmented data paug; (b) Impact of
the probability of using edited CDPs psyn; (c) Impact of the probability of using CDP mixing pmix;
(d) Impact of the generation strength s.

generation strength of s = 0.4 consistently yields improvement across the three datasets. Peak
performance occurs at different strengths: Aircraft and Standford Car peak at s = 0.4, while CUB-
200-2011 peaks at s = 0.2, possibly because the inter-class images in the CUB-200-2011 are more
similar than in the other two datasets. However, too high a strength can result in performance
decline, e.g. s = 0.8 achieves a lower accuracy than s = 0.0 on CUB-200-2011. These ablation
studies explain our hyperparameter choices. The results indicate that De-DA is relatively robust to
hyperparameter settings. The impact of the expansion multiplier is discussed in the appendix.
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Figure 9: Ablation study on each module.

Ablation on Each Module of De-DA. Figure 9
shows the module ablation results. (a) represents
vanilla training without data augmentation. (b) in-
volves replacing the CDP of the original sample with
a same-size synthetic CDP at the same position, with
a probability psyn = 0.25. This improves upon the
baseline, validating the effectiveness of semantically
edited CDPs in image classification. (c) replaces the
CDP with a synthetic one using a random combina-
tion strategy that varies the position and size of the
CDPs, further enhancing (b) by 1.34 %, indicating
that random combination strategy do compile with
CDP editing. (d) employs only the CIP replacement
strategy without CDP editing or random combination, effectively boosting accuracy, which high-
lights the importance of CIP diversity. (e) utilizes an inter-class CIP strategy with random combi-
nation, further improving performance, indicating that CIP replacement and random combination
are two mutually reinforcing mechanisms. (f) incorporates the strategies of CDP editing, inter-class
CIP replacement, and random combination, achieving an accuracy of 80.15%, which surpasses the
accuracies of all other peer methods. (g) is the complete version of De-DA, incorporating the CDP-
mixing strategy. This integration further enhances the performance.

5 CONCLUSIONS AND FUTURE WORKS

In this work, we propose an innovative approach to address the fidelity-diversity dilemma through
decoupled data augmentation (De-DA). We decouple images into class-dependent and class-
independent parts, with CDP maintaining semantic fidelity and CIP enhancing diversity. The
decouple-and-combine strategy of De-DA enables the production of faithful and diverse images
at scale, with lower computational costs compared to generative methods. Experiments validate
that De-DA effectively improves conventional classification, data-scarce classification, and multi-
label classification. De-DA also helps models learn background-independent features. Future work
could explore several directions: (1) decoupling images in a more fine-grained manner to improve
performance in fine-grained retrieval tasks; (2) developing adaptive strategies for designing genera-
tion strength based on dataset characteristics; (3) exploring new CDP-CIP combination approach to
further boost diversity.
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Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empiri-
cal risk minimization. In ICLR, 2018.

Lvmin Zhang and Maneesh Agrawala. Transparent image layer diffusion using latent transparency.
ArXiv, abs/2402.17113, 2024.

Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10
million image database for scene recognition. IEEE transactions on pattern analysis and machine
intelligence, 2017.

12

https://openreview.net/forum?id=ryxGuJrFvS
https://openreview.net/forum?id=ryxGuJrFvS
https://openreview.net/forum?id=ZWzUA9zeAg


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yongchao Zhou, Hshmat Sahak, and Jimmy Ba. Training on thin air: Improve image classification
with generated data. arXiv preprint arXiv:2305.15316, 2023.

Wei Li Zuwei Long. Open grounding dino:the third party implementation of the paper grounding
dino. https://github.com/longzw1997/Open-GroundingDino, 2023.

13

https://github.com/longzw1997/Open-GroundingDino


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

Table 6: General hyperparameters of De-DA.

Hyperparameter Name Value
Segmentation prompt CUB: ”Bird”; Aircraft: ”Aircraft”; Standford Car: ”Car”; Pascal: label name
Probability of using augmented data (paug) 0.5
Probability of using synthetic CDP (psyn) 0.25
Probability of applying CDP mixing (pmix) 0.5
Generation strength (s) 0.4
Textual inversion token initialization CUB: ”Bird”; Aircraft: ”Aircraft”; Standford Car: ”Car”; Pascal: label name
Textual inversion batch size 32
Textual inversion learning rate 1e-4
Textual inversion training steps 400
SDEdit prompt “a photo of a <class name>”
Stable diffusion guidance scale 7.0
Stable diffusion resolution (pixels) 512
Stable diffusion denoising steps 25

Table 7: Training hyperparameters of De-DA.

Architecture Resnet-18 Resnet-50 DenseNet-121 ViT-B/16
Learning rate 0.01 0.01 0.01 0.001
Epochs 300 300 300 120
Batch size 16 16 8 32

A.1 IMPLEMENTATION DETAILS

All of our experiments are conducted on a system equipped with 96 CPU cores (Platinum 8255C @
2.50GHz) and 8 GPU Tesla V100 cards. For doupling the images into CDPs and CIPs, we employ
LangSAM 3 with prompt guided. For inpainting the missing part of For the training implementa-
tions of ResNet-18, ResNet-50, and DenseNet-121, we adhere to the official training script from
GuidedMix (Kang & Kim, 2023) 4. For the training of Vit-B/16, we followed the official implemen-
tation provided by Diff-Mix (Wang et al., 2024) 5. Additionally, we introduce the hyperparameters
related to decoupling, truncated-timestep textual inversion and SDEdit. Specific values for these
hyperparameters are provided in Table 6 and Table 7.

A.2 ABLATION STUDY

Table 8: Ablation on the expansion multiplier for
each real CDP.

Number CUB Aircraft Car

×1 79.68 81.50 91.91
×3 80.07 82.06 92.23
×6 80.18 81.52 91.92
×9 79.89 80.96 90.85

Impact of Expansion Multiplier. The im-
pact of the expansion multiplier is presented
in Table 8, which shows the accuarcy at dif-
ferent expansion multipliers ×1,×3,×6,×10.
De-DA achieves optimal accuracy at a multi-
plier of ×3 for both Aircraft and Standford
Car datasets, while Cub-200-2011 peaks at ×6.
The difference likely stems from the distinct
data distributions inherent to each dataset. No-
tably, increasing the expansion multiplier does
not necessarily improve performance, a phe-
nomenon also observed in (Trabucco et al.,
2024; Wang et al., 2023). This suggests that excessive data augmentation may bias the model to-
wards the generated data, hindering its ability to generalize effectively to real data.

3https://github.com/luca-medeiros/lang-segment-anything/
4https://github.com/3neutronstar/GuidedMixup/blob/main/FGVC/main.py
5https://github.com/Zhicaiwww/Diff-Mix/blob/master/downstream_tasks/

train_hub.py
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