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Abstract
The discovery of causal interactions from time series data is an increasingly common approach in
science and engineering. Many of the approaches for solving it rely on an information-theoretic
measure called transfer entropy [TE] to infer directed causal interactions. However, TE is difficult
to estimate from empirical data, as non-parametric methods are hindered by the curse of dimen-
sionality, while existing ML methods suffer from slow convergence or overfitting.

In this work, we introduce AGM-TE, a novel ML method that estimates TE using the difference
in the predictive capabilities of two alternative probabilistic forecasting models. In a comprehensive
suite of TE estimation benchmarks [with 100+ tasks], AGM-TE achieves SoTA results in terms of
accuracy and data efficiency when compared to existing non-parametric and ML estimators. AGM-
TE further differentiates itself with the ability to estimate conditional transfer entropy, which helps
mitigate the effect of confounding variables in systems with many interacting components. We
demonstrate the strengths of our approach empirically by recovering patterns of brain connectivity
from 250+ dimensional spike data that are consistent with known neuroanatomical results.

Overall, we believe AGM-TE represents a significant step forward in the application of transfer
entropy to problems of causal discovery from observational time series data.
Keywords: Causal Discovery, Causal Models, Machine Learning, Transfer Entropy

1. Introduction: Causality, Causal Discovery, and Transfer Entropy

A fundamental goal of science and engineering is to understand causal interactions between vari-
ables in the systems that we study and design. Following Pearl (2010), we say that X causes Y
[denoted as X → Y ] if and only if an intervention on X [denoted do(X = x)] has an effect on
p(y|do(X = x)), the post-interventional distribution of Y . As correlation alone does not imply
causation, the interventional distribution p(y|do(x)) may differ substantially from the conditional
p(y|x). For example, since sunlight (Y ) is required for plant growth, it correlates with plant height
(X). However, intervening on plant height [say by providing fertiliser] will clearly not change how
much the sun shines. That is, p(y|do(x)) ̸= p(y|x) for sunlight Y and plant growth X .

1.1. Data Driven Causal Discovery

The traditional approach by which causal interactions are discovered is to conduct experiments,
which allow us to directly observe the consequences of a given intervention. However, in many
fields such as neuroscience, earth system science, or economics, manipulations of the complex

© 2025 D. Kornai, R. Silva & N. Nikolaou.



KORNAI SILVA NIKOLAOU

system being studied are either expensive, unethical, or impossible. Currently, the main alternative
is computer simulations. However, these are often time-consuming, computationally expensive,
and also require substantial amounts of expert knowledge, which may in turn impose potentially
unwarranted assumptions on the systems being studied (Runge et al., 2019).

This constraint on the availability of interventional data stands in increasingly stark contrast to
the vast amounts of observational data that can now be acquired due to advancements in recording
technology in many domains (Sozzi et al., 2021; Steinmetz et al., 2021; Urai et al., 2022). This
has motivated the development of approaches that can infer properties of the data generating pro-
cess directly from observational datasets. Such data driven causal discovery methods have found
applications in diverse fields such as epidemiology (Liang and Mikler, 2014), neuroscience (Mati-
asz et al., 2017), industrial control systems (Chatterjee and Dethlefs, 2020), materials science (Sun
et al., 2021), and climate science (Böhnisch et al., 2023).

1.2. Causal Discovery in Timeseries

Causal discovery methods rely on assumptions about the data generating and observation processes
(Spirtes and Zhang, 2016). For causal discovery methods operating on timeseries data, the core
assumption about the data generating process is that causal structures have to be consistent with
time order. That is, we assume cause precedes effect. Given this assumption, causation of X by Y
implies that the past of Y influences the present [and future] of X .

To express this idea more precisely, let us introduce some notation. Consider the temporally
discrete time series Y , with observations at each timestep t ∈ {0, 1, ..., T}. For a given timestep t,
the value at the next timestep is denoted as yt+1. The notation yt− is a shorthand for y1:t, the past
values of Y up to and including time t. yt+1|yt− denotes the value of yt+1 given the past of Y . The
notation for the values of the second time series X is similar (e.g. xt−). We can then say that X
causes Y if Y is not independent of the past of X after conditioning on the past of Y (Peters et al.,
2017). The converse statement concerning the lack of causation if Y is independent of the past of
X after conditioning on the past of Y also true.

yt+1 ̸⊥⊥xt−|yt− ⇐⇒ yt+1|yt− ̸= yt+1|xt−,yt− =⇒ X → Y (1)

yt+1⊥⊥xt−|yt− ⇐⇒ yt+1|yt− = yt+1|xt−,yt− =⇒ X ̸→ Y (2)

This captures the notion of direct causation in the interventional framework under the assumption
of faithfulness if no unmeasured confounders exist (Zhang and Spirtes, 2015).

The framework of predictive causality (Wiener, 1956) is one way to translate this link between
conditional independence and causality into a method for causal discovery. For dependent variables
X and Y , we say thatX causes Y if the prediction of a future value of Y is significantly enhanced by
the history of X . To measure this improvement in predictions, Granger (1969) introduced the idea
of using two autoregressive forecasting models for the future of Y : one considering only the past
of Y , the other considering the past of both Y and X . A model comparison procedure can reveal
[or rule out] a predictive improvement due to additional information from X , and thereby infer the
presence of a causal interaction. If the models are similarly good, then X and Y are conditionally
independent given the past of Y , and thereforeX ̸→ Y . If the model using both Y andX is better at
predicting Y , this suggests increasing evidence in favour of X → Y [See Appendix A for details].
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1.3. Defining Transfer Entropy

Granger causality is a special case [for linearly interacting Gaussian variables] of a more general
information-theoretic concept called transfer entropy (Schreiber, 2000; Barnett et al., 2009; Barrett
et al., 2010). Understanding transfer entropy requires first introducing the generalised Markov
property. Recall our notation for the temporally discrete time series Y . yt is a shorthand for
the past k values of Y , that is yt−k+1:t. P (yt+1|yt) then denotes the probability distribution of a
specific yt+1 given the past k past values of Y . If we also consider a time series X , we can say that
the combined system S(Y,X) has the generalized Markov property, if:

P (yt+1|yt) = P (yt+1|xt,yt), for t ∈ 0 : T − 1

that is, conditioning on the past values of X does not influence the future probabilities of Y if we
have already conditioned on the past of Y . Note how this is a probabilistic version of Eq. 1.

Transfer entropy (denoted TX→Y ) simply measures the deviation from the generalized Markov
property. It can be equivalently formulated as conditional mutual information [CMI], a KL diver-
gence, or a difference of conditional entropies (Mondal et al., 2020)

TX→Y := I(xt; yt+1|yt) (3)

:= DKL(P (xt, yt+1yt)||P (xt,yt)P (yt+1|yt)) (4)

:= H(yt+1|yt)−H(yt+1|xt,yt) (5)

Transfer entropy is therefore measuring the additional information [reduction in uncertainty] on yt+1

available in the past of X , that is not already captured in the past of Y . In all cases, TX→Y ≥ 0,
as considering the past of an independent X will not increase our uncertainty in Y . If TX→Y = 0,
there is no information flow from X to Y , therefore X ̸→ Y . Conversely, TX→Y ≫ 0 implies a
directed causal interaction X → Y , with the magnitude quantifying its strength.

1.4. Applications of Transfer Entropy to Causal Discovery

Transfer entropy estimation methods can complement existing causal discovery approaches by driv-
ing feature selection or filtering decisions [see Wollstadt et al. (2019), Assaad et al. (2022), Castri
et al. (2023), Bonetti et al. (2024)]. It is also possible to infer causal relationships directly using es-
timated TE values. For example, Bauer et al. (2007) use TE to identify the direction of disturbance
propagation in a chemical plant, Shovon et al. (2016) use TE to infer brain connectivity from EEG
data, while Kim et al. (2020) use TE to infer gene regulatory networks.

These applications in causal discovery all depend on methods that infer transfer entropy from
data. Unfortunately, information-theoretic quantities are notoriously difficult to estimate from finite
data (Sricharan et al., 2013; McAllester and Stratos, 2020). As such, existing implementations of
the three major classes of TE estimation methods each have their own significant issues relating to
accuracy and sample size requirements [see Section 2]. Indeed, difficulties with “practical com-
putability” have been one of the longest standing critiques of TE as a measure of causality (Runge
et al., 2012; Runge, 2018; Castri et al., 2023).

We therefore set out to improve the computability of TE from empirical data, as we believe this
could help TE estimation become more widely adopted in causal discovery.
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2. Background: Estimating Transfer Entropy from Data

There are three major classes of approaches for estimating transfer entropy from data. These each
use one of the three TE definitions presented in the previous section, with kNN-KSG, Variational
ML, and Cross Entropy ML methods using the formulations in Eqs. 3, 4 and 5 respectively.

In this section, we present a historical overview of the development of these estimation paradigms.
We detail the theoretical and implementational challenges associated with computability in each ap-
proach in order to demonstrate the longstanding difficulty of the TE estimation task and to better
contextualise our novel method that will be introduced in Section 3.

2.1. kNN-KSG

The oldest class of methods for TE estimation use a k nearest neighbours [kNN] approach to es-
timate the probability densities that are used to define entropy. These methods [such as Lindner
et al. (2011)], are based on the approach of Frenzel and Pompe (2007), which itself generalises the
KSG method of Kraskov et al. (2004) for estimating MI. The fundamental idea of such kNN TE
estimation methods is to take the decomposition of the CMI corresponding to TE

TX→Y := I(xt; yt+1|yt) = H(yt+1,yt) +H(xt,yt)−H(yt)−H(yt+1,xt,yt)

and use the estimator of Kozachenko and Leonenko (1987)[Appendix B.1.1] for each entropy term.
Due to their long history and good empirical performance in simple systems, kNN-KSG meth-

ods remain a widespread approach. However, both theory and empirical results show that these KSG
approaches suffer from the curse of dimensionality, with performance degrading exponentially for
vector-valued variables (Sricharan et al., 2013; Gao et al., 2018; Zhao and Lai, 2020).

2.2. Variational ML

Working separately from practitioners interested in estimating CMI for causality, machine learning
researchers were interested in measuring the mutual information between high-dimensional input
data [such as images] and learned representations. To develop a MI estimator that can cope with
variables of such high dimensionality, Belghazi et al. (2018) developed an innovative new class
of methods which have since proven useful in estimating transfer entropy. In these variational
machine learning methods, I(xt; yt+1|yt) is estimated by using neural networks to parametrise
the Donsker-Varadhan variational lower bound on the KL divergence between p(xt, yt+1,yt), and
p(xt,yt)p(yt+1|yt) [See Appendix B.2 for details].

TX→Y := DKL(P (xt, yt+1yt)||P (xt,yt)P (yt+1|yt))

≥ DV (P (xt, yt+1yt)||P (xt,yt)P (yt+1|yt))

Variational approaches have significantly improved performance in vector-valued data com-
pared to kNN-KSG methods, scaling up to 100-dimensional variables [see Mukherjee et al. (2019)
and Mondal et al. (2020)]. However, McAllester and Stratos (2020) proved that any distribution-free
high confidence lower bound on mutual information cannot be larger than O(lnN) [Where N is
sample size]. Since this subsumes the Donsker-Varadhan bound as a special case, variational CMI
estimators [Mukherjee et al. (2019), Mondal et al. (2020)] and TE estimators [Zhang et al. (2019),
Luxembourg et al. (2024)] require exponentially large datasets.
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2.3. Cross Entropy ML

The theoretical arguments of McAllester and Stratos (2020) also suggest that methods using upper
bounds on entropies will not suffer from the convergence issues of variational approaches.

One such upper bound, the cross entropy [CE] quantifies the expected level of surprisal when
using q(x) to model observations drawn from some true x ∼ p(x). The CE is an upper bound on
the entropy [expected surprisal] of the true distribution p(x), as it is the sum of this true entropy and
the non-negative KL divergence [relative entropy, or excess surprisal] of p(x) with respect to q(x).

H(p(x), q(x)) := Ex∼p(x)[− log q(x)]

:= H(p(x)) +DKL(p(x)||q(x))

If the true p(x) is unknown, but we have access to n samples of x ∼ p(x), we can empirically
estimate the cross entropy as

H(p(x), q(x)) ≈ Ĥ(p(x), q(x)) :=
1

N

∑N

i=1
[− log q(x)]

As H(p(x)) is fixed, fitting a [sufficiently expressive] model q(x) to a dataset by minimising the
empirical cross entropy will make our estimated Ĥ(p(x), q(x)) converge toH(p(x)).

Shalev et al. (2020) were the first to apply this approach to estimate the conditional entropies
in the definition of TE (Eq. 5). They use a neural network to parametrise a discrete categorical
distribution over yt+1 given inputs from yt, and estimateH(yt+1|yt) using the empirical CE:

H(yt+1|yt) ≈ Ĥ(yt+1|yt) :=
1

T

∑T

i=1
[− log q(yt+1|yt)]

After training a second model to parametrise a discrete distribution over yt+1 given both yt and xt,
we estimate TX→Y by subtracting the resulting empirical cross entropies.

TX→Y := H(yt+1|yt)−H(yt+1|xt,yt)

≈ 1

T

∑T

t=1
[− log q(yt+1|yt)]−

1

T

∑T

t=1
[− log q(yt+1|yt,xt)]

The NJEE method of Shalev et al. (2020) and the later DETE approach of Garg et al. (2022) im-
plementing this idea have favourable theoretical convergence and consistency properties, and were
shown to outperform kNN-KSG and variational ML estimators in synthetic data benchmarks.

OUTLOOK FOR CROSS ENTROPY TE ESTIMATORS

All causal discovery methods rely on assumptions about the data generating and observation pro-
cesses. This means that the extent to which a given method can be successful depends on the validity
of the assumptions for the systems being investigated (Runge, 2018).

As such, while DETE and NJEE have solved the problems of exponentially degrading perfor-
mance in kNN-KSG methods and the unrealistic sample size requirements of variational ML ap-
proaches, we nonetheless believe there is a significant opportunity for improving the computability
of TE with cross entropy methods if we are able to identify and mitigate two key limiting assump-
tions inherent to current implementations. In the upcoming section, we will introduce our proposal
for mitigating truncation error and categorical overfitting.
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3. Our Novel Method: AGM-TE

The main motivation behind our proposed method is to improve the practical computability of TE
by understanding and mitigating some of the unwarranted assumptions imposed by current cross
entropy approaches. In this section, we start by introducing these two assumptions, and detail
how methods from the probabilistic modelling of dynamical systems [see Salinas et al. (2017);
Rangapuram et al. (2018); Lin et al. (2022)] are incorporated into TE estimation in the new approach
we named Approximate Generative Model estimator of Transfer Entropy or AGM-TE1.

We then detail the model architecture and training procedure incorporating these results, and
present comprehensive comparative benchmarks with existing estimators from the three major classes
to establish the validity and efficacy of our approach. Finally, we discuss how conditional trans-
fer entropy can help mitigate the effect of confounding variables in systems with many interacting
components, and how our method estimates this quantity.

3.1. Motivating AGM-TE

The first unwarranted assumption [source of error] relates to the estimation of causal effects in the
presence of large temporal delays. Runge et al. (2012) and Castri et al. (2023) argue that existing
TE estimation methods with a fixed finite Markov order introduce significant truncation error, as
the original definition of TE considers all possible past timesteps. Such truncation error would lead
to an underestimation of TE when the sampling frequency is high, relative to the timescales of the
processes being investigated. We believe that the use of recurrent neural networks [RNNs] could
help mitigate this first issue, as RNNs can approximate dynamical systems [including their long-
range dependencies] to arbitrary accuracy (Schäfer and Zimmermann, 2006; Chen et al., 2023).

The second [and perhaps more serious] issue relates to the use of categorical distributions by
DETE and NJEE for modelling observations. First, as a discrete distribution with finite support,
modelling observations from any other type of data generating distributions induces some combi-
nation of truncation and discretisation error. Second, from the perspective of the categorical cross
entropy loss, all unobserved values around a given yt+1 are equally improbable. This assumption is
trivially violated for many distributions [such as the Gaussian], and also incentivises overfitting to
observations. This overfitting leads to an underestimation of uncertainty that cascades into an over-
estimation of TE [see Appendix C for a detailed demonstration and explanation]. A well-calibrated
probabilistic model for our observations could potentially remedy this issue.

We therefore set out to produce a data efficient cross entropy TE estimator that supports a wide
variety of data types [discrete, continuous, event-based] with appropriate likelihood models, and
utilises a recurrent neural network [RNN] for modelling dynamics.

3.2. Architecture of the AGM

The namesake of our method, the AGM, is a probabilistic model of the data generating dynamical
system. It combines a neural network latent dynamics model and a parametric observation model
to yield a predicted distribution over yt+1 given past observations of yt [or alternatively both xt and
yt]. The role of the neural network is to facilitate the learning of complex temporal dynamics, while
the parametric observation model ensures that the uncertainty of the model is correctly calibrated to
the inherent stochasticity of the generative process.

1. The Python implementation of AGM-TE can be found at https://github.com/dkornai/AGM-TE
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Here, we briefly detail our approach for the model of yt+1|yt. For each t, we first map our
observed yt to a latent state st using an affine transformation a(). The latent dynamics model
fθf () then uses a recurrent neural network to predict the upcoming latent state ŝt+1. We then map
the latent state to a predicted distribution over yt+1 using an observation model. This consists of
a function gθg() mapping from the predicted latent to a parameter vector ϕt+1, and q, the user-
defined distribution parametrised by ϕt+1 [e.g. multivariate Gaussian, Poisson, Laplace, ...]. By
choosing the distribution appropriately for the data type [e.g. a Poisson for event data], the predicted
probabilities over yt+1 become well-calibrated.

To summarise, the AGM for yt+1|yt can be expressed as the following composition

yt+1∼̇q(yt+1;ϕt+1 = gθg(fθf (a(yt)))

which is shortened to qΘ(yt+1|yt) for convenience. A more detailed description of these calcula-
tions, the NNs used in the latent dynamics model, and an introduction to the various choices for the
parametric distribution in the observation model are provided in Appendix D.

3.3. Training Procedure and TE Estimation

The AGM for yt+1|yt,xt takes as input the concatenation {yt, xt}, and similarly aims to predict
the distribution of yt+1. To infer predictive causality, we can compare the ability to forecast yt+1

under the base model qΘ(yt+1|yt) and the alternative model qΘ(yt+1|yt,xt) to see if considering
X has made our predictions better. To do so, we must first fit the models to data.

The AGM for yt+1|yt is trained on a T × d dataset Y, containing observations of the d-
dimensional yt over time t ∈ 1 : T . To measure the fit of the AGM for a given yt+1, we calculate
the negative log likelihood [NLL] of drawing the true yt+1 from the predicted q(yt+1|yt). Our loss
function to minimise is then the average NLL over the dataset, which is also the empirical estimate
of the cross entropy between the data distribution p and our model q (Goodfellow et al., 2016).

Loss(Θ1, [Y]) :=
1

T

∑T

t=1
[− log qΘ1(yt+1|yt)] = Ĥ(p(yt+1|yt), qΘ1(yt+1|yt))

The alternative model q(yt+1|yt,xt) is trained with a concatenation of Y and the T × e dataset X
[the timeseries of X] to similarly minimise the empirical NLL [cross entropy].

Loss(Θ2, [Y,X]) :=
1

T

∑T

t=1
[− log qΘ2(yt+1|yt,xt)] = Ĥ(p(yt+1|yt,xt), qΘ2(yt+1|yt,xt))

Optimisation of AGM parameters Θ with respect to the loss entails the maximisation of the like-
lihood of observing each yt+1, which facilitates learning of the underlying temporal dynamics and
stochasticity of the data generating process by the AGM. A detailed example of learning q(yt+1|yt)
and q(yt+1|yt,xt) for an input driven dynamical system can be found in Appendix E.

As we previously established, minimisation of the CE results in its gradual convergence to
the entropy of the data generating distribution. Therefore, as training progresses, Loss(Θ1, [Y])
and Loss(Θ2, [YX]) become increasingly accurate estimates of H(yt+1|yt) and H(yt+1|yt,xt)
respectively. The transfer entropy TX→Y can thus be estimated from the data using the models as:

TX→Y ≈ T̂X→Y := Loss(Θ1, [Y])− Loss(Θ2, [YX]) (6)

Simply put, AGM-TE estimates TX→Y as the decrease in uncertainty of a predictive model of yt
that comes from also considering the past of a [potentially] causal variable X . Detailed theoretical
arguments for the convergence of this estimator to the true TX→Y can be found in Appendix F.
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3.4. Validation and Comparative Benchmarks in Synthetic Data

To establish the efficacy of our proposed approach, we compare the performance of AGM-TE to
existing kNN-KSG [NPEET (Ver Steeg and Galstyan, 2012)], variational ML [C-MI-GAN (Mondal
et al., 2020)], and cross entropy ML approaches [NJEE (Shalev et al., 2020)] in synthetic data. To
our knowledge, results from the set of 100+ different TE estimation tasks presented here constitute
the most comprehensive quantitative comparison of TE estimation methods to date.

To generate time series datasets, we use two bivariate systems, a linear-Gaussian [LG] model,
and a Joint Process [JP] model. These systems have analytically tractable TX→Y and TY→X [see
Appendix G], which act as the ground truth for our comparison of alternative methods. Full de-
tails of the benchmarking methods and a comprehensive discussion of the results can be found in
Appendix H. Here, we present a subset that highlights the general trends observed.

To test sample efficiency, we fixed the λ parameters of the 1D LG and JP systems, and generated
datasets of increasing length T . For each T , we add the absolute errors across the four estimated
TEs of the two systems. Plotting the total error across sample sizes (Fig. 1A), we see that AGM-
TE achieves favourable small-sample size performance comparable to non-parametric methods, in
contrast to other ML approaches that overestimate TE in small samples (Fig. 22).

We also investigated the ability of the methods to correctly estimate TE as data dimensionality
increases. In the redundant stacking tests, we concatenate additional channels of i.i.d. noise to
data from a 1D system, which should leave the true TE unchanged. These tests highlight how
kNN-KSG approaches fail as dimensionality increases, while the performance of ML methods is
mostly unaffected (Fig. 1B). In our linear stacking tests we concatenate data from d independently
simulated 1D systems, causing the true transfer entropy to increase linearly with d. This highlights
the comparative advantages of cross entropy ML methods relative to variational ML approaches,
which fail to correctly estimate higher TE values due to the lower bound used (Fig. 1C).

The performance of the four methods in the battery of 116 different TE inference tasks [40 1D
and 76 multi-D] can be summarised with two metrics. For the 57 cases where the true TE was pos-
itive, we measured the percentage error relative to the true value. NPEET had an average percentage
error of 46.85%, which fell to 8.18% for C-MI-GAN, and 6.85% for NJEE. In the remaining 59 cases
where the true TE is 0, we measured the average estimated TE, which acts as a proxy for false causal
positives. NPEET inferred an average TE of 0.0009, which was better than the ML-based C-MI-GAN

[0.0034] and NJEE [0.0113]. The best results for both metrics [4.96% and 0.0005] were achieved
by AGM-TE, demonstrating that our approach achieves SoTA TE estimation performance.
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Figure 1: A: Total error across four TE estimates from the Joint Process and Linear Gaussian sys-
tems at various samples sizes. B: Estimates of TX→Y for multidimensional variables
generated by redundant stacking in the Joint Process model. C: Estimates of TX→Y for
multidimensional variables generated by linear stacking in the Joint Process model.
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3.5. Novel Feature: Conditional Transfer Entropy Estimation

For the transfer entropy estimation approaches discussed so far, we assumed that the causal rela-
tionship between X and Y is fully described considering only those variables. That is, we assumed
causal sufficiency (Peters et al., 2017). But what if we have a larger system, and access to measure-
ments from a third variable, Z? How can ignoring the effect of Z lead to erroneous or incomplete
conclusions about causal relationships between X and Y ?

Consider a case in which Z affects both X and Y [denoted X ← Z → Y ]. If the information
from Z reaches X before it reaches Y , then knowing xt reduces uncertainty in yt+1, so we will
have TX→Y > 0, despite the fact that there is no causal interaction between X and Y . Similarly,
we can consider a case where the causal diagram is X → Z → Y , which is referred to as a chain.
Here, we will again have TX→Y > 0, despite the fact that X does not directly cause Y .

To avoid such issues caused by confounding variables, conditional transfer entropy [CTE], de-
noted TX→Y |Z was proposed (James et al., 2016). As with basic TE, one of the ways to formulate
conditional transfer entropy is using a difference in conditional entropies:

TX→Y |Z := H(yt+1|yt, zt)−H(yt+1|xt,yt, zt) (7)

In other words, CTE is measuring the additional information on Y available in the past of X , that
is not already available in the past of Y or the conditioning variable Z.

While kNN CTE estimators have been developed [see Shahsavari Baboukani et al. (2020)],
incorporating additional variables increases the dimensionality of the problem, exacerbating known
limitations of kNN-based methods. To our knowledge, AGM-TE is the first ML method to tackle
CTE estimation. This is done using a cross entropy approximation of Eq. 7:

T̂X→Y |Z :=
1

T

∑T

t=1
[− log qΘ1(yt+1|yt, zt)]−

1

T

∑T

t=1
[− log qΘ2(yt+1|yt,xt, zt)] (8)

If we denote by Z the concatenation of all system variables that are not X or Y , TX→Y |Z
isolates the causal relationship between our two variables of interest by accounting for potential
confounding effects from all other measured factors. A good estimator of TX→Y |Z therefore re-
duces false causal positives in complex systems with many potentially interacting elements (Novelli
and Lizier, 2021). This makes CTE useful for causal feature selection (Bonetti et al., 2024).

3.6. Summary and Outlook

By incorporating methods from the probabilistic modelling of dynamical systems, we believe our
approach offers four fundamental advantages that differentiate it from existing TE estimators:

• The ability to model long-range temporal dependencies

• The flexibility to specify an appropriately calibrated observation model for specific data types

• Favourable scaling with high dimensional variables

• The ability to estimate conditional transfer entropy

In the following section, we apply our CTE estimator to multi-hundred-dimensional neural record-
ings to infer effective connectivity between six interacting brain regions in the mammalian visual
cortex. This empirical demonstration is intended to highlight all of these advantages.
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4. Scientific Application: Inferring Effective Brain Connectivity

4.1. Introduction: Data and Problem Statement

The mammalian brain is an exceedingly complex information processing system. Much of the
information being processed by this system is represented in the frequency, timing, and spatial
distribution of spikes [millisecond fluctuations in the membrane potential of neural cells], making
them fundamental to how the brain computes (Bear, 2020).

Recent advancements in electrophysiological recording technology have led to the development
of high-density electrode arrays called Neuropixels (Jun et al., 2017). These devices enable re-
searchers to record spike trains (Fig. 2) from hundreds of neurons simultaneously.
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Figure 2: Schematic of a spike train for a single neuron, and the corresponding firing rate estimate
generated by counting spikes in every 100 ms interval. Source: Dayan and Abbott (2004)

The spatio-temporal patterns of spiking are fundamentally constrained by the anatomical net-
work connectivity of the brain (Knox et al., 2019). Would it therefore be possible to tackle the
inverse problem, and infer the mesoscale network connectivity of the brain directly from the pat-
terns of information flow in the neural activity recorded by Neuropixels? Doing so would suggest
that the method used for inferring information flow generates results that match known constraints.

EFFECTIVE CONNECTIVITY INFERENCE AS AN APPLICATION OF CAUSAL DISCOVERY

Effective connectivity [EC] refers to the extent to which activity in one brain region causes activity in
another area (Friston, 1994). As the integration within and between functionally specialized brain
regions is mediated by patterns of effective connectivity, characterisation of EC is an important
objective in many areas of neuroscience (Zeidman et al., 2019). The vast quantities of high fidelity
observational spike data, combined with the relative lack of interventional experiments (Steinmetz
et al., 2021) makes neuroscience a prime candidate for the application of causal discovery methods.

Due to its ability to detect the complex, non-linear relationships common in the brain, TE has
emerged as a promising candidate for quantifying the causal interactions that underlie effective
connectivity (Vicente et al., 2010; Chicharro and Panzeri, 2014). However, TE estimation methods
for spike data are unable to analyse modern Neuropixel datasets, due to their reliance on kNN
methods (Lizier et al., 2010; Shorten et al., 2021), which suffer from the curse of dimensionality.

In this section, we show that AGM-TE infers conditional transfer entropy values from multi-
hundred dimensional spike datasets recorded in live animals that imply effective connectivity pat-
terns consistent with known neuroanatomical results. This analysis demonstrates the scalability of
our method to large datasets, and highlights the potential for conditional transfer entropy as a way
to robustly discover causal interactions in systems with many interacting components.
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4.2. Methods

RATIONALE AND GOALS

Effective connectivity is inherently constrained by structural connectivity (Friston, 2011), the avail-
ability of physical information-carrying connections between neural populations (Škoch et al., 2022).
If TE is indeed a good measure of EC, we should see a high degree of correspondence between TE
estimates derived from recordings of live brains, and the structural connectivity inferred by the dis-
section of dead specimens. In our experiments, we sought to infer the effective connectivity of six
regions of the mouse visual cortex using CTE, and compare this to an anatomical ground truth.

EMPIRICAL DATA SOURCES

Our reference structural connectivity matrix [to which we will compare our inferred EC matrix]
is taken from the retrograde tracer experiments of Gămănuţ et al. (2018), which used fluorescent
markers to trace physical connections between a target population of neurons and their inputs.

The spike dataset was taken from (Siegle et al., 2021), who used Neuropixels to record the
activity of hundreds of neurons in six regions of the visual cortex [V1, RL, LM, AL, PM, AM ]
(Fig. 26) in eight awake mice viewing diverse visual stimuli [See Appendix I.1 for details on dataset
sizes]. These stimuli served to excite the visual system, allowing us to observe the propagation of
sensory information between regions of the visual cortex.

MODELLING NEURAL DATA WITH AGM-TE

In our spike dataset, each observation yt is a vector of discrete values which correspond to the
number of spikes occurring in a ∆ = 100 ms time step for each of the d neurons in a target region.
As this is a type of event data, to model these observations, we assume that they are generated by
a set of independent Poisson processes [one for each neuron] (Dayan and Abbott, 2004; Schimel
et al., 2021). The AGM therefore takes as inputs observations of past spike counts, and uses these to
infer a d dimensional rate vector µt+1, which parametrise the Poisson distributions for each neuron
from which we expect the number of spikes to be drawn at t+ 1.

For our latent dynamics model fθf , we use the gated recurrent unit [GRU] of Cho et al. (2014), a
type of RNN that can effectively account for long range temporal dependencies that we expect in the
underlying neural processes. In our observation model gθg maps of the predicted latent state vector
ŝt+1 to the positive real-valued rate parameter vector µt+1, ensuring that such parameters remain
positive. For each t, and each neuron, we can calculate the probability of observing a given amount
of spike events, given the predicted rate of spiking. We minimise the empirical expected value of
the corresponding NLL to train the AGMs [See Appendix D.3.2 for details]. If the optimisation is
successful, µt+1 should correspond to our estimate of the latent firing rate of the neuron, which may
be > 0, even when no actual spikes are observed during the interval.

EFFECTIVE CONNECTIVITY ANALYSIS

In a neural system with n regions, we estimate n2 − n distinct EC values to fill all off-diagonal
elements of an n×n effective connectivity matrix. We defined our measure of effective connectivity
between regions X and Y as a normalised conditional transfer entropy:

ÊCX→Y =
1

d
TX→Y |Z
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where Z is a concatenation of all remaining regions that are not X or Y , and d is the dimension-
ality of Y . Our effective connectivity measure therefore quantifies the average per-neuron rate of
information flow. To estimate this rate, we consider the gain in predictive capacity of the AGM that
also considers the past of the X region when determining the future spike counts of the Y region,
compared to a base model relying on only Y and the remaining Z regions.

4.3. Results and Discussion

VALIDATION ON SIMULATED DATA

To assess the efficacy of our approach in inferring effective connectivity, we first validated our
proposed method on synthetic data generated by a spiking readout of a rate-based neural model
of three interacting brain regions. We found that the CTE estimates of AGM-TE correspond to
the known ground truth network structure. We also found that when compared to using classic
TE, spuriously inferred connectivity is significantly reduced by conditioning [See Appendix I.3 for
details].

RESULTS IN THE EMPIRICAL DATASET

In the empirical dataset, the effective connectivity matrix inferred using AGM-TE (Fig. 3) matches
the known pattern of connectivity dominated by the connections from V1 to its primary targets: RL,
LM, AL and PM (Froudarakis et al., 2019; Siegle et al., 2021).

Inferred Effective Connectivity Structural Connectivity
1.0V1 V1 Connectivity Strength

0.8RL RL

0.6LM LM

0.4AL ALTa
rg

et
 a

re
a

PM PM 0.2

AM AM 0.0

V1 RL LM AL PM AM V1 RL LM AL PM AM
Source area Source area

Figure 3: Comparison of the effective connectivity matrix inferred by AGM-TE with a structural
connectivity matrix derived from cortical tracer results

To provide a quantification of this qualitative correspondence, we used a bootstrapping proce-
dure [Appendix I.4] to estimate the significance of the correlation coefficient calculated between the
inferred effective connectivity matrix and the anterograde tracer results of Gămănuţ et al. (2018).
The procedure suggested that the probability of achieving the degree of structural correspondence
that we observed in our results by chance alone is < 0.3%, showing that our inferred patterns of
effective connectivity are highly consistent with the known structural connectivity of these areas.

To our knowledge, these experiments represent not only the first time TE estimation methods
have been applied to Neuropixel data [which by itself represents a significant step in the application
of TE to neuroscience], but also the first time empirical datasets with hundreds of dimensions have
been successfully processed by any TE estimation method. These results also demonstrate how con-
ditional TE can effectively isolate the interactions of a given variable pair in systems with multiple
interacting elements, paving the way for the application of CTE to the discovery of causal graphs.
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5. Conclusions

Data-driven approaches for the discovery of causal interactions have found applications in an in-
creasingly wide range of scientific and engineering domains (Vicente et al., 2010; Wibral et al.,
2014; Runge, 2018; Massaro et al., 2023). However, despite its theoretical benefits, issues with the
“practical computability” of transfer entropy have thus far impeded the widespread integration of
TE into such causal discovery pipelines (Castri et al., 2023).

SUMMARY OF RESULTS

In this paper, we took inspiration from probabilistic models of dynamical systems to formulate
AGM-TE, a versatile and robust cross entropy ML approach for estimating TE in complex systems.

In our benchmarks, which represent the most comprehensive comparison of TE estimation
methods to date, AGM-TE demonstrated superior performance compared to existing approaches
in terms of both accuracy and false positives. We have also made our synthetic data generators used
in the comparison available to the public2.

We believe that the combination of a recurrent neural network for the dynamics model, and
a user-defined parametric observation model leads to four key advantages compared to existing
methods: the ability to handle temporally extended interactions, the use of appropriately calibrated
observation models for specific data types, favourable scaling with high dimensional data, and the
ability to estimate conditional transfer entropy. We demonstrated these benefits, and validated the
conceptual promise of CTE to isolate causal interactions between variable pairs in systems with
multiple confounders by inferring a pattern of brain connectivity from spike data consistent with
known neuroanatomical results. This also represents the first instance in which a TE estimation
method is able to scale to the large datasets being generated by recent advancements in neural
recording technologies.

FUTURE WORK

An interesting potential application of transfer entropy estimation not explored in this text is in
the area of control, which concerns manipulating system inputs to achieve desired behaviours. As
the problem of control can be posed as a task of reducing the entropy of the state vector x using
the control inputs u (Touchette and Lloyd, 2004; Lozano-Durán and Arranz, 2022), the transfer
entropy between a given control variable u[i] and state variable x[i] is an important parameter that
determines the extent to which u[i] can be used to control [reduce the entropy of] x[i] in a multi-input
multiple-output [MIMO] system (Westphal et al., 2024). While classic TE has already been applied
to chemical process control tasks (Bauer et al., 2007; Lee et al., 2020), we believe that the use of
conditional transfer entropy would be especially beneficial in such MIMO systems.

We look forward [and hope to contribute] to the continued development and application of
causal discovery methods to the many areas of science and engineering permeated by vast quantities
of available observational data.
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Appendix A. Granger Causality

Informally, we say that “X Granger causes Y if the future value of Y can be better predicted by
using both the values of X and Y up to time t than by using only the past of Y itself”.

DETAILED DESCRIPTION

To measure this effect, we consider two models, ŷt+1 = g1(yt) with error ŷt+1 − yt+1 = ϵ1, and
ŷt+1 = g2(xt,yt) with error ϵ2. We can then formally express the above statement as:

yt+1|yt ̸= yt+1|xt,yt =⇒
T∑
i=0

(ϵ1)
2 ≫

T∑
i=0

(ϵ2)
2 =⇒ X Granger causes Y

This means that X is inferred to Granger cause Y when the residual sum of squares (RSS) of the
model for yt+1|xt,yt is significantly lower than in the model of yt+1|yt.

The classic GC test was developed in a linear vector autoregressive (VAR) setting. Given the
timeseries X and Y , to see if X ̸→ Y or X → Y is preferred, we formulate two alternative
regression models for Y , one including only the past of Y , and one using both X and Y :

yt+1 = ŷt+1 + ϵ1 =
k∑

i=0

aiyt−i + ϵ1

yt+1 = ŷt+1 + ϵ2 =
k∑

i=0

aiyt−i +
k∑

i=0

bixt−i + ϵ2

The RSS of the two models (
∑

(ϵ1)
2,
∑

(ϵ2)
2) is used to calculate an F -statistic. We reject the

null hypothesis X ̸→ Y if the observed F exceeds the (1− α)% quantile of an F-distribution with
appropriate degrees of freedom.

DETERMINING THE STRENGTH OF THE CAUSAL INTERACTION

However, this approach only yields a binary decision on whether X ̸→ Y or X → Y is preferred.
How can we infer the strength of the causal relationship? Geweke (1982) proposed that the magni-
tude of the linear causal interaction can be estimated using the logarithm of a ratio computed from
the variance of the ϵ1 and ϵ2 error terms:

GCX→Y = log
Var(ϵ1)
Var(ϵ2)

While this remains a widespread method, there are several fundamental disadvantages to VAR-
based Granger causality strength (GCS). First and most fundamentally, the use of a VAR model
for the time series restricts GC to detecting causality of the mean (Runge, 2018). Second, VAR
models restrict GC to continuous valued Gaussian time series, with only linear causal interactions.
However, even when evaluating on synthetic data generated from a VAR model, Chen et al. (2006)
find that negative GCS estimates are common. When these assumptions are violated, such as in
neurological data, Stokes and Purdon (2017) find that GCS estimates can be either severely biased
or of high variance, both leading to spurious results.
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Appendix B. Some Details of Existing TE Estimation Methods

TE can be defined as conditional mutual information. As most TE estimators adapt an existing CMI
estimator, key advancements in TE inference can be traced to methodological developments in CMI
inference. For this reason, we use the phrases CMI and TE interchangeably throughout this section.

B.1. kNN-KSG Methods

Modern kNN-based CMI estimators are all descended from the entropy estimator of Kozachenko
and Leonenko (1987). We provide a basic introduction based on Lombardi and Pant (2016).

B.1.1. THE KOZACHENKO AND LEONENKO ESTIMATOR FOR ENTROPY

For a random variable X with probability density p(x), a Monte Carlo estimate of entropy is

Ĥ(X) := − 1

N

N∑
i=1

log (p(xi)) (9)

where N is the finite number of samples. Since p(xi) is unknown, our goal is to estimate ˆp(xi),
which can then be substituted into the equation above to yield Ĥ(X).

In kNN methods, the fundamental idea is to utilise the distance between a sample point and its
k-th nearest neighbour as a way to estimate the local density. If the k-th nearest neighbour of a point
xi is at a distance of ϵ, the volume V of the ϵ-ball centred at the sample point can be approximated
as cdϵd, where cd is the volume of the unit sphere in d dimensions (Fig. 4). If we assume a uniform
density within this volume, the probability mass Pi in the ϵ-ball around xi can be approximated as
Pi ≈ cdϵdp(xi), yielding an estimate

ˆp(xi) = Pi/cdϵ
d

Taking the logarithm of this yields log( ˆp(xi)) = log(Pi)− log(cd)− d log(ϵ). The expected value
of log(Pi) can be calculated using the digamma function ψ as E[log(Pi)] = ψ(k)−ψ(N). Approx-
imating log(Pi) using its expected value then yields

log( ˆp(xi)) = ψ(k)− ψ(N)− log(cd)− d log(ϵ(i))

where ϵ(i) is the distance of the i-th sample to its k-th nearest neighbour. Substitution into Eq. 9,
and simplifying then gives the Kozachenko and Leonenko estimator

Ĥ(X) := ψ(N)− ψ(k) + log(cd) +
d

N

N∑
i=1

log(ϵ(i)) (10)

Figure 4: The k-nearest neighbour and ϵ-ball. Source: Lombardi and Pant (2016)
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B.2. Variational Methods

In variational CMI estimation approaches, I(X;Y |Z) is estimated by maximizing a lower bound
on the KL divergence between P = p(x, y, z), andQ = p(x, z)p(y|z). These variational estimators
are descendants of the innovative approach to MI estimation proposed by Belghazi et al. (2018).

USING NEURAL NETWORKS TO ESTIMATE MI USING THE KL DIVERGENCE

The key idea behind variational methods in general is to cast the problem of approximating some
function f∗ as an optimisation problem by introducing a family of parametrised distributions f ∈ F
[called variational distributions] and then find the member of this family that is closest to the true
function f∗ using optimisation methods.

In the case of Belghazi et al. (2018), f∗ is the lower bound of Donsker and Varadhan (1983) on
the KL divergence, which for probability distributions p and q over X with a finite KL divergence,
and for the class of functions f(x):X → R ∈ F bounded in expectation is:

DKL(p||q) ≥ DV (p||q) := sup
f∈F

Ex∼p(x)[f(x)]− log(Ex∼q(x)[exp(f(x))])

As the function f(x) simply takes a sample x from x ∼ p(x) or x ∼ q(x), and outputs a scalar,
Belghazi et al. (2018) define F to be the set of functions that can be approximated by a NN gθ(x)
with a fixed architecture. The variational problem over F is then further reduced to an optimization
problem in terms of the network parameters θ. If the loss function is defined as the empirical (sample
based) estimate of DVgθ(p||q) for a specific gθ as:

D̂V gθ(p||q) =
1

n

n∑
i=1

[gθ(xi)]− log(
1

n

n∑
i=1

exp(gθ(xi)))

then optimizing θ via gradient ascent will lead to the gradual increase in the lower bound. This
technique results in an estimator which convergences with increasing sample size to the true KL
divergence with probability = 1.

VARIATIONAL FORMULATION OF THE CMI ESTIMATION PROBLEM

If we want to find I(X;Y |Z) via the KL divergence betweenP = p(x, y, z), andQ = p(x, z)p(y|z),
we are faced with two fundamental problems:

• The first problem is rather practical. The specific implementation of the KL estimating NN
gθ (henceforth notated as R for recognition model), needs to be selected carefully, as Poole et al.
(2019) showed that results from Belghazi et al. (2018) are very sensitive to the choice of architecture
and hyperparameters.

• The second problem is unique to CMI estimation, and relates to the available data. We are
only given samples from s ∼ p(x, y, z), but the divergence estimator would also require samples
from s ∼ p(x, z)p(y|z). How can we learn some generative model QY |Z = q(y|z) to approximate
the conditional p(y|z) distribution?
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EXAMPLE IMPLEMENTATION OF A VARIATIONAL CMI ESTIMATOR

Estimation of Conditional Mutual Information Using MinMax Formulation [C-MI-GAN] Mon-
dal et al. (2020) theorised that treating the problem of learning to approximate p(y|z) as QY |Z , and
training the recognition modelR(s) to estimate the KL divergence separately may have been respon-
sible for some of the convergence issues with the earlier variational CMI estimator of Mukherjee
et al. (2019). They therefore devised a combined architecture (Fig. 5), and an appropriate joint
training procedure that is similar to generative adversarial networks.

Figure 5: Block Diagram for C-MI-GAN. Samples drawn from any simplistic noise distribution are
concatenated with the samples from the marginal PZ and fed to the generator as input.
The generated samples from the QY |Z distribution are then concatenated with samples
from PXZ and given as input to the regression network R along with samples from the
original PXY Z distribution. I(X;Y |Z) is obtained by negating the loss of the trained
regression network R. Source: Mondal et al. (2020) Figure 1

We examine the loss function of Mondal et al. (2020) in more detail to help us understand how
it jointly expresses the two objectives inherent to CMI estimation:

L(QY |Z , R) =

inf
QY |Z

sup
R∈R

[(∫
s∼PXY Z

PXY ZR(s) ds
)
− log

(∫
s∼PXZQY |Z

PXZQY |Z exp(R(s)) ds

)]

The authors show (Mondal et al. (2020) Theorem 1) that given samples s from either s ∼ PXY Z or
s ∼ PXZQY |Z , the most optimal regression network R∗ approximates the function:

R∗(s) = log
PXY Z

PXZQY |Z
+ c

which is an estimate of the [negative] KL divergence −DKL(PXY Z ||PXZQY |Z), which is exactly
the property we seek to estimate. In turn, given the optimal regression network R∗, Mondal et al.
(2020) Theorem 2 shows that the loss function reduces to

L(QY |Z , R) = I(X;Y |Z) +DKL(PY |Z ||QY |Z)

which means that the loss is optimised when the model QY |Z approximates PY |Z closely. These
two theorems thus show that optimizing the joint loss by alternating the training of QY |Z and R(s)
with respect to the loss function L(QY |Z , R) will eventually lead to an accurate estimate of CMI.
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Appendix C. Why Does the Categorical Distribution Cause TE Overestimation?

C.1. Introduction

One of the definitions of TX→Y is via the difference between the conditional entropies H(yt+1|yt)
andH(yt+1|yt,xt). If either entropy estimate is biased, this will lead to erroneous estimates of TE.
In the Background section, we posited that the categorical distribution used in currently available
cross entropy methods [NJEE and DETE] incentivises the models to overfit the training data, leading
to an underestimation of uncertainty, and therefore entropy.

In this section, we demonstrate this argument empirically using various TE estimators to analyse
synthetic data from a system with analytically tractable transfer entropy. We show how at small
sample sizes existing non-parametric kNN-KSG estimators, and our new method [AGM-TE] have
much lower rates of false positives than cross entropy methods. We also provide a detailed look into
how the biases of current categorical cross entropy methods cause overestimation.

C.2. Comparative Analysis of Overestimation in TE Estimation Methods

We compared the extent to which four methods across the three different inference paradigms over-
estimate TE across various sample sizes. We test kNN-KSG [NPEET (Ver Steeg and Galstyan,
2012)], variational ML [C-MI-GAN (Mondal et al., 2020)], existing categorical cross entropy ML
approaches [NJEE (Shalev et al., 2020)], and our method AGM-TE.

To generate data, we used a synthetic system, the 1D linear Gaussian generative model [details
in Appendix G]. This generative model yields timeseries for two scalar variables, X and Y , with
the true causal relationship being Y → X . By Eq. 15 of the generative model, yt+1 only depends
on yt, and is therefore independent of X . This further implies p(yt+1|yt) = p(yt+1|yt,xt), and
thereby H(yt+1|yt) = H(yt+1|yt,xt), and thus the true TX→Y = 0. We will show that NJEE will
violate all of these equalities, and therefore overestimates TE.

We generated training datasets with a size of 500, 1000, 5000, and 10000, and plotted the mean
TE estimation error across five replicate runs of the different methods in Fig. 6. These results
clearly demonstrate that categorical cross entropy methods [represented by NJEE] have the highest
rates of overestimation at small sample sizes. Notably, at a sample size of 500, NJEE estimates
T̂X→Y ≈ 0.3, despite the true TX→Y = 0. Variational methods are better [T̂X→Y ≈ 0.1], while
non-parametric kNN-KSG estimators, and AGM-TE are nearly error free [T̂X→Y ≈ 0.01].
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Figure 6: Mean TE estimation errors across five runs of four TE estimation methods depend heavily
on sample size in the 1D LG system. The true TX→Y = 0
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C.3. Mechanisms of Overestimation in Categorical Cross Entropy Methods

Why do categorical cross entropy methods such as NJEE and DETE overestimate TE at small sample
sizes? We believe the answer lies in the overfitting of the categorical distribution to small datasets.
To support this argument, we trained the two NJEE models for yt+1|yt and yt+1|yt,xt using default
hyperparameters of the publicly available code on a small dataset of T = 200 for 20000 epochs.
We demonstrate how, in the model, q(yt+1|yt) ̸= q(yt+1|yt,xt), despite the fact that p(yt+1|yt) =
p(yt+1|yt,xt) in the true data.

Since we know how the data was generated, given the actual values of yt, we can calculate the
true distribution of yt+1, as the observed value is always drawn as yt+1 ∼ N (µ = byyt, σ

2
y). This

means we can plot the true expected value and uncertainty of yt+1, and compare it to the model
approximation q(yt+1|yt) by NJEE in Fig. 7. As the issue here is not immediately apparent, we
obtain a more interpretable visualisation of how the true and model distributions compare. We plot
the model residual PMF [obtained by sliding each predicted categorical distribution over yt+1 such
that the maximum probability is the middle bin, and averaging], and a discrete approximation to the
true residual [inherent noise in the generative model, distributed as N (0, σ2y)] in Fig. 8. From this,
we can see that the categorical distribution fit by NJEE has underestimated the uncertainty of yt+1,
and inferred a much sparser distribution than what the variable actually follows.
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Figure 7: Comparison of the true p(yt+1|yt) and the model probability density.
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Figure 8: Comparison of true uncertainty [due to noise in the generative model] and residual model
uncertainty around p(yt+1|yt) reveals a slight underestimation of uncertainty by NJEE

[Ĥ(yt+1|yt) < H(yt+1|yt)].

However, the issue is much worse for the second model, which approximates p(yt+1|yt,xt). If
we plot the predictions of NJEE in the training data (Fig. 9), and compare it to the observed value
for yt+1, we see that the model concentrates all probability in the bin corresponding to the observed
value at each timestep in the dataset, rather than learning the true data generating distribution.
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Figure 9: NJEE overfits training data when given access to information from the past of X .

Comparing the model residual PMF and a discrete approximation to the true residual (Fig. 10)
provides further evidence that the second model has overfit severely, and vastly underestimated the
uncertainty of yt+1. This is despite the fact that X does not carry information about the future of Y ,
so the uncertainty should be identical between the competing models.
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Figure 10: Comparison of true and residual uncertainty around p(yt+1|yt,xt) shows a significant
underestimation of uncertainty [Ĥ(yt+1|yt,xt)≪ H(yt+1|yt,xt)].

SUMMARY OF ARGUMENTS AND OUTLOOK

When using categorical cross entropy methods at small sample sizes, both models underestimate
the true uncertainty [and therefore the entropy] of yt+1. However, the issue is much worse for the
second model that also considers the past of X . The additional data allows the model to overfit,
causing Ĥ(yt+1|yt,xt) to be significantly lower than Ĥ(yt+1|yt), leading to the false inference of
a positive transfer entropy value [T̂X→Y ≈ 1.1], when the ground truth TX→Y = 0.

When sample size is constant, later benchmarks on high dimensional systems show that NJEE

also infers a false positive TE that increases in magnitude with the dimensionality of the variable [see
appendix H Fig. 24 and Fig. 25]. Combined with the above results, this suggests that categorical
cross entropy methods such as NJEE have a tendency to overestimate TE when the amount of data
is small, relative to the complexity of the data generating system. This means that they can achieve
admirable performance at the high sample sizes of synthetic benchmarks, but are expected to falter
in empirical datasets where the amount of data is smaller, and systems are more complex.
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Appendix D. A Detailed Description of the Approximate Generative Model

D.1. Further Architectural Details

We provide more detail for the simpler case of the AGM of yt+1|yt. The overarching goal of
the AGM predicting the d-dimensional Y from itself is to yield a predicted distribution over each
observed yt+1 given yt at each t. To accomplish this, the following computations are conducted:

1. Mapping of the observation yt ∈ Rd to the latent state st ∈ Rm is accomplished using an
affine transform a() of the form st = Wolyt + bol, where Wol is an observation-to-latent
weight matrix, and bol is an observation-to-latent bias vector.

2. The latent dynamics model fθf (st) yields the predicted latent state ŝt+1 ∈ Rm from the
current latent state. It can be implemented using a feedforward or recurrent NN [see Appendix
D.2]. The parameters of this NN are denoted as θf .

3. The observation model maps the predicted latent ŝt+1 to a distribution over yt+1. Mapping
of ŝt+1 to a set of parameters ϕt+1 ∈ Rn is done by gθg(), which may be a simple affine
transform, or involve a more complicated nonlinear function [see D.3.2 for an example]. The
parameters for this transform are denoted by θg. The chosen parametric distribution q [e.g.
multivariate Gaussian (see D.3.1), Poisson (see D.3.2), ...] is then parametrised by ϕt+1.

We optimise the model to make the true yt+1 be approximately distributed as q(yt+1;ϕt+1). The pa-
rameters of the AGM [which are optimised w.r.t the NLL] to achieve this are Θ = {Wol, bol, θf , θg}.

In the case of the model for yt+1|yt,xt, which also takes into account the effect of the e-
dimensional variable X , the only difference is that the starting affine transformation a() will take
as input the concatenated {yt, xt} ∈ Rd+e to yield the latent st ∈ Rm. The latent dimensionality m
is shared between the models for yt+1|yt and yt+1|yt,xt. This way, the parameter counts will be
nearly identical. However, model parameter values are not shared, as they are optimised separately.

D.2. The Two Types of Latent Dynamics Model

The NN implementing st → ŝt+1 can be either feedforward or recurrent. This architectural choice
has both theoretical consequences in terms of the Markov order of the model, and practical conse-
quences in terms of compute speed. Recall that yt is a shorthand for y[t−k+1:t], the past k values of
Y up to and including time t. If k = 1, we say that our model q(yt+1|yt) has Markov order one.

D.2.1. USING A FEEDFORWARD NN FOR THE DYNAMICS MODEL

When using a feedforward neural network [which is just a composition of affine and nonlinear trans-
formations] for st → ŝt+1, we have the computational graph of Fig. 11, which clearly illustrates
how our resulting AGM will have Markov order one. This means that any direct influence of more
distant past states (e.g. yt−1, yt−2) is ignored when predicting the distribution over yt+1.

While this may seem like a severe limitation [and indeed Runge et al. (2012) and Castri et al.
(2023) argue that it is], all previous cross entropy ML TE methods rely on this assumption. Addi-
tionally, since each distribution over yt+1 is calculated from a single input, all calculations across
t ∈ 1 : T can be implemented in parallel, greatly speeding up training and inference.

29



KORNAI SILVA NIKOLAOU

yt−2 yt−1 yt yt+1 yt+2
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q(yt−2) q(yt−1) q(yt) q(yt+1) q(yt+2)

Figure 11: Computational graph for an AGM of yt+1|yt with a feedforward NN dynamics model

D.2.2. USING A RECURRENT NEURAL NETWORK FOR THE DYNAMICS MODEL

To address the critique of Runge et al. (2012) and Castri et al. (2023) relating to errors in TE
estimation due to the truncation induced by a small k, we also implement a recurrent neural network
[RNN] for calculating st → ŝt+1. The key idea is that RNNs introduce a hidden state ht ∈ Rm,
which is updated according to ht+1 = tanh(stWih + bih + htWhh + bhh), where h is the hidden
state, st is the affine transformed value of Y at time t, Wih is the input-to-hidden weight matrix, bih
is the input-to-hidden bias vector, ht−1 is the previous hidden state, Whh is the hidden-to-hidden
weight matrix, and bhh is the hidden-to-hidden bias. h0 is set to a vector of zeros. We then simply
set ŝt+1 = ht+1. Fig. 12 outlines how longer term influences from yt, yt−1, yt−2, ..., yt=2, yt=1 are
transmitted through ht to our estimated distribution over yt+1 as a consequence of this architecture.

However, training and inference are significantly slower, due to the operations being sequential,
rather than parallel. We nonetheless believe that the RNN model should be chosen if the causal
interactions occur with a larger or unknown delay [which is most empirical systems].

yt−2 yt−1 yt yt+1 yt+2

st−2 st−1 st st+1 st+2

ht−2 ht−1 ht ht+1 ht+2

ŝt−2 ŝt−1 ŝt ŝt+1 ŝt+2

ϕt−2 ϕt−1 ϕt ϕt+1 ϕt+2

q(yt−2) q(yt−1) q(yt) q(yt+1) q(yt+2)

Figure 12: Computational graph for an AGM of yt+1|yt with an RNN dynamics model.
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D.3. Choices for the Observation Model

In our opinion, one of the fundamental advantages of AGM-TE over existing cross entropy methods
is the ability to use datatype-specific probability distributions for yt+1.

D.3.1. MULTIVARIATE DIAGONAL GAUSSIAN OBSERVATION MODEL

The multivariate diagonal Gaussian observation model is selected by choosing the ’gaussian’
value for the obs_model_type parameter when initialising the model.

Under this observation model, each observation along each dimension of Y is Gaussian dis-
tributed, with no covariance. This makes it appropriate for data with continuous variables where we
assume symmetric, non-sparse observation noise, such as a temperature sensor.

This distribution is parametrised by ϕt+1 ∈ R2×d, the concatenation of the mean vector µt+1 ∈
Rd and the variance vector σt+1 ∈ Rd [ϕt = {µt, σt}]. The mapping gθg from the predicted latent
state output of the RNN ŝt+1 ∈ Rm to this concatenated parameter vector ϕt+1 is simply an affine
transformation, with a corresponding learnable readout matrix R and bias vector blo.

ϕt+1 := {µt+1, σt+1} = gθ(ŝt+1) := Rŝt+1 + blo

Under this chosen observation model, the negative log likelihood of observing a specific yt is

− logL(yt;ϕt) =
1

2

d log(2π) + d∑
j=1

log(σ
[j]
t )2 +

d∑
j=1

(y
[j]
t − µ

[j]
t )2

(σ
[j]
t )2

 (11)

where [j] denotes the j-th element in a given vector. This loss function is minimised when the means
that are maximally similar to future observations, and variances are equal to the expected squared
prediction error. This ensures that model uncertainty is well calibrated.

D.3.2. COLLECTION OF POISSONS OBSERVATION MODEL

The collection of Poissons observation model is selected by choosing the ’poisson’ value for
the obs_model_type parameter when initialising the model.

Under this observation model, each observation along each dimension of Y is Poisson dis-
tributed. This makes it an appropriate choice for event-based data, such as spike trains in neuro-
science, or timings of certain occurrences in an industrial control system.

This collection of d independent Poisson distributions is defined by the rate parameter vector µt
[ϕt = {µt}]. As rates are strictly non-negative, gθg , which maps of the predicted latent state vector
ŝt+1 to the positive real-valued rate parameter vector µt+1 is defined as

ϕt+1 := µt+1 = gθ(ŝt+1) := β exp(Rŝt+1 + blo)∆

∆ is the sampling rate of data. The latent-to-neuron readout matrix R, the rate bias vector blo, and
the rate multiplication vector β constitute the learnable parameters of the observation model.

the negative log likelihood of observing the event count vector yt is

− logL(yt;ϕt) = −
d∑

j=1

(y
[j]
t logµ

[j]
t − µ

[j]
t + log y

[j]
t !) (12)

This incentivises µt+1 to be an estimate of the latent rate of events, which may be > 0, even when
no actual events are observed during the interval.
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Appendix E. What is the Learned Approximate Generative Model?

In this section, we show an example of the probabilistic forecasting approach implemented by AGM-
TE as it models an input driven dynamical system, and introduce how model performance differ-
ences capture the essential idea of predictive causality.

E.1. The Synthetic Brain Activity Data Generating Model

Our chosen generative model is a neural state equation, which models how activity of brain regions
changes in response to external inputs (Stephan et al., 2007). The stochastic external inputs come
from a simple Markov model with two states, 0 or 1. The transitions between states follow a Markov
process, while durations spent in each state (1 or 0) follow Exponential distributions, with mean up
and mean down times determined by rate parameters. We generate data for M independent input
channels, which yields the dataset X containing the input vector xt for each time step.

These inputs then drive a model of neural dynamics in a system of N interacting brain regions.
The neural activity of each region is represented as a vector valued state variable yt. The change of
yt over time is determined by a discrete time linear differential equation:

yt+1 = yt + [Ayt−1 +Cxt−1 +N (0, σr)] (13)

where A is an N × N connectivity matrix between regions, which determines how the activity of
one region excites or inhibits other regions, and C is an N × M matrix which determines how
each brain region will react to each input channel. At each timestep t, stochastic noise from a
normal distribution with standard deviation σr is also added to the current vector of neural activity,
providing additional randomness. The causal relationship is denoted X → Y . Fig. 13 shows an
example of the inputs and the neural activity that is induced as a response.
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Figure 13: Example trajectories from the neural activity simulator. The 3-dimensional neural ac-
tivity Y (bottom) is determined by 3-dimensional stochastic noise inputs X , and the
connectivity of the neurons within the network.

32



AGM-TE

E.2. Problem Setup and Visualisation of the Trained Models

To decide if X → Y or X ̸→ Y in the framework of predictive causality, we require two alternative
models, qΘ1(yt+1|yt) and qΘ2(yt+1|xt,yt). Our goal for both models is to generate distributions
that approximate yt+1 [in this case, the vector of neural activity]. Since qΘ1 is given only the past
of Y , while qΘ2 is given the past of both Y and X , a better forecast of yt+1 by qΘ2 implies X → Y .

We choose to model observations of neural activity using a Gaussian [see Appendix D.3.1]. For
our latent dynamics model fθ(), we use an RNN with a single hidden layer and 8 neurons. Example
visualisations of the two alternative models generating predicted distributions in unseen test data are
shown Figures 14 and 15. At first glance, both models provide a reasonable probabilistic prediction.
However, a more detailed examination of errors reveals a significant gap in performance.
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Figure 14: AGM-TE approximates yt+1|yt in the test data in a system with a 3-dimensional Y .
Predictions are blue (with the model’s variance shaded) and the target is dashed orange.
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Figure 15: AGM-TE approximates yt+1|xt,yt in the test data in a system with a 3-dimensional Y .
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E.3. Interpreting Model Behaviour from the Perspective of Predictive Causality

If both models have uncertainties that reflect their tendency to make errors, it becomes meaningful
to compare these quantities. If we examine the predicted distributions over yt+1, we reassuringly
find that 94-96% of observations from the previously unseen dataset fall within the 95% confidence
interval of the model. This means that since the total variance [across the three neural dimensions] of
the distributions forecasted by the AGMs is markedly lower for the qΘ2 model [Fig. 16], information
from X consistently reduces uncertainty in the future of Y .
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Figure 16: Variance over time in the competing models of Y .

Plotting the cumulative residual sum of squared differences between the predicted mean and the
true yt+1 confirms this interpretation, as the second model indeed accumulates less error over time
in the unseen data [Fig. 17]. Taken together, these results suggest that X improves our predictions
of Y , which means that we correctly recover the X → Y relationship from the generative model.
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Figure 17: Cumulative residual sum of squares [RSS] over time in the competing models of Y

MODEL PERFORMANCE IN THE ANTI-CAUSAL DIRECTION

The specificity of this approach can be checked by investigating model performance in the anti-
casual direction. We train two AGMs to model the noisy inputs X , with one model using only the
past of X , and the alternative using both X and the neural activity Y . When comparing cumula-
tive squared prediction errors in an unseen dataset, the competing models achieve identical poor
performance [Fig. 18]. This implies Y ̸→ X , as defined in the generative model.
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Figure 18: Cumulative residual sum of squares [RSS] over time in the competing models of X
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Appendix F. Theoretical Argument for the Convergence of T̂X→Y to the True TX→Y

Recall that the losses for the two models are defined such that they estimate the cross entropy

Loss(Θ1, [Y]) :=
1

T

∑T

t=1
[− log q(yt+1|yt)] = Ĥ(p(yt+1|yt), q(yt+1|yt))

Loss(Θ2, [Y,X]) :=
1

T

∑T

t=1
[− log q(yt+1|yt,xt)] = Ĥ(p(yt+1|yt,xt), q(yt+1|yt,xt))

As a cross entropy is the sum of the true entropy of the data generating distribution and the KL
divergence between the true and model distributions, our estimated T̂X→Y can be decomposed as

T̂X→Y := Loss(Θ1, [Y])− Loss(Θ2, [YX])

= Ĥ(p(yt+1|yt), q(yt+1|yt))− Ĥ(p(yt+1|yt,xt), q(yt+1|yt,xt))

= [H(yt+1|yt) +DKL(p(yt+1|yt)||q(yt+1|yt))]

− [H(yt+1|yt,xt) +DKL(p(yt+1|yt,xt)||q(yt+1|yt,xt))]

Rearranging our four terms, we find that our estimated T̂X→Y is equal to the true TX→Y plus an
error term formed from the subtraction of two KL divergences.

T̂X→Y = [H(yt+1|yt)−H(yt+1|yt,xt)]

+ [DKL(p(yt+1|yt)||q(yt+1|yt))−DKL(p(yt+1|yt,xt)||q(yt+1|yt,xt))]

= TX→Y

+ [DKL(p(yt+1|yt)||q(yt+1|yt))−DKL(p(yt+1|yt,xt)||q(yt+1|yt,xt))]

This has two important consequences. First, as KL divergences are non-negative, they counteract
each other, which leads to a smaller magnitude of the overall error bias (Garg et al., 2022). Sec-
ond, since the objective of training is to minimise the cross entropies of each model [which entails
the minimisation of KL divergences, since the true entropy is fixed], the process of training will
gradually reduce the error term, causing our estimate to converge to the true TX→Y .

We demonstrate this empirically by conducting 50 replicate re-analyses of a dataset with T =
20000 from the Linear Gaussian generative model [see Appendix G] which has an analytically
tractable transfer entropy. Fig. 19 clearly shows how the estimated TEs converge over training.
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Figure 19: 50 replicate AGM-TE analyses converge during training to the true a) TY→X and b)
TX→Y values of a Linear Gaussian data generating system.
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Appendix G. Generating Synthetic Benchmark Data

G.1. Source Code Availability

We provide the data generating systems in the Python package te_datasim [available on github],
which may be of interest to other researchers developing or comparing TE estimators, or other causal
discovery methods. The Simulator class in the package allows users to set up data generators
with known parameters. The .simulate() method allows sampling of datasets with arbitrary
lengths, and the .analytic_transfer_entropy() method calculates ground truth transfer
entropy values. This package was used to generate the benchmark data used in this article.

G.2. The Two Base System Classes

G.2.1. THE Linear Gaussian [LG] MODEL

The linear Gaussian model generates scalar values xt and yt using the following equations:

xt+1 = bxxt + E ∼ N (0, σ2x) + λyt (14)

yt+1 = byyt + E ∼ N (0, σ2y) (15)

From the equations, it is clear that TX→Y is always 0. Edinburgh et al. (2021) derived an analytic
formula for how TY→X depends on the parameters of the equations. Most importantly, how TY→X

increases with the coupling parameter λ.

TY→X =
1

2
log

[
((1− b2y)((1− bxby)2)σ4x) + (2λ2(1− (bxby))σ

2
xσ

2
y) + (λ4σ4y)

((1− b2y)(1− bxby)2σ4x) + (λ2(1− b2xb2y)(σ2xσ2y))

]
(16)

This process can also be described graphically using the full time causal graph of Fig. 20.

yt−2 yt−1 yt yt+1 yt+2

xt−2 xt−1 xt xt+1 xt+2

Figure 20: Full time causal graph for the Linear Gaussian system

This bivariate system is accessed through the BVLinearGaussianSimulator class.

G.2.2. THE Joint Process [JP] [LG] MODEL

The joint process model generates scalar values xt and yt using the following equations

xt = E ∼ N (0, 1) (17)

yt =

{
E ∼ N (0, 1) if yt−1 < λ

ρxt−1 +
√
1− ρ2 × E ∼ N (0, 1) if yt−1 ≥ λ

(18)
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λ is a threshold parameter. Intuitively, for large λ, there is no information flow from the past of
X to Y , while for smaller λ, yt is increasingly determined by xt−1. Specifically, Zhang et al. (2019)
find that the transfer entropy is

TX→Y = −0.5Q(λ) log(1− ρ2) (19)

where Q is the complementary cumulative distribution function of a standard Gaussian variable.
For this system, TY→X is always 0.
This can also be described graphically using the full time causal graph of Fig. 21.

xt−2 xt−1 xt xt+1 xt+2

yt−2 yt−1 yt yt+1 yt+2

Figure 21: Full time causal graph for the Joint Process system

This bivariate system is accessed through the BVJointProcesSimulator class.

G.3. Scaling Data Generation to Multiple Dimensions

In many empirical systems of interest, variables may be vector-valued. To facilitate the generation
of such data [from the MVLinearGaussianSimulator and MVJointProcessSimulator
classes], while retaining the analytical tractability of the resulting transfer entropies, we compose
scalar datasets into vector-valued ones using the following procedures:

G.3.1. LINEAR STACKING

If we concatenate data generated by d independent copies of a system with scalar variables X [i]

and Y [i] for i ∈ 1, 2, 3, ..., d, the transfer entropy between the resulting d-dimensional vector valued
variables xt = {x[1]t , x

[2]
t , ..., x

[d]
t } and yt = {y[1]t , y

[2]
t , ..., y

[d]
t } is the sum of the transfer entropies

of the individual systems. This is because X [i] may only carry information about Y [i], but never
Y [j ̸=i].

TX→Y =
d∑

i=1

TX[i]→Y [i]

G.3.2. REDUNDANT STACKING

The transfer entropy between any pair of variables that are both drawn i.i.d. is 0. If we have a
d-dimensional system, which we concatenate with n variables that are drawn i.i.d., the transfer
entropy of the resulting (d+ n)-dimensional system remains unchanged.

TX→Y =
d∑

i=1

TX[i]→Y [i] +
d+n∑

i=d+1

TX[i]→Y [i] =
d∑

i=1

TX[i]→Y [i] + 0

Naturally, linear stacking may be combined with redundant stacking as needed.
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Appendix H. TE Estimation Benchmarks

H.1. Estimator Methods

For the existing ML methods C-MI-GAN and NJEE, we used the implementations and default hyper-
parameters provided in public repositories by the original authors.

For AGM-TE, we used a Gaussian observation model, and a feedforward NN dynamics model
with 16 × d neurons across two hidden layers. We optimised the model using stochastic gradient
descent with a learning rate of 0.01 for 1000 epochs.

H.2. Benchmarking Scenarios and Detailed Results

H.2.1. SAMPLE EFFICIENCY TESTING

To test the sample efficiency of the four methods, we used datasets from the 1D LG and JP systems
with a given λ [0.5 for LG and 0 for JP]. We varied the number of samples from 500 to 10000 to
establish the results of Fig. 22, which show that both the error and variance of AGM-TE are lower at
a given sample size than competing ML methods.

We can also observe that previous ML methods [especially NJEE] tend to overestimate TE at
lower sample sizes, a problem that does not affect AGM-TE. We provide a detailed exploration and
explanation of the overestimation by NJEE in Appendix C.
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Figure 22: Convergence of the estimated to the true TE with sample size across the four different
methods, and four different data generating systems.
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H.2.2. 1D SYSTEM

In the first set of benchmarks [not discussed in the main text], we gradually change the true TE by
sweeping the λ parameter of both models in 9 steps to vary the TE between the target and causal
variable in the LG and JP models. This leads to 36 different transfer entropy estimation tasks, of
which 19 have a true TE of 0 [all anti-causal cases, and λ = 0 in the LG model].

We use a sample size of 10000, and perform five replicate simulations to establish the results
of Fig. 23, which show that all four methods are able to accurately estimate the true TE. Note the
accurate and low-variance inference of 0 TE values by AGM-TE. This would suggest a low false
positive rate when detecting causal interactions. The mean absolute errors for the four transfer
entropy estimation tasks classes [LG TX→Y , LG TY→X , JP TX→Y , JP TY→X ] are added along the
sweep of λ to generate the cumulative absolute error [CAE] scores of Table 1, which show that
AGM-TE performs best in three out of the four transfer entropy estimation tasks.

0.02

0.01

0.00

0.01

0.02

X
Y

Linear Gaussian
True
NPEET
C-MI-GAN
NJEE
AGM-TE

0.0

0.2

0.4

0.6

0.8

Joint Process
True
NPEET
C-MI-GAN
NJEE
AGM-TE

0.0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1.0
Coupling

0.0

0.1

0.2

0.3

0.4

Y
X

True
NPEET
C-MI-GAN
NJEE
AGM-TE

-3.0 -2.25 -1.5 -0.75 0.0 0.75 1.5 2.25 3.0
Threshold

0.02

0.01

0.00

0.01

0.02
True
NPEET
C-MI-GAN
NJEE
AGM-TE

Figure 23: True and estimated transfer entropies in the 1D systems

method LG TX→Y LG TY→X JP TX→Y JP TY→X

NPEET 0.0165 0.0294 0.0617 0.0340
C-MI-GAN 0.0324 0.0291 0.0403 0.0461

NJEE 0.1095 0.0654 0.1439 0.1203
AGM-TE 0.0022 0.0228 0.0949 0.0013

Table 1: Cumulative absolute error of each method in the 1D benchmarks
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H.2.3. REDUNDANT STACKING TO INCREASE DIMENSIONALITY

In the redundant stacking benchmarks, we concatenate n ∈ 0 : 9 channels of i.i.d. Gaussian noise
onto data generated from a 1D JP or LG system while leaving λ fixed [0.5 for LG and 0 for JP],
leading to a set of 40 TE estimation tasks that gradually increase in dimensionality, but have a
constant true TE value for a given system.

We use a sample size of 100000, and conduct 5 replicate simulations to establish the results
of Fig. 24, which empirically demonstrate the poor dimensionality scaling of kNN-KSG methods.
While all ML methods are able to complete this task reasonably well, NJEE suffers from a gradually
increasing [albeit small] false positive TE in the anti-causal direction. This echoes the small sample
size results in Appendix C, together suggesting that previous cross entropy methods relying on the
categorical distribution will overestimate TE when the sample size is small relative to the complexity
of the data generating system. The cumulative absolute errors in the 40 tasks (Table 2) indicate that
AGM-TE performed the best.
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Figure 24: True and estimated transfer entropies in the redundant stacking tests

method LG TX→Y LG TY→X JP TX→Y JP TY→X

NPEET 0.0094 0.9359 2.5188 0.0079
C-MI-GAN 0.0308 0.0213 0.1770 0.0350

NJEE 0.0985 0.0628 0.3896 0.1012
AGM-TE 0.0053 0.0112 0.1352 0.0034

Table 2: Cumulative absolute error of each method in the redundant stacking benchmarks
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H.2.4. LINEAR STACKING TO INCREASE DIMENSIONALITY

To test the ability of the estimators to converge to high TE values, we concatenate d ∈ 1 : 10
channels of data from independently simulated runs of the 1D LG or JP systems with a given λ
[0.5 for LG and 0 for JP]. This leads to a set of 40 TE estimation tasks where the true TE increases
linearly with the number of dimensions.

We use a sample size of 100000, and conduct 5 replicate simulations to establish the results of
Fig. 25. These tests empirically demonstrate the slow convergence of variational methods theorised
by McAllester and Stratos (2020), as C-MI-GAN is able to successfully scale in the LG system with
a smaller starting TE, but reaches a plateau in the JP system, unlike the cross entropy methods
[AGM-TE and NJEE]. As in the redundant stacking tests, the NPEET is unable to correctly estimate
TE for high dimensional data. Table 3 again shows AGM-TE producing the best results in terms of
cumulative absolute error, outperforming alternatives by at least a factor of two.
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Figure 25: True and estimated transfer entropies in the linear stacking tests

method LG TX→Y LG TY→X JP TX→Y JP TY→X

NPEET 0.5428 4.6885 16.4389 0.0139
C-MI-GAN 0.0283 0.2725 8.8677 0.0301

NJEE 0.1181 0.2672 2.704 0.1109
AGM-TE 0.0156 0.0397 1.166 0.0037

Table 3: Cumulative absolute error of each method in the linear stacking benchmarks
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Appendix I. Detailed Methods for Neural Data Analysis

I.1. Details of the Spike Dataset

The dataset of Siegle et al. (2021) consists of recordings from six areas of the mouse visual cortex
(Fig. 26) in awake animals viewing diverse visual stimuli.

Figure 26: Six areas of the mouse visual cortex recorded with Neuropixels. Source: Jia et al. (2022)

There were a total of eight ∼ 3 hour recordings, each from a different specimen [Allen Brain
Observatory Session IDs 719161530, 750332458, 750749662, 754312389, 755434585, 756029989,
791319847, 797828357]. In the eight datasets, the number of total recorded neurons across the 6
regions ranged from 155 to 345, with a mean of 272. The number of neurons per region ranged
from 9 to 91, with a mean of 45, making each variable highly multidimensional.

During a recording, 15 to 18 [mean 16] trials involving a single type of active visual stimulation
[e.g. flashes, movies] were interspersed with periods of rest. We processed the raw data by isolating
periods of 100 seconds around the start of each stimulation trial [10 s before, 90 s after]. For
each neuron, we counted the number of spikes within 100 ms bins, yielding a total of 1000 time
points per channel per trial. The total dataset from a single specimen is therefore an array of size
approximately [b ≈ 16× d ≈ 272× T = 1000], where b is the batch size [numer of trials] d is the
number of neurons, and T is the number of timesteps in a 100 second trial.

I.2. AGM Configuration

For the empirical dataset, our latent dynamics model f was a GRU RNN with 50 units in a single
hidden layer. In the synthetic dataset, a smaller dynamics model with 5 units was used. We used the
Poisson observation model detailed in Appendix D.3.2.

We used the Adam optimiser during training, which lasted for 10000 epochs with a starting
learning rate of 0.001, which decayed by a factor of 0.9 every 100 epochs.

I.3. Validation in Synthetic Data

Before analysing empirical data, we validate the effective connectivity inference capabilities of
AGM-TE in a small-scale synthetic system that mimics the spiking activity of the brain, in a process
similar to the methods of Kim et al. (2011).
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DATA GENERATION

To this end, we sample spiking data from 15 “neurons” by using the input driven neural state equa-
tion model [Appendix E.1] to control the rates of a set of independent Poisson processes. For our
experiments, A defines a system composed of three regions with five neurons in each. Our input
matrix C channels inputs to the five neurons in the first region. This “driver” region then directly
excites “primary driven” and “secondary driven” regions. The “primary driven” region also excites
the “secondary driven” region, introducing a confounding effect (Fig. 27).

Figure 27: Network connectivity of synthetic system of three regions and 15 total neurons. Con-
nectivity is defined by the matrix A, a parameter of Eq. 13

The 15 dimensional neural state variable yt is then passed through µt = β exp(yt + b)∆ to
yield the non-negative vector µt, which specifies the rate parameters of an inhomogeneous Poisson
process for each of the 15 “neurons”. The β and b parameters for transformation were chosen to
reasonably match the mean (≈ 0.65) and standard deviation (≈ 0.85) of spike counts per time bin
seen in neurons from the empirical dataset of Siegle et al. (2021).
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Figure 28: Neural activity, observed number of spikes, and driving noise in the 5 neurons of the
driver region in the synthetic dataset.
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ANALYSIS AND INTERPRETATION

We estimate six CTEs, of which two [from the “driver” region to the “primary driven” and “sec-
ondary driven” regions] are known to be non-zero. We conducted 8 replicate runs, inferring CTE
estimates from a dataset of 16000 timesteps. Averaging the estimates over replicates and normal-
ising the highest value to 1 yields the effective connectivity matrix of Fig. 29. This matches the
ground truth connectivity structure of the synthetic system.

When effective connectivity was estimated using classical transfer entropy, the total inferred
information flow for the four non-causal interactions increased by a factor of three, demonstrating
that conditioning helps reduce false causal positives.
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Figure 29: Effective connectivity of synthetic system as inferred by AGM-TE matches the ground
truth network structure

I.4. Details of the Empirical EC Analysis Procedure

For each of the eight datasets, we conducted three replicate EC matrix inference passes. The 24
results were then averaged to form our final empirical EC estimate, and the scores in the matrix are
then normalized such that the largest value is 1.

To quantify the correspondence between the inferred effective connectivity matrix CI and the
reference structural connectivity matrix CR of Gămănuţ et al. (2018) [which was also normalised to
have a maximum value of 1], we started by measuring the correlation coefficient of matrix elements,
which yielded a result of ρCI,CR

= 0.5638 with a p-value of 0.0003.
Rather than reporting the p-value directly, we used a bootstrapping procedure to estimate the

probability of achieving correlations of this magnitude or higher. We take random samples [with
replacement] from off-diagonal values of CI to fill the off-diagonal values of a sampled connectivity
matrix CS, and measure the correlation coefficient between values of CR and CS. Repeating the
procedure 25000 times yields a distribution over correlation coefficients of matrices with elements
[effective connectivity values] similar to CI, but placed randomly in off-diagonal locations, which
enables us to estimate the degree to which the structure of the matrices [the order of values] match.

The original ρCI,CR
value was found to be in the 99.7th percentile of the bootstrap ρ distri-

bution, indicating that our inferred effective connectivity matrix exhibits a structure that is more
similar to the results of Gămănuţ et al. (2018) than would be expected by chance.
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