
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

COGITO, ERGO LUDO: AN AGENT THAT LEARNS TO
PLAY BY REASONING AND PLANNING

Anonymous authors
Paper under double-blind review

Abstract: The pursuit of artificial agents that can learn to master complex environments has led to
remarkable successes, yet prevailing deep reinforcement learning methods often rely on immense
experience, encoding their knowledge opaquely within neural network weights. We propose a dif-
ferent paradigm, one in which an agent learns to play by reasoning and planning. We introduce
Cogito, ergo ludo (CEL), a novel agent architecture that leverages a Large Language Model (LLM)
to build an explicit, language-based understanding of its environment’s mechanics and its own strat-
egy. Starting from a tabula rasa state with no prior knowledge (except action set), CEL operates
on a cycle of interaction and reflection. After each episode, the agent analyzes its complete tra-
jectory to perform two concurrent learning processes: Rule Induction, where it refines its explicit
model of the environment’s dynamics, and Strategy and Playbook Summarization, where it distills
experiences into an actionable strategic playbook. We evaluate CEL on diverse grid-world tasks
(i.e., Minesweeper, Frozen Lake, and Sokoban), and show that the CEL agent successfully learns to
master these games by autonomously discovering their rules and developing effective policies from
sparse rewards. Ablation studies confirm that the iterative process is critical for sustained learning.
Our work demonstrates a path toward more general and interpretable agents that not only act effec-
tively but also build a transparent and improving model of their world through explicit reasoning on
raw experience.

1 INTRODUCTION

The quest to create intelligent agents (Sutton, 2022) capable of mastering complex, interactive envi-
ronments has been a long-standing goal of artificial intelligence (Sutton & Barto, 2018). Landmark
achievements, from Deep Blue’s victory in chess to AlphaGo (Silver et al., 2016; 2017; 2018)’s
dominance in Go, have demonstrated the power of computation and search (Sutton, 2019). More
recently, large-scale deep reinforcement learning (RL) has produced agents with superhuman abil-
ities in complex video games (Vinyals et al., 2019; Berner et al., 2019). These systems, however,
often learn inefficiently through experience, requiring immense computational resources and en-
coding their strategic knowledge implicitly within the millions of parameters of a neural network,
rendering their decision-making processes opaque.

The advent of Large Language Models (LLMs) presents a paradigm shift, offering a new foundation
for agent design grounded in reasoning and explicit knowledge representation (DeepSeek, 2025;
Gemini, 2025). While early LLM-based agents show promise (Gemini, 2025; Lin & Xu, 2025),
they often lack a structured mechanism for continuous learning and adaptation. They may operate
in a zero-shot capacity (Hu et al., 2025) or rely on simple memory retrieval (Gemini, 2025), but they
do not fundamentally improve their internal model of the world’s mechanics through experience.
Similarly, while learned world models (Schrittwieser et al., 2020; Hafner et al., 2025; Richens et al.,
2025) have enabled agents to plan in imagined futures, their models operate on uninterpretable latent
states, shrouding their “understanding” of the world in a black box. This leaves a critical gap: the
need for an agent that not only acts, but truly comprehends its environment in a way that is both
effective and interpretable.

In this work, we introduce Cogito, ergo ludo (CEL), a novel agent architecture (Figure 1) that learns
to master interactive environments not just by acting, but by reasoning and planning. We propose
an agent that leverages an LLM to explicitly reason about its interactions, building and refining a
human-readable “world model” (Ha & Schmidhuber, 2018; Sutton & Barto, 2018) of its environ-
ment and its own strategy from the ground up. Starting from a tabula rasa state with no prior knowl-
edge of the game rules, CEL learns purely through a cycle of interaction and reflection, embodying
the principle of learning by thinking.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1. Conventional RL Paradigm

Action

Reward: 0 / 1

2. Zero-shot Reasoning Paradigm

Action

Game State:

Reason

3. “Cogito, ergo ludo” Paradigm

Update

Action

Game State:

World Model

Rule & PlaybookUpdate

Figure 1: A Comparison of Paradigms for Game-Playing Agents. This figure contrasts three distinct
agent architectures: (1) the Conventional RL Paradigm that learns an implicit policy from rewards,
by updating policy weights; (2) the Zero-shot Reasoning Paradigm that leverages a static LLM
model for decision-making; (3) the Cogito, ergo ludo Paradigm, where the agent’s policy is trained
by RL while a persistent knowledge base (Rule & Playbook) is built and passed across episodes.

The cornerstone of CEL is its two-phase operational cycle. During an episode, the agent acts de-
cisively by performing a lookahead search with natural language, using its current understanding
of the world to predict the outcomes of its actions. Crucially, after each episode concludes, the
agent enters a Post-Episode Reflection phase. In this phase, the LLM analyzes the trajectory of
the preceding episode to perform two concurrent learning processes: Rule Induction, where it re-
fines its explicit, language-based model of the environment’s dynamics; and Strategy and Playbook
Summarization, where it distills successful and unsuccessful patterns of behavior into an actionable
strategic playbook. This refined knowledge base, both the rules of the world and the principles of
how to act within it, directly informs the agent’s decision-making in subsequent episodes.

We demonstrate the effectiveness of CEL across three distinct grid-world environments: the log-
ical puzzle of Minesweeper, the navigation challenge of Frozen Lake, and the complex planning
problem of Sokoban. Our experiments show that CEL successfully learns to master these tasks
by autonomously discovering their rules and developing effective strategies. Ablation studies con-
firm that the iterative, reflective process of refining its internal knowledge is critical to its learning
success. Furthermore, we provide qualitative evidence of the architecture’s unique interpretabil-
ity, showcasing the comprehensive, human-readable rulebooks and sophisticated strategic heuristics
that it generates entirely from raw interaction. Our work presents a step towards agents that not only
perform well, but also build a transparent and improving understanding of their world.

2 RELATED WORK

Our research builds upon decades of work in artificial intelligence, drawing from and extending
three key areas: the paradigm of large-scale deep reinforcement learning, the development of learned
world models for planning, and the nascent field of agents driven by Large Language Models.

The Apex of Deep Reinforcement Learning. Landmark achievements such as DeepMind’s Al-
phaStar (Vinyals et al., 2019) and OpenAI Five (Berner et al., 2019) demonstrated that deep rein-
forcement learning (RL) could attain superhuman performance in complex real-time strategy games.
These systems operate at a massive scale, training for thousands of GPU-years on billions of game
frames. Their strategic acumen is implicitly encoded within the weights of enormous neural net-
works, learned through vast experience. While immensely powerful, this approach is characterized
by high sample complexity and the opaque nature of the resulting policies. Our work diverges from
this paradigm by pursuing a more sample-efficient and interpretable approach, where knowledge
and strategy are explicitly represented in natural language. The AlphaZero algorithm (Silver et al.,
2016; 2017; 2018) uses the power of Monte-Carlo Tree Search (MCTS) (Kocsis & Szepesvári, 2006)
with a deep neural network, achieving superhuman performance in Chess, Shogi, and Go. But cru-
cially, it was provided with a perfect model of the environment – the game rules, while our proposed
architecture accumulates the knowledge of the game rules purely by interaction.

Planning with Learned World Models. MuZero (Schrittwieser et al., 2020) learned a latent model
to predict future rewards, policies, and values, enabling effective lookahead search without being
given the rules. This principle of learning and planning in imagined trajectories has been further
advanced by algorithms like Dreamer (Hafner et al., 2025), which learns a robust world model that
allows it to master a vast suite of diverse domains, from Atari to Minecraft, with a single set of

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

hyperparameters. Our Language-based World Model (LWM) shares this objective of predicting en-
vironmental dynamics. However, we draw a critical distinction: whereas the models in MuZero and
Dreamer operate on uninterpretable latent states, our LWM is grounded in explicit, human-readable
rules and transition dynamics that are themselves inferred from experience. This language symbolic
foundation allows the agent to reason about and refine its understanding of the world’s mechanics
in natural language. These latent world-model agents are optimized for high-throughput interac-
tion, whereas CEL targets symbolic text environments and emphasizes transparency and reusable
language-level knowledge. We focus our comparisons on LLM-centric baselines in the same text-
only interface and regard MuZero-style approaches as complementary rather than direct competitors.

Language as the Algorithm vs. Language in the Architecture. A distinct approach is Natural
Language Reinforcement Learning (NLRL) (Feng et al., 2024), which seeks to fundamentally rede-
fine the core components of RL, such as the value function and Bellman equation, entirely within the
domain of natural language. In NLRL, the value of a state is not a scalar but a descriptive text, and
the policy improvement step is performed by an LLM reasoning over these linguistic value judg-
ments. While both approaches leverage LLMs for reasoning, our philosophy and architecture differ
significantly. Rather than reformulating the RL algorithm itself into language, our framework treats
the LLM as the orchestrator of a cognitive architecture composed of distinct, language-grounded
modules.

LLMs as Agent Architectures. More recently, the advent of LLMs has catalyzed a new approach
to agent design. Frameworks like GEM (Liu et al., 2025) and LMGame-Bench (Hu et al., 2025)
provide environments and harnesses to evaluate LLM agents, highlighting challenges in perception,
memory, and long-horizon planning. Gemini 2.5 Pro (Gemini, 2025) showcases its success in com-
plete Pokémon game playing, demonstrating the strong zero-shot reasoning abilities of the frontier
LLMs. A particularly relevant approach is PORTAL (Xu et al., 2025), which uses an LLM as a
“policy architect” to generate behavior trees in a domain-specific language. Unlike PORTAL, our
method uses LLM as the core for planning, acting and accumulating knowledge, where the LLM
directly interacts with environments.

Our work builds upon this foundation but proposes a more comprehensive cognitive architecture.
Our agent learns and maintains a suite of distinct, yet interconnected, cognitive components: an
explicit world model of environmental dynamics, a set of game rules, a strategic playbook, and a
language-based value function. The cornerstone of our method is the post-episode reflection phase,
where the LLM analyzes interaction trajectories to iteratively and simultaneously refine both its
understanding of the world’s rules and its own strategic playbook. This creates a cycle of self-
improvement that is explicit, interpretable, and broadly applicable to any interactive environment.

3 METHOD

We model the agent’s interaction with its environment as a Markov Decision Process (MDP) (Put-
erman, 1990), formally defined by the tuple (S,A,P,R, γ). In this framework, S represents
the set of states, A the set of actions, and γ ∈ [0, 1] the discount factor. The state transition
function P(st+1|st, at) specifies the probability of transitioning to state st+1 from state st upon
taking action at. The reward function R(st, at) yields an immediate reward rt+1. The agent’s
objective is to learn a policy π(a|s), that maximizes the expected discounted return, defined as
Gt =

∑∞
k=0 γ

krt+k+1 (Sutton & Barto, 2018).

Our central methodological contribution is to employ a single Large Language Model (LLM), de-
noted L, to instantiate and manage all of the agent’s cognitive functions. Our framework moves
beyond the static zero-shot paradigm by continuously training an LLM based on the outcomes of
the agent’s interactions, allowing it to improve its core reasoning and planning capabilities over
time. We represent all information pertaining to the interaction: states (s), actions (a), rewards (r),
inferred environmental dynamics (G), and strategic guidelines (Π), as natural language strings. The
agent’s learning unfolds over a series of episodes, indexed by k, where each episode consists of
discrete time steps, indexed by t. The LLM’s reasoning process is made explicit through a chain-
of-thought (Wei et al., 2022), which we denote by C. By reasoning and planning, the CEL agent L
learns to interact with the environment and maximize its rewards.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Phase 1: In-Episode Decision-Making

High Potential Value

Current State

Updated Rules
& Strategy

…

Language-based Value Function Language-based World Model

Action: RIGHT

⽂本.

Environmental Rules Strategic Playbook
History Trajectory

This move is safe and brings
it closer to the upper box.

Action: DOWN
This move is dangerous. It
will struck the wall.

The agent is currently in a
flexible position with
access to two boxes.

Rule Induction

Episode

1. Symbol Meanings

2. Interpretation

3. Gameplay

4. Action Effects

5. Game Objective

Avoid moving to edge or
corner cells early

Push boxes only when the
path is clear

Safe Exploration

Next State

Phase 2: Post-Episode Reflection and Refinement

GRPO Training
Action

Observation

“Cogito, ergo ludo”

Figure 2: An overview of the Cogito, ergo ludo (CEL) agent’s two-phase operational cycle. In Phase
1, the agent leverages its Language-based World Model (LWM) to predict the outcomes of potential
actions and its Language-based Value Function (LVF) to evaluate the desirability of the resulting
states, ultimately selecting the optimal action. In Phase 2, it reflects on the episode’s trajectory
to update its explicit knowledge base (Environmental Rules and Strategic Playbook). The agent
continuously improves through this dual learning loop, which not only refines its explicit knowledge
but also trains the LLM’s internal parameters based on the final outcome.

3.1 LANGUAGE-BASED WORLD MODEL

The LLM functions as a world model (Ha & Schmidhuber, 2018; Hafner et al., 2025), tasked with
predicting the dynamics of the environment. Given the current state st and a candidate action at,
the world model forecasts the subsequent state ŝt+1 and immediate reward r̂t+1. This prediction
is conditioned on the agent state st, a potential action at, and the agent’s current understanding of
the environment’s rules, Gk. The model first generates a reasoning trace, CWM (for World Model),
before outputting its predictions:

(CWM , ŝt+1, r̂t+1) ∼ pL(·|st, at,Gk), (1)

where pL is the probability distribution over text sequences generated by the LLM. Critically, the
outputs ŝt+1 and r̂t+1 are not structured data types (e.g., a state tensor or a scalar value) but are
descriptive natural language strings, as illustrated in Figure 5.

This predictive capability is the foundation for explicit planning (Sutton & Barto, 2018). By query-
ing the world model for each potential action, the agent can simulate and evaluate a set of possible
future outcomes, a process that is central to its decision-making (Schrittwieser et al., 2020; Richens
et al., 2025).

3.2 INDUCTION OF ENVIRONMENTAL DYNAMICS

Following each episode k − 1, the agent enters a reflective phase to refine its understanding of
the environment’s mechanics. The LLM performs rule induction by analyzing the trajectory of the
concluded episode, τk−1, in light of its previously held rules, Gk−1. A trajectory is the sequence of
state-action-reward tuples recorded during the episode:

τk−1 = {(s0, a0, r1), (s1, a1, r2), . . . , (sTk−1−1, aTk−1−1, rTk−1
)}. (2)

The LLM processes this experiential data to generate an updated, more accurate set of rules Gk:

(CG ,Gk) ∼ pL(·|τk−1,Gk−1), (3)

where CG is the reasoning trace for updating the environment’s Governing dynamics (or Game
rules in game environments). We assume the agent begins with no explicit game knowledge (i.e.,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

tabula rasa): despite the pretrained backbone, the agent’s explicit game knowledge starts empty; in
particular, the initial rule set G0 is empty, and all subsequent game knowledge is derived purely from
interaction (Silver & Sutton, 2025).

3.3 STRATEGY AND PLAYBOOK SUMMARIZATION

In parallel with rule induction, the agent updates its high-level strategy. After episode k − 1, the
LLM synthesizes the trajectory τk−1 and the final outcome Zk−1 (e.g., success/failure, final score)
to update a strategic playbook, Πk. This process distills successful and unsuccessful patterns of
interaction into explicit, actionable advice:

(CΠ,Πk) ∼ pL(·|τk−1, Zk−1,Πk−1), (4)

where CΠ is the reasoning trace for the Playbook update, and Π0 is initialized with a general-purpose
prompt.

This mechanism contrasts sharply with conventional reinforcement learning (Mnih et al., 2015; Es-
peholt et al., 2018), where strategy is implicitly encoded within the weights of a neural network.
In such systems, adaptation is often slow, sample-inefficient (e.g., requiring millions of interaction
frames (Mnih et al., 2015; Espeholt et al., 2018)), and opaque. Our approach externalizes strategy
into an explicit, interpretable text playbook. Insights from a single episode can be immediately in-
corporated into the agent’s prompt context for the subsequent episode. This mechanism facilitates
rapid in-context learning, dramatically accelerating strategic adaptation.

3.4 LANGUAGE-BASED VALUE FUNCTION

To guide its planning, the agent employs the LLM L as a language-based value function. This
component estimates the value of a state v̂(st), by providing a qualitative, linguistic assessment of
the long-term potential for success from that state. This evaluation is conditioned on both the current
environmental rules Gk and the strategic playbook Πk:

(CV , v̂(st)) ∼ pL(·|st,Gk,Πk). (5)

Here, CV is the reasoning trace for the Value estimation. This function provides the agent with a
crucial heuristic by assessing the current state’s long-term potential, which is essential for planning.

3.5 THE AGENT’S OPERATIONAL CYCLE

The agent’s operation is structured as a cyclical pipeline that alternates between two phases: in-
episode decision-making and post-episode reflection (Figure 2). This architecture decouples rapid,
step-by-step action selection from a more deliberate, offline knowledge consolidation process, with
the LLM orchestrating both.

Phase 1: In-Episode Decision-Making. During an episode k, the agent operates with a fixed set of
environmental rules Gk and a strategic playbook Πk. At each time step t, it performs a structured
reasoning process to select an action. First, the agent’s Language-based Value Function (LVF)
assesses the desirability of the current state, st, providing a high-level, holistic evaluation of its
strategic potential. Concurrently, for each available action a, the agent’s Language-based World
Model (LWM) performs a one-step lookahead search to simulate the resulting state ŝt+1 and reward
r̂t+1. The agent then commits to the action that the LWM predicts will lead to the most favorable
outcome. The resulting (st, at, rt+1) tuple is then recorded in the episode’s trajectory τk.

Phase 2: Post-Episode Reflection and Refinement. Once an episode concludes, the agent enters
the reflection phase to update its internal knowledge base. It performs Rule Induction by providing
the LLM with the complete trajectory τk and the prior rule set Gk to produce a refined set of rules
Gk+1. Concurrently, it engages in Strategy and Playbook Summarization, where the LLM processes
τk and the final outcome Zk to distill key lessons, updating the playbook to Πk+1. To reduce drift
from individual anomalous episodes, we do not overwrite the rulebook with every newly induced
rule set. Instead, we conservatively merge new rules into the existing rulebook, resolving conflicts
and removing clearly inconsistent or redundant entries. The episode’s final outcome (e.g., success or
failure) provides a reward signal that is used to train the agent’s core LLM, making it progressively
more effective at planning and strategic reasoning in future episodes.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 3: Learning curves of our agent on FrozenLake (left), Minesweeper (center), and Sokoban
(right). The plots show the average success rate (y-axis) plotted against the number of LLM update
steps (x-axis). Starting without any explicit rules, the agent’s consistent improvement across these
diverse tasks showcases the effectiveness of its autonomous rule discovery and policy learning. (see
Figure 11 in Appendix D for curves with 95% confidence intervals).

This two-phase cycle enables the agent to both act decisively on its current understanding and sys-
tematically improve its environmental model and strategic acumen.

4 EXPERIMENTS

4.1 GAME ENVIRONMENTS

We evaluate our method on three classic grid-world environments: Minesweeper, Frozen Lake and
Sokoban. These environments serve as common benchmarks for tasks with sparse rewards in re-
inforcement learning. In all experiments, the agent observes exactly the raw text grids emitted by
the environments, with no additional handcrafted natural-language wrapper. Detailed descriptions
of the environments are provided in Appendix B.

In our experimental setup, all three environments are configured with a sparse reward signal. The
agent receives a reward only at the conclusion of the game, receiving +1 for successfully completing
the objective and 0 otherwise. Crucially, we DO NOT provide the agent with any explicit game
rules or the game names in the prompts; each environment is described only in generic, name-free
terms. It must learn the dynamics of each environment solely through interaction, with its knowledge
limited to the set of available actions. This setup, combining sparse rewards with unknown rules,
presents a significant reasoning and planning challenge.

4.2 IMPLEMENTATION DETAILS

We conducted experiments using rLLM (Tan et al., 2025), backed by verl (Sheng et al., 2024). We
use the Qwen3-4B-Instruct (Qwen, 2025) model to interact with the environments. We evaluate the
performance over 32 randomly sampled seeds for each game. For each of these seeds, we conduct 8
independent trials, and report the average success rate over the total 256 playthroughs per game. The
rule update frequency is set to once every 5 episodes. We use GRPO (Shao et al., 2024; DeepSeek,
2025) for LLM post-training and set the maximum response length to 8,192 tokens to encourage the
model to think, reason, and plan. The outcome reward is used for optimizing the LLM.

4.3 RESULTS

Figure 3 illustrates our CEL agent’s learning performance across the three environments. We com-
pare CEL against two zero-shot baselines operating with and without the ground-truth game rules,
respectively. Despite starting with no explicit game rules, the agent demonstrates a clear and pos-
itive learning trend in all tasks, validating the effectiveness of our interaction-reflection cycle. In
the logical puzzle of Minesweeper, the agent exhibits steady improvement, with its success rate pro-
gressively climbing to a peak of 54%. Notably, this surpasses the 26% success rate of the baseline
agent that was explicitly provided with the ground-truth game rules, suggesting that our method
of autonomous rule discovery and strategy refinement leads to a more effective policy. A different
learning dynamic emerged in the complex planning puzzle of Sokoban, where the agent’s perfor-
mance showed a distinct “breakthrough” pattern, increasing sharply to an 84% success rate after

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

an initial period of exploration. This highlights its ability to uncover critical insights for solving
multi-step problems. The agent’s efficiency was most apparent in the Frozen Lake navigation task,
where it learned with remarkable speed to achieve a near-perfect success rate of 97% within the first
10 episodes. Collectively, these results showcase the general applicability and effectiveness of our
approach, as it successfully masters diverse tasks ranging from logical deduction to long-horizon
planning by autonomously discovering environmental rules and iteratively refining its own strategy
from raw interaction.

4.4 ABLATION STUDY

Figure 4: Ablation study illustrating the critical
role of iterative Induction of Environmental Dy-
namics. The full model (blue) significantly out-
performs variants with static rules (teal) or no
rules (red), demonstrating that continuous refine-
ment of the learned rulebook Gk is essential for
sustained performance improvement.

We conducted an ablation study in the
Minesweeper environment to test the necessity
the component of the iterative Induction of En-
vironmental Dynamics, with results shown in
Figure 4. The baseline agent, operating without
the Rule Induction mechanism (“w/o Rules”),
exhibits a largely flat learning curve, with its
success rate stagnating at a low level. This con-
firms that the ability to infer and utilize a model
of the environment’s dynamics is fundamen-
tal to achieving competence. A second vari-
ant, which performs Rule Induction only once
and then uses a static rule set (“Rules induced
once”), shows initial improvement but quickly
stagnates and its performance degrades, sug-
gesting its initial rules were incomplete or in-
accurate. In stark contrast, our full CEL agent,
which engages in the post-episode reflection
and refinement phase to continuously update its
rule set Gk, shows a robust and sustained learn-
ing trajectory, significantly outperforming both
ablated versions. This comparison unequivocally demonstrates that the iterative refinement of the
agent’s world model is a critical component of our architecture.

4.5 CASE STUDY

4.5.1 IN-EPISODE DECISION-MAKING

Figure 5 provides a qualitative snapshot of the agent’s In-Episode Decision-Making process. The
examples showcase how the agent performs a one-step lookahead search, a process relying on the
synergy between its core cognitive components. First, the agent employs its Language-based Value
Function (LVF) to produce a holistic, linguistic assessment of the current state’s potential, v̂(st). In
the Minesweeper example, it correctly identifies the state as having “high strategic value”. Next, for
each viable action, the agent utilizes its Language-based World Model (LWM), conditioned on its
learned rules Gk, to simulate the immediate future, predicting the next state ŝt+1 and reward r̂t+1.
It accurately forecasts that the “(0, 3)” action in Minesweeper solves the puzzle. By comparing
the predicted outcomes, the agent selects the action leading to the most favorable consequence,
highlighting how its explicit, language-based reasoning drives intelligent planning.

4.5.2 AUTONOMOUS RULE DISCOVERY

Figure 6 presents an example of the agent’s learned rulebook Gk for Minesweeper, a direct output of
the Induction of Environmental Dynamics process. Synthesized from its interaction trajectory and
starting from a tabula rasa rule, the generated rules are remarkably comprehensive and accurate,
covering everything from Symbol Meanings to the ultimate Game Objective. As defined in our
method, this explicit, human-readable rule set Gk is the critical information that grounds the agent’s
cognitive functions. It provides the foundation for the Language-based World Model to predict
future states and for the Language-based Value Function to estimate state values, thereby enabling
all subsequent planning.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Prediction of Immediate ConsequencesPrediction of the
Value of Current StatesState

This cell is currently unrevealed and is safe (as deduced
from constraints: adjacent to (1,2)=1 and (1,3)=2, and only
one mine required in (0,2) and (0,3), but (0,2) is a mine,
so (0,3) must be safe). Revealing (0,3) will result in a
safe cell being revealed, which does not trigger a loss.
This will complete the safe area and leave only known mines
(at (0,2), (0,4), (4,0)) unrevealed. The game is now in a
terminal state where all safe cells are revealed and no
mine is exposed — thus, a win.

(0,3)
The current state has a high
strategic value because the
only safe unrevealed cell is
(0,3). Revealing it will
complete the safe zones and
leave only the mines
unrevealed — which is
acceptable in the game (as long
as no mine is revealed). The
game is effectively solved
after (0,3) is revealed, as all
other unrevealed cells are
known to be mines and cannot be
revealed without loss.

This cell is adjacent to (1,1)=1 and is the only unrevealed
neighbor. Since (1,1)=1 has exactly one mine, and (0,2) is
the only unrevealed adjacent cell, it must be a mine.
Revealing it would expose a mine → immediate loss.

(0,2)

This cell is adjacent to (1,3)=2, which requires two mines.
One mine is at (0,2), and (0,4) is the only other
possible — so it must be a mine. Revealing it would result
in a mine exposure → loss.

(0,4)

This cell is adjacent to (3,0)=1 and is the only unrevealed
neighbor → must be a mine. Revealing it → loss.(4,0)

Figure 5: The agent’s In-Episode Decision-Making process. At each step, the agent uses its
Language-based Value Function (LVF) to assess the current state’s value (middle column). It then
employs its Language-based World Model (LWM) to predict the consequences of each action (right
column). The agent selects the action leading to the outcome with the highest predict value.

Generated-Rule Definition (Minesweeper)Rule Composition

- '.': Unrevealed cell (unknown content; may contain a mine or be safe).
- '0': Revealed safe cell (no adjacent mines).
- 'n' (where n > 0): Revealed cell with exactly 'n' adjacent mines (including diagonals).
- '*': Revealed cell that contains a mine (game over condition).

1. Symbol Meanings

- The initial state is fully obscured (all cells are '.').
- After a valid action, the game reveals the state of the selected cell.
- If a revealed cell contains a mine ('*'), the game ends immediately — loss.
- If a revealed cell shows a number (e.g., 1, 2), it indicates exactly how many adjacent
mines exist (including diagonals), but does not reveal their specific locations.
- A cell is "already revealed" if it has been previously opened and remains unchanged.
- Revealing a cell with value '0' provides no direct mine information but immediately
reveals all adjacent unrevealed cells (via propagation).

2. Interpretation

……
- Win: All unrevealed cells are safely revealed (no mine is exposed), and the final board
contains no '.' or '*'.
- Lose: A mine ('*') is revealed during a valid action.
- The game ends immediately upon revealing a mine.
- The game is "solved" when the player has fully revealed all safe cells without exposing
any mines.

5. Game Objective

Figure 6: An illustrative excerpt of the agent’s learned rulebook Gk for Minesweeper, generated
via the Induction of Environmental Dynamics process. Starting from no prior knowledge, the agent
synthesizes a comprehensive and accurate set of rules from its interaction trajectory. Please refer
to Figure 19 in the Appendix for the complete rulebook. All rules are generated by CEL. Blue
highlighting marks a few representative cases.

4.5.3 EMERGENT STRATEGY AND PLAYBOOK GENERATION

In parallel with rule induction, our agent constructs a strategic playbook Πk, via the Strategy
and Playbook Summarization process, synthesized in Figure 7. As defined, the LLM analyzes an
episode’s trajectory τk−1 and outcome Zk−1 to distill experiences into actionable advice. The emer-
gent knowledge exhibits a sophisticated hierarchy, from tactical Methods like Constraint Propaga-
tion to high-level Principles like Safe Exploration. The discovery of these expert-level heuristics
from raw interaction highlights the agent’s capacity for strategic abstraction. This explicit playbook
Πk is then used alongside the rule set Gk in the next episode to condition the Language-based Value
Function, enabling more nuanced, strategically-aware judgments and forming a direct feedback loop
from experience to adaptation.

4.6 GENERALIZATION

To validate that CEL agent learns by understanding rather than memorization, we tested its general-
ization capabilities in two settings, summarized in Table 1.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 7: A synthesis of the strategic playbook Πk for Minesweeper, generated via Strategy and
Playbook Summarization. The agent distills both tactical Methods and high-level Principles from
its gameplay experience. This explicit playbook is used to condition the agent’s value judgments,
enabling more strategically sophisticated decision-making. All rules are generated by CEL. Blue
highlighting marks a few representative cases.

Table 1: The CEL agent’s generalization performance across intra-game (unseen layouts) and inter-
game (new game environments) settings. The results demonstrate the agent’s strong generalization,
showcasing both robust performance on unseen layouts (intra-game) and successful zero-shot trans-
fer to novel environments (inter-game). Values in (.) show gain over the Zero-shot baseline, while
those in [.] show change relative to the corresponding in-domain performance.

Trained On Tested On (Inter-Game) Intra-Game
(Unseen layouts)Minesweeper FrozenLake

Zero-shot w/ Rule 25.8 78.9 -
Minesweeper 53.5 (+27.7) 97.3 (+18.4) 50.4 [-3.1]
FrozenLake 46.9 (+21.1) 97.3 (+18.4) 93.8 [-3.5]

First, for intra-game generalization, we evaluated the agent on 32 new seeds that were entirely
unseen layouts from those used during training. The agent maintained a high level of performance on
these unseen 256 instances, confirming that it learns the game’s fundamental principles rather than
overfitting to the specific training levels. This highlights a fundamental paradigm difference from
conventional reinforcement learning, which is notoriously hard to generalize to unseen domains.
Instead of overfitting to learned patterns, the CEL agent’s success on new layouts stems from its
ability to apply an understanding of the game’s rules to reason and plan effectively.

Furthermore, in the more challenging inter-game generalization setting, detailed in Figure 8, we
tested a model trained on one game in the environment of another. Specifically, a Minesweeper-
trained agent tested on Frozen Lake (left) and a FrozenLake-trained agent on Minesweeper (right)
both show robust learning curves, despite their core model weights being frozen. This success
indicates that the agent transfers not its knowledge of game-specific rules, but rather its fundamental
ability to learn by reasoning and planning when faced and interact with a novel environment. The
CEL agent thus demonstrates a sophisticated ability to generalize not the concrete dynamics of a
game, but the abstract wisdom of how to reason, plan and then act.

4.7 BEYOND SINGLE-AGENT PUZZLES: A LONG-HORIZON GO-LIKE TWO-PLAYER GAME

Beyond the previous single-agent grid puzzles, we also consider a small Go-like board game to test
whether CEL’s reason–act–reflect loop can cope with two-player, long-horizon dynamics. The envi-
ronment is a 9 × 9 two-player, perfect-information board game with a horizon of up to 100 moves.
Two players alternately place stones on empty intersections, and the agent receives only textual
board descriptions and a sparse terminal reward based on the final outcome. Unlike the single-agent
puzzles, the next state now depends not only on CEL’s move but also on the opponent’s policy, so
the transition dynamics are shaped by an explicit opponent rather than by a fixed environment.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Figure 8: Inter-game generalization study showcasing adaptation to novel environments without
model retraining. The plots show the agent’s cross-game performance: a Minesweeper-trained agent
on Frozen Lake (left) and a FrozenLake-trained agent on Minesweeper (right). In both evaluations,
the core model weights remain frozen. The agent’s adaptation relies solely on the iterative refinement
of its explicit rulebook and strategic playbook every 5 episodes (indicated by cyan lines).

1

2

High value. Securing (1,1) creates a strong central node, increases connectivity, and blocks
potential opponent expansion into the upper-left. It is a key pivot point in a nearly complete
board. The game is likely ending soon, and this move maximizes the chance of winning by
closing off escape routes and creating a dominant cluster.

- Access (1,1): This move will place a ● at (1,1), which is adjacent to (1,0)=●, (1,2)=●,
and (2,1)=●. The result-because: it creates a solid 3x3 block in the upper-left corner, fully
occupying the central hub of that zone. This move eliminates any future opponent access to
(0,1) or (2,0) via diagonal or adjacent paths, and prevents them from expanding into that
region. It also increases connectivity and control, making it harder for the opponent to
respond with future moves in the upper rows.

- Access (2,0): This move would place a ● at (2,0), adjacent to (1,0)=● and (2,1)=●. The
result-because: it extends the player’s influence to the far left edge, but it is less central and
offers fewer strategic advantages.

CEL Agent Opponent

Figure 9: Go-like 9 × 9 adversarial board game. Left: Example board state and CEL’s natural-
language predictions of the value of the current state and the consequences of candidate moves,
illustrating learned notions such as central influence, connectivity, and blocking the opponent’s ex-
pansion. Right: Learning curves of CEL on the 9×9 Go-like game. CEL starts from a low win rate
similar to Qwen3-4B without rules, then quickly improves and surpasses the rule-aware baseline,
reaching a maximum win rate of 65.6%.

We use the same CEL architecture and training procedure as in other experiments and compare
against baselines. As shown in Figure 9 (Right), the Qwen3-4B baseline w/o rules attains a low
win rate of about 8%, while adding explicit rules raises performance to roughly 58%. Starting from
a similar low win rate, CEL rapidly improves over training and reaches a maximum win rate of
65.6%, consistently outperforming both baselines against a rule-aware random-play opponent. The
left panel of Figure 9 illustrates a typical late-game position and CEL’s induced value estimate and
move rationale, showing that the agent has learned to reason about central influence, connectivity,
and future expansion opportunities. Although this setup uses a reduced board size and a simplified
opponent, it demonstrates that CEL extends beyond single-agent puzzles to an adversarial, long-
horizon board game while preserving interpretable, language-level rules and strategies.

5 CONCLUSIONS

In this work, we introduced Cogito, ergo ludo (CEL), a novel agent architecture that learns by explic-
itly reasoning about its environment. Through a unique two-phase cycle of in-episode planning and
post-episode reflection, CEL autonomously constructs a human-readable world model and strategic
playbook from raw interaction, starting from a tabula rasa state. Our results across several envi-
ronments demonstrate that this “learning by thinking” approach allows the agent to master complex
tasks while creating a transparent and auditable decision-making process. CEL marks a significant
departure from opaque, brute-force learning paradigms. It validates language-based reasoning as a
powerful foundation for building agents that are not only capable but also interpretable and trust-
worthy, opening compelling pathways toward hybrid systems that fuse CEL’s explicit understanding
with traditional architectural efficiency.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. DOTA 2 with large
scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

Team DeepSeek. DeepSeek-R1 incentivizes reasoning in LLMs through reinforcement learning.
Nature, 645:633–638, 2025.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. IMPALA: Scalable distributed deep-RL
with importance weighted actor-learner architectures. In International conference on machine
learning, pp. 1407–1416. PMLR, 2018.

Xidong Feng, Bo Liu, Yan Song, Haotian Fu, Ziyu Wan, Girish A Koushik, Zhiyuan Hu, Mengyue
Yang, Ying Wen, and Jun Wang. Natural language reinforcement learning. arXiv preprint
arXiv:2411.14251, 2024.

Team Gemini. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long
context, and next generation agentic capabilities. arXiv preprint arXiv:2507.06261, 2025.

Leon Guertler, Bobby Cheng, Simon Yu, Bo Liu, Leshem Choshen, and Cheston Tan. TextArena.
arXiv preprint arXiv:2504.11442, 2025.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2(3), 2018.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse control tasks
through world models. Nature, 640:647–653, 2025.

Lanxiang Hu, Mingjia Huo, Yuxuan Zhang, Haoyang Yu, Eric P Xing, Ion Stoica, Tajana Rosing,
Haojian Jin, and Hao Zhang. LMGame-Bench: How good are LLMs at playing games? arXiv
preprint arXiv:2505.15146, 2025.

Levente Kocsis and Csaba Szepesvári. Bandit based Monte-Carlo planning. In European conference
on machine learning, pp. 282–293. Springer, 2006.

Heng Lin and Zhongwen Xu. Understanding Tool-integrated Reasoning. arXiv preprint
arXiv:2508.19201, 2025.

Zichen Liu, Anya Sims, Keyu Duan, Changyu Chen, Diyi Yang, Wee Sun Lee, and Min Lin. GEM:
A gym for generalist LLMs, 2025. URL https://axon-rl.notion.site/gem.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Martin L Puterman. Markov decision processes. Handbooks in operations research and management
science, 2:331–434, 1990.

Team Qwen. Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025.

Jonathan Richens, David Abel, Alexis Bellot, and Tom Everitt. General agents need world models.
arXiv preprint arXiv:2506.01622, 2025.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering Atari,
Go, Chess and Shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. DeepSeekMath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

11

https://axon-rl.notion.site/gem

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

David Silver and Richard S Sutton. Welcome to the era of experience. Google AI, 1, 2025.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of Go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of Go
without human knowledge. Nature, 550(7676):354–359, 2017.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement
learning algorithm that masters Chess, Shogi, and Go through self-play. Science, 362(6419):
1140–1144, 2018.

Rich Sutton. The Bitter Lesson, 2019. URL http://www.incompleteideas.net/
IncIdeas/BitterLesson.html.

Richard S Sutton. The quest for a common model of the intelligent decision maker. arXiv preprint
arXiv:2202.13252, 2022.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An Introduction, volume 1. MIT
press Cambridge, 2018.

Sijun Tan, Michael Luo, Colin Cai, Tarun Venkat, Kyle Montgomery, Aaron Hao, Tianhao Wu,
Arnav Balyan, Manan Roongta, Chenguang Wang, Li Erran Li, Raluca Ada Popa, and Ion Stoica.
rllm: A framework for post-training language agents, 2025. Notion Blog.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in StarCraft II using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Zhongwen Xu, Xianliang Wang, Siyi Li, Tao Yu, Liang Wang, Qiang Fu, and Wei Yang. Agents
play thousands of 3D video games. arXiv preprint arXiv:2503.13356, 2025.

12

http://www.incompleteideas.net/IncIdeas/BitterLesson.html
http://www.incompleteideas.net/IncIdeas/BitterLesson.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

This appendix extends upon the main paper by providing additional details on our experimental
setup, ablation studies, qualitative results, and implementation specifics.

• Section A: LLM usage policy for manuscript.

• Section B: Describes the game environments used in our experiments.

• Section C: Reports training details, hyperparameters, and the compute budget for all ex-
periments.

• Section D: Details the evaluation protocol and the computation of confidence intervals for
agent performance.

• Section E: Presents an additional supervised baseline based on behavioral cloning from
expert demonstrations.

• Section F: Studies an action-only ablation trained with GRPO and explains why it fails to
learn reliable policies.

• Section G: Controls game-specific prior knowledge via sanitized prompts and ablations to
ensure the LLM is not simply recalling known games.

• Section H: Analyzes CEL’s language-based value function and illustrates typical “value in
words” feedback.

• Section I: Provides a brief failure analysis on the environments and highlights typical error
modes of CEL.

• Section J: Discusses how CEL can be extended to broader classes of games and integrated
with other agent modules.

• Section K: Shows results from an additional experiment on Minesweeper with an expanded
training set, probing performance under more training seeds.

• Section L: Contains the full prompt templates used for in-episode decision-making, post-
episode reflection, and rulebook merging.

• Section M: Provides qualitative examples of CEL’s behavior, including decision-making
traces, induced environmental rules, and strategic playbooks across different games.

A LLM USAGE

We utilized Large Language Models to assist in refining the language and improving the readability
of this manuscript. The core intellectual contributions, including the conceptualization of ideas,
experimental design, and analysis of results, were solely conducted by the authors.

B DETAILS OF ENVIRONMENTS

All game environments used in our experiments are from the TextArena (Guertler et al., 2025).
Below are the descriptions for the specific environments and configurations used in this work. In
all experiments, the agent’s textual observations are exactly the raw ASCII grids provided by the
environments. We do not introduce any additional handcrafted interpretation or rendering layer;
CEL must infer the semantics of symbols purely from interaction.

Minesweeper is a logic puzzle where the objective is to clear a grid of all non-mine cells without
detonating any mines. When a cell is revealed, it displays a number indicating how many adjacent
cells contain mines, and the player must use this information to deduce the location of the mines. In
our experiments, the game is configured on a 5×5 grid with 3 randomly placed mines.

Frozen Lake is a canonical grid navigation problem on a 6×6 grid where an agent must travel
from a start tile to a goal tile, avoiding 6 randomly placed holes. In our deterministic setting, each
action moves the agent exactly one cell in the chosen direction, removing the stochastic “slippery”
nature often associated with this environment. This modification allows for a direct assessment of
the agent’s planning and rule-induction capabilities without the confounding factor of environmental
randomness.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Sokoban is a classic puzzle game where the player must push all boxes to designated goal locations.
The player can only push one box at a time and cannot pull boxes. This simple constraint creates
a complex search space and necessitates careful, long-horizon planning to avoid irreversible states,
such as trapping a box in a corner. The version used in our study is played on a 6×6 grid with a
single box.

Go is a two-player board game in which players alternately place stones and the final result depends
on captured stones and controlled territory. In our experiments, we use a simplified 9×9 Go-like
environment with a horizon of 100 moves, where CEL plays against a rule-aware random-play
opponent that samples uniformly from legal moves. States and actions are represented in text, and
the agent receives only a sparse terminal reward based on the final game outcome (win or loss).

C TRAINING DETAILS, HYPERPARAMETERS, AND COMPUTE BUDGET

Our implementation is based on the open-source rLLM framework for post-training language agents
with reinforcement learning. This section details the CEL training loop, the main hyperparameters
used in all experiments, and the overall compute budget.

C.1 CEL TRAINING LOOP

The full training loop of CEL is summarized in Figure 10. Each iteration proceeds as follows:

1. Environment interaction. The current policy interacts with the environment to collect
trajectories consisting of observations, actions, and rewards.

2. Language-based world modeling and rollouts. Conditioned on the current rulebook and
strategic playbook, the backbone LLM, acting as a Language World Model and Language
Value Function, generates natural-language reasoning tokens, candidate actions, and value
estimates.

3. Reflection and knowledge update. A reflection step analyzes successful and failed tra-
jectories and updates the rulebook and strategic playbook accordingly, refining both the
induced game rules and high-level strategies.

4. GRPO update. A GRPO trainer updates the backbone LLM parameters using the col-
lected reasoning traces, actions, and rewards. The updated policy is then used in the next
interaction phase.

This loop is repeated for all games with the same architecture and training procedure.

C.2 HYPERPARAMETERS AND COMPUTE BUDGET

Table 2 lists the main hyperparameters used in our experiments. Unless otherwise specified, the
same settings are used across all environments. All other low-level system and optimization settings
(e.g., gradient checkpointing, FSDP parameter/optimizer offloading, asynchronous rollout engine)
follow the default configuration of the rLLM framework and are kept fixed across experiments.

Training a single game configuration (e.g., Minesweeper) requires approximately 20 wall-clock
hours on 8 GPUs (about 160 GPU-hours). The training cost scales approximately linearly with
the number of sampled environment steps. All experiments are run on a small cluster of commodity
GPUs and do not rely on any specialized hardware.

D CONFIDENCE INTERVALS FOR AGENT PERFORMANCE

For completeness, we report the evaluation protocol and confidence-interval computation used in
the learning curves with uncertainty estimates (Figure 11).

Evaluation protocol. After every GRPO update of the CEL agent, we evaluate the current check-
point in each environment on a fixed set of N = 32 level seeds, each corresponding to a different
randomly generated level layout of the same game. For each seed i, we run 8 independent rollouts

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Game Environment

Language Value Function

Language World Model

CEL Agent

actionstate
𝑎!𝑠! 𝑟!

reward

Prediction

Qwen3-4B-Instruct

𝑎!Thinking LVF LWM

𝑠"

𝑎"#𝑟𝑒𝑎𝑠𝑜𝑛"# 𝑠## 𝑎##𝑟𝑒𝑎𝑠𝑜𝑛## 𝑟#𝑟"# 𝑟## …

Trajectory 1

𝑎"$𝑟𝑒𝑎𝑠𝑜𝑛"$ 𝑠#$ 𝑎#$𝑟𝑒𝑎𝑠𝑜𝑛"$ 𝑟$𝑟"$ 𝑟#$ …

Trajectory 2

𝑎"%𝑟𝑒𝑎𝑠𝑜𝑛"% 𝑠#% 𝑎#%𝑟𝑒𝑎𝑠𝑜𝑛"% 𝑟%𝑟"% 𝑟#% …

Trajectory N

𝐴#

𝐴$

𝐴%

GRPO

…

Rollout

Update Weights
Rule Induction & Update

Sampled Trajectories
Induced Game Rules

Strategic Playbook

+

prediction tokens

Figure 10: Overview of the CEL training loop. During rollout, the CEL agent interacts with the
game environment, receiving only textual states and scalar rewards, and uses a Language World
Model and Language Value Function, conditioned on its induced game rules and strategic playbook,
to generate natural-language reasoning tokens and actions. Multiple trajectories starting from the
same initial state are sampled and their rewards are aggregated into advantages, which are fed to a
GRPO trainer to update the backbone LLM weights. In parallel, a rule-induction module uses the
sampled trajectories to refine the learned rulebook and strategic playbook. No ground-truth rules or
demonstrations are provided by the environment.

Category Hyperparameter Value

Model / Algorithm Backbone model Qwen3-4B-Instruct-2507
RL algorithm GRPO
Advantage estimator GRPO (step-wise, MC return)

Optimization Learning rate 1× 10−6

Train batch size 32
Max gradient norm 10
KL coefficient 0.001

Rollout / Sampling Temperature (train / val) 0.6
Top-p (train / val) 0.95
Samples per prompt (n) 8

Length / Context Max prompt length 8,192 tokens
Max response length 8,192 tokens

Training schedule Seeds × episodes per seed 32× 8

Environment / Agent Max env/agent steps per episode 40 (Minesweeper)
Trajectory timeout 1,200 s

Table 2: Main hyperparameters used for training CEL. Unless otherwise noted, these values are
shared across all environments.

under the same policy parameters but different environment randomness and compute the empirical
success rate si ∈ [0, 1] for that seed. The scalar performance statistic at a given update step is then
the average success rate across the 32 seeds:

m̂ =
1

N

N∑
i=1

si, N = 32.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Confidence intervals. We approximate a 95% confidence interval over seeds using the standard
normal approximation,

m̂± 1.96 · σ̂√
N

,

where σ̂ is the sample standard deviation of {si}Ni=1. In this construction, multiple rollouts on the
same level seed are first aggregated into a single success rate si, and the confidence interval captures
variability due to both learning stochasticity and differences in seed difficulty. The same protocol is
applied to the strongest baseline (Qwen3-4B with game rules).

In Figure 11, the solid purple curve denotes the mean performance of CEL and the purple shaded
band shows its 95% confidence interval. The dashed green curve and light-green band denote the
mean and 95% confidence interval of the Qwen3-4B with game rules baseline, and the dashed blue
curve denotes Qwen3-4B without rules. Across all three environments, the CEL curve eventually
rises above the Qwen3-4B with game rules confidence band and remains there at convergence. In
particular, in Minesweeper and Sokoban the final CEL interval lies well above the baseline interval,
and in Frozen Lake the CEL agent further improves upon an already strong baseline and maintains
a higher success rate thereafter. These results indicate that the gains of CEL over Qwen3-4B with
game rules are consistent across seeds and are not an artifact of high variance or a small number of
especially favorable seeds.

Figure 11: Average success rate of CEL and Qwen3-4B baselines in the three environments. The
solid purple curve and band show CEL with 95% confidence intervals; dashed lines are Qwen3-
4B without game rules (blue) and with game rules (green, with 95% confidence-interval band).
Across all three environments, CEL consistently improves with training and eventually surpasses the
Qwen3-4B with game rules baseline, with the final confidence intervals indicating a clear advantage
for CEL.

E BEHAVIORAL CLONING BASELINE

To assess how CEL compares to supervised imitation learning, we consider a behavioral cloning
(BC) baseline on the Minesweeper environment. The BC model uses the same backbone as CEL
(Qwen3-4B-Instruct-2507) and is fine-tuned on a set of 2,000 expert state–action pairs generated by
a scripted expert derived from a stronger model (Qwen3-30B).

We train the BC model with a standard cross-entropy loss, using the same input representation and
tokenizer as CEL. The model fits the training data with high action-prediction accuracy, indicating
that it can memorize the provided demonstrations. However, when evaluated on the same held-out
test distribution as CEL (procedurally generated levels of the same game), the BC policy achieves
essentially zero success rate, failing to generalize even to new instances of the same game.

In contrast, CEL is trained only from sparse binary success/failure feedback in the same
Minesweeper setting, without access to expert demonstrations. Through its interaction–reflection
loop, CEL induces an explicit rulebook and strategic playbook and achieves strong success rates on
held-out boards. This comparison suggests that, in our Minesweeper setting, directly imitating a
small set of expert actions is insufficient, while CEL trained from sparse feedback generalizes well
to new boards.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 12: Distribution of rollout outcomes for the Action-only model. Across all group sampling
sizes (8 to 64), outcomes are polarized into “All” (all succeed) or “None” (all fail). The number
of “Partial” rollouts, which are required for GRPO to learn, is consistently zero, causing training
failure.

F LIMITS OF AN ACTION-ONLY AGENT TRAINED WITH GRPO

To understand the necessity of cognitive components and chain-of-thought reasoning, we ablated
it with a simplified “Action-only” agent that directly outputs actions. When attempting to train
this agent with GRPO, we observed a consistent training failure. The reason lies in the extreme
polarization of rollout outcomes, as shown in Figure 12. GRPO requires batches with mixed results
(i.e., “partially successful”) to derive a learning signal. However, across all tested sampling sizes (8
to 64), the outcomes for the Action-only agent were always binary: for any given seed, all rollouts
in a batch either succeeded or failed. As a result, the number of partially successful rollouts, i.e.,
the sole source of a viable training signal, was consistently zero. This lack of comparative data
within batches starves the GRPO algorithm of a gradient, leading to a breakdown in training and
highlighting the critical role of nuanced reasoning traces in enabling effective optimization.

G CONTROLLING GAME-SPECIFIC PRIOR KNOWLEDGE

To address concerns that the pretrained backbone might simply recall prior knowledge of
Minesweeper, FrozenLake, or Sokoban, we carefully control what information is made available
in the prompts and provide empirical checks.

Sanitized, name-free prompts. At the beginning of training, the agent observes only the raw text-
based grid of the current state and generic instructions about interacting with an unknown environ-
ment. In particular, the prompts do not contain the canonical game names “Minesweeper”, “Frozen
Lake”, or “Sokoban”.

Baseline under sanitized prompts. The zero-shot baseline Qwen3-4B w/o game rules uses exactly
the same sanitized, name-free prompts as CEL but does not maintain any explicit rulebook or play-
book. Under this setting it achieves very low success rates across all three environments (Figure 3),
indicating that the pretrained model cannot solve these tasks by simple recall when given only the
sanitized prompts.

Effect of naming the game. To probe how much information the name alone carries, we add a
baseline Qwen3-4B w/o rules + game name, which is identical to Qwen3-4B w/o game rules except
for a single sentence that names the environment (for example, “You are playing Minesweeper.”).
In this condition, zero-shot success rises to 10.94% on Minesweeper, 38.28% on FrozenLake, and
48.05% on Sokoban. This contrast shows that the canonical names encode strong priors in the
pretrained model and confirms that name-free prompts are needed to fairly evaluate CEL’s ability to
induce rules and strategies from scratch.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

H VALUE IN WORDS: LANGUAGE-BASED FEEDBACK FROM CEL

The language-based value function (LVF) is a component that, given the current state together with
the induced rules and playbook, produces a qualitative assessment of the state’s long-term potential
in natural language. In our implementation, each LVF output is a short free-form text segment that
begins with a coarse label, followed by a brief textual explanation of why the state is promising
or risky. We treat this entire description (the coarse label together with its explanation in natural
language) as the LVF’s value expression.

Figure 13 shows several representative LVF outputs together with a brief description of which as-
pects of the state they emphasize. The examples show that the LVF naturally refers to multiple
interacting aspects of a state (for instance, progress toward the goal, safety and future options, or
longer-horizon opportunities), indicating that language-valued evaluations can capture richer struc-
ture than a small, fixed set of discrete value labels.

Our analysis: qualitative value dimensionsExample LVF output (short excerpt)Emergent Value Pattern

The LVF here expresses that state value depends on distance to the goal and the existence
and quality of a feasible path, not just the immediate reward. States near a solvable goal
configuration are treated as intrinsically high-value.

“High value. The current state offers a clear path toward
G… this proximity provides immediate strategic value and
strong potential for further progress.”

1. Goal proximity & reachability

The LVF here expresses a comparison of risk and future robustness between alternative
actions. Value is higher for states that maintain safety and preserve many future options,
and lower for states that move closer to hazards.

“Medium value. Moving right increases exposure to the
block, while moving down keeps a safer and more flexible
position for future exploration.”

2. Safety assessment: risk vs. robustness

The LVF here expresses that states are valuable only if they enable meaningful progress
toward the objective and avoid irreversible dead ends. Reachable but non-productive
positions are explicitly treated as low-value.

“This action does not help push a block and moves the player
away from it. It brings no strategic benefit and may lead to a
dead end.”

3. Progress vs. dead end

The LVF here expresses that value depends on the existence of multi-step winning plans.
Even with zero immediate reward, a state remains valuable if it still supports a plausible
path to victory, reflecting look-ahead over future trajectories.

“Medium to low value. The block cannot be pushed directly
into the goal, but a viable win sequence still exists if the
player first moves behind it and then pushes it down.”

4. Long-horizon planning & chain value

The LVF here expresses epistemic uncertainty: value is discounted because goal
reachability is unclear. The same move may either improve or ruin the position, so the
state is assigned an intermediate value reflecting this uncertainty.

“Value: low to medium. The player can push the adjacent
block, which might open a path if the goal lies beyond it;
otherwise the position is effectively stuck.”

5. Uncertainty & reachability
under ambiguous rules

The LVF here expresses that value can come from control of strategically important areas,
not just immediate reward. Central positions that connect multiple future opportunities are
treated as high-value due to their durable positional advantage.

“High value. Controlling the central column is critical; from
here the player can reach both left and right blocks, giving a
strong positional advantage.”

6. Positional control of key regions

The LVF here expresses that value depends on both what high-value targets exist and
when they can be reached. States are valuable when they provide a timely opportunity to
approach important tiles that may later become unreachable (an opportunity window).

“High value. The G and P tiles form high-value targets, and
the current state offers a good opportunity to move toward
them before the path becomes blocked.”

7. High-value targets & timing

Figure 13: Examples of language-valued feedback produced by CEL. Each row shows a represen-
tative snippet of the LVF output (middle column) together with a brief description of the qualitative
value aspects it emphasizes (right column). These value expressions distinguish fine-grained dif-
ferences in state quality and capture nuanced value structure, providing a richer signal than a small
discrete set of value labels.

I FAILURE ANALYSIS OF HARD CASES

We conducted a brief failure analysis by manually inspecting failed episodes near the end of training
and observed several recurring error modes. These cases help clarify where CEL currently struggles
despite having induced reasonable local rules.

First, in FrozenLake the agent can over-generalize from a few sparse negative experiences and in-
duce rules that are too coarse. For example, we sometimes see playbook entries that effectively
discourage visiting an entire region of the grid after a few unlucky falls into holes in that area, even
though some layouts require crossing that region to reach the goal. In such cases the induced strat-
egy becomes overly conservative: the agent prefers to remain in safe but unproductive parts of the
map and fails to commit to the unique risky path that is actually needed to succeed.

Second, in Sokoban the hardest failures arise in layouts with long, irreversible action chains. A
move that clearly improves the local situation, such as pushing a box closer to a goal tile or clearing
a corridor, can still commit the agent to a configuration that only becomes a deadlock many steps
later. Once a box is pushed into a corner or along a narrow hallway, the position may be technically
unsolvable although this is not immediately apparent from the local view. In many of these cases
the relevant local rules (how boxes move, when a cell is blocked, what makes a box irrecoverable)
are already present in the rulebook and reflected in the LVF, but the decision procedure still prefers
locally attractive actions that subtly reduce the number of viable solution branches.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

We also observe milder versions of these phenomena in Minesweeper. Occasionally CEL learns
rules that slightly overestimate the risk of uncovering certain border cells and therefore chooses
low-information moves that avoid progress, especially on larger boards where many patterns are
rare. Here the failure is not that the rules are wrong in a single state, but that they are applied too
rigidly and prevent the agent from gathering the evidence needed to refine them.

Taken together, these patterns highlight two main challenges for the current instantiation of CEL:
the induced playbook can be sensitive to rare but misleading experiences, and action selection can
struggle with rare long-horizon traps in environments with irreversible dynamics. We view these as
opportunities for future work, for example by using stronger backbone LLMs and integrating deeper
or more selective lookahead mechanisms in domains where long-term consequences are critical.

J EXTENDING CEL TO BROADER CLASSES OF GAMES

While our main experiments evaluate CEL in controlled single-agent grid environments with sym-
bolic state and sparse rewards, the same architecture naturally extends to broader classes of games
and composes cleanly with other agent modules. In particular, CEL scales most directly to dis-
crete, turn-based settings with symbolic or symbolizable state representations, and can serve as a
high-level reasoning module that provides rules, value estimates, and strategic guidance on top of
perception, search, control, or belief-tracking components in richer environments.

For larger symbolic puzzles and grid-based MDPs (e.g., maze and navigation domains, 2048-style
tile games, grid-based resource-collection or delivery tasks), the state can be expressed as struc-
tured textual or grid descriptions and actions remain discrete. In these settings the LWM, LVF, and
rulebook/playbook can be reused without architectural changes, and our size- scaling and horizon-
scaling experiments on Minesweeper and Frozen Lake already indicate that CEL can cope with
larger boards and longer episodes in this family. Moving to more complex grids primarily requires
richer symbolic encodings (for example, for local patterns or objects) and adjusted horizons, while
keeping the reason–act–reflect loop intact.

For combinatorial, perfect-information board games (e.g., Go and chess), CEL is well-suited as
a high-level inducer of rules and strategies operating on symbolic board descriptions. Our Go-like
two-player experiment in Section 4.7 shows that CEL can learn non-trivial strategies and outperform
Qwen baselines against a rule-aware random opponent in a long-horizon setting. Scaling toward
richer board games (e.g., larger boards or stronger opponents) would mainly require more structured
symbolic encodings of game state (such as groups, liberties, or tactical features) and more expressive
backbone LLMs to support deeper, more precise reasoning; the CEL loop itself remains unchanged.

In multi-agent or partially stochastic symbolic games (e.g., cooperative grid-worlds, capture-the-
flag arenas, or turn-based card games with shared public information), CEL can be extended by
conditioning the LWM and LVF on agent identities, roles, and shared state, and by treating the
rulebook and playbook as explicit multi-agent knowledge (conventions, coordination patterns, role-
specific guidelines). Partial observability and exogenous stochasticity can be handled by composing
CEL with a separate belief-tracking module. For example, in a card game or a strategy game with
fog-of-war, a dedicated module can maintain a latent belief over hidden cards or unseen units and
periodically summarize it into a short textual description (e.g., which regions are likely unsafe or
which cards the opponent is likely to hold), which is then fed to CEL as additional context.

Finally, in high-bandwidth, continuous-control, visually rich environments (e.g., FPS-style games),
we do not expect CEL in its current text-only form to directly output low-level motor commands. In-
stead, we view CEL as a high-level reasoning and memory component on top of perception, search,
and control stacks. A perception module would convert raw observations into compact symbolic de-
scriptions; a learned motor policy would handle fine-grained continuous control; and CEL’s LWM,
LVF, and rulebook/playbook would operate on this abstract state space to induce rules, evaluate
high-level options, and output goals, subgoals, or tactical plans. Tree search or other planners can
then use CEL’s world model and value function as language-level heuristics and priors, while explicit
rules and strategies provide interpretable guidance and long-term memory for the overall agent.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

K PERFORMANCE WITH AN EXPANDED TRAINING SET

To further evaluate the scalability and generalization capabilities of our CEL agent, we conducted
an additional experiment on the Minesweeper environment. We expanded the set of training layouts
by increasing the number of unique seeds from 32 (used in the main experiments) to 128.

The results are presented in Figure 14. The agent demonstrates a notable improvement in perfor-
mance, with its peak success rate climbing from 54% (as reported in Figure 3) to a new maximum of
62%. This finding suggests that exposure to a more diverse set of game scenarios directly enhances
the agent’s core reasoning and planning capabilities. This confirms that the agent is developing a ro-
bust, generalizable problem-solving model for the game, rather than overfitting to a limited number
of specific layouts.

Figure 14: Learning curve for the CEL agent on Minesweeper when trained on an expanded set of
128 unique seeds. The agent achieves a new peak success rate of 62%, surpassing the performance
observed with 32 seeds.

L PROMPT TEMPLATES

In this section, we present the core prompt templates used by the CEL agent. Figure 15 shows the
template for in-episode decision-making, Figure 16 shows the template for post-episode reflection,
and Figure 17 shows the template for conservatively merging newly induced rules into the persistent
rulebook.

M ADDITIONAL RESULTS

To illustrate the explicit and interpretable knowledge base generated by our CEL agent, we provide
concrete examples of Decision-Making processes (Figure 18), learned environmental rules (Fig-
ure 19, Figure 20, Figure 21) and strategic playbooks (Figure 22, Figure 23) for the Minesweeper,
FrozenLake and Sokoban environment.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

LANGUAGE-BASED WORLD MODEL THINKING PROMPT - SYSTEM
You are an agent playing a game on a grid, acting as a reasoning engine.

Game Context:
Your decisions are based on two key pieces of information:
These rules and strategies may be incomplete or incorrect.
- **Current Game Rules:** Your best guess of how the game works.
{game_rules}
- **Strategic Playbook:** Learned strategies and principles for achieving success.
{strategic}

Valid Actions:
Your only way to interact is to **access an element** on the grid. You must specify its coordinates in the format `<answer>(row, col)</answer>`.

Instructions:
1. **Analyze State:** Summarize the current state.
2. **Predict Long-term Value of Outcomes (Value Function Evaluation):** Evaluate the strategic value and potential of the current state for the future.
3. **Predict Immediate Consequences (World Model Simulation):** For top 2 candidate actions, predict their consequences using a "result-because" structure.
4. **Select the Best Action:** Based on the predicted consequences, choose the action that leads to the most advantageous future state.

Your response must strictly follow the format below:

<reason>
1. Analysis of the Current State:
[Summary of the board state.]

2. Prediction of the Value of Current States:
[Provide an assessment of the current state's strategic value.]
- **Value:** High value. Securing guaranteed points creates a dominant position for winning.

3. Prediction of Immediate Consequences:
[Analyze ONLY the top 2 candidate actions using the "result-because" structure.]
- **Access (row_A, col_A):** ...
- **Access (row_B, col_B):** ...
</reason>
<answer>(row, col)</answer>

LANGUAGE-BASED WORLD MODEL THINKING PROMPT - USER
Turn {turn}:

Observation is:
{current_observation}

Figure 15: The prompt template for in-episode decision-making (Phase 1). It instructs the LLM to
evaluate the current state, assess their strategic value (LVF) and predict action outcomes (LWM).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

RULE AND PLAYBOOK SUMMARIZATION PROMPT - SYSTEM
You are a chief scientific strategist and master tactician. Your mission is to analyze extensive field data from numerous operations to distill and refine the
Master Rulebook of a complex game.

You will be presented with a large collection of **highly successful trajectories** and **critical failure trajectories**, collected over a long period.

Your **primary task** is to perform a deep, comparative analysis to understand the fundamental principles of victory and defeat. You must act as a grand
strategist, looking for universal patterns and high-level causal relationships. Your goal is to synthesize these insights to produce the **next generation's
Master Rulebook**, making it more robust, accurate, and effective.

[Core Principles]
- **Think Long-Term:** Focus on universal, strategic truths that are consistently validated across many diverse scenarios. Ignore circumstantial flukes.
- **Learn from Contrast:** The most critical insights come from identifying the key strategic differences that separate winners from losers.
- **Synthesize and Consolidate:** Your output must be a single, unified, and improved Master Rulebook. Do not simply copy rules; forge a more perfect
theory from all available evidence.
- **Be Authoritative and Concise:** Your rules should be stated as clear, definitive principles.

Your output MUST be a single, consolidated `<rule>` block representing the new Master Rulebook.

<rule>
<game_rules>
1. Symbol Meanings: [Define the unchanging, intrinsic properties of game elements.]
2. Information & Interpretation: [Define how elements reliably inform about the game state.]
3. Gameplay & Actions: [Define the core mechanics and interactions.]
4. Action Effects: [Describe the predictable outcomes of actions.]
5. Game Objective & Termination: [State the ultimate win/loss conditions.]
</game_rules>
<strategic>
1. Core Strategies: [Describe foundational, high-level strategic priorities that lead to victory.]
2. Tactical Tips: [List widely applicable, advantageous situational plays.]
</strategic>
</rule>

RULE AND PLAYBOOK SUMMARIZATION PROMPT - USER
[Task]: Analyze the following successful and failed gameplays to refine the Master Rulebook.

Evidence File 1: Successful Trajectories (Score: 1)
{positive_trajectories_data}

Evidence File 2: Failed Trajectories (Score: 0)
{negative_trajectories_data}

[Instruction]: Now, based on your comparative analysis of the evidence, provide the single, updated Master Rulebook.

Figure 16: The prompt template for the Rule Induction and Playbook Summarization process (Phase
2). It guides the LLM to analyze a completed episode’s trajectory and refine its explicit model of
the environment’s dynamics.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

RULE AND PLAYBOOK MERGE PROMPT - SYSTEM
You are an AI assistant functioning as a Rulebook Fusion Module.
Your sole purpose is to intelligently merge two versions of a game's rulebook: an established 'Base Version' and a new 'Proposed Version'.

Your primary directive is to produce a refined 'Final Version' that prioritizes stability and logical consistency. You must operate under the assumption that the
'Base Version' is fundamentally sound and effective, while the 'Proposed Version' contains potentially valuable but unverified updates.

[Operational Principles]

1. **Prioritize the Base Version:** The 'Base Version' is your foundation. Your output must be an evolution of it, not a replacement. Preserve its structure and
core principles unless there is a compelling reason to change.

2. **Be Conservative:** Adopt changes from the 'Proposed Version' with high scrutiny. Only integrate modifications or additions that represent clear,
unambiguous, and essential improvements. If a proposed change is radical, confusing, or contradicts the core logic of the Base Version, you must discard it
and default to the Base Version's original rule.

3. **Ensure Coherence:** The 'Final Version' must be a single, coherent, and logical document. After merging, ensure there are no redundant, conflicting, or
nonsensical rules.

Your output MUST be a single, complete, and consolidated `<rule>` block representing the Final Version.

RULE AND PLAYBOOK MERGE PROMPT - USER
[Task]: Merge the following two rulebook versions into a single, updated Final Version.

Base Version (The stable, foundational rulebook)
{base_rulebook}

Proposed Version (The new draft with potential updates)
{proposed_rulebook}

[Instruction]: Now, provide the single, merged, and updated Final Version in the required format.

Figure 17: The prompt template for the rulebook and playbook merge step. It instructs the LLM
to reconcile newly proposed rules and strategies with the existing rulebook, resolve contradictions,
remove redundancy, and produce a refined, stable set of explicit game knowledge.

Prediction of Immediate ConsequencesPrediction of the
Value of Current StatesState

The box at (4,3) will be pushed to (4,4), which is the goal
('G'). Since the cell behind the box (in the direction of
movement) is empty (specifically, a goal cell), this move
is valid and will mark the box as '√'. The game will
immediately transition to a "Game solved" state. This move
achieves the win condition in one step.

RIGHT

High value. The player is in a
direct line of action to push a
box into the goal. The box is
one step away from the goal,
and the direction of push is
clear. This is a high-
probability win scenario with
only one valid move required to
succeed. The game is on the
verge of being solved, and no
further steps are needed if the
push is valid.

The player would move to (3,2), which is currently empty
('.'). This does not advance the box or get closer to a
goal. It reduces the player’s proximity to the box and
creates a non-productive move. This move leads to a loss of
progress and wastes a step, especially since a win is
immediately available via RIGHT.

UP

Figure 18: An example of a Decision-Making process for Sokoban environment.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Generated-Rule Definition (Minesweeper)Rule Composition

- '.': Unrevealed cell (unknown content; may contain a mine or be safe).
- '0': Revealed safe cell (no adjacent mines).
- 'n' (where n > 0): Revealed cell with exactly 'n' adjacent mines (including diagonals).
- '*': Revealed cell that contains a mine (game over condition).

1. Symbol Meanings

- The initial state is fully obscured (all cells are '.').
- After a valid action, the game reveals the state of the selected cell.
- If a revealed cell contains a mine ('*'), the game ends immediately — loss.
- If a revealed cell shows a number (e.g., 1, 2), it indicates exactly how many adjacent
mines exist (including diagonals), but does not reveal their specific locations.
- A cell is "already revealed" if it has been previously opened and remains unchanged.
- Revealing a cell with value '0' provides no direct mine information but immediately
reveals all adjacent unrevealed cells (via propagation).

2. Interpretation

- On each turn, the player selects a cell (row, col) within bounds (0–4).
- If the selected cell is already revealed, the action is invalid and no change occurs.
- If the selected cell is unrevealed (marked '.'), the game reveals its state:
- If it is a mine ('*'), the game ends — loss.
- If it is a safe cell (value '0' or 'n > 0'), the cell is revealed, and the game continues.
- A cell with value '0' triggers automatic revelation of all adjacent unrevealed cells
(including those with '.').
- Repeated attempts to reveal already-revealed cells result in invalid actions and no
change.

3. Gameplay

- Revealing a cell with value '0' causes all adjacent unrevealed cells to be automatically
revealed — this is a key strategic advantage and significantly reduces the search space.
- Revealing a cell with a number 'n > 0' provides partial information: exactly 'n' adjacent
mines exist, but their exact positions remain unknown.
- Repeated actions on already-revealed cells are invalid and do not progress the game.
- Invalid actions (e.g., attempting to open a revealed cell) do not cause loss or progress
the game.

4. Action Effects

- Win: All unrevealed cells are safely revealed (no mine is exposed), and the final board
contains no '.' or '*'.
- Lose: A mine ('*') is revealed during a valid action.
- The game ends immediately upon revealing a mine.
- The game is "solved" when the player has fully revealed all safe cells without exposing
any mines.

5. Game Objective

Figure 19: An example of a learned environmental rule for Minesweeper environment. All rules are
generated by CEL. Blue highlighting marks a few representative cases.

Generated-Rule Definition (FrozenLake)Rule Composition

- 'P': Player position (starts at a given cell, moves via actions).
- 'H': Hazard (indicates a wall or impassable zone; cannot move into or through).
- 'G': Goal (target destination; game ends when player reaches a goal).
- Empty cell ('. '): Open space; player can move into it.

1. Symbol Meanings

- The player can only move into adjacent cells (up, down, left, right) that are not
occupied by 'H' and are within the grid bounds (0â€“5 in all directions).
- The game state is updated immediately after each valid action.
- 'INFO: You hit a wall!' indicates an invalid move attempting to move into a cell with 'H'
or outside the grid boundaries.
- 'INFO: Game solved.' indicates the player has reached a goal ('G') via a valid move.
- 'INFO: Game over.' indicates failure due to either falling into a hazard ('H') or
exceeding the maximum number of steps (e.g., 25 turns).

2. Interpretation

- The player takes turns moving in one of four directions: UP, DOWN, LEFT, RIGHT.
- Movement is only allowed to adjacent cells that are empty ('.') or contain a goal ('G').
- The player cannot move into a cell with 'H' or beyond the grid boundaries (row or column
must remain within 0-5).
- The game begins at the starting 'P' position and ends when the player reaches a 'G'.

3. Gameplay

- Valid move: Player shifts position to an adjacent cell if the destination is within
bounds and not occupied by 'H'.
- Invalid move: Movement into a cell marked 'H' or outside the grid (row or column < 0 or >
5) results in a wall hit and no positional change.
- Reaching a 'G' cell ends the game with a win.
- Falling into a hazard (i.e., moving into a cell marked 'H') results in immediate loss.
- Exceeding the maximum number of steps (e.g., 25 turns) results in a loss.

4. Action Effects

- Objective: Reach a goal ('G') from the starting position ('P') without falling into a
hazard or exceeding the maximum number of steps.
- Termination conditions:
- Win: Player reaches a goal ('G') via a valid move.
- Loss: Player falls into a hazard ('H') or exceeds the step limit (e.g., 25 turns).

5. Game Objective

Figure 20: An example of a learned environmental rule for FrozenLake environment. All rules are
generated by CEL. Blue highlighting marks a few representative cases.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Generated-Rule Definition (Sokoban)Rule Composition

- '#': Wall (impassable boundary)
- '.': Empty passage (passable; can be traversed by the player)
- 'P': Player (start position; can move to adjacent empty cells or push a box if applicable)
- 'B': Blue token (initially a movable box; can be pushed if the cell behind it is empty
and not occupied by a wall or another box)
- 'G': Green token (goal cell; a box must be moved to a 'G' to win; once a box reaches a
'G', it is marked with '√' and cannot be moved again)
- '√': Final solved state — a box has been successfully moved to a goal cell ('G'). The
game is solved when all boxes ('B') are on goal cells ('G') and marked with '√'.

1. Symbol Meanings

- A valid action (UP, DOWN, LEFT, RIGHT) can only be taken from a cell adjacent to the
player ('P').
- If the target cell is empty ('.'), the player moves there.
- If the target cell contains a box ('B'), the box is pushed one cell in the direction of
movement **only if** the cell immediately behind the box (in that direction) is empty and
not occupied by a wall ('#') or another box.
- The game state is updated after each valid move.
- 'INFO: Your action is valid' → move is allowed and within bounds.
- 'INFO: Your action is invalid' → attempted move is out of bounds, into a wall ('#'), or
into a non-empty cell that cannot be entered (e.g., pushing a box into a wall or another
box).
- 'INFO: Game solved' → all boxes ('B') have been successfully moved to goal cells ('G')
and are marked with '√'; the game ends immediately.
- 'INFO: Game over' → the maximum number of allowed steps (e.g., 15â€“16) has been reached
without achieving a solved state; the player loses.

2. Interpretation

- The player controls a single 'P' that can move one cell at a time in four directions: UP,
DOWN, LEFT, RIGHT.
- Movement is allowed only into adjacent empty cells ('.') or to a box ('B') if the box can
be pushed (i.e., the cell behind it is empty and not blocked by a wall or another box).
- The player does **not** move tokens directly — instead, movement is used to either
reposition the player or push a box.
- Box positions ('B') are initially fixed in space; their final positions are determined by
the solved state (all 'B' tokens on 'G' cells).
- The objective is to guide the player’s path so that one or more boxes are pushed into
goal cells ('G') and marked with '√'.
- Once a box reaches a goal ('G'), it is locked in place and cannot be moved again.
- The player **cannot pull** boxes — only **pushes** are allowed.
- The game ends immediately upon either a win (all boxes on 'G') or a loss (step limit
reached or invalid move).

3. Gameplay

- Valid movement (player or box) updates the game state and advances the turn.
- If a box is successfully pushed into a goal cell ('G'), it is immediately marked with '√'
and cannot be moved again.
- If a box is pushed into a wall ('#') or into another box, the move is invalid and no
change occurs.
- Invalid movement results in no change and a clear message (e.g., "Cannot move into wall"
or "Cannot push box into wall").
- Repeated invalid or looping moves (e.g., cycling between cells without progress) lead to
step exhaustion and loss.
- A "game solved" message appears when all boxes are on goal cells ('G') and marked with
'√'.
- Upon reaching a cell adjacent to a 'G', the game ends with a win **only if** a box is
present on that 'G' — otherwise, the win condition remains tied to box placement.

4. Action Effects

- **Win Condition**: All boxes ('B') are successfully moved to goal cells ('G') and marked
with '√'. This constitutes the final solved state.
- **Loss Conditions**:
- The player exceeds the maximum number of allowed steps (e.g., 15â€“16).
- The player makes an invalid move (e.g., pushing a box into a wall or another box).
- Boxes become stuck in positions where no further movement is possible (i.e., no path
exists to any goal).
- The player is unable to make any further valid moves (all boxes are blocked from reaching
goals).
- The game ends when either a win is achieved or a loss condition is triggered.

5. Game Objective

Figure 21: An example of a learned environmental rule for Sokoban environment. All rules are
generated by CEL. Blue highlighting marks a few representative cases.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Evidence from Model (FrozenLake)Derived Strategic Concept

Use efficient, direct paths to reach the goal. Avoid
circular motions or backtracking.Minimize Steps

Method
If blocked, use vertical or horizontal movement to
reposition - e.g., go down to a lower row, then right
to reach goal.

Deadlock Avoidance

Identify pre-existing paths or corridors (e.g.,
horizontal/vertical lines of '.') to exploit. Use them
to move efficiently.

Pattern Recognition

Always move toward the nearest goal ('G') using a clear
path through open cells ('.'). Avoid detours or
unnecessary exploration.

Prioritize Pathfinding Over
ExplorationPrinciple

Avoid Hazards ('H'):** Never move into or adjacent to
'H' cells-they are impassable and lead to immediate
loss.

Constraint Satisfaction

Figure 22: An example of a learned strategic guideline from the agent’s playbook for FrozenLake
environment. All rules are generated by CEL. Blue highlighting marks a few representative cases.

Evidence from Model (Sokoban)Derived Strategic Concept

If a box is stuck, check if the player can reposition
to push it from another direction — repositioning is
key to unlocking progress.

Repositioning

Method

Avoid creating deadlocks: Never make moves that trap
blocks between walls or other blocks.Deadlock Avoidance

Move toward the nearest G or box closest to a G first.Greedy Heuristic

Use symmetry and pattern recognition: In complex
layouts, observe recurring patterns (e.g., corner
formations) and exploit them to create a "clear path"
to goal.

Pattern Recognition

Plan movement paths: Always plan a route to reach a box
that can be pushed, ensuring the path behind the box is
clear.

Consequential Planning

Principle

Never make a move that results in a box being pushed
into a wall or another box — this leads to invalid
moves and loss.

Constraint-Based Pruning

Act only when movement is valid and leads to a new,
meaningful state: Every action must contribute to
progress.

Intentional Action

Prioritize block alignment with goal: Always aim to
position a block (B or P) directly adjacent to the goal
(G) before attempting to move it into it.

Local Optimization

Figure 23: An example of a learned strategic guideline from the agent’s playbook for Sokoban
environment. All rules are generated by CEL. Blue highlighting marks a few representative cases.

26

	Introduction
	Related Work
	Method
	Language-based World Model
	Induction of Environmental Dynamics
	Strategy and Playbook Summarization
	Language-based Value Function
	The Agent's Operational Cycle

	Experiments
	Game Environments
	Implementation Details
	Results
	Ablation Study
	Case Study
	In-Episode Decision-Making
	Autonomous Rule Discovery
	Emergent Strategy and Playbook Generation

	Generalization
	Beyond Single-Agent Puzzles: A Long-Horizon Go-like Two-Player Game

	Conclusions
	LLM USAGE
	Details of Environments
	Training Details, Hyperparameters, and Compute Budget
	CEL Training Loop
	Hyperparameters and Compute Budget

	Confidence Intervals for Agent Performance
	Behavioral Cloning Baseline
	Limits of an Action-Only Agent Trained with GRPO
	Controlling Game-Specific Prior Knowledge
	Value in Words: Language-Based Feedback from CEL
	Failure Analysis of Hard Cases
	Extending CEL to Broader Classes of Games
	Performance with an Expanded Training Set
	Prompt Templates
	Additional Results

