
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MULTILAYER CORRELATION CLUSTERING

Anonymous authors
Paper under double-blind review

ABSTRACT

We establish Multilayer Correlation Clustering, a novel generalization of Corre-
lation Clustering to the multilayer setting. In this model, we are given a series
of inputs of Correlation Clustering (called layers) over the common set V of n
elements. The goal is to find a clustering of V that minimizes the `p-norm (p ≥ 1)
of the multilayer-disagreements vector, which is defined as the vector (with di-
mension equal to the number of layers), each element of which represents the
disagreements of the clustering on the corresponding layer. For this generalization,
we first design an O(L log n)-approximation algorithm, where L is the number
of layers. We then study an important special case of our problem, namely the
problem with the so-called probability constraint. For this case, we first give an
(α+ 2)-approximation algorithm, where α is any possible approximation ratio for
the single-layer counterpart. Furthermore, we design a 4-approximation algorithm,
which improves the above approximation ratio of α + 2 = 4.5 for the general
probability-constraint case. Computational experiments using real-world datasets
support our theoretical findings and demonstrate the practical effectiveness of our
proposed algorithms.

1 INTRODUCTION

Clustering objects based on the information of their similarity is a fundamental task in machine
learning. Correlation Clustering, introduced by Bansal et al. (2002; 2004), is an optimization model
that mathematically formulates this task. In the model, we are given a set V of n elements, where each
pair of elements is labeled either ‘+’ (representing that they are similar) or ‘−’ (representing that they
are dissimilar) together with a nonnegative weight representing the degree of similarity/dissimilarity.
In general, the goal of Correlation Clustering is to find a clustering of V that is consistent with the
given similarity information as much as possible. The (in)consistency of a clustering of V can be
measured by the so-called disagreements, which is defined as the sum of weights of misclassified
pairs, i.e., pairs with ‘+’ label across clusters and pairs with ‘−’ label within the same cluster. The
problem of finding a clustering of V that minimizes the disagreements is called MINDISAGREE.

It is known that MINDISAGREE is not only NP-hard (Bansal et al., 2002) but also APX-hard even
if we consider the unweighted case (i.e., the case where the weights are all equal to 1) (Charikar
et al., 2005). A large body of work has been devoted to designing polynomial-time approximation
algorithms for the problem. For the general weighted case, Charikar et al. (2005) and Demaine et al.
(2006) independently proposed O(log n)-approximation algorithms, using the well-known region
growing technique (Garg et al., 1996). The approximation ratio of O(log n) is still the state-of-the-art,
and it is also known that improving it is at least as hard as improving the O(log n)-approximation
for Minimum Multicut (Garg et al., 1996), which is one of the major open problems in theoretical
computer science. For the unweighted case, Bansal et al. (2002) presented the first constant-factor
approximation algorithm, which has been improved by a series of works so far (Ailon et al., 2008;
Cao et al., 2024; Charikar et al., 2005; Chawla et al., 2015; Cohen-Addad et al., 2022; 2023). Notably,
the current-best approximation ratio for the unweighted case is 1.437 + ε for any ε > 0 (Cao et al.,
2024). For more details, see Section 2.

1.1 OUR CONTRIBUTION

In this study, we establish Multilayer Correlation Clustering, a novel generalization of Correlation
Clustering to the multilayer setting. In the model, we are given a series of inputs of Correlation

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Clustering (called layers) over the common set V of n elements. The goal is then to find a clustering
of V that is consistent as much as possible with all layers. To quantify the (in)consistency of a
clustering over layers, we introduce the concept of multilayer-disagreements vector (with dimension
equal to the number of layers) of a clustering, each element of which represents the disagreements of
the clustering on the corresponding layer.1 Using the `p-norm (p ≥ 1) of this vector, we can quantify
the (in)consistency of the given clustering in a variety of regimes. In particular, if we set p = 1, it
simply quantifies the sum of disagreements over all layers, whereas if we set p =∞, it quantifies the
maximal disagreements over the layers. For p ≥ 1, our problem asks to find a clustering of V that
minimizes the `p-norm of the multilayer-disagreements vector.

Multilayer Correlation Clustering is motivated by real-world scenarios. Suppose that we want to find a
clustering of users of X using their similarity information. In this case, various types of similarity can
be defined through analysis of users’ tweets and observations of different types of connections among
users such as follower relations, retweets, and mentions. In the original Correlation Clustering, we
need to deal with that information one by one and manage to aggregate resulting clusterings. On the
other hand, Multilayer Correlation Clustering enables us to handle that information simultaneously,
directly producing a clustering that is consistent (as much as possible) with all types of information.
As another example scenario, suppose that we analyze brain networks, where nodes correspond to
small regions of a brain and edges represent similarity relations among them. Then it is often the case
that the edge set is not determined uniquely; indeed, there would be at least two types of similarity
based on the structural connectivity and the functional connectivity among the small pieces of a brain.
Obviously, Multilayer Correlation Clustering can again find its advantage in this context.

For this novel, well-motivated generalization, we present a variety of algorithmic results. We first
design a polynomial-time O(L log n)-approximation algorithm, where L is the number of layers. Our
algorithm is a generalization of the O(log n)-approximation algorithms for MINDISAGREE (Charikar
et al., 2005; Demaine et al., 2006) and thus employs the region growing technique (Garg et al., 1996).
Our algorithm first solves a convex programming relaxation of the problem. Then, the algorithm
iteratively constructs a cluster (and removes it from V as a part of the output), using the region
growing technique based on the pseudometric computed by the relaxation, until all elements are
clustered. Specifically, in each iteration, the algorithm takes an arbitrary element in V and constructs
a ball of center being that element and a radius carefully selected using the similarity information
over all layers.

We then study an important special case of our problem, namely the problem with the probability
constraint, where on each layer, each pair of elements in V has both ‘+’ and ‘−’ labels, each of
which is associated with a nonnegative weight in [0, 1] and the sum of those two weights is equal
to 1. For this problem, we first give a polynomial-time (α + 2)-approximation algorithm, where
α is any possible approximation ratio for MINDISAGREE with the probability constraint or any of
its special cases if we consider the corresponding special case of our problem. For instance, we
can take α = 2.5 in general (Ailon et al., 2008), α = 1.437 + ε for the unweighted case (Cao
et al., 2024), and α = 1.5 for the case where the weights of ‘−’ labels satisfy the triangle inequality
constraint (see Section 3) (Chawla et al., 2015). In the algorithm design, we first reduce our problem
to a novel optimization problem in a metric space, and devise an algorithm to solve it. We then
design a 4-approximation algorithm for the general probability-constraint case, improving the above
approximation ratio of α+ 2 = 4.5. The algorithm first solves a convex programming relaxation as
in the aforementioned O(L log n)-approximation algorithm, and then constructs a clustering, using
a simple thresholding rule. Our algorithm is a generalization of the 4-approximation algorithm for
MINDISAGREE of the unweighted case, designed by Charikar et al. (2005).

Finally we conduct thorough experiments using a variety of real-world datasets to evaluate the
performance of our proposed algorithms in terms of both solution quality and running time. We
confirm that our algorithms outperform baseline methods for both Problem 1 of the general weighted
case and Problem 1 with the probability constraint. In particular, the objective value achieved by our
algorithm for Problem 1 of the general weighted case is often quite close to the optimal value of the
convex programming relaxation, i.e., a lower bound on the optimal value of the problem, meaning
that the algorithm tends to obtain a near-optimal solution.

1It is worth remarking that there is an existing concept called disagreements vector in the literature of
Correlation Clustering with fairness consideration (Kalhan et al., 2019). However, our multilayer-disagreements
vector is a different concept from it. For details, see Section 2 and Appendix A.1.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Due to space limitations, we have deferred all proofs of theorems to the Appendix; however, we
provide proof ideas and sketches in the main paper.

2 RELATED WORK

In this section, we review related literature about special cases and generalizations of MINDISAGREE
and multilayer-network analysis.

Special cases of MINDISAGREE. For MINDISAGREE of the unweighted case, Bansal et al. (2002;
2004) gave the first constant-factor approximation algorithm with the approximation ratio of 17,429.
Then the approximation ratio has been improved by a series of works. Charikar et al. (2005) designed
a 4-approximation algorithm. Ailon et al. (2008) then gave KWIKCLUSTER, a purely-combinatorial
randomized 3-approximation algorithm. The authors also proved that a variant based on an LP relax-
ation improves the approximation ratio from 3 to 2.5. Later Chawla et al. (2015) demonstrated that a
more sophisticated randomized construction of the clusters achieves a 2.06-approximation (Chawla
et al., 2015), which almost matches the integrality gap 2 of the LP relaxation (Charikar et al., 2005). In
a recent breakthrough, Cohen-Addad et al. (2022) designed a (1.994+ε)-approximation algorithm for
any ε > 0, using a semidefinite programming relaxation of the problem, which was further improved
to 1.73 + ε by introducing a novel preprocessing algorithm (Cohen-Addad et al., 2023). Very recently,
Cao et al. (2024) designed a (1.437 + ε)-approximation algorithm that runs in O(npoly(1/ε)) time, by
inventing a stronger LP called the cluster LP.

For MINDISAGREE with the probability constraint, Bansal et al. (2002; 2004) provided an
approximation-preserving reduction from the problem to MINDISAGREE of the unweighted case.
Specifically, the authors proved that any α-approximation algorithm for MINDISAGREE of the
unweighted case yields a (2α+ 1)-approximation algorithm for MINDISAGREE with the probabil-
ity constraint. Ailon et al. (2008) demonstrated that the counterparts of KWIKCLUSTER and that
combined with the pseudometric computed by the LP relaxation achieve a 5-approximation and a
2.5-approximation, respectively, both of which improved the 9-approximation based on the above
reduction with the 4-approximation algorithm for MINDISAGREE of the unweighted case by Charikar
et al. (2005). In particular, the approximation ratio of 2.5 is still known to be the state-of-the-art. It is
also known that in the case where the weights of ‘−’ labels satisfy the triangle inequality constraint
additionally, the approximation ratio can be improved. Indeed, Ailon et al. (2008) proved that their
above algorithms achieve a 2-approximation, and later Chawla et al. (2015) improved it to 1.5.

Gionis et al. (2007) studied the problem called Clustering Aggregation, which is highly related to
MINDISAGREE. In the problem, we are given L clusterings of the common set V , and the goal
is to find a clustering of V that is consistent with the given clusterings as much as possible. The
(in)consistency is measured by the sum of distances between the output clustering and the given
L clusterings, where the distance is defined as the number of pairs of elements that are clustered
in the opposite way. Gionis et al. (2007) proved that Clustering Aggregation is a special case of
MINDISAGREE with the probability constraint and the triangle inequality constraint. We can also
directly see that Clustering Aggregation is a quite special case of Multilayer Correlation Clustering
of the unweighted case, where each layer already represents a clustering and the parameter p of
the `p-norm is set to 1. Gionis et al. (2007) also demonstrated that picking up the best clustering
among the given L clusterings gives a 2(1 − 1/L)-approximation while an algorithm similar to
the 4-approximation algorithm for MINDISAGREE of the unweighted case (Charikar et al., 2005)
achieves a 3-approximation.

Generalizations of MINDISAGREE. The most related generalization would be Multi-Chromatic
Correlation Clustering (MCCC), introduced by Bonchi et al. (2015), as a further generalization of
Chromatic Correlation Clustering (CCC) (Bonchi et al., 2012). Let V be a set of n elements and C a
set of colors. Each pair of elements in V is associated with a subset of C, meaning that the endpoints
are similar in the sense of those colors. The goal is to find a clustering of V and an assignment of each
cluster to a subset of C that is consistent as much as possible with the given similarity information.
The (in)consistency of a clustering is evaluated as follows: For each pair within a cluster, a distance
between the color subsets of the pair and the cluster is charged, while for each pair across clusters, a
distance between the color subset of the pair and the emptyset is charged. Varying the definition of the
distance, a number of concrete models can be obtained. Although the input of MCCC is essentially

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

the same as that of our problem of the unweighted case, ours has three concrete advantages: (i) our
objective function is more intuitive but can deal with complex relations among the (in)consistency
over all layers; (ii) MCCC asks to specify the colors (i.e., layers in our case) of each cluster for which
the cluster is supposed to be valid, but our problem does not require such an effort; (iii) our problem
is capable of the general weighted case, while MCCC is defined only for the unweighted case and
the way to generalize it to the weighted case is not trivial. For MCCC, Bonchi et al. (2015) gave an
approximation ratio proportional to the product of |C| and the maximum degree (when interpreting
the input as a graph). Recently, Klodt et al. (2021) introduced a different yet similar generalization of
CCC to the multi-chromatic case and devised a 3-approximation algorithm based on KWIKCLUSTER.

Multilayer Correlation Clustering can be seen as Correlation Clustering with fairness considera-
tion (Ahmadi et al., 2019; 2020; Ahmadian et al., 2020; Ahmadian & Negahbani, 2023; Charikar
et al., 2017; Davies et al., 2023; Friggstad & Mousavi, 2021; Heidrich et al., 2024; Kalhan et al.,
2019; Puleo & Milenkovic, 2016; 2018; Schwartz & Zats, 2022) and uncertainty consideration (Chen
et al., 2014; Joachims & Hopcroft, 2005; Kuroki et al., 2024; Makarychev et al., 2015; Mathieu &
Schudy, 2010). For details, see Appendix A.1.

Multilayer-network analysis. Correlation Clustering can be seen as a network clustering model.
A multilayer network is a generalization of the ordinary network, where we have a number of
edge sets (i.e., layers) over the common set of vertices. Multilayer Correlation Clustering can
be viewed as a generalization of Correlation Clustering to multilayer networks. Recently, many
network-analysis primitives have been generalized from the ordinary networks to multilayer networks.
Examples include community detection (Bazzi et al., 2016; De Bacco et al., 2017; Interdonato
et al., 2017; Tagarelli et al., 2017), dense subgraph discovery (Galimberti et al., 2020; Jethava &
Beerenwinkel, 2015; Kawase et al., 2023), link prediction (De Bacco et al., 2017; Jalili et al., 2017),
analyzing spreading processes (De Domenico et al., 2016; Salehi et al., 2015), and identifying central
vertices (Basaras et al., 2019; De Domenico et al., 2015).

3 PROBLEM FORMULATION

In this section, we formally introduce our problem. Let V be a set of n elements. Let E be the set of
unordered pairs of distinct elements in V , i.e., E = {{u, v} : u, v ∈ V, u 6= v}. Let L be a positive
integer, representing the number of layers. For each ` ∈ [L], let w+

` : E → R≥0 and w−` : E → R≥0
be the weight functions for ‘+’ and ‘−’ labels, respectively, on that layer. Note that to deal with the
probability constraint case in a unified manner, we assume that each pair of elements has both ‘+’
and ‘−’ labels. For simplicity, we define w+

` (u, v) = w+
` ({u, v}) and w−` (u, v) = w−` ({u, v}) for

` ∈ [L] and {u, v} ∈ E. Let C be a clustering (i.e., a partition) of V , that is, C = {C1, . . . , Ct} such
that

⋃
i∈[t] Ci = V and Ci ∩ Cj = ∅ for i, j ∈ [t] with i 6= j. For v ∈ V , we denote by C(v) the

(unique) element (i.e., cluster) in C to which v belongs. Then, for u, v ∈ V , 1l[C(u) = C(v)] = 1 if
u, v belong to the same cluster and 1l[C(u) 6= C(v)] = 0 otherwise. The disagreement of C on layer
` ∈ [L] is defined as the sum of weights of misclassified labels on that layer, i.e.,

Disagree`(C) =
∑

{u,v}∈E

(
w+
` (u, v)1l[C(u) 6= C(v)] + w−` (u, v)1l[C(u) = C(v)]

)
.

Then the multilayer-disagreements vector of C is defined as Disagree(C) = (Disagree`(C))`∈[L].
We are now ready to formulate our problem:

Problem 1 (Multilayer Correlation Clustering). Fix p ∈ [1,∞]. Given V and (w+
` , w

−
`)`∈[L], we are

asked to find a clustering C of V that minimizes ‖Disagree(C)‖p, i.e.,
(∑

`∈[L] Disagree`(C)p
)1/p

if p <∞ and max`∈[L] Disagree`(C) if p =∞.

Obviously Problem 1 is a generalization of MINDISAGREE to the multilayer setting. Varying the
value of p, we can obtain a series of objective functions that evaluate the (in)consistency of the
given clustering over the layers in a variety of regimes. If we set p = 1, the problem just aims to
minimize the sum of disagreements over all layers. It is easy to see that this case can be reduced
to MINDISAGREE in an approximation-preserving manner; therefore, the problem is O(log n)-
approximable (Charikar et al., 2005; Demaine et al., 2006). If we set p = ∞, the problem aims

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

to minimize the maximal disagreements over all layers, which is an important special case we are
particularly interested in.

An important special case of Problem 1 is that w+
` , w

−
` for every layer ` ∈ [L] satisfy the so-

called probability constraint, i.e., w+
` (u, v) + w−` (u, v) = 1 for any {u, v} ∈ E. Note that the

most fundamental special case, i.e., the unweighted case, is still contained in this case, where
w−` (u, v) = 1 − w+

` (u, v) = 0 or 1. Another special case, which we also handle in the present
paper, is Problem 1 with the probability constraint and the triangle inequality constraint. The triangle
inequality constraint stipulates that on every layer ` ∈ [L], w−` (u,w) ≤ w−` (u, v) + w−` (v, w)
holds for any distinct u, v, w ∈ V . It is easy to see that in the case of p = 1, Problem 1 with the
probability constraint (and the triangle inequality constraint) can be reduced to MINDISAGREE with
the probability constraint (and the triangle inequality constraint) in an approximation-preserving
manner. Indeed, simply summing up the weights over all layers for each pair of elements and dividing
it by L, we can obtain an equivalent instance of MINDISAGREE with the probability constraint (and
the triangle inequality constraint). Therefore, we see that the problem is still 2.5-approximable (Ailon
et al., 2008) in the probability constraint case and 1.5-approximable (Chawla et al., 2015) in the
probability constraint and triangle inequality constraint case. Note however that for Problem 1 of the
unweighted case, there is no trivial reduction that can beat the above 2.5-approximation.

4 ALGORITHM FOR PROBLEM 1

In this section, we design an O(L log n)-approximation algorithm for Problem 1.

4.1 THE PROPOSED ALGORITHM

We first present 0–1 convex programming formulations for Problem 1. For distinct i, j ∈ V , we
introduce 0–1 variables xij , xji, both of which take 0 if i, j belong to the same cluster and 1 otherwise.
Then, in the case of p <∞, Problem 1 can be formulated as follows:

minimize

∑
`∈[L]

 ∑
{i,j}∈E

(
w+
` (i, j)xij + w−` (i, j)(1− xij)

)p1/p

subject to xij = xji (∀i, j ∈ V, i 6= j), (1)
xik ≤ xij + xjk (∀i, j, k ∈ V, i 6= j, j 6= k, k 6= i), (2)
xij ∈ {0, 1} (∀i, j ∈ V, i 6= j). (3)

On the other hand, in the case of p =∞, we have the following 0–1 LP formulation:

minimize t

subject to
∑
{i,j}∈E

(
w+
` (i, j)xij + w−` (i, j)(1− xij)

)
≤ t (∀` ∈ [L]),

Constraints (1)–(3).

For the above formulations, by relaxing the constraints xij ∈ {0, 1} to xij ∈ [0, 1] for all distinct
i, j ∈ V , we can obtain continuous relaxations of Problem 1, which we refer to as (CV) and (LP),
respectively. Let x = (xij)i,j∈V : i 6=j . It should be noted that (CV) is a convex programming
problem. Indeed, the objective function is convex, as it is a vector composition of form f(g(x)) =
f(g1(x), . . . , gL(x)), where f : RL≥0 → R≥0 is an `p-norm of p ≥ 1, which is convex and non-
decreasing in each argument, and g` : RE≥0 → R≥0 is linear and thus convex for every ` ∈ [L];
moreover, the set of feasible solutions is obviously convex. Therefore, we can solve the problem to
arbitrary precision in polynomial time, using an appropriate method for convex programming such as
an interior-point method (Boyd & Vandenberghe, 2004). For simplicity, we suppose that (CV) can be
solved exactly in polynomial time. On the other hand, (LP) is indeed an LP, and thus can be solved
exactly in polynomial time. Let OPTCV and OPTLP be the optimal values of the above relaxations,
respectively.

Our algorithm first solves an appropriate relaxation, (CV) or (LP), depending on the value of p,
and obtains its optimal solution x∗ = (x∗ij)i,j∈V : i 6=j . Then the algorithm updates x∗ so that

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1: O(L log n)-approximation algorithm for Problem 1

Input: V and (w+
` , w

−
`)`∈[L] Output: Clustering of V

1 Compute an optimal solution x∗ = (x∗ij)i,j∈V : i 6=j to (CV) if p <∞ and (LP) if p =∞;
2 Update x∗ so that x∗ = (x∗ij)i,j∈V by setting x∗ii = 0 for every i ∈ V ;
3 Take an arbitrary c > 2;
4 B ← ∅, V (1) ← V , and t← 1;
5 while V (t) 6= ∅ do
6 Take an arbitrary pivot i(t) ∈ V (t);

7 Compute r∗(t) ∈ argmin

{
max

`∈[L]:F` 6=0

cut(V (t),`)(BV (t)(i(t), r))

vol(V (t),`)(BV (t)(i(t), r))
: r ∈ (0, 1/c]

}
;

8 B ← B ∪ {BV (t)(i(t), r∗(t))}, V
(t+1) ← V (t) \BV (t)(i(t), r∗(t)), and t← t+ 1;

9 return B;

x∗ = (x∗ij)i,j∈V by setting x∗ii = 0 for every i ∈ V . Obviously x∗ is a pseudometric over V , i.e.,
a relaxed metric where a distance between distinct elements may be equal to 0. Based on this, the
algorithm constructs a clustering in an iterative manner: The algorithm initially has the entire set
V . In each iteration, the algorithm takes an arbitrary element called a pivot in the current set and
constructs a cluster by collecting the pivot itself and the other elements that are located at distance
less than some carefully-chosen value from the pivot. The algorithm removes the cluster from the
current set and repeats the process until it is left with the emptyset.

To describe the algorithm formally, we introduce notation. Without loss of generality, we can assume
that at most one of w+

` (u, v) and w−` (u, v) is nonzero for any ` ∈ [L] and {u, v} ∈ E. Otherwise we
can transform the instance into another one that satisfies the above and is more easily approximable
(see Section 1.4 in Bonchi et al. (2022) for details). Based on the assumption, for each ` ∈ [L], we
introduce two mutually-disjoint sets E+

` = {{u, v} ∈ E : w+
` (u, v) > 0} and E−` = {{u, v} ∈ E :

w−` (u, v) > 0}, and define w` : E+
` ∪ E

−
` → R>0 such that w`(u, v) = w+

` (u, v) if {u, v} ∈ E+
`

and w`(u, v) = w−` (u, v) if {u, v} ∈ E−` . Let U be an arbitrary subset of V . For i ∈ U and r ≥ 0,
we denote by BU (i, r) the open ball of center i and radius r in U , i.e., BU (i, r) = {j ∈ U : x∗ij < r}.
For BU (i, r), we define its cut value cut(U,`)(BU (i, r)) within U on layer ` ∈ [L] as the sum of
weights of ‘+’ labels across BU (i, r) and U \BU (i, r) on layer ` ∈ [L], i.e.,

cut(U,`)(BU (i, r)) =
∑

{j,k}∈E+
` : j∈BU (i,r)∧k∈U\BU (i,r)

w`(j, k).

For BU (i, r), we define its volume vol(U,`)(BU (i, r)) within U on layer ` ∈ [L] as

vol(U,`)(BU (i, r)) =
F`
n

+
∑

{j,k}∈E+
` : j,k∈BU (i,r)

w`(j, k)x∗jk +
∑

{j,k}∈E+
` : j∈BU (i,r)∧k∈U\BU (i,r)

w`(j, k)(r − x∗ij),

where F` =
∑
{j,k}∈E+

`
w`(j, k)x∗jk.

Our formal algorithm is presented in Algorithm 1. The feature can be found in the radius selection:
In the t-th iteration, the algorithm selects the radius r∗(t) that minimizes the maximal ratio of the cut
value to the volume of the ball of the chosen pivot i(t) over all layers ` ∈ [L] with F` 6= 0. Here we
give an intuitive explanation of the role of the volume. If the radius just minimized the cut value,
then the cluster would tend to be quite small; consequently, the resulting clustering would consist of
a lot of small clusters, which overall causes large disagreements for the pairs of elements with ‘+’
labels. The volume helps avoid this situation. Indeed, thanks to it, the algorithm tends to consume a
relatively large part of the remaining set, resulting in relatively large clusters.

4.2 ANALYSIS OF ALGORITHM 1

We have the following key lemma:

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Lemma 1. In Algorithm 1, for any t = 1, . . . , |B|, it holds that

max
`∈[L]:F` 6=0

cut(V (t),`)(BV (t)(i(t), r∗(t)))

vol(V (t),`)(BV (t)(i(t), r∗(t)))
≤ cL log(n+ 1),

and moreover, BV (t)(i(t), r∗(t)) can be computed in O(Ln2) time.

Let B be the output of Algorithm 1. Our analysis is layer-wise, but it directly leads to the evaluation
of the disagreements over layers. The disagreements of B produced by the pairs of elements with
‘+’ labels on layer ` ∈ [L] with F` 6= 0 equal the sum of weights of ‘+’ labels for those pairs across
clusters in B, which can be upper bound by O(L log n) times the sum of volumes of clusters in B,
using Lemma 1. As the sum of volumes is further upper bounded by the sum of corresponding terms
in the optimal objective to (CV) or (LP), we can obtain an O(L log n)-approximation for that part.
The disagreements of B produced by the other pairs are easily upper bounded. We have the following
theorem:
Theorem 1. Algorithm 1 is a polynomial-time O(L log n)-approximation algorithm for Problem 1.
Specifically, the time complexity is O(TCV + Ln3) if p <∞ and O(TLP + Ln3) if p =∞, where
TCV and TLP denote the time complexities required to solve (CV) and (LP), respectively.

Finally we mention the integrality gaps of (CV) and (LP). For MINDISAGREE, the LP relaxation used
in the O(log n)-approximation algorithms is known to have the integrality gap of Ω(log n) (Charikar
et al., 2005; Demaine et al., 2006). As our relaxations, (CV) and (LP), are its generalizations, the
integrality gap of Ω(log n) is inherited. This matches our approximation ratio in the case of L = O(1)
but there remains a gap in general.

5 ALGORITHMS FOR PROBLEM 1 WITH PROBABILITY CONSTRAINT

In this section, we present our algorithms for Problem 1 with the probability constraint. The
first algorithm has an approximation ratio of α + 2, where α is any possible approximation ratio
for MINDISAGREE with the probability constraint or any of its special cases if we consider the
corresponding special case of our problem. The second algorithm has an approximation ratio of 4.

5.1 THE (α+ 2)-APPROXIMATION ALGORITHM

To design the algorithm, we reduce Problem 1 with the probability constraint to a novel optimization
problem in a metric space. Let X be a set. Let d : X ×X → R≥0 be a metric on V , i.e., d(x, y) = 0
if and only if x = y for x, y ∈ V , d(x, y) = d(y, x) for x, y ∈ V , and d(x, z) ≤ d(x, y) + d(y, z)
for x, y, z ∈ V . In general, (X, d) is called a metric space. We introduce the following problem:
Problem 2 (Find the Most Representative Candidate in a Metric Space). Fix p ≥ 1. Let (X, d) be a
metric space. Given x1, . . . , xL ∈ X and a candidate set F ⊆ X , we are asked to find x ∈ F that

minimizes
(∑

`∈[L] d(x, x`)
p
)1/p

if p <∞ and max`∈[L] d(x, x`) if p =∞.

Then we can prove the following key lemma. The proof is based on the fact that each layer of
the input of Problem 1 with the probability constraint (i.e., an input of MINDISAGREE with the
probability constraint) and any clustering of V can be dealt with in a unified metric space (X, d)
when X and d are set appropriately.
Lemma 2. There exists a polynomial-time approximation-preserving reduction from Problem 1 with
the probability constraint to Problem 2.

In what follows, we design an approximation algorithm for Problem 2, resulting in an approximation
algorithm for Problem 1 with the probability constraint having the same approximation ratio. To this
end, we introduce the following subproblem:
Problem 3 (Find the Closest Candidate in a Metric Space). Let (X, d) be a metric space. Given
x ∈ X and a candidate set F ⊆ X , we are asked to find x′ ∈ F that minimizes d(x, x′).

Assume now that we have an α-approximation algorithm for Problem 3. Let x1, . . . , xL ∈ X and
F ⊆ X be the input of Problem 2. Our approximation algorithm for Problem 2 runs as follows: For

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Algorithm 2: (α+ 2)-approximation algorithm for Problem 2
Input: x1, . . . , xL ∈ X and F ⊆ X Output: x ∈ F

1 for ` ∈ [L] do x′` ← α-approximate solution for Problem 3 with input x` ∈ X and F ⊆ X;

2 return xout ∈ argminx∈{x′1,...,x′L}

(∑
`∈[L] d(x, x`)

p
)1/p

if p <∞ and

xout ∈ argminx∈{x′1,...,x′L}max`∈[L] d(x, x`) if p =∞;

Algorithm 3: 4-approximation algorithm for Problem 1 with the probability constraint

Input: V and (w+
` , w

−
`)`∈[L] Output: Clustering of V

1 Perform Lines 1 and 2 in Algorithm 1;
2 Initialize B ← ∅ and U ← V ;
3 while U 6= ∅ do
4 Take an arbitrary i ∈ U and initialize B ← {i};
5 C ← BU (i, 1/2) \ {i};
6 if 1

|C|
∑
j∈C x

∗
ij < 1/4 then B ← B ∪ C;

7 B ← B ∪ {B} and U ← U \B;
8 return B;

every ` ∈ [L], the algorithm obtains an α-approximate solution x′` ∈ F for Problem 3 with input
x` ∈ X and F ⊆ X , using the α-approximation algorithm for Problem 3. Then the algorithm outputs
the best solution among x′1, . . . , x

′
L in terms of the objective function of Problem 2. The pseudocode

is given in Algorithm 2.

Analysis. We analyze the approximation ratio of Algorithm 2. Let x∗ ∈ F be an optimal solution to
Problem 2. Let xclosest ∈ argminx∈{x1,...,xL} d(x, x∗) and x′closest be the α-approximate solution
for Problem 3 with input xclosest and F . By repeatedly applying the triangle inequality over d, we
can obtain d(x′closest, x`) ≤ (α+ 2) · d(x∗, x`) for any ` ∈ [L]. Noticing the facts that x′closest is one
of the candidates of the output of the algorithm and that the evaluation of the point-wise distance
directly leads to the evaluation of the objective value of Problem 2, we have the following theorem:
Theorem 2. Algorithm 2 is an (α+ 2)-approximation algorithm for Problem 2.

In Algorithm 2, the approximation ratio of α for Problem 3 that we can take depends on the metric
space (X, d) and part of input F ⊆ X , inherited from Problem 2. By interpreting Problem 1 with the
probability constraint (or any of its special cases) as Problem 2 with specific metric space (X, d) and
part of input F ⊆ X , we can obtain the following series of approximability results:
Corollary 1. (i) There exists a polynomial-time 4.5-approximation algorithm for Problem 1 with the
probability constraint. (ii) For any ε > 0, there exists a polynomial-time (3.437+ε)-approximation al-
gorithm for Problem 1 of the unweighted case. (iii) There exists a polynomial-time 3.5-approximation
algorithm for Problem 1 with the probability constraint and the triangle inequality constraint.

5.2 THE 4-APPROXIMATION ALGORITHM

Our algorithm first obtains x∗ = (x∗ij)i,j∈V in exactly the same way as that of Algorithm 1. Based on
the pseudometric x∗ over V , the algorithm then constructs a clustering, using a simple thresholding
rule. Let U be an arbitrary subset of V . For i ∈ U and r ≥ 0, we denote by BU (i, r) the closed
ball of center i and radius r in U , i.e., BU (i, r) = {j ∈ U : x∗ij ≤ r}. Our algorithm initially set
U = V . In each iteration, the algorithm takes an arbitrary element i ∈ U and initializes a cluster
B = {i}. Then the algorithm constructs C = BU (i, 1/2) \ {i}. If the average distance between i
and the elements in C is less than 1/4, i.e., 1

|C|
∑
j∈C x

∗
ij < 1/4, then the algorithm updates B by

adding all elements in C. The algorithm removes B from U as a cluster of the output, and repeats the
procedure until U = ∅. The pseudocode is presented in Algorithm 3.

Analysis. The intuition of the analysis is similar to that of Algorithm 1. Based on the thresholding
rule together with the probability constraint, we can obtain the approximation ratio of 4:

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Real-world datasets and experimental results for Problem 1 of the general weighted case.
Algorithm 1 Pick-a-Best Aggregate

Dataset |V | L LB Obj. val. Time(s) Obj. val. Time(s) Obj. val. Time(s)

aves-sparrow-social 52 2 13.37 13.48 0.47 26.79 0.34 13.81 0.11
insecta-ant-colony1 113 41 32.48 34.30 587.94 42.94 1719.11 47.59 48.03
reptilia-tortoise-network-bsv 136 4 127.14 151.00 2.32 193.00 16.43 174.00 0.91
aves-wildbird-network 202 6 54.97 56.50 35.78 98.27 129.20 74.84 7.87
aves-weaver-social 445 23 132.75 164.00 135.22 — OT 177.00 12.19
reptilia-tortoise-network-fi 787 9 271.48 305.00 644.07 — OT 446.00 195.40

Theorem 3. Algorithm 3 is a 4-approximation algorithm for Problem 1 with the probability con-
straint.

The above theorem indicates that the 4-approximation algorithm for MINDISAGREE of the unweighted
case, designed by Charikar et al. (2005), can be extended to the probability constraint case, which
has yet to be mentioned before. Although some approximation ratios better than 4 are known for
MINDISAGREE of the unweighted case, thanks to its simplicity and extendability, the algorithm has
been generalized to various settings of the unweighted case (see Section 2). Our analysis implies that
those results may be further generalized form the unweighted case to the probability constraint case.

6 EXPERIMENTAL EVALUATION

In this section, we report the results of computational experiments performed on various real-world
datasets, evaluating the practical performance of our proposed algorithms. Due to space limitations,
we discuss only Problem 1 of the general weighted case in the main paper. For Problem 1 with the
probability constraint, see Appendix D.

6.1 EXPERIMENTAL SETUP

Datasets. Throughout the experiments, we set p =∞ in Problem 1, meaning that we aim to minimize
the maximal disagreements over all layers. This is an important case of particular interest to us,
where the objective is quite intuitive and easy to interpret. Table 1 lists real-world datasets, each of
which is a multilayer network consisting of L layers with positive edge weights, collected by Network
Repository (Rossi & Ahmed, 2015) licensed under a Creative Commons Attribution-ShareAlike
License.2 Using the datasets, we generated our instances of Problem 1. Let G = (V, (E`, w`)`∈[L])
be a multilayer network at hand, where E` is the set of edges on layer ` and w` : E` → R>0 is its
weight function. We first normalize all edge weights so that the maximum weight over layers is equal
to 1; that is, we redefine w`({u, v})← w`({u, v})/wmax for every ` ∈ [L] and {u, v} ∈ E`, where
wmax = max`∈[L] max{u,v}∈E`

w`({u, v}). For every ` ∈ [L], let weights(`) be the multiset of
all edge weights on layer `, i.e., weights(`) = {w`({u, v}) : {u, v} ∈ E`}. We generate our
instance V and (w+

` , w
−
`)`∈[L] as follows: The set V of objects is exactly the same as the set of

vertices in the multilayer network. For convenience, we define E = {{u, v} : u, v ∈ V, u 6= v}.
For each layer ` ∈ [L] and {u, v} ∈ E, if {u, v} ∈ E` we set w+

` (u, v) = w`({u, v}) and
w−` (u, v) = 0; otherwise we set w+

` (u, v) = 0 and w−` (u, v) = Uniform(weights(`)) with
probability 0.5, where Uniform() takes an element from a given multiset uniformly at random, and
w+
` (u, v) = w−` (u, v) = 0 otherwise. The intuition behind the above setting is that we actively put

‘+’ labels for the pairs of objects having edges, while for the pairs of objects not having edges, we
only passively put ‘−’ labels (i.e., only with probability 0.5), given the potential missing of edges in
the original network. The weights for ‘+’ labels fully respect for the original edge weights, while the
weights for ‘−’ labels are generated from those for ‘+’ labels.

Our algorithms and baselines. In Algorithm 1, the way to select a pivot is arbitrary; in our
implementation, the algorithm just takes the object with the smallest ID. We employ the following
two baseline methods: (i) Pick-a-Best: This method first solves MINDISAGREE on each layer,
using the state-of-the-art O(log n)-approximation algorithms (Charikar et al., 2005; Demaine et al.,
2006), and then outputs the best one among them in terms of the objective value of Problem 1.

2https://networkrepository.com/index.php

9

https://networkrepository.com/index.php

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

This method can be seen as a generalization of Algorithm 2 for Problem 1 with the probability
constraint case, but it is not clear if the method has an approximation ratio such as O(L log n),
achieved by Algorithm 1. (ii) Aggregate: This method first aggregates the layers. Specifically, the
method constructs w+ : E → R≥0 and w− : E → R≥0 by setting w+(u, v) =

∑
`∈[L] w

+
` (u, v) and

w−(u, v) =
∑
`∈[L] w

−
` (u, v) for every {u, v} ∈ E. Then it solves MINDISAGREE with input V

and (w+, w−), using the O(log n)-approximation algorithms (Charikar et al., 2005; Demaine et al.,
2006). As mentioned in Section 3, this method gives an O(log n)-approximate solution for Problem 1
when p = 1, but the approximation ratio for the case of p =∞ is not clear.

Finally we mention the implementation of the LPs. All LPs here have the Θ(n3) triangle inequality
constraints; thus, it is inefficient to input the entire program directly. To overcome this, we employed
Row Generation technique (Grötschel & Wakabayashi, 1989). Specifically, we first solve the program
without any triangle inequality constraint. Then we scan all the constraints: If there are constraints
violated by the current optimal solution, we add the constraints to the program, solve it again, and
repeat the process; otherwise we output the current optimal solution, which is an optimal solution to
the original program.

Machine spec and code. We used a machine with Apple M1 Chip and 16 GB RAM. All codes were
written in Python 3. LPs were solved using Gurobi Optimizer 11.0.1 with the default parameters.

6.2 RESULTS

The results are presented in Table 1, where for each instance, the best objective value and running
time among the algorithms are written in bold. The fourth column, named LB, presents OPTLP, i.e.,
the optimal value of (LP), which is a lower bound on the optimal value of Problem 1. OT indicates
that the algorithm did not terminate in 3,600 seconds. As can be seen, Algorithm 1 outperforms
the baseline methods in terms of the quality of solutions. Indeed, Algorithm 1 obtains much better
solutions than those computed by Pick-a-Best and Aggregate. Remarkably, the objective value
achieved by Algorithm 1 is often quite close to the lower bound OPTLP, meaning that the algorithm
tends to obtain a near-optimal solution. As Algorithm 1 solves (LP), which involves the multilayer
structure and thus is more complex than the LP solved in Aggregate, Algorithm 1 is slower than
Aggregate; however, Algorithm 1 is still even faster than Pick-a-Best, as the latter requires to solve
L different LPs corresponding to the layers.

7 CONCLUSIONS

We have introduced Multilayer Correlation Clustering, a novel generalization of Correlation Cluster-
ing to the multilayer setting, and designed approximation algorithms. As a final remark, we discuss
the limitations of our work, based on which we mention several interesting open problems. In theory,
it is still not clear how harder Multilayer Correlation Clustering is to approximate compared with
MINDISAGREE. Given this situation, we believe that the most promising direction is to fill the gap:
Improve the approximation ratios achieved by our proposed algorithms and/or proving some hardness
of approximation for Multilayer Correlation Clustering (beyond that for MINDISAGREE). One of the
reasonable questions is “to what extent can we reduce the term L in the current approximation ratio of
O(L log n) of Algorithm 1?” In practice, our algorithms that solve LPs do not scale to large instances.
Therefore, it is also interesting to (further) investigate fast algorithms for Multilayer Correlation
Clustering even without approximation ratios. For the detailed descriptions of open problems, see
Appendix E.1.

REFERENCES

Saba Ahmadi, Samir Khuller, and Barna Saha. Min-max correlation clustering via MultiCut. In
IPCO ’19: Proceedings of the 20th Conference on Integer Programming and Combinatorial
Optimization, pp. 13–26, 2019.

Saba Ahmadi, Sainyam Galhotra, Barna Saha, and Roy Schwartz. Fair correlation clustering. arXiv
preprint arXiv:2002.03508, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Sara Ahmadian and Maryam Negahbani. Improved approximation for fair correlation clustering.
In AISTATS ’23: Proceedings of the 26th International Conference on Artificial Intelligence and
Statistics, pp. 9499–9516, 2023.

Sara Ahmadian, Alessandro Epasto, Ravi Kumar, and Mohammad Mahdian. Fair correlation
clustering. In AISTATS ’20: Proceedings of the 23rd International Conference on Artificial
Intelligence and Statistics, pp. 4195–4205, 2020.

Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent information: Ranking
and clustering. Journal of the ACM, 55(5), 2008.

Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. In FOCS ’02: Proceedings
of the 43rd IEEE Annual Symposium on Foundations of Computer Science, pp. 238–247, 2002.

Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Machine learning, 56:
89–113, 2004.

Pavlos Basaras, George Iosifidis, Dimitrios Katsaros, and Leandros Tassiulas. Identifying influential
spreaders in complex multilayer networks: A centrality perspective. IEEE Transactions on Network
Science and Engineering, 6(1):31–45, 2019.

Marya Bazzi, Mason A. Porter, Stacy Williams, Mark McDonald, Daniel J. Fenn, and Sam D.
Howison. Community detection in temporal multilayer networks, with an application to correlation
networks. Multiscale Modeling & Simulation, 14(1):1–41, 2016.

Amey Bhangale and Subhash Khot. Simultaneous Max-Cut is harder to approximate than Max-Cut.
In CCC ’20: Proceedings of the 35th Computational Complexity Conference, pp. 9:1–9:15, 2020.

Amey Bhangale, Subhash Khot, Swastik Kopparty, Sushant Sachdeva, and Devanathan Thiruvenkat-
achari. Near-optimal approximation algorithm for simultaneous MAX-CUT. In SODA ’18:
Proceedings of the 29th Annual ACM–SIAM Symposium on Discrete Algorithms, pp. 1407–1425,
2018.

Francesco Bonchi, Aristides Gionis, Francesco Gullo, and Antti Ukkonen. Chromatic correlation
clustering. In KDD ’12: Proceedings of the 18th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 1321–1329, 2012.

Francesco Bonchi, Aristides Gionis, Francesco Gullo, Charalampos E. Tsourakakis, and Antti
Ukkonen. Chromatic correlation clustering. ACM Transactions on Knowledge Discovery from
Data, 9(4), 2015.

Francesco Bonchi, David Garcı́a-Soriano, and Francesco Gullo. Correlation Clustering, volume 19
of Synthesis Lectures on Data Mining and Knowledge Discovery. Morgan & Claypool Publishers,
2022.

Stephen P. Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

Nairen Cao, Vincent Cohen-Addad, Euiwoong Lee, Shi Li, Alantha Newman, and Lukas Vogl.
Understanding the cluster linear program for correlation clustering. In STOC ’24: Proceedings of
the 56th Annual ACM Symposium on Theory of Computing, pp. 1605–1616, 2024.

Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. Clustering with qualitative information.
Journal of Computer and System Sciences, 71(3):360–383, 2005.

Moses Charikar, Neha Gupta, and Roy Schwartz. Local guarantees in graph cuts and clustering.
In IPCO ’17: Proceedings of the 19th Conference on Integer Programming and Combinatorial
Optimization, pp. 136–147, 2017.

Shuchi Chawla, Konstantin Makarychev, Tselil Schramm, and Grigory Yaroslavtsev. Near optimal
LP rounding algorithm for correlation clustering on complete and complete k-partite graphs. In
STOC ’15: Proceedings of the 47th Annual ACM Symposium on Theory of Computing, pp. 219–228,
2015.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yudong Chen, Ali Jalali, Sujay Sanghavi, and Huan Xu. Clustering partially observed graphs via
convex optimization. The Journal of Machine Learning Research, 15(1):2213–2238, 2014.

Vincent Cohen-Addad, Euiwoong Lee, and Alantha Newman. Correlation clustering with Sherali-
Adams. In FOCS ’22: Proceedings of the 63rd IEEE Annual Symposium on Foundations of
Computer Science, pp. 651–661, 2022.

Vincent Cohen-Addad, Euiwoong Lee, Shi Li, and Alantha Newman. Handling correlated rounding
error via preclustering: A 1.73-approximation for correlation clustering. In FOCS ’23: Proceedings
of the 64th IEEE Annual Symposium on Foundations of Computer Science, pp. 1082–1104, 2023.

Sami Davies, Benjamin Moseley, and Heather Newman. Fast combinatorial algorithms for min max
correlation clustering. In ICML ’23: Proceedings of the 40th International Conference on Machine
Learning, pp. 7205–7230, 2023.

Sami Davies, Benjamin Moseley, and Heather Newman. Simultaneously approximating all `p-norms
in correlation clustering. In ICALP ’24: Proceedings of the 51st International Colloquium on
Automata, Languages, and Programming, pp. 52:1–52:20, 2024.

Caterina De Bacco, Eleanor A. Power, Daniel B. Larremore, and Cristopher Moore. Community
detection, link prediction, and layer interdependence in multilayer networks. Physical Review E,
95:042317, 2017.

Manlio De Domenico, Albert Solé-Ribalta, Elisa Omodei, Sergio Gómez, and Alex Arenas. Ranking
in interconnected multilayer networks reveals versatile nodes. Nature Communications, 6:6868,
2015.

Manlio De Domenico, Clara Granell, Mason A. Porter, and Alex Arenas. The physics of spreading
processes in multilayer networks. Nature Physics, 12(10):901–906, 2016.

Erik D. Demaine, Dotan Emanuel, Amos Fiat, and Nicole Immorlica. Correlation clustering in
general weighted graphs. Theoretical Computer Science, 361(2):172–187, 2006.

Zachary Friggstad and Ramin Mousavi. Fair correlation clustering with global and local guarantees. In
WADS ’21: Proceedings of the 17th International Symposium on Algorithms and Data Structures,
pp. 414–427, 2021.

Edoardo Galimberti, Francesco Bonchi, Francesco Gullo, and Tommaso Lanciano. Core decom-
position in multilayer networks: Theory, algorithms, and applications. ACM Transactions on
Knowledge Discovery from Data, 14(1), 2020.

Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Approximate max-flow min-(multi)cut
theorems and their applications. SIAM Journal on Computing, 25(2):235–251, 1996.

Aristides Gionis, Heikki Mannila, and Panayiotis Tsaparas. Clustering aggregation. ACM Transac-
tions on Knowledge Discovery from Data, 1(1), 2007.

Martin Grötschel and Yoshiko Wakabayashi. A cutting plane algorithm for a clustering problem.
Mathematical Programming, 45:59–96, 1989.

Holger Heidrich, Jannik Irmai, and Bjoern Andres. A 4-approximation algorithm for min max
correlation clustering. In AISTATS ’24: Proceedings of the 27th International Conference on
Artificial Intelligence and Statistics, pp. 1945–1953, 2024.

Roberto Interdonato, Andrea Tagarelli, Dino Ienco, Arnaud Sallaberry, and Pascal Poncelet. Local
community detection in multilayer networks. Data Mining and Knowledge Discovery, 31(5):
1444–1479, 2017.

Mahdi Jalili, Yasin Orouskhani, Milad Asgari, Nazanin Alipourfard, and Matjaž Perc. Link prediction
in multiplex online social networks. Royal Society Open Science, 4(2):160863, 2017.

Vinay Jethava and Niko Beerenwinkel. Finding dense subgraphs in relational graphs. In ECML
PKDD ’15: Joint European Conference on Machine Learning and Knowledge Discovery in
Databases, pp. 641–654, 2015.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Thorsten Joachims and John Hopcroft. Error bounds for correlation clustering. In ICML ’05:
Proceedings of the 22nd International Conference on Machine Learning, pp. 385–392, 2005.

Sanchit Kalhan, Konstantin Makarychev, and Timothy Zhou. Correlation clustering with local
objectives. In NeurIPS ’19: Proceedings of the 33rd Annual Conference on Neural Information
Processing Systems, pp. 9341–9350, 2019.

Yasushi Kawase, Atsushi Miyauchi, and Hanna Sumita. Stochastic solutions for dense subgraph
discovery in multilayer networks. In WSDM ’23: Proceedings of the 16th ACM International
Conference on Web Search and Data Mining, pp. 886–894, 2023.

Nicolas Klodt, Lars Seifert, Arthur Zahn, Katrin Casel, Davis Issac, and Tobias Friedrich. A color-
blind 3-approximation for chromatic correlation clustering and improved heuristics. In KDD ’21:
Proceedings of the 27th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 882–891, 2021.

Yuko Kuroki, Atsushi Miyauchi, Francesco Bonchi, and Wei Chen. Query-efficient correlation
clustering with noisy oracle. arXiv preprint arXiv:2402.01400, 2024.

Konstantin Makarychev, Yury Makarychev, and Aravindan Vijayaraghavan. Correlation clustering
with noisy partial information. In COLT ’15: Proceedings of the 28th Conference on Learning
Theory, pp. 1321–1342, 2015.

Claire Mathieu and Warren Schudy. Correlation clustering with noisy input. In SODA ’10: Proceed-
ings of the 21st Annual ACM–SIAM Symposium on Discrete Algorithms, pp. 712–728, 2010.

Gregory Puleo and Olgica Milenkovic. Correlation clustering and biclustering with locally bounded
errors. In ICML ’16: Proceedings of the 33rd International Conference on Machine Learning, pp.
869–877, 2016.

Gregory J. Puleo and Olgica Milenkovic. Correlation clustering and biclustering with locally bounded
errors. IEEE Transactions on Information Theory, 64(6):4105–4119, 2018.

Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with interactive graph analytics
and visualization. In AAAI ’15: Proceedings of the 29th AAAI Conference on Artificial Intelligence,
pp. 4292–4293, 2015.

Mostafa Salehi, Rajesh Sharma, Moreno Marzolla, Matteo Magnani, Payam Siyari, and Danilo
Montesi. Spreading processes in multilayer networks. IEEE Transactions on Network Science and
Engineering, 2(2):65–83, 2015.

Roy Schwartz and Roded Zats. Fair correlation clustering in general graphs. In AP-
PROX/RANDOM ’22: Proceedings of the International Conference on Approximation Algorithms
for Combinatorial Optimization Problems and the International Conference on Randomization
and Computation, pp. 37:1–37:19, 2022.

Sandeep Silwal, Sara Ahmadian, Andrew Nystrom, Andrew McCallum, Deepak Ramachandran,
and Seyed M. Kazemi. KwikBucks: Correlation clustering with cheap-weak and expensive-
strong signals. In ICLR ’23: Proceedings of the 11th International Conference on Learning
Representations, 2023.

Andrea Tagarelli, Alessia Amelio, and Francesco Gullo. Ensemble-based community detection in
multilayer networks. Data Mining and Knowledge Discovery, 31(5):1506–1543, 2017.

A OMITTED CONTENTS IN SECTION 2

A.1 DETAILS OF RELATED WORK

Multilayer Correlation Clustering can be seen as Correlation Clustering with fairness considerations.
Indeed, supposing that the similarity information of each layer is given by an agent (e.g., a crowd
worker), we see that the problem tries not to abandon any similarity information given by the agents.
From a fairness perspective, Puleo & Milenkovic (2016; 2018) initiated the study of local objectives

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

for MINDISAGREE of the unweighted case. In this model, the disagreements of a clustering are
quantified locally rather than globally, at the level of single elements. Specifically, they considered a
disagreements vector (with dimension equal to the number of elements), where i-th element represents
the disagreements incident to the corresponding element i ∈ V . The goal is then to minimize the
`p-norm (p ≥ 1) of the disagreements vector. If we set p = 1, the problem reduces to MINDISAGREE
of the unweighted case, whereas if we set p = ∞, the problem aims to minimize the maximal
disagreements over the elements. The authors proved that the model with p = ∞ is NP-hard and
designed a 48-approximation algorithm for any p ≥ 1 by extending the 4-approximation algorithm
for MINDISAGREE of the unweighted case, designed by Charikar et al. (2005). Charikar et al.
(2017) then improved the approximation ratio to 7 by inventing a different rounding algorithm. The
contribution of Charikar et al. (2017) is not limited to the unweighted case; they also studied the
above model with p = ∞ of the general weighted case and designed an O(

√
n)-approximation

algorithm. Later Kalhan et al. (2019) improved the above approximation ratio of 7 to 5, and
designed an O(n

1
2−

1
2p log

1
2+

1
2p n)-approximation algorithm for any p ≥ 1 of the general weighted

case, matching the current-best approximation ratio of O(log n) for MINDISAGREE of the general
weighted case (i.e., the above model with p = 1) (Charikar et al., 2005; Demaine et al., 2006). Davies
et al. (2023) gave a purely-combinatorial O(nω)-time 40-approximation algorithm for p = ∞ of
the unweighted case, where ω is the exponent of matrix multiplication, while Heidrich et al. (2024)
improved the above approximation ratio of 5 by Kalhan et al. (2019) to 4 for p =∞. Very recently,
Davies et al. (2024) designed a combinatorial algorithm running in O(nω) time and outputting a
clustering that is a constant-factor approximate solution for all `p-norms simultaneously. Ahmadi
et al. (2019) studied the cluster-wise counterpart of the above model with p = ∞ (of the general
weighted case), where the goal is to find a clustering of V that minimizes the maximal disagreements
over the clusters. The authors presented an O(log n)-approximation algorithm together with an
O(r2)-approximation algorithm for the Kr,r-free graphs. Later Kalhan et al. (2019) significantly
improved these approximation ratios to 2 + ε for any ε > 0.

Another type of fairness has been considered for Correlation Clustering. Ahmadian et al. (2020)
initiated the study of Fair Correlation Clustering (of the unweighted case), where each element is
associated with a color, and each cluster of the output is required to be not over-represented by any
color, meaning that the fraction of elements with any single color has to be upper bounded by a
specified value. For the model, the authors designed a 256-approximation algorithm, based on the
notion called fairlet decomposition. Ahmadi et al. (2020) independently studied a similar model of
Fair Correlation Clustering, where the distribution of colors in each cluster has to be the same as
that of the entire set. In particular, for the case of two colors that have the same number of elements
in the entire set, the authors proposed a (3α+ 4)-approximation algorithm, where α is any known
approximation ratio for MINDISAGREE of the unweighted case. Friggstad & Mousavi (2021) then
gave an approximation ratio of 6.18, which cannot be achieved by the above 3α+ 4. The authors also
studied the model with the aforementioned local objective for p =∞ and designed a constant-factor
approximation algorithm. Schwartz & Zats (2022) proved that the model of Ahmadi et al. (2020) of
the general weighted case has no finite approximation ratio, unless P = NP. Very recently, Ahmadian
& Negahbani (2023) substantially generalized the above models and designed an approximation
algorithm that has constant-factor approximation ratios for some useful special cases.

Multilayer Correlation Clustering can also be seen as Correlation Clustering with the uncertainty of
input by interpreting each layer as a possible scenario of the similarity information of the elements.
Most works on Correlation Clustering with uncertainty assume the existence of the ground-truth
clustering of V and aim to recover it, based only on its noisy observations. In the seminal paper by
Bansal et al. (2004), this type of problem had already been considered, while Joachims & Hopcroft
(2005) gave the first formal analysis of the problem. Later, a variety of problem settings have been
introduced in a series of works (Chen et al., 2014; Makarychev et al., 2015; Mathieu & Schudy, 2010;
Silwal et al., 2023). Very recently, Kuroki et al. (2024) considered another type of problem, which
aims to perform as few queries as possible to an oracle that returns a noisy sample of the similarity
between two elements in V , to obtain a clustering of V that minimizes the disagreements. Specifically,
they introduced two novel online-learning problems rooted in the paradigm of combinatorial multi-
armed bandits, and designed algorithms that combine KWIKCLUSTER with adaptive sampling
strategies.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B OMITTED CONTENTS IN SECTION 4

B.1 PROOF OF LEMMA 1

Proof. Fix t ∈ {1, . . . , |B|}. For simplicity, for any r ∈ [0, 1/c], we write BV (t)(i(t), r) = B(r),
and moreover, for any ` ∈ [L], cut(V (t),`)(BV (t)(i(t), r)) = cut`(r) and vol(V (t),`)(BV (t)(i(t), r)) =

vol`(r). By the definition of r∗(t), it suffices to show that there exists r ∈ (0, 1/c] that satisfies

max
`∈[L]:F` 6=0

cut`(r)

vol`(r)
≤ cL log(n+ 1).

Suppose, for contradiction, that for any r ∈ (0, 1/c],

max
`∈[L]:F` 6=0

cut`(r)

vol`(r)
> cL log(n+ 1).

Then we have

∫ 1/c

0

max
`∈[L]:F` 6=0

cut`(r)

vol`(r)
dr >

∫ 1/c

0

cL log(n+ 1) dr = L log(n+ 1). (4)

Now relabel the elements in V (t) that have distance less than 1/c from i(t) (including i(t) itself) as
i(t) = j0, . . . , jq−1 in the increasing order of the distance. For each p = 0, . . . , q − 1, we denote
by rp the distance from i(t) to jp, i.e., rp = x∗

i(t)jp
. For convenience, we set rq = 1/c. For any

` ∈ [L], the function vol`(r) is not necessarily differentiable and even not necessarily continuous at
r0, . . . , rq . On the other hand, at any point r ∈ (0, 1/c] except for r1, . . . , rq , the function vol`(r) is
differentiable, and from the definition, we have

d vol`(r)
dr

= cut`(r). (5)

Moreover, by simple calculation, we have that for any ` ∈ [L] with F` 6= 0,

vol`(1/c)
vol`(0)

≤ n+ 1. (6)

Indeed, we see that vol`(0) = F`/n and

vol`(1/c) =
F`
n

+
∑

{j,k}∈E+
` : j,k∈B(1/c)

w`(j, k)x∗jk +
∑

{j,k}∈E+
` : j∈B(1/c)∧k∈V (t)\B(1/c)

w`(j, k)

(
1

c
− x∗i(t)j

)

≤ F`
n

+
∑

{j,k}∈E+
` : j∈B(1/c)∧k∈V (t)

w`(j, k)x∗jk

≤ F`
n

+ F`,

where the first inequality follows from

1/c− x∗i(t)j ≤ x
∗
i(t)k − x

∗
i(t)j ≤ x

∗
i(t)j + x∗jk − x∗i(t)j = x∗jk (7)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

for any {j, k} ∈ E+
` such that j ∈ B(1/c) and k ∈ V (t) \ B(1/c). Using Equality (5) and

Inequality (6), we have

∫ 1/c

0

max
`∈[L]:F` 6=0

cut`(r)

vol`(r)
dr ≤

∑
`∈[L]:F` 6=0

∫ 1/c

0

cut`(r)

vol`(r)
dr

=
∑

`∈[L]:F` 6=0

q−1∑
p=0

∫ rp+1

rp

cut`(r)

vol`(r)
dr

=
∑

`∈[L]:F` 6=0

q−1∑
p=0

∫ rp+1

rp

1

vol`(r)
d vol`(r)

=
∑

`∈[L]:F` 6=0

q−1∑
p=0

(log vol`(rp+1)− log vol`(rp))

=
∑

`∈[L]:F` 6=0

log
vol`(1/c)
vol`(0)

≤ L log(n+ 1),

where the first inequality follows from the fact that cut`(r)
vol`(r)

is nonnegative for any ` ∈ [L] with F` 6= 0

and r ∈ (0, 1/c]. The above contradicts Inequality (4), meaning that there exists r ∈ (0, 1/c] such
that

max
`∈[L]:F` 6=0

cut`(r)

vol`(r)
≤ cL log(n+ 1).

From now on, we show that B(r∗(t)) = BV (t)(i(t), r∗(t)) can be computed in O(Ln2) time. To this

end, it suffices to show that the radius r∗(t) ∈ argmin
{

max`∈[L]:F` 6=0
cut`(r)
vol`(r)

: r ∈ (0, 1/c]
}

can be

computed in O(Ln2) time. Recall the relabeling of the elements in V (t). For any p = 0, . . . , q−1, in
the interval (rp, rp+1], the function cut`(r)

vol`(r)
for any ` ∈ [L] is monotonically nonincreasing, and thus

so is max`∈[L]
cut`(r)
vol`(r)

. Indeed, in that interval, cut`(r) is unchanged, while vol`(r) is monotonically

nondecreasing. Therefore, it suffices to compute max`∈[L]
cut`(r)
vol`(r)

for all r = r1, . . . , rq and identify
the one that attains the minimum. For each ` ∈ [L], we can compute cut`(r) for all r = r1, . . . , rq
in O(n2) time by iteratively moving the corresponding element and its incident edges. We can also
compute vol`(r) for all r = r1, . . . , rq in O(n2) time in a similar way. Performing these operations
for all layers and computing the desired radius that attains the minimum requires O(Ln2) time.

B.2 PROOF OF THEOREM 1

Proof. By Lemma 1, each iteration of the region growing part (i.e., the while-loop) of Algorithm 1
can be performed in O(Ln2) time. As each iteration removes at least one element from the current
set, the number of iterations is upper bounded by n. Therefore, we can obtain the time complexity
presented in the theorem.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

In what follows, we analyze the approximation ratio. Letting B be the output of the algorithm, we
need to evaluate
‖Disagree`(B)‖p

=

∑
`∈[L]

 ∑
{j,k}∈E+

`

w`(j, k)1l[B(j) 6= B(k)] +
∑

{j,k}∈E−`

w`(j, k)1l[B(j) = B(k)]

p1/p

if p <∞,

max
`∈[L]

 ∑
{j,k}∈E+

`

w`(j, k)1l[B(j) 6= B(k)] +
∑

{j,k}∈E−`

w`(j, k)1l[B(j) = B(k)]

if p =∞.

We first evaluate the terms for ‘+’ labels. By Lemma 1, we have that for any ` ∈ [L] with F` 6= 0,
cut(V (t),`)(BV (t)(i(t), r∗(t))) ≤ cL log(n+ 1) · vol(V (t),`)(BV (t)(i(t), r∗(t))).

Based on this, for any ` ∈ [L] with F` 6= 0, we have∑
{j,k}∈E+

`

w`(j, k)1l[B(j) 6= B(k)] =

|B|∑
t=1

cut(V (t),`)(BV (t)(i(t), r∗(t)))

≤ cL log(n+ 1)

|B|∑
t=1

vol(V (t),`)(BV (t)(i(t), r∗(t)))

≤ cL log(n+ 1)

F`
n
· |B|+

∑
{j,k}∈E+

`

w`(j, k)x∗jk

≤ 2cL log(n+ 1)

∑
{j,k}∈E+

`

w`(j, k)x∗jk. (8)

The second inequality follows from the fact that the balls included in B are mutually disjoint.
Indeed, for any {j, k} ∈ E+

` contained in some ball BV (t)(i(t), r∗(t)), the value w`(j, k)x∗jk is
produced just once due to vol(V (t),`)(BV (t)(i(t), r∗(t))), while for any {j, k} ∈ E+

` across distinct

balls BV (t′)(i(t
′), r∗(t′)) and BV (t′′)(i(t

′′), r∗(t′′)) (t′ < t′′), once removing BV (t′)(i(t
′), r∗(t′)), all the

incident edges will never appear in the later iterations, and thus at most the valuew`(j, k)(1/c−x∗
i(t′)j

)

is produced just once due to vol(V (t′),`)(BV (t′)(i(t
′), r∗(t′))). Note that without loss of generality, we

assumed thatBV (t′)(i(t
′), r∗(t′)) contains only j among j, k. By Inequality (7), we have 1/c−x∗

i(t′)j
≤

x∗jk. On the other hand, for any ` ∈ [L] with F` = 0, we see that x∗jk = 0 for any {j, k} ∈ E+
` .

Therefore, by its design, the algorithm does not separate any {j, k} ∈ E+
` , meaning that for any

` ∈ [L] with F` = 0, ∑
{u,v}∈E+

`

w`(u, v)1l[B(u) 6= B(v)] = 0. (9)

Next we evaluate the terms for ‘−’ labels. For any ` ∈ [L], we have∑
{j,k}∈E−`

w`(j, k)1l[B(j) = B(k)] =
c

c− 2

|B|∑
t=1

∑
{j,k}∈E−` : j,k∈B

V (t) (i(t),r
∗
(t)

)

w`(j, k)

(
1− 2

c

)

≤ c

c− 2

|B|∑
t=1

∑
{j,k}∈E−` : j,k∈B

V (t) (i(t),r
∗
(t)

)

w`(j, k)
(
1− x∗jk

)
≤ c

c− 2

∑
{j,k}∈E−`

w`(j, k)
(
1− x∗jk

)
, (10)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

where the first inequality follows from the triangle inequalities in (CV) and (LP). Indeed, denoting by
i(t) the center of the ball containing j, k, we have x∗jk ≤ x∗ji(t) + x∗

i(t)k
< 2/c.

Let OPT be the optimal value of Problem 1. Using Inequality (8), Equality (9), and Inequality (10),
we have that in the case of p <∞,

‖Disagree`(B)‖p

≤

∑
`∈[L]

2cL log(n+ 1)
∑

{j,k}∈E+
`

w`(j, k)x∗jk +
c

c− 2

∑
{j,k}∈E−`

w`(j, k)
(
1− x∗jk

)p1/p

≤ max

{
2cL log(n+ 1),

c

c− 2

}∑
`∈[L]

 ∑
{j,k}∈E+

`

w`(j, k)x∗jk +
∑

{j,k}∈E−`

w`(j, k)
(
1− x∗jk

)p1/p

= max

{
2cL log(n+ 1),

c

c− 2

}
OPTCV

≤ max

{
2cL log(n+ 1),

c

c− 2

}
OPT,

and in the case of p =∞,

‖Disagree`(B)‖p

≤ max
`∈[L]

2cL log(n+ 1)
∑

{j,k}∈E+
`

w`(j, k)x∗jk +
c

c− 2

∑
{j,k}∈E−`

w`(j, k)
(
1− x∗jk

)
≤ max

{
2cL log(n+ 1),

c

c− 2

}
max
`∈[L]

 ∑
{j,k}∈E+

`

w`(j, k)x∗jk +
∑

{j,k}∈E−`

w`(j, k)
(
1− x∗jk

)
= max

{
2cL log(n+ 1),

c

c− 2

}
OPTLP

≤ max

{
2cL log(n+ 1),

c

c− 2

}
OPT.

Noting that max
{

2cL log(n+ 1), c
c−2

}
= O(L log n), we have the theorem.

C OMITTED CONTENTS IN SECTION 5

C.1 PROOF OF LEMMA 2

Proof. Fix p ≥ 1. Let V and (w+
` , w

−
`)`∈[L] be the input of Problem 1 with the probability constraint,

satisfying w+
` (u, v) + w−` (u, v) = 1 for any ` ∈ [L] and {u, v} ∈ E. We construct an instance of

Problem 2 as follows: Let X = [0, 1]E and d : X × X → R≥0 be a metric such that d(x, y) :=
‖x − y‖1 for x, y ∈ X . For x ∈ X and {u, v} ∈ E, we denote by x(u, v) the element of x
associated with {u, v}. For each ` ∈ [k], let x` ∈ X be the element such that x`(u, v) = w−` (u, v)
for {u, v} ∈ E. Let F = {x ∈ {0, 1}E : x induces a clustering of V }. Here x is said to induce a
clustering of V if every connected component in (V,Ex), where Ex = {{u, v} ∈ E : x(u, v) = 0},
is a clique. Then we see that there is a one-to-one correspondence between F and the set of clusterings
of V . Take an arbitrary element x ∈ F and let Cx be the clustering corresponding to x. Then we have

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

that for any ` ∈ [L],

d(x, x`) = ‖x− x`‖1
=

∑
{u,v}∈E

(
(1− w−` (u, v))1l[Cx(u) 6= Cx(v)] + w−` (u, v)1l[Cx(u) = Cx(v)]

)
=

∑
{u,v}∈E

(
w+
` (u, v)1l[Cx(u) 6= Cx(v)] + w−` (u, v)1l[Cx(u) = Cx(v)]

)
= Disagree`(Cx),

meaning that the objective function of Problem 2 is equivalent to that of Problem 1 with the probability
constraint. Therefore, x is a β-approximate solution to Problem 2 if and only if so is Cx to Problem 1
with the probability constraint. Noticing that the above reduction can be done in polynomial time, we
have the lemma.

C.2 PROOF OF THEOREM 2

Proof. Let x∗ ∈ F be an optimal solution to Problem 2. Let xclosest ∈ argminx∈{x1,...,xL} d(x, x∗)

and x′closest be the α-approximate solution for Problem 3 with input xclosest and F . By the definition
of x′closest and xclosest, we have that for any ` ∈ [L],

d(x′closest, xclosest) ≤ α · d(x∗, xclosest) ≤ α · d(x∗, x`).

Using these inequalities, we have that for any ` ∈ [L],

d(x′closest, x`) ≤ d(x′closest, x
∗) + d(x∗, x`)

≤ d(x′closest, xclosest) + d(xclosest, x
∗) + d(x∗, x`)

≤ α · d(x∗, x`) + d(x∗, x`) + d(x∗, x`)

= (α+ 2) · d(x∗, x`),

where the first and second inequalities follow from the triangle inequality for the metric d and the
third inequality follows from the definition of xclosest. Noticing that x′closest is one of the output
candidates of Algorithm 2, we can upper bound the objective value of the output xout as follows: In
the case of p <∞,∑

`∈[L]

d(xout, x`)
p

1/p

≤

∑
`∈[L]

d(x′closest, x`)
p

1/p

≤ (α+ 2)

∑
`∈[L]

d(x∗, x`)
p

1/p

,

while in the case of p =∞,

max
`∈[L]

d(xout, x`) ≤ max
`∈[L]

d(x′closest, x`) ≤ (α+ 2) max
`∈[L]

d(x∗, x`),

which concludes the proof.

C.3 PROOF OF COROLLARY 1

Proof. (i) By Lemma 2, it suffices to show that there exists a polynomial-time 4.5-approximation
algorithm for Problem 2 with the metric space (X, d) and the part of input F ⊆ X that correspond to
Problem 1 with the probability constraint. By Theorem 2, Algorithm 2 is an (α+ 2)-approximation
algorithm for Problem 2, where α is the approximation ratio of the algorithm employed for solving
Problem 3 with those (X, d) and F ⊆ X . Based on the reduction in the proof of Lemma 2, Problem 3
with those (X, d) and F ⊆ X is equivalent to MINDISAGREE with the probability constraint, for
which there exists a polynomial-time 2.5-approximation algorithm (Ailon et al., 2008). Therefore,
we have the corollary.

(ii) The proof strategy is the same as the above. In this case, we can specialize the reduction given in
the proof of Lemma 2 by replacing X = [0, 1]E with X = {0, 1}E , and we see that Problem 3 with
(X, d) and F ⊆ X is equivalent to MINDISAGREE of the unweighted case, for which there exists a
polynomial-time (1.437 + ε)-approximation algorithm for any ε > 0 (Cao et al., 2024).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

(iii) The proof is again similar. In this case, we can specialize the reduction by replacing X =
[0, 1]E with X = {x ∈ [0, 1]E : x(u,w) ≤ x(u, v) + x(v, w), ∀u, v, w ∈ V }, and we see that
Problem 3 with (X, d) and F ⊆ X is equivalent to MINDISAGREE with the probability constraint
and the triangle inequality constraint, for which there exists a polynomial-time 1.5-approximation
algorithm (Chawla et al., 2015).

C.4 PROOF OF THEOREM 3

Proof. It suffices to prove that for any layer ` ∈ [L], it holds that

Disagree`(B) ≤ 4
∑
{i,j}∈E

(
w+
` (i, j)x∗ij + w−` (i, j)(1− x∗ij)

)
. (11)

Indeed, from this inequality, it follows that ‖Disagree(B)‖p ≤ 4 · OPTCV if p < ∞ and
‖Disagree(B)‖p ≤ 4 ·OPTLP if p =∞, which proves the theorem. Fix ` ∈ [L] and consider an ar-
bitrary iteration of the while-loop in Algorithm 3. Let B ⊆ U be the cluster produced in the iteration.
We define the cost ofB as the contribution of all pairs of elements in U with at least one of them being
inside B to the objective value, i.e.,

∑
{j,k}∈E: j,k∈B w

−
` (j, k) +

∑
{j,k}∈E: j∈B∧k∈U\B w

+
` (j, k).

In what follows, we upper bound the cost of B using the corresponding terms in the right-hand-side
of Inequality (11). Recall that C = BU (i, 1/2) \ {i} contains all elements in U (except for i) within
distance of at most 1/2 from i. There are two cases:

(i) If the average distance between i and the elements in C is no less than 1/4, i.e., 1
|C|
∑
j∈C x

∗
ij ≥

1/4, then the algorithm forms the singleton cluster B = {i}. In this case, the cost of the cluster
reduces to

∑
j∈U\{i} w

+
` (i, j). For each j ∈ U \ {i} with x∗ij > 1/2, we can upper bound each

w+
` (i, j) using the corresponding term in the right-hand-side of Inequality (11) because it holds that

w+
` (i, j) ≤ 2 ·w+

` (i, j)x∗ij ≤ 2
(
w+
` (i, j)x∗ij + w−` (i, j)(1− x∗ij)

)
. On the other hand, consider any

pair of elements for which x∗ij ≤ 1/2 holds, i.e., the element j is contained in C. Then, it holds that
1− x∗ij ≥ x∗ij , and thus we have∑

j∈C

(
w+
` (i, j)x∗ij + w−` (i, j)(1− x∗ij)

)
≥
∑
j∈C

(
w+
` (i, j) + w−` (i, j)

)
x∗ij =

∑
j∈C

x∗ij ,

where the equality follows from the probability constraint. Using the above inequality together with
the assumption 1

|C|
∑
j∈C x

∗
ij ≥ 1/4, we have∑

j∈C
w+
` (i, j) ≤ |C| ≤ 4

∑
j∈C

x∗ij ≤ 4
∑
j∈C

(
w+
` (i, j)x∗ij + w−` (i, j)(1− x∗ij)

)
.

(ii) The second case is when the average satisfies 1
|C|
∑
j∈C x

∗
ij < 1/4, where the algorithm forms

the cluster B = {i} ∪ C. For the sake of the proof, we assume that the elements in U are relabeled
so that j < k if x∗ij < x∗ik, where ties are broken arbitrarily.

First consider the pairs of elements contained in B. The cost of B charged by these pairs is∑
{j,k}∈E: j,k∈B w

−
` (j, k). If both x∗ij < 3/8 and x∗ik < 3/8 hold, then the triangle inequality over

the pseudometric assures that 1 − x∗jk ≥ 1/4, and therefore each w−` (j, k) can be upper bounded
by the corresponding term in the right-hand-side of Inequality (11) within a factor of 4. The cost
of B charged by the remaining pairs of elements j, k ∈ B with j < k can be taken into account by
k. Obviously we have x∗ik ∈ [3/8, 1/2]. For a fixed k, define the quantities pk =

∑
j<k w

+
` (j, k)

and nk =
∑
j<k w

−
` (j, k). The cost taken into account by k is equal to nk. The sum of the terms

corresponding to all pairs j < k, where k is fixed, in the right-hand-side of Inequality (11) can be
lower bounded as follows:∑
j<k

(
w+
` (j, k)x∗jk + w−` (j, k)(1− x∗jk)

)
≥
∑
j<k

(
w+
` (j, k)(x∗ik − x∗ij) + w−` (j, k)(1− x∗ik − x∗ij)

)
= pkx

∗
ik + nk(1− x∗ik)−

∑
j<k

x∗ij

≥ pkx∗ik + nk(1− x∗ik)− pk + nk
4

.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

The last inequality follows from the probability constraint together with the fact that the average
distance between i and the elements in {j : j < k} must be smaller than 1/4, as x∗ij ≥ 3/8 for any
j ≥ k. Therefore, the above is lower bounded by a linear function depending on x∗ik ∈ [3/8, 1/2]. It
is easy to see that for every x∗ik in this range, the value is always at least nk/4. Therefore, the cost nk
is always within a factor of 4.

Next consider the pairs of elements j, k ∈ U with exactly one element being contained inB = {i}∪C.
Without loss of generality, we assume that j < k and thus we have j ∈ B, k ∈ U \B, and x∗ij < x∗ik.
The cost of B charged by these pairs is

∑
{j,k}∈E: j∈B∧k∈U\B w

+
` (j, k). If x∗ik ≥ 3/4 holds, then

x∗ik − x∗ij ≥ 1/4. Using the triangle inequality over the pseudometric, we have x∗jk ≥ 1/4, meaning
that the cost charged by those pairs is accounted for within a factor of 4. The cost of B charged by
the remaining pairs can again be taken into account by k. Obviously we have x∗ik ∈ (1/2, 3/4). For a
fixed k, redefine the quantities pk =

∑
j<k: j∈B w

+
` (j, k) and nk =

∑
j<k: j∈B w

−
` (j, k). The cost

taken into account by k is equal to pk. The rest of the proof is identical to the above.

D OMITTED CONTENTS IN SECTION 6

Here we discuss Problem 1 with the probability constraint.

D.1 EXPERIMENTAL SETUP

Datasets. The instances are generated with the same intuition as that for Problem 1 of the general
weighted case. For each layer ` ∈ [L] and {u, v} ∈ E, if {u, v} ∈ E` we set w+

` (u, v) =

0.5 + w`({u, v})/2 and w−` (u, v) = 1 − w+
` (u, v); otherwise we set w+

` (u, v) = 1 − w−` (u, v),
where w−` (u, v) = 0.5+random.choice(weights(`))/2 with probability 0.5, and w+

` (u, v) =

w−` (u, v) = 0.5 otherwise.

Our algorithms and baselines. We run Algorithms 2 and 3. Note that Algorithm 2 varies depending
on the approximation algorithm for MINDISAGREE with the probability constraint employed in the
algorithm. Specifically, we use the 2.5-approximation algorithm and the 5-approximation algorithm,
designed by Ailon et al. (2008), providing the approximation ratios of 4.5 and 7, respectively,
of Algorithm 2. There is a trade-off between these two selections: The first algorithm has a
better approximation ratio, but it is slower, as it has to solve an LP, which is not required in the
second algorithm. We refer to the two algorithms as Algorithm 2 (LP) and Algorithm 2 (LP),
respectively. In Algorithm 3, the way to select a pivot is arbitrary, and we use the same rule as
that for Algorithm 1. We employ the following baseline method, which we refer to as Aggregate-
Pr. This method is the probability-constraint counterpart of Aggregate. Specifically, the method
constructs w+ : E → R≥0 and w− : E → R≥0 by setting w+(u, v) =

(∑
`∈[L] w

+
` (u, v)

)
/L and

w−(u, v) =
(∑

`∈[L] w
−
` (u, v)

)
/L for every {u, v} ∈ E. Then it solves MINDISAGREE with

the probability constraint with input V and (w+, w−), using the 2.5-approximation algorithm or
the 5-approximation algorithm (Ailon et al., 2008), as in Algorithm 2. We refer to this baseline as
Aggregate-Pr (LP) or Aggregate-Pr (LP), depending on the choice of the above approximation
algorithm. As mentioned in Section 3, Aggregate-Pr (LP) gives a 2.5-approximate solution for
Problem 1 with the probability constraint when p = 1, but the approximation ratio for the case of
p =∞ is not clear.

D.2 RESULTS

The results are summarized in Tables 2 and 3 (just separated due to space constraints). Note that for
this case, all algorithms except for Algorithm 3 are performed 10 times, as they contain randomness.
OT again indicates that (the first run of) the algorithm did not terminate in 3,600 seconds. The
objective values are presented using the average value and the standard deviation, while the running
time is just with the average value, because obviously it may not vary much. The trend of the results
is similar to that for the general weighted case. Indeed, Algorithm 3 with an approximation ratio of 4
outperforms the baseline methods in terms of the quality of solutions, and the algorithm succeeds
in obtaining near-optimal solutions. Although Algorithm 2 (LP) and Algorithm 2 (LP) are also our

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 2: Results for Problem 1 with the probability constraint.
Algorithm 2 (LP) Algorithm 2 (LP) Algorithm 3

Dataset LB Obj. val. Time(s) Obj. val. Time(s) Obj. val. Time(s)

aves-sparrow-social 630.8 635.1±1.8 0.4 658.0±1.6 0.0 631.1 0.3
insecta-ant-colony1 3148.2 3154.5±0.5 1728.4 3160.7±1.2 1.0 3150.3 674.2
reptilia-tortoise-network-bsv 2387.5 2683.3±40.6 19.8 3837.7±54.6 0.0 2422.5 2.9
aves-wildbird-network 9840.2 9887.9±2.6 142.0 10077.8±8.4 0.1 9841.3 11.2
aves-weaver-social 24875.7 — OT 39732.3±342.5 5.3 24924.5 94.1
reptilia-tortoise-network-fi 77569.5 — OT 126849.1±831.5 3.2 77577.5 189.5

Table 3: Results for Problem 1 with the probability constraint (continued).
Aggregate-Pr (LP) Aggregate-Pr (LP)

Dataset LB Obj. val. Time(s) Obj. val. Time(s)

aves-sparrow-social 630.8 638.1±1.7 0.1 652.7±2.1 0.0
insecta-ant-colony1 3148.2 3154.0±0.1 60.3 3158.3±3.4 0.0
reptilia-tortoise-network-bsv 2387.5 2444.5±13.4 0.9 2601.0±18.2 0.0
aves-wildbird-network 9840.2 9863.2±4.7 6.2 9900.9±17.4 0.0
aves-weaver-social 24875.7 24971.5±0.0 10.3 24971.0±0.0 0.2
reptilia-tortoise-network-fi 77569.5 77664.7±5.1 123.5 77740.8±12.4 0.2

proposed algorithms, which have approximation ratios of 4.5 and 7, respectively, their practical
performances are not comparable with that of Algorithm 3. Therefore, we conclude that our proposed
algorithm for practical use is Algorithm 3.

E OMITTED CONTENTS IN SECTION 7

E.1 DETAILED DESCRIPTIONS OF OPEN PROBLEMS

For Problem 1 of the general weighted case, can we design a polynomial-time algorithm that
has an approximation ratio better than O(L log n)? As Problem 1 contains MINDISAGREE as a
special case and approximating MINDISAGREE is known to be harder than approximating Minimum
Multicut (Garg et al., 1996), it is quite challenging to obtain an approximation ratio of o(log n).
Therefore, a more reasonable question is “to what extent can we reduce the term L in the current
approximation ratio of O(L log n)?” To answer this, the first step would be to investigate the
integrality gaps of (CV) and (LP). The current integrality gap of Ω(log n), inherited from the LP
relaxation used in the O(log n)-approximation algorithms for MINDISAGREE (Charikar et al., 2005;
Demaine et al., 2006), leaves the possibility to improve the approximation ratio of Algorithm 1 to
O(log n). Another interesting direction is to improve the approximation ratios for Problem 1 with the
probability constraint and its special cases. For instance, can we design a polynomial-time algorithm
that has an approximation ratio better than 4 for the general case? To this end, one possibility is to
improve the approximation ratio for MINDISAGREE with the probability constraint from the current
best 2.5 (Ailon et al., 2008) to some value smaller than 2. As the integrality gap of the LP relaxation
used in the 2.5-approximation algorithm (i.e., KWIKCLUSTER) is known to be 2 (Charikar et al.,
2005), this approach requires to invent a different technique. Another possibility is to replace the
rounding procedure of Algorithm 3 to that of KWIKCLUSTER, but it is not clear how to extend the
analysis focusing on the bad triplets (Ailon et al., 2008) to the multilayer setting. For Problem 1
of the unweighted case and Problem 1 with the probability constraint and the triangle inequality
constraint, improving the approximation ratio for the single-layer counterpart directly improves
our approximation ratios. Finally, investigating Multilayer Correlation Clustering in the spirit of
MAXAGREE rather than MINDISAGREE is also an interesting direction. It is worth mentioning that a
closely-related problem called Simultaneous Max-Cut has recently been studied by Bhangale et al.
(2018) and Bhangale & Khot (2020) from the approximability and inapproximability points of view,
respectively.

22

	Introduction
	Our contribution

	Related work
	Problem formulation
	Algorithm for Problem 1
	The proposed algorithm
	Analysis of Algorithm 1

	Algorithms for Problem 1 with probability constraint
	The (+2)-approximation algorithm
	The 4-approximation algorithm

	Experimental evaluation
	Experimental setup
	Results

	Conclusions
	Omitted contents in Section 2
	Details of related work

	Omitted contents in Section 4
	Proof of Lemma 1
	Proof of Theorem 1

	Omitted contents in Section 5
	Proof of Lemma 2
	Proof of Theorem 2
	Proof of Corollary 1
	Proof of Theorem 3

	Omitted contents in Section 6
	Experimental setup
	Results

	Omitted contents in Section 7
	Detailed descriptions of open problems

