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ABSTRACT

Computer-Aided Design (CAD) plays a central role in engineering and manu-
facturing, making it possible to create precise and editable 3D models. Using a
variety of sensor or user-provided data as inputs for CAD reconstruction can de-
mocratize access to design applications. However, most existing methods focus
on a single input modality: point clouds, images, or texts, which limits their gen-
eralizability and robustness, while few multimodal approaches struggle to deliver
competitive quality. Leveraging advances in vision-language models (VLM), we
propose cadrille , a multimodal CAD reconstruction model that takes inputs
of three modalities and outputs executable Python code for CAD reconstruction.
Inspired by large language model (LLM) training paradigm, we adopt a two-stage
pipeline: supervised fine-tuning (SFT) on large-scale procedurally generated data,
followed by reinforcement learning (RL) fine-tuning using online feedback, ob-
tained programatically. In the DeepCAD benchmark, our SFT model outperforms
existing single-modal approaches in all three input modalities simultaneously.
More importantly, after RL fine-tuning, cadrille sets new state-of-the-art in
as many as 10 benchmarks across three modalities and four datasets, including a
real-world one.

1 INTRODUCTION

Computer-Aided Design (CAD) is the core of modern engineering and manufacturing, providing
the tools to create detailed and modifiable 3D models (Briere-Cote et al., 2012)). Creating CAD
models manually requires skills, time, and effort. To simplify this process, CAD reconstruction
aims at generating CAD models directly from scanned objects, making the process faster, cheaper,
and overall more accessible (Rukhovich et al., [2024)).

Typically, CAD models are created with a sequence of 2D sketches and 3D operations (Willis et al.,
2021;(Wu et al.| 2021)). This representation allows CAD models to be easily edited, making it preva-
lent in popular CAD tools like SolidWorks and AutoCAD and in CAD generation research. Most
existing CAD generation methods define CAD sequences using special command tokens (Khan
et al.,2024a; Wu et al., 2021). However, state-of-the-art results are obtained via mapping CAD se-
quences to casual Python code (Rukhovich et al.,2024). Following the same paradigm, we generate
CAD models as executable Python scripts.

The most well-studied input modality in CAD reconstruction is naturally a point cloud (Rukhovich
et al., 2024). However, point clouds can only be obtained when a physical 3D object is available,
while scanning usually requires special equipment, making the process complicated for non-experts.
Images capture finer details and can be sourced using customer low-end devices (e.g., smartphone
cameras), hence relaxing the hardware requirements (Chen et al,, |2025}; [2024). In the meantime,
textual descriptions can enrich the object representation with semantic context (Khan et al., 2024b)).
Using various input modalities, such as multi-view images, or natural language descriptions, would
make design assistance applications simple even for non-experienced users. Recent emergence of
vision-language models provides a solid ground for multimodal CAD reconstruction. However,
the first multimodal methods in that vein (Xu et al.| |2024b; [Wang et al., [2025b)) are dramatically
inferior to single-modal approaches, so the full potential of VLMs for CAD reconstruction is yet to
be unleashed.
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Figure 1: Compared to state-of-the-art CAD-Recode, the only existing method that converts point
clouds into Python code, cadrille has two key novelties. First, it goes beyond the standard train-
ing scheme and adapts LLM RL fine-tuning for CAD reconstruction (left). Moreover, besides point
clouds only accepted by single-modal CAD-Recode, cadrille extends to images and textual de-
scriptions, making it the first multimodal approach delivering state-of-art results (right).

Existing CAD reconstruction methods face generalization issues due to how they are trained. Specif-
ically, handcrafted CAD datasets are small and limited in diversity (Khan et al., [2024a)), while mod-
els trained with procedurally generated data struggle to transfer to the real-world domain (Rukhovich
et al.l 2024). In the vein of the standard LLM training pipelines (Shao et al. 2024)), Chen et al.
(2025)); Wang et al.| (2025a); |Guan et al.| (2025) bring RL fine-tuning into the CAD reconstruction
context. However, all of them perform both supervised and RL fine-tuning on the same dataset,
which does not help bridging the gap between training and testing data. In contrast, we use volu-
minous procedurally generated data for supervised training, while valuable but scarcer handcrafted
data is reserved for RL fine-tuning. This scheme eliminates the need for large-scale handcrafted
data and allows the model to first generalize across the CAD domain and then specialize using
preference-based objectives.

Our experiments show that cadrille outperforms existing modality-specific baselines in accu-
racy. Moreover, RL fine-tuning ensures validity of generated Python code, which posed a challenge
for prior works. As a result, the proposed approach demonstrates impressive robustness and sets
a new state-of-the-art on several CAD datasets, including a real-world CC3D (Mallis et al., [2023).
Essentially, this opens up new possibilities for generalization in open-world scenarios.

In summary, our contributions are as follows:

* We present cadrille, an LLM-based model able to process point clouds, images, and
textual inputs, and generate Python scripts for CAD reconstruction;

* We are the first to prove that RL fine-tuning improves multimodal CAD reconstruction;

* With a single model, we simultaneously achieve state-of-the-art results across three input
modalities (point clouds, images, texts) and four datasets (DeepCAD, Fusion360, CC3D,
Omni-CAD), a total of 10 benchmarks, making it the most comprehensive evaluation of
CAD reconstruction methods up-to-date.

2 RELATED WORK

CAD Generation Existing CAD generation methods can be classified into three categories based
on CAD model representations: constructive solid geometry (CSG) (Du et al.l 2018}; |Sharma et al.,
2018;Nandi et al.,[2018; [Ellis et al.,[2019; Tian et al., 2019; |[Friedrich et al., [2019; Kania et al., 2020;
Ren et al.| 2021 |Yu et al.| 2022} 2023)), boundary representation (B-rep) (Wang et al.|[2020; [Sharma
et al., 2020; Lambourne et al.| [2021; [Wang et al., 2022} |Guo et al., 2022 Jayaraman et al., 2023}
Liu et al.l |2024aib; (Xu et al.| [2024c} L1 et al., 2025b) and CAD sequence (Wu et al.| 2021} |[Lam-
bourne et al., [2022} |[Ren et al.| 2022; Xu et al., [2022}; 2023} [Zhang et al., | 2025b; Badagabettu et al.,
2024; |Chen et al.l 2024} Khan et al., 2024a3b; Ma et al.l 2024} Mallis et al.l [2024; L1 et al., [2025a;
Doris et al., 2025 He et al., 2025} |Yuan et al., [2025; |Wang et al.| 2025b)). In the CSG (Foley, |1996)
paradigm, CAD is represented as a CSG tree constructed using boolean operations (union, subtrac-
tion, difference) of geometric primitives (e.g., cubes, cylinders, or spheres). This approach fails to
express intricate shapes and is generally not well-aligned with how engineers and designers actually
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build CAD models. B-rep (Ansaldi et al., [1985)) is a graph that describes connections between faces,
edges, and vertices of a 3D model. Creating a B-Rep requires enforcing topological consistency on
edges, which introduces additional complexity to the generation procedure and complicates editing
of generated models.

CAD Sequence Reconstruction Unlike general CAD generation, which may prioritize plausibil-
ity, diversity, or creativity in design, CAD reconstruction aims at faithfulness to the given inputs,
requiring the output model to match the original shape.

Point clouds are the most well-studied input modality in CAD reconstruction. The seminal work
on point cloud-based CAD reconstruction by Wu et al.| (2021) proposed encoding CAD sketch-and-
extrude sequences as special tokens. Beyond that, DeepCAD, a large-scale dataset of 180k hand-
crafted CAD models, was presented. Subsequent works (Dupont et al., 2024} Khan et al., 2024a;
Xu et al., [2023)) adopted the same CAD representation and trained on the same DeepCAD dataset.
More recently, CAD-Recode (Rukhovich et al.,|2024)) introduced a paradigm shift by representing
CAD models as Python code, providing greater expressiveness and flexibility, and released a new
dataset of approx. 1 million procedurally generated CAD models.

Only few recent works (Chen et al [2024; Khan et al., 2024b; Wang et al., |2025c; |Chen et al.,
2025) have explored CAD reconstruction from alternative input modalities, such as single- or multi-
view images and natural language descriptions. These approaches extend the DeepCAD dataset by
rendering synthetic views or generating textual captions for existing CAD models. Among them,
CADCerafter (Chen et al., 2025) stands out for its unified framework that handles both single- and
multi-view inputs, whether rendered or real. The seminal Text2CAD (Khan et al., [2024b)) uses a
vision-language model (VLM) to generate detailed captions for DeepCAD shapes and then trains
a model to predict CAD sequences from those textual descriptions. Its recent follow-ups (Xie &
Jul, 2025} |Govindarajan et al., 2025} |Guan et al., [2025; Wang et al [2025a) adapted large language
models for text-based CAD reconstruction.

Generally, state-of-the-art CAD reconstruction approaches are tailored to process specific input
modalities with distinct architectures, while multimodal CAD reconstruction remains relatively un-
derexplored. Recent CAD-GPT (Wang et al.,[2025b) predicts a CAD model given a single image and
textual description, while CAD-MLLM (Xu et al.l [2024b)) pioneers three-modal CAD reconstruc-
tion, yet both these methods fall behind single-modal state-of-the-art results (Rukhovich et al.,[2024;
Khan et al., 2024b; (Chen et al.,[2025)) by a large margin (up to two orders of magnitude!). This makes
our cadrille the first multimodal CAD reconstruction approach handling point clouds, images,
and texts within a unified framework, that outperforms single-modal top-performing methods.

RL for CAD Reconstruction Reinforcement learning is used for CAD reconstruction from im-
ages (Sharma et al.|[2018;|Chen et al., 2025} Zhang et al.} 2025a), and from B-Rep (Yin et al.|[2025).
Recent LLM-based CADFusion (Wang et al.} |2025a) and CAD-Coder (Guan et al., 2025) address
CAD reconstruction from texts, both performing supervised and RL fine-tuning on the same Deep-
CAD dataset. On the contrary, we investigate RL fine-tuning for multimodal CAD reconstruction
and improve the reconstruction quality by using large-scale procedurally generated data for SFT.

3 CAD SEQUENCE RECONSTRUCTION

Problem Formulation The task of CAD reconstruction implies recovering a CAD model given a
multimodal input ¢, which can be a 3D point cloud, a set of images, or a textual description. We
represent CAD models as Python scripts (Rukhovich et al., 2024) that, when executed, generate a
parametric Boundary Representation (B-Rep) of a 3D shape. Respectively, given an input g, we
search for a trainable policy 7y, s. t. mg(q) produces a token sequence 7, which is essentially a text
of a Python program generating a CAD model.

Multimodal Data For training a model, we derive all input modalities from ground-truth CAD
models (Fig. [2). Below, we describe how each modality is constructed according to the established
data generation protocols (Chen et al.| 2025; Khan et al., [2024bj; Wu et al., [2021]).
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Given a CAD model as a parametric 3D shape (B-Rep), we sample points directly from the para-
metric surfaces of the model. Modern CAD engines provide built-in routines for surface sampling,
making it simple and straightforward.

To generate images, the B-Rep is first tessel-

Python code execute CAD
lated, i.e., converted into a triangle mesh that I
approximates the surface geometry. Then, this prover
mesh can be rendered from multiple viewpoints { LLM <«—prompt render— S Iace
to produce multi-view image inputs. sample
Generating textual data is notably more chal- [Tet{t] (Images)

lenging. Since our goal is accurate geometry

reconstruction rather than generating a semanti- Figure 2: Overview of multimodal data generation
cally relevant sample, inputs should provide de- pipeline producing textual descriptions, multi-
tailed and comprehensive geometric informa- view images and point clouds.

tion. Consequently, loose textual descriptions

are generally insufficient. The necessary level of granularity is investigated in Text2CAD (Khan
et al.l 2024b), where LLMs and VLMs are combined in a multi-stage sophisticated pipeline that
generates textual descriptions from both the CAD sequence and rendered images.

4 PROPOSED METHOD

4.1 CcADRILLE ARCHITECTURE

The cadrille architecture is depicted in Fig.[3] The model accepts inputs in the form of a point
cloud, a set of images, or a text prompt, and outputs a Python code, that, when executed, produces a
CAD model. cadrille is build ontop of a VLM that natively supports text and image inputs and is
already capable of generating Python code. Textual input is passed through the original embedding
layer, and images are processed with an original visual encoder. The point cloud processing logic
is the same as in CAD-Recode. Specifically, we use a single projection layer to embed 3D points,
sample points from the surface via furthest point sampling, and do not use normals.

4.2 SUPERVISED FINE-TUNING

As shown on Fig.[T] cadrille benefits from three stages of training. First, we use VLM which is
pre-trained on the internet-scale data in the unsupervised manner. After this stage, VLM is able to
process textual and visual inputs and generate Python code, but lacks mechanisms to handle point
clouds. In this work, we do not perform any unsupervised VLM training, but enjoy the capabilities
of an already trained model.

The second stage is supervised fine-tuning for a specific task. During SFT, a model develops the
ability to process point clouds and learns a policy 7y to map multimodal inputs ¢ to Python codes 7,
making SFT an essential part of cadrille pipeline. We construct a training dataset D of samples
(¢, T), where ¢ is a multimodal input. The training procedure aims to minimize cross-entropy
between ground truth and predicted Python code tokens:

E(q,r)~p [log mo(7 | q)]

4.3 LIMITATIONS OF SFT

Two-stage training has already been adopted in CAD-Recode, which employs supervised fine-tuning
(SFT) to adapt a pretrained language model for point cloud-based CAD reconstruction. However,
this strategy reveals its limitations in a cross-domain scenario: CC3D IoU is as low as 60% and
the invalidity ratio (IR) is to 10%, which means that every tenth prediction fails to produce a valid
output (Tab. [3] row 2). To mitigate this issue, CAD-Recode uses a test-time sampling technique. For
each input query, 10 candidate Python programs are generated, and the candidate with the highest
IoU is selected. After that, IoU increases to 74%, while IR drops below 0.5%. However, this
improvement comes at the cost of a 10x increase in inference time. Can similar gains be achieved
without sacrificing test-time efficiency?
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Figure 3: Overview of cadrille. It can handle three input modalities within a unified framework.

Point clouds are processed with a trainable projection layer, while images and texts are passed to a
VLM directly. The output of the model is an executable Python script for CAD generation.

To maintain fast and simple inference, we shift our focus to improving the training process. Training
solely on procedurally generated CAD data might limit performance in real-world applications.
Nevertheless, training on handcrafted models also presents challenges, e.g., Rukhovich et al.|(2024)
shows that SFT directly on the DeepCAD dataset harms performance, leading to a 10% drop in IoU.

Our experiments confirm that simply mixing procedurally generated and handcrafted data for train-
ing fails to improve results and can even degrade performance (Tab. [3| row 4). We attribute this to
inconsistency in CAD sequences across datasets: for instance, DeepCAD models are constructed us-
ing commands like extruded cuts and symmetric extrusions, which are not present in the generation
procedure of the CAD-Recode dataset.

To address this limitation, we introduce a novel third stage in the training pipeline, namely, reinforce-
ment learning fine-tuning on handcrafted data not annotated with CAD sequences. This approach
resolves inconsistency issues while still allowing the model to adapt to real-world domain.

4.4 RL FINE-TUNING

We formulate RL fine-tuning as follows. Given a dataset of inputs (either images or point clouds)
D = {q;},, and reward function R(7), we learn LLM policy my(7 | ¢) that generates a Python
code 7 for an input g, s.t. it maximizes the expected reward Eq, . p 7, (-q.) [R(7i)].

Note that at this stage annotated pairs of (g, 7) are not needed for supervision, since Python codes
7 are being sampled from the trained SFT model. In fact, CAD sequences are not needed for
RL fine-tuning, and the data requirements can be relaxed to 3D meshes instead. This is especially
beneficial from the practical perspective, as RL fine-tuning can be performed using generally more
accessible mesh datasets, which opens new possibilities for training models accommodated to arti-
facts present in real-world data.

The reward function R(7) is a combination of terms that address precision and robustness:

R(T) = riou(T) + Tinvaiia(7),

where 7,y is an IoU between the CAD model produced by 7 and ground truth 3D mesh, additionally
multiplied by a factor of 10 to enforce precise reconstruction. riyaiq penalizes invalid predictions:
it is set to -10 for invalid 7 and O otherwise.

Empirically, we found that hard example mining leads to a faster convergence of RL fine-tuning.
Consequently, we only use examples g where the reward R(7) averaged over three samples produced
by the SFT model is less than Ry,, where Ry = 7.5.

DPO Direct Preference Optimization (DPO) Rafailov et al.|(2023) learns from pairwise preference
data, approximating an implicit reward via a reparameterized Bradley-Terry model.

We construct the training dataset by sampling K = 5 Python codes 7 for each input ¢ from the SFT
model 7y, . At each training step for the given sample, we randomly select two outputs. The output
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with a larger reward R(7) is considered to be a preferred prediction 7,,, and another is non-preferred
7;. The optimization objective is formulated as:

7o, (T | 0) mo, (1| q) )]
E(g,ry,m)~p |logo | Blog ————— — Blog ———=
(47w, m)~D { & (6 & o (Tw | 0) v ® o, ([ q)

DPO training starts with g and proceeds for 10 epochs. After that, the SFT model is replaced with
the latest g, , and trained for another 10 epochs. In this way, the model gradually diverges from the
original SFT model. In our experiments, we found it to be beneficial for performance.

However, DPO performance is upper-bounded by the quality of the best generated sample for a
given example. This limitation cannot be overcome without generating additional samples, so we
adapt an online RL approach that can benefit from newly generated samples.

Dr. CPPO We combine two recent modifications of the GRPO: Dr. GRPO |Liu et al.| (2025b)
which eliminates the need for a reference model and modifies the objective, and CPPO |Lin et al.
(2025)) which uses samples with the strongest signal. The hybrid approach ensures both computa-
tional efficiency and accuracy; hereinafter, it is referred to as Dr. CPPO.

G sequences {Tg}g’;l are sampled from the current policy 7g,,

perature 7' = 1.0. For each output g, the advantage A, is estimated as A, = r, — mean({r;}& ;).
N samples with the highest |A,| are used to form a batch B and perform policy update by maximiz-
ing PPO[Schulman et al.[(2017) objective:

. (o, (14| q) . (7o, (14 | Q)
Ervon {mm(A selip| —————=,1—¢, 1+¢| A
{re} Tou(Tg 1 0) 7 700 (g | @) I

(7 | q) for a given input ¢ with tem-

5 EXPERIMENTS

Datasets DeepCAD (Wu et al., 2021) (denoted as D in Tables) serves as our primary benchmark
for supervised training. We adopt the Text2CAD version of DeepCAD, which enriches it with textual
descriptions. The train set comprises approximately 160k samples, while 8046 are left for testing.

For SFT, we also use the procedurally generated CAD-Recode (Rukhovich et al. [2024) dataset
(denoted as R in the tables). It is an order of magnitude larger than DeepCAD, consisting of approx-
imately 1 million CAD programs written in CadQuery (Authors| 2024)), a parametric Python-based
CAD language.

Fusion360 (Willis et al., 2021)) (denoted as F) is a small CAD reconstruction benchmark with com-
plex and realistic CAD models. In the standard evaluation protocol, only the test split (1725 sam-
ples) is used, as absence of Python CAD sequences makes it unsuitable for conventional supervised
training. Still, we can use its train set (6900 samples) for our annotation-free RL fine-tuning.

To show the versatility and applicability of our approach, in addition to handcrafted and procedurally
generated meshes, we report metrics on the real-world CC3D dataset (Mallis et al.| [2023) (denoted
as C). It contains 2973 point clouds sampled from scans of CAD models with noisy values, missing
parts, and smoothed edges.

Omni-CAD (denoted as O) presented in the CAD-MLLM paper (Xu et al.,|2024b) is a large-scale
dataset of handcrafted CAD models, sourced from the web. We evaluate on its test split composed
of over 27K samples, and report results in Appendix

Metrics Following CAD-Recode, we evaluate the quality of the predicted CAD models using
three metrics: Chamfer Distance (CD), Intersection over Union (IoU), and Invalidity Ratio (IR).
Since invalid CAD models introduce a notable bias into mean estimates, we report both mean and a
more robust median CD, both computed using 8192 points. CD values are multiplied by 10°. The
divergence between ground truth and reconstructed meshes is measured using IoU (in %). The IR
indicates the percentage of generated sequences that do not produce a valid CAD model.
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Figure 4: CAD models reconstructed from point clouds from the DeepCAD, Fusion360, and CC3D
datasets.

5.1 SUPERVISED FINE-TUNING

Results on DeepCAD  In Tab. [T] we compare cadrille with single-modal CAD reconstruction
methods on DeepCAD. Here, input modalities are denoted with subscripts: p stands for point clouds,
i for images, and ¢ for texts. cadrille trained jointly on point clouds, multi-view images, and texts
from the DeepCAD training set (Dp;;) outperforms the modality-specific baselines. Noticeably, IR
is reduced almost twice for point clouds (from 1.1 to 0.4) and 7x for images (3.6 to 0.5).

Training using the large-scale procedurally generated CAD-Recode dataset (R) consistently im-
proves accuracy over training on the DeepCAD dataset. Since we also use a Qwen LLM model
as in CAD-Recode (Qwen2-VL-2B against Qwen2-1.5B), comparable quality of point cloud-based
reconstruction is expected. When training cadrille on point clouds and images (Ry;), it main-
tains the same accuracy on point clouds but additionally extends to images. After training with
point clouds, images, and texts (Sp; + D;), cadrille generalizes across modalities without loss of
quality on each modality. For fair comparison, we do not apply any RL techniques in this series of
experiments, and mix up training datasets trivially for SFT.

Results on Fusion360 and CC3D Both Fusion360 and CC3D datasets do not provide annotations
in a compatible format, and are only used for testing in the standard evaluation protocol (Khan et al.,
2024a). Accordingly, testing on these datasets is performed in a zero-shot scenario, which allows
assessing the generalization ability of CAD reconstruction approaches. Furthermore, since CC3D
contains real scans of objects, this experiment emulates real-world application.

We report CAD reconstruction quality from images and point clouds in Tab. [2]and [3] respectively.
CADCerafter is the only method performing CAD reconstruction based on multi-view images. How-
ever, the authors of CADCrafter only report metrics on the DeepCAD dataset, and benchmarking
it on other datasets is problematic since the code has not been released. To establish a baseline in
image-based CAD reconstruction, we combine two off-the-shelf state-of-the-art methods, namely,
multi-view reconstruction method LRM Hong et al.| (2024); |Xu et al.| (2024a) and CAD-Recode.
LRM takes multi-view images as inputs and produces a mesh, which is turned into a point cloud via
surface sampling, and this point cloud is then passed to CAD-Recode to create a CAD model. As
can be seen in Tab.[2] cadrille trained on CAD-Recode outperforms both baselines.

In Tab. 3] we compare cadrille against the state-of-the-art approaches originally trained on the
DeepCAD (CAD-SIGNet) and CAD-Recode datasets. As could be expected, cadrille is on par
with CAD-Recode, while delivering substantially better quality w.r.t. CAD-SIGNet.

5.2 REINFORCEMENT LEARNING

RL on single modality boosts other modalities In Tab. 2] we report accuracy of image-based
CAD reconstruction on three benchmarks. Respectively, we fine-tune cadrille with images
from DeepCAD and Fusion360 datasets. It is worth noticing that while Fusion360 cannot be used
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Method Train Point Cloud Multi-view Images Text

Data CD] IoUT IRl CD] IoUt IR, CD] IoUT IR|
PointNet—DeepCAD D, 9.64 467 1.1
Point-BERT—HNC-CAD D, 864 653 56
MultiCAD D, 8.09 11.5
TransCAD D, 451 655 1.1
PrismCAD D, 428 72.1 162
Point2Cyl D, 427 738 39
CAD-Diffuser D, 302 743 15
CAD-SIGNet D, 029 773 5.0
DINOv2—HNC-CAD D; 2.08 10.1
DINOv2—DeepCAD D; 1.13 10.6
CADCrafter D; 0.26 3.6
BERT—DeepCAD D, 32.82 10.0
CADmium D, 0.38 43
Text2CAD D, 037 715 37
CAD-Coder D, 0.33 53
Text-to-CadQuery D, 0.22 1.3
cadrille Dpi¢ 025 794 04 025 782 05 021 811 14
CAD-Recode R, 0.18 87.1 3.1
cadrille Ry 0.18 87.1 2.1 0.18 861 1.5
cadrille Ry,+D;, 018 871 21 018 861 15 020 821 14

Table 1: Results on DeepCAD test set. The best results are bold, the second best are underlined. Our
cadrille trained jointly on three modalities outperforms all existing modality-specific methods.
Here, we report metrics obtained without RL fine-tuning or test-time sampling for fair comparison.

Method RL Train Data DeepCAD Fusion360 CC3D

SFT RL CD] IoUt IRl CD] IoUt IR/ CD| IoUT IR]
LRM—CAD-Recode X R, X 053 698 143 0.62 625 187 1.19 50.1 20.1
CADCrafter DPO D; D; 0.26 3.6
cadrille X Ry X 0.18 8.1 1.5 020 776 32 081 56.1 7.7
cadrille X Ryi+Dpi X 0.19 86 06 023 752 26 117 531 6.0
cadrille DPO Ry Di+F, 018 8.9 18 020 785 17 089 560 39
cadrille Dr. CPPO Ry Di+F; 017 922 00 0.17 846 0.0 057 650 0.1

Table 2: Results of CAD reconstruction from multi-view images. With RL fine-tuning,
cadrille achieves best results across three benchmarks.

for direct supervised training, it can still contribute to RL fine-tuning where CAD sequences are
not required, so we can benefit from adding it to the mixture. We denote DeepCAD and Fusion360
datasets without CAD sequence annotations as D™ and F~.

Surprisingly, RL fine-tuning on images appears to be beneficial for other modalities: as reported in
Tab. 3| the model tuned on D;+F; (row 6) delivers state-of-the-art quality of CAD reconstruction
from point clouds as well.

RL improves metrics in cross-dataset scenario RL fine-tuning with DeepCAD and Fusion360
boosts accuracy on the test splits of the respective datasets. Yet, the performance gain is not limited

Method RL Train Data DeepCAD Fusion360 Real-world CC3D
SFT RL CD| IoUt IR] CDJ IoUT IRl CD] IoUT IR]
CAD-SIGNet X D, X 029 773 50 070 584 93 442 39.1 155
CAD-Recode X R, X 018 871 31 019 79.1 50 054 605 938
cadrille X Ry X 0.18 87.1 21 019 798 28 054 618 59
cadrille X Ryi+Dy; X 0.19 866 09 022 765 20 079 587 4.1
cadrille DPO Ry D;+F, 018 881 07 019 809 13 054 613 26
cadrille Dr. CPPO Rpi Di+F, 017 902 0.0 0.17 850 02 047 679 0.2

Table 3: Results of CAD reconstruction from point clouds. cadrille performs on par with CAD-
Recode when trained on the CAD-Recode dataset (R). With RL, cadrille establishes state-of-
the-art on DeepCAD, Fusion360 and real-world CC3D.
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Figure 5: CAD models reconstructed from multi-view images on the
CC3D datasets.

eepCAD, Fusion360, and

to the domains seen by a model during SFT and RL fine-tuning. In image-based CAD reconstruction,
CD is reduced from 0.81 to 0.57, while IR dropped dramatically from 7.7 to 0.1 (rows 3 and 6,
respectively). When testing on point clouds, RL also improves all scores on CC3D, making IR less
than 0.2%, which is negligible.

Online RL outperforms offline RL  Fine-tuning cadrille using offline DPO reduces IR twice
in most cases, while accuracy scores are not affected (rows 3 and 5 in both Tables). In the meantime,
Dr. CPPO beats SFT in terms of all metrics, adding 3-9% to IoU scores and bringing IR under 0.2%
in all benchmarks (row 6). The observed improvement of CAD reconstruction accuracy aligns
well with the experimental results obtained in other tasks where feedback can be programmatically

computed Shao et al]2024).

RL fine-tuning beats SFT on a mixture A common assumption is that mixing datasets improves
generalization by increasing data diversity and volume. However, our experiments show that SFT
with a plain mixture of CAD-Recode and DeepCAD datasets (Rpi+Dpi, row 4) does not lead to
performance gains, and can even degrade results w.r.t. SFT with Rp; (row 3). We attribute this effect
to the domain gap between datasets, specifically, some CAD operations present in DeepCAD (e.g.,
symmetric extrusion, extruded cut) are lacking from CAD-Recode.

Qualitative results CAD models obtained with RL fine-tuning are depicted in Fig. @] (from point
clouds) and Fig. [] (from multi-view images). Compared to predecessors, cadrille produces
more geometrically plausible reconstructions and better restores fine details.

6 CONCLUSION

We introduced cadrille, a multimodal CAD reconstruction model that is capable of process-
ing point clouds, multi-view images, and text inputs within a unified VLM-based framework. By
adopting a two-stage training paradigm, namely, supervised fine-tuning on synthetic data followed
by reinforcement learning fine-tuning with programmatic feedback, we improved both reconstruc-
tion quality and validity ratio. Our empirical study demonstrated that online RL approaches are
especially beneficial in the CAD reconstruction scenario. cadrille achieves new state-of-the-
art results in 10 CAD reconstruction benchmarks, including a real-world dataset, highlighting its
robustness, generalizability, and potential for further use in applications. Based on our study, we
identify the following promising research directions for the future work: 1) combine modalities in
one prompt to compensate for low-quality or missing inputs 2) perform RL fine-tuning on point
clouds, and 3) increase complexity of procedurally generated data and volume of RL fine-tuning
data to better adapt to real-world scans.
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REPRODUCIBILITY AND LLLM STATEMENT

To ensure reproducibility of our results, we provide implementation details in Appendix[D] including
Tab. [13] and Additionally, we attach the code performing all training (both SFT and RL) and
evaluation procedures reported in this paper, as a supplemental material to the submission. The
code will be published upon acceptance. LLMs (namely, ChatGPT) was used only to polish the
manuscript.
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A QUALITATIVE RESULTS

Text-based CAD reconstruction Fig. [6] shows results of text-based CAD reconstruction on the
DeepCAD dataset. Long textual descriptions still cannot define even simple 3D shapes comprehen-
sively and unambiguously, making CAD reconstruction from textual inputs the most challenging.
Both Text2CAD and cadrille struggle to recover correct geometry, yet our approach yields more
accurate predictions, which is also reflected in the quantitative metrics.

Real-world single-image experiment Since our cadrille is trained only on synthetic ren-
ders, sim-to-real transfer can be eligibly questioned. To address the potential concerns about the
applicability of our approach, apart from validating on real scans from the CC3D dataset, we also
experiment with CAD reconstruction from a single real-world image.

The pipeline consists of three steps. First, an input image is processed using the recent image-to-
mesh InstantMesh Xu et al.| (2024a) method, that produces a mesh. Second, we follow the same
protocol as in other experiments to convert this mesh to a point cloud [7] or four multi-view im-
ages [§] We claim that the obtained results look promising, and this practical pipeline opens new
opportunities of in-the-wild CAD reconstruction.

Failure cases are depicted in Fig.[0] cadrille always predicts a geometrically relevant shape,
but still might miss details, especially for objects with complex and granular surfaces.

Input InstantMesh Point cadrille Input InstantMesh 4-view cadrille
image (mesh) cloud (CAD) image (mesh) images (CAD)

& T @BC
1'&
@*@

Figure 7: Results of CAD reconstruction from  Figure 8: Results of CAD reconstmction from
a single real-world image. cadrille takes @ single real-world image. cadrille takes

point clouds sampled from mesh reconstructed multi-view images rendereq from mesh recon-
by InstantMesh as input. structed by InstantMesh as input.

B QUANTITATIVE RESULTS

Results on Omni-CAD Omni-CAD is claimed to be the first multimodal dataset featuring point
clouds, multi-view images, and textual descriptions of CAD models. However, texts are not fully uti-
lized for CAD reconstruction, since generated models are only assessed in a user study and no stan-
dard quantitative metrics are provided (Xu et al.|[2024b)). Accordingly, we validate cadrille only
in point cloud-based and image-based scenarios, and report the evaluation results in Tab. 4]
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Text

Create a new coordinate system with Euler angles set to 0 degrees for the first 2 angles and -90 degrees
for the third angle. Set the translation vector to 0.2766, 0.1476, and 0.2766. On the first face, draw a 2-
dimensional sketch consisting of 2 loops. For the first loop, draw a circle with its center at 0.0984, 0.0984,
and a radius of 0.0984. For the second loop, draw another circle with the same center but a smaller radius
of 0.048. Scale the entire 2-dimensional sketch by a factor of 0.1969. Rotate and translate the scaled
2-dimensional sketch using the previously defined coordinate system settings. Extrude the outer loop (the
larger circle) by 0.1476 units in the direction opposite to the normal. Similarly, extrude the inner loop
(the smaller circle) by the same distance in the same direction. Ensure that the extrusion results in a new
solid body. The final dimensions of the cylindrical object with a hole should be a length of 0.1969 units, a
width of 0.1969 units, and a height of 0.1476 units. The object resembles a doughnut shape, with a smooth
surface and a uniform diameter.

Create a new coordinate system with Euler Angles set to [0, 0, 0] and a Translation Vector of [0, 0, 0].
Draw a 2D sketch on the XY plane and define the first face using a loop of 4 lines. The first line starts at
(0, 0) and ends at (0.5, 0). The second line starts at (0.5, 0) and ends at (0.5, 0.75). The third line starts
at (0.5, 0.75) and ends at (0, 0.75). The fourth line starts at (0, 0.75) and ends at (0, 0). Scale the 2D
sketch using a scale factor of 0.75. Transform the scaled 2D sketch into 3D using the same Euler Angles
and Translation Vector. Extrude the 2D sketch to create a 3D model with an extrusion depth of 0.5 units
towards the normal. Create a new solid body with this extrusion and verify the dimensions: length of 0.5
units, width of 0.75 units, and height of 0.5 units.

Next, create a new coordinate system with Euler Angles set to [0, 0, 0] and a Translation Vector of [0.1,
0, 0.5]. Draw a 2D sketch on the XY plane and define the first face using a loop of 4 lines. The first line
starts at (0, 0) and ends at (0.3, 0). The second line starts at (0.3, 0) and ends at (0.3, 0.75). The third line
starts at (0.3, 0.75) and ends at (0, 0.75). The fourth line starts at (0, 0.75) and ends at (0, 0). Scale the 2D
sketch using a scale factor of 0.75. Transform the scaled 2D sketch into 3D using the same Euler Angles
and Translation Vector. Extrude the 2D sketch to create a 3D model with an extrusion depth of 0.4 units
in the opposite direction of the normal. Remove material from the existing body using this extrusion and
verify the dimensions: length of 0.3 units, width of 0.75 units, and height of 0.4 units.

The final shape is a U-shaped bracket with a rectangular cross-section. It has 2 parallel sides and an open
space in the middle. The dimensions are: length of 0.5 units, width of 0.75 units, and height of 0.5 units.

Create a new coordinate system with Euler angles set to 0, 0, and -90 degrees, and a translation vector of 0,
0.2812, and 0.1406. On the first face, draw the first loop as a rectangle with the following lines: the first line
starts at (0, 0) and ends at (0.3398, 0); the second line starts at (0.3398, 0) and ends at (0.3398, 0.4687);
the third line starts at (0.3398, 0.4687) and ends at (0, 0.4687); the fourth line starts at (0, 0.4687) and ends
at (0, 0). In the second loop, draw a circle with a center at (0.2344, 0.2344) and a radius of 0.0937. In the
third loop, draw a circle with a center at (0.2344, 0.082) and a radius of 0.0176. In the fourth loop, draw a
circle with a center at (0.2344, 0.3867) and a radius of 0.0176. Apply a scale factor of 0.4687 to the entire
sketch. Rotate the scaled sketch using the Euler angles set in the coordinate system and translate it using
the translation vector. Extrude the sketch 0.2812 units along the normal direction without extruding in the
opposite direction to create a new solid body. The final di ions of the rec lar box with circular
cutouts are a length of 0.3398 units, a width of 0.4687 units, and a height of 0.2812 units.

Text2CAD cadrille GT

LA A

Figure 6: Results of text-based CAD reconstruction on the DeepCAD dataset.

Input

cadrille v ﬁ @

Figure 9: Failure cases of CAD reconstruction from point clouds and multi-view images on Deep-

CAD, Fusion360, and CC3D datasets.

Method RL Point Cloud Multi-view Images Method Train CDJ] IoUT IR|
CD| IoUt IRl CD| ToUf IR| DeepCAD D, 892 399 252
DeepCAD X 451 5.7 MultiCAD D, 422 16.5
CAD-MLLM X 185 1.3 377 HNC-CAD D, 368 635 73
Point2CAD X 125 11.4 TransCAD D, 334 602 24
cadrille X 100 791 37 122 770 62 CAD-Diffuser D, 385 632 1.7
cadrille v 077 842 06 0.60 848 0.0 CAD-SIGNet D, 070 583 93
cadrille D, 066 637 0.6
Table 4: Results of CAD reconstruction from point CAD-Recode R, 019 791 50
clouds and multi-view images from the Omni-CAD cadrille R, 019 798 28
dataset. We specify mean CD since it is the only CD ]
metric reported by CAD-MLLM. Table 5: Results of point-based CAD re-

construction on the Fusion360 test set.
All reported metrics are obtained using
an SFT model without RL.
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The metrics of prior works are cited in accordance to CAD-MLLM, respectively, we include
Point2CAD (Liu et al., [2024b), which is the only non-CAD-sequence method producing B-Reps
in our evaluation. Moreover, we multiply their values by 10 for consistency with our format, since
they report all scores at 10> scale, while we use 10° scale in all tables. In general, the results on
Omni-CAD are similar to the ones obtained in other benchmarks, namely, cadrille achieves
the highest IoU score among all tested approaches, while IR is the lowest with the large margin,
reaching 0.0 in image-based benchmark due to RL fine-tuning.

More baselines on Fusion360 In Tab. 5| we compare cadrille to more point cloud-based
CAD reconstruction baselines on the Fusion360 dataset. As can be observed, cadrille outper-
forms competitors trained either on DeepCAD or CAD-Recode datasets. The only existing three-
modal approach CAD-MLLM reports only mean CD for the Fusion360 dataset, so we list it among
other approaches in another Tab.[6] As can be observed, CAD-MLLM far behind our method, with
mean CD value being two orders of magnitude larger than of cadrille.

Mean CD Mean CD is sometimes reported alongside median CD. In the main paper, we only
provided median CD as the most common CAD reconstruction metric. Nevertheless, the evaluation
protocol might be considered incomplete without mean CD. In Tab. [6| we report mean CD metric
for all scenarios on all three datasets. Our SFT model outperforms all competitors. The gain is es-
pecially tangible in text-based CAD reconstruction, where Text2CAD mean CD is reduced 6x from
26.4 to 3.95. With RL fine-tuning (Dr. CPPO) the new state-of-the-art is set in both image-based
and point cloud-based CAD reconstruction on all three datasets. The most dramatic improvement is
demonstrated on the Fusion360 dataset, where the relative increase exceeds 40% (Tab. E[)

Train DeepCAD Fusion360 CC3D
Method Data RL Points Ir?lages Text Points Images Points Images
PointNet—DeepCAD Dy X 42.5 76.1
CAD-MLLM Opit X 33.9
CAD-SIGNet b X 6.81 14.5 32.6
CAD-Recode R, X 0.83 1.21 3.21
LRM—CAD-Recode R, X 3.36 433 4.75
BERT—DeepCAD D, X 97.9
CAD-Coder Dy X 74.6
Text2CAD Dy X 264
Text-to-CadQuery Dy X 11.8
cadrille Dyt X 3.43 357 424 7.6l 8.59 12.2 13.2
cadrille Rpi+Dy X 0.76 081 395 110 1.13 2.32 3.50
CADFusion D, DPO 19.9
CAD-Coder Dy GRPO 6.54
cadrille Ry DPO 0.61 1.35 0.84 1.27 2.32 3.33
cadrille Ry Dr. CPPO  0.57 0.43 0.58 0.64 1.86 2.68

Table 6: Mean CD scores obtained across all benchmarks and available input modalities. RL fine-
tuning is performed using Dj +F; data.

Method CD|] IoUT IR| Method CD| IoUT 1IR]

GPT-40 62.6 64.4 GPT-04-mini 2.37 604 159

CAD-GPT 9.77 1.6 cadrille 0.17 92.2 0.0

DINOv2—HNC-CAD 2.14 11.4

Img2CAD 1.60 28.8 Table 8: Results of CAD reconstruction

]C)K\]I)OCVZIDGGPCAD é%g 182~13 from multi-view images on the Deep-
rarter . .

cadrille 021 817 13 CAD dataset.

Table 7: Results of CAD reconstruction from a sin-
gle image on the DeepCAD dataset. All reported
metrics are obtained with an SFT model without
RL.
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Single-image CAD reconstruction To compare against single-image CAD reconstruction meth-
ods, namely, CAD-GPT (Wang et al., |2025b) and Img2CAD (Chen et al., [2024), we conduct an
experiment with single-view images on the DeepCAD test set. Our SFT model improves over CAD-
Crafter (Chen et al.|, 2025)), reducing median CD from 0.72 to 0.21. As could be expected, the results
of single-view CAD reconstruction are slightly inferior to the ones obtained from multi-view images
(81% vs 86% IoU).

Zero-shot CAD reconstruction Image-based CAD reconstruction can be performed in zero-shot
way using existing VLMs. CAD-GPT sets a weak baseline using GPT-40, that has an invalidity ratio
of 64% Tab.[]]

We construct another baseline for CAD reconstruction from multi-view images. Four images ren-
dered with orthogonal viewing directions are given to GPT-o04-mini to produce a Python code of
CAD model. We apply iterative closest point (ICP) to align predictions before computing metrics
so that correct predictions with wrong orientation are not penalized. As can be seen in Tab. [§] this
strategy allows achieving significantly better results compared to CAD-GPT. Still, invalidity ratio is
as high as 15% and IoU is 30% lower compared to our cadrille.

Inference time When target at practical use, efficiency is an issue. In Tab.[9] we compare inference
time of our multimodal cadrille against previous best single-modal methods: CAD-Recode,
Text2CAD, and our baseline LRM—CAD-Recode.

Our cadrille is built on top of Qwen2-VL-2B, the smallest Qwen2 model with vision capabil-
ities. When inferred on point clouds, it is 20% slower than CAD-Recode using Qwen2-1.5B. The
image inference takes comparable time to proceed. Processing text prompts from Text2CAD dataset
lasts notably longer, so that the inference time almost doubles and reaches 3.9 seconds. Text2CAD
uses a smaller and faster BERT-large model, that allows achieving efficiency at cost of accuracy.
Compared to Text2CAD, cadrille delivers 6x better mean CD [6|being only 2x slower.

C ABLATION EXPERIMENTS

RL fine-tuning vs test-time sampling? A natural concern about the RL fine-tuning is that it
might compromise the diversity of responses, hence affecting the final prediction quality. To address
this, we conduct an ablation study to investigate how the number of test-time samples affects the
performance of both CAD-Recode and cadrille. As reported in [[T] CAD-Recode produces
more accurate results with an increasing number of samples, but remains inferior to cadrille.
In all the benchmarks, cadrille with 1 sample consistently outperforms CAD-Recode with 2
samples in both accuracy and invalidity ratio. In terms of IR, cadrille with 1 sample is better
than CAD-Recode with as many as 10 samples, which actually proves RL to boost the robustness of
the model.

As could be expected, the gap between IoU@ 1 with and without RL being significantly larger than
the gap between loU@k (e.g. £ = 10) with and without RL. This result aligns perfectly with the
recent evidence coming from the math domain (see Fig. 2 of [Yue et al.| (2025) and Fig. 4 of [Liu
et al. (2025a)).

Method LLM Points Images Text K DeepCAD Fusion360 CC3D
CAD-Recode Qwen2-1.5B 1.8 2 71.3 70.0 49.7
LRM—CAD-Recode Qwen2-1.5B 4.4 3 86.2 77.8 55.6
Text2CAD BERT-336M 1.7 5 86.9 78.5 56.0
cadrille Qwen2-VL-2B 2.0 2.0 3.9
) ] Table 10: Results of image-
Table 9: Inference time in seconds measured on the based CAD reconstruction on three
DeepCAD dataset. All methods are benchmarked on the datasets, obtained with varying
single H100 GPU with a batch size of 1. number of samples K in DPO. ToU

SCores are I'CpOI'th.
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DeepCAD Fusion360 CC3D
# samples 1 2 10 1 2 10 1 2 10
ToUT IR| TIoUT IR/ ToUt IR| IoUT IRl IoUt IR| IoUt IR] ToUt IR ToUT IR/ IoUT IR]

CAD-Recode 87.1 3.1 899 09 920 04 791 50 836 13 878 05 605 98 645 1.7 742 03
cadrille 90.2 00 916 00 931 00 8.0 02 8.8 01 8.1 00 679 02 709 02 747 0.1

Table 11: Results of point-based CAD reconstruction with test-time sampling.

R RL Data DeepCAD Fusion360 CC3D
h DeepCAD Fusion360 CD| IoUt IRl CD| IoUt IR, CD] IoUf IR}
1 10k 0.7k 0.18 8.0 10 0.8 810 26 074 598 63
3 20k 1.4k 0.17 904 07 0.18 823 09 0.63 624 40
5 30k 2k 0.17 909 02 0.17 835 05 062 623 09
6.2 40k 2.5k 0.17 912 0.1 017 839 02 0.60 633 07
7.5 50k 3k 017 922 0.0 017 846 00 057 650 0.1

Table 12: Results of CAD reconstruction from multi-view images with varying amount of data used
for RL fine-tuning.

Data for RL fine-tuning As described in Sec. 4.4 in the main paper, not all available data is used
for RL fine-tuning, but only the most hard examples are considered. By varying the hard-mining
threshold Ry,, we control the difficulty level and the ratio of data selected for fine-tuning. Finding
the proper balance is crucial for RL fine-tuning, since it has a notably larger time- and memory
footprint compared to SFT, and is hardly feasible without hard example mining.

In Tab. we report results obtained when fine-tuned on data of different volume. All metrics
improve gradually with an increase of the amount of the training data. Still, all results reported in
this table supersede the SFT baseline (Tab. 2 of the main paper).

Number of samples in DPO  We investigate how the number of samples used for RL fine-tuning
affects the final results. In Tab.[I0} we report IoU scores for image-based reconstruction on all three
datasets after 20 epochs of DPO fine-tuning. Performance is unstable with only K = 2 samples,
while our default value of K = 5 yields the best performance. The difference between K = 3 and
K = 5 is less than 1% of IoU, suggesting that the model saturates with few samples, so 5 samples
are sufficient.

D IMPLEMENTATION DETAILS

Architecture Our model is built on top of Qwen2-VL Wang et al.| (2024) and uses its native
capabilities of image and text understanding. In all experiments on multi-view image CAD recon-
struction, we use four images. Images are rendered with fixed camera positions, and concatenated
into 2x2 grid, forming a combined image of size 268 x 268 px (as shown in Fig.[§ and [9). This
combined image is passed through the Qwen vision encoder, that outputs 400 input tokens. The
point cloud injecting into LLM is implemented exactly as in CAD-Recode. Specifically, our input
consists of 256 unordered 3D points without normals, sampled from the surface using the furthest
point sampling method. The points are projected into shared embedding space with a single linear
layer.

Training SFT in cadrille mostly follows the training procedure of CAD-Recode. The only
difference is using batch size of 8 and four gradient accumulation steps due to increase of memory
for longer prompts in the multimodal scenario. The SFT model is trained with AdamW optimizer
for 120k steps and learning rate of 2e-4 on a single H100 GPU.

RL fine-tuning The RL fine-tuning hyperparameters are listed in Tab. [T3] (DPO) and (Dr.
CPPO). In each experiment, the model is initialized with the weights of an SFT model trained
on point clouds and images, and then fine-tuned only on images. All fine-tuning experiments are
performed on 8 H100 GPUs.
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Hyperparameter Value Hyperparameter Value
Optimizer Adam Optimizer Adam
Number of epochs 20 Number of epochs 20
Batch size 160 Batch size 128
Learning rate le-05 Learning rate 3e-05
KL regularization coef (3) 0.3 Updates per batch 3
Number of samles (K) 5 PPO ¢ 0.1
GRPO group size (G) 16
Table 13: DPO tuning hyperparameters. CPPO number of samples (V) 4

Table 14: RL fine-tuning hyperparameters.

E MISCELLANEOUS

Python codes In Fig. [I0] we provide Python code with CadQuery library, produced by
cadrille. When executed, these Python scripts generate CAD models. Evidently, cadrille is
not limited to basic geometric primitives from the DeepCAD dataset (such as line, arc, circle), but
is also capable of producing more advanced shapes from the CAD-Recode dataset (box, rectangle,
cylinder).

CC3D scans Following CAD-Recode, we treat experiments with CC3D dataset as an emulation
of a real-world experiment. CC3D contains scans of the physical objects paired with ground truth
CAD models. As shown in Fig. @ CC3D scans contain artifacts such as surface noise, smoothed
edges, and missing parts. In our experiments, we sample points from the surfaces of these real noisy
scans instead of the perfect CAD models, which essentially makes the experimental scenario much
more realistic.

import cadquery as cq

w0=cqg.Workplane ('XY',origin=(0,0,11))

r=w0.sketch () .segment ((-100,23), 3,-23)) .segment ( (-63,-95)) .segment ((0,-55))
.segment ( (62 96)) .segment ( ( 23 .segment ((100,23)) .segment ((27,26))
.segment ( (0 6)) .segment ((-26,26)) .close () .assemble () .finalize () .extrude (-23)

import cadquery as cqg

w0=cqg.Workplane ('XY',origin=(0,0,88))

r=w0.sketch () .push([(-87,-89)]) .rect (20,22) .push ([ (-87,89) 1) .rect (20,22)
.push ([ (88,-89) 1) .rect (20,22) .push ([ (8 9

20,20) .finalize () .extrude (-17

import cadquery as cqg

w0=cqg.Workplane ('YZ',origin=(-63,0,0))
r=w0.sketch() .circle(33) .circle(27,mode="'s").finalize () .extrude (-37)
‘\ ) .union (w0.sketch () .segment ((-55,-67), (55,-67)) .segment ((55,-66)) .arc((87,0),
Q | (55,66)) .segment ((-9,67)) .segment ( (-5 /)) .arc((-87,1), (-55,-67)) .assemble ()
- .push ([ (-53,-39)]) .circle(12,mode="s") .push ([ (-53,39)]).circle(ll,mode="s")
.push ([ (53,-43)1) .circle(l2,mode="s") .finalize () .extrude (21))
.union (w0.sketch () .circle(34) .circle(27,mode="s").finalize () .extrude (163))
import cadquery as cqg
w0=cqg.Workplane ('XY',origin= (0 ,56))
/ wl=cqg.Workplane ('XY',origin=( ’ ))
r=w0.workplane (offset=-149/2) .cylinder (149,18.5)
.union (w0.sketch () .circle( .circle(78,mode="s") .finalize () .extrude (-111))
.union(wl.workplane (offset= /2) .cylinder (52,77
.union (wl.workplane (offset= ) .moveTo (97,0) .box(3.5,9.5,6))

Figure 10: cadrille predictions on DeepCAD, Fusion360, and CC3D datasets. Each row con-
tains predicted CadQuery Python code and its result after execution in Python interpreter.
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Ground truth
CAD model

Real-world
noisy scan

Figure 11: Ground truth CAD models (top row) and noisy scans (bottom row) from the real-world
CC3D dataset.

Besides, CC3D contains generally more complex CAD models, which are constructed using opera-
tions beyond simple extrusion, including revolution, chamfer, and fillet.
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