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Abstract

Low-rank adaptation (LoRA) is a parameter-efficient fine-tuning (PEFT) method
widely used in large language models (LLMs). LoRA essentially describes the
projection of an input space into a low-dimensional output space, with the dimen-
sionality determined by the LoRA rank. In standard LoRA, all input tokens share
the same weights and undergo an identical input-output projection. This limits
LoRA’s ability to capture token-specific information due to the inherent semantic
differences among tokens. To address this limitation, we propose Token-wise
Projected Low-Rank Adaptation (TopLoRA), which dynamically adjusts LoRA
weights according to the input token, thereby learning token-wise input-output
projections in an end-to-end manner. Formally, the weights of TopLoRA can
be expressed as BY. x A, where A and B are low-rank matrices (as in standard
LoRA), and Y x is a diagonal matrix generated from each input token X . Notably,
TopLoRA does not increase the rank of LoRA weights but achieves more granular
adaptation by learning token-wise LoRA weights (i.e., token-wise input-output
projections). Extensive experiments across multiple models and datasets demon-
strate that TopLoRA consistently outperforms LoRA and its variants. The code is
available at https://github. com/Leopold1423/toplora-neurips25.

1 Introduction

Recent advancements in pretrained large language models (LLMs) have led to significant improve-
ments in a variety of natural language processing and vision tasks [3| 47, 140l 2]. Traditionally,
these models require full fine-tuning (FFT) to update all their parameters for specific downstream
tasks. However, due to the large size of pretrained models, FFT can be computationally expensive,
particularly in resource-constrained environments. To address this challenge, parameter-efficient
fine-tuning (PEFT) methods have been introduced to reduce the number of trainable parameters and
decrease fine-tuning costs [[14,[7,138,141]]. Among these methods, low-rank adaptation (LoRA) [10]
has emerged as one of the most widely used techniques. As shown in Figure LoRA freezes the
pretrained weight matrix W € R™*™ and learns two smaller low-rank matrices to approximate the
weight update as AW = BA, where A € R™*", B € R™*", and the LoRA rank r < min{m, n}.

Despite its effectiveness, LoRA typically exhibits a performance gap when compared to FFT, often
attributed to the limited number of trainable parameters [[10, 27]]. Previous studies have also shown
that increasing the LoRA rank generally improves fine-tuning performance [35) [26l]. Recently,
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Figure 1: An illustration of TopLoRA in comparison to LoRA [10]. TopLoRA additionally learns
a projector O to generate a diagonal matrix ¥ x based on the input token X, which is then used to
adjust the LoRA weights (i.e., the input-output projections) for each token. The operators Exp(-) and
RMSNorm(-) refer to the exponential function and root mean square normalization [49], respectively.

Zeng and Lee [48] explored the expressive power of LoRA, using the LoRA rank to quantify the
approximation errors between the LoRA weights (AW = BA) and the assumed optimal weight
update. Their results suggest that smaller LoRA ranks lead to larger approximation errors. However,
a more intuitive explanation of how the LoRA rank affects fine-tuning performance remains lacking.
This raises the question of whether there is a more intuitive way to understand the role of LoRA
rank and whether other factors, beyond LoRA rank, also influence fine-tuning performance.

To answer this question, we explore the impact of LoRA rank from the perspective of input-output
projections. Specifically, the matrix B can be expressed using QR decomposition as B = QpRp €

R™*T, Wherp.QB = [Qll?’ Q%] € ]Rmx.r i.s a semi—unitar.y matrix (i.e., Q5Qp = .I) and
Rp € R™ 7 is a right triangular matrix. Similarly, the matrix A can be expressed using LQ
decomposition as A = L4Qa € R™", where Q4 = [QY,...,Q%]" € R™" is also a unitary

matrix (i.e., QaQ } = I)and L4 € R"™" is a left triangular matrix. At this point, the LoORA weights
can be represented as follows:

AW = BA = QB(RBLA)QA = QBPQA = [QlBa7Q%][P1a7PT][Q}47aQZ§]T (D

As shown, the LoRA weights consist of three components: the input space Q4 = [QY, ..., Q%] T, the
output space Qp = [QL, ..., Q%], and the input-output projection P = RgLa = [P1,...,P.] €
R"*", Notably, LORA captures only the projection of the input token onto the column vectors of @ 4,
with all other projections transformed to zero. Additionally, the LoRA output is constrained to a linear
combination of the row vectors of () g. Thus, increasing the LoRA rank r raises the dimensionality
of both the input and output spaces, thereby improving LoRA’s expressive power.

Based on the above analysis, we reveal another factor, beyond increasing the LoRA rank r, that can
enhance its expressiveness. Specifically, different tokens exhibit distinct semantics and distributions,
and the shared input-output projection (P = RpL 4) is insufficient for capturing token-specific
information. To address this limitation, we introduce Token-wise Projected Low-Rank Adaptation
(TopLoRA), which dynamically adjusts LoRA weights for each token, as shown in Figure
TopLoRA utilizes a projector, ©, to generate a diagonal matrix, ¥ x, based on the input token X.
This matrix, in turn, adjusts the value of P = RpL 4 to Px = RpXx L. Importantly, the goal
of TopLoRA is not to increase the rank of LoRA weights (i.e., the dimensionality of the input and
output spaces). Instead, it focuses on capturing distinct key information from different tokens through
token-wise input-output projections, enabling finer-grained adaptation even with a limited rank.

The main contributions can be summarized as follows:
* We analyze LoRA from the perspective of input and output projection and identify another

factor, beyond the LoRA rank, that limits the expressiveness of LoRA: the shared input-
output projection of LoRA is insufficient for capturing token-specific information.



* We propose TopLoRA, which enables LoRA to apply distinct input-output projections for
different input tokens. By adjusting the LoRA weights with token-wise diagonal matrices,
TopLoRA achieves finer-grained adaptation even with a limited rank.

* We conduct extensive experiments on various models and datasets, demonstrating that
TopLoRA consistently outperforms LoRA and its variants. At the same rank, TopLoRA
achieves a 2-3% accuracy improvement over LoRA.

2 Motivations

2.1 Low-Rank Adaptation

Building on the hypothesis that weight updates during fine-tuning exhibit low intrinsic dimensionality,
Hu et al. [10] proposed Low-Rank Adaptation (LoRA), which updates pretrained weights using
the product of two low-rank matrices. Given a pretrained weight matrix W € R"*", the forward
propagation of LoRA can be formulated as:

Y = (W + AW)X = (W + o/rBA)X, )

where B € R™*", A € R"™", the LoRA rank r <« min(m,n), and « is an adjustable
scaling factor. For simplicity, we omit the coefficient «/r in the following discussion. Dur-
ing fine-tuning, the pretrained weights remain frozen, and only the low-rank matrices A and B
are updated. Note that the LoRA rank r determines the rank of the weight update matrix as
rank(AW) = rank(BA) < min{rank(A),rank(B)} < r. A higher LoRA rank r generally leads to
better fine-tuning performance, but also increases the number of trainable parameters.

2.2 Input-Output Projections of Low-Rank Adaptation

Most existing studies acknowledge that the LoRA rank significantly affects fine-tuning performance
but lack an intuitive explanation [35} 26, [12} |4]]. In this paper, we provide a clearer interpretation of
the role of LoRA rank from the perspective of input-output projections and explore additional factors
that may influence LoRA’s fine-tuning performance. As discussed in the previous section, applying
LQ and QR decompositions to the matrices A € R"*™ and B € R™*" yields:

A=LsQs B=RpQsB, (3)

where Q4 = [QY,...,Q%]T € R™™and Qp = [QL, ..., Q%] € R™" are unitary matrices (i.e.
Q} = Q;ll and Qg = Qél), Ly € R™*" and Rg € R"*" are left- and right-triangular matrices,
respectively. Therefore, the LoRA weights can then be expressed as:

AW = BA = QB(RBLA)QA = QBPQA = [QIB77Q%][P177PT][Q}477Q2]T7 (4)

where P = RgLs = [P1,..., P.] € R™*" represents the interaction between the matrices ) 4 and
Q. Any input token X € R" can be decomposed into X = X + > «;QY, where X denotes the
component orthogonal to all QY satisfying @ 4 X = 0. Thus, the LoRA output can be expressed as:

AWX = QpPQaX = a,QpPQaQ'y =Y iy _ Pi;Q%, )
i=1 =1 j=1

which indicates that LoRA captures only the component of the input token along r directions
{Q%,...,Q"} and maps them to r corresponding output directions {Q},...,Q%}, where P,
denotes the scaling factor from Q% to Q{B. Accordingly, the LoRA weights, as shown in Eq. , can
be divided into three components: the input space Q4 = [QY, ..., Q%] which represents the input
range that LoRA can effectively capture; the output space Q5 = [Qp, . . ., Q5], which represents
the output range that LoRA can cover; and the input-output projection P = RgL4 = [Py, ..., B,
which models the scaling of each Qf; as it transforms into each QiB.

From this perspective, the LoRA rank determines the dimensionality of the input and output spaces.
A lower rank restricts the model’s ability to extract and process information from the input tokens,
which intuitively explains why LoRA often performs worse than FFT and why increasing the rank
typically enhances performance. Previous studies have mainly focused on increasing the rank of



LoRA weights to expand the dimensionality of both the input space (Q) 4) and the output space (Q) ).
For example, HiRA [[12] and KronA [4] increase the rank of LoRA weights using the Hadamard
and Kronecker products, respectively. MELoRA [35]], on the other hand, achieves a higher rank by
stacking low-rank matrices along the diagonal.

In contrast, we identify another important factor that affects the expressiveness of LoRA: the input-
output projection (i.e., P). In standard LoRA, all tokens share the same input-output projection.
However, since the semantics of different tokens vary significantly, even the same projection (e.g.,
Q%) may represent different information for different tokens, requiring distinct processing. Existing
methods that apply a uniform input-output projection across all tokens fail to capture token-specific
information. This motivates us to explore a method that provides adaptive input-output projections
tailored to individual tokens. In this way, we can increase the diversity of input-output projections,
thereby enhancing the expressiveness of LoRA, even with smaller LoORA ranks.

3 Methodology

In this section, we introduce the Token-wise Projected Low-Rank Adaptation (TopLoRA), a LoRA
architecture designed to optimize the input-output projections at the token level.

3.1 Token-wise Projected Low-Rank Adaptation

Based on the above analysis, the optimization of LoRA seeks to identify a pair of input and output
spaces along with the corresponding input-output projections. However, different tokens share the
same LoRA weights and thus undergo identical input-output projections, which limits the ability to
capture token-specific information. To overcome this limitation, we propose Token-wise Projected
Low-Rank Adaptation (TopLoRA), which dynamically adjusts the LoRA weights for each token.
To achieve this in a parameter-efficient manner, TopLoRA maintains an additional network, I', with
parameters ©, which generates a diagonal matrix Xy based on the input token X. This matrix is
then used to modify the LoRA weight (i.e., the input-output projection) as follows:

AWy = Bl'o(X)A = BEx A. (©6)

It is important to note that the goal of TopLoRA is not to increase the rank of the LoRA weights, but
rather to find the optimal input-output projection for each token, even within a limited rank.

3.2 Optimization of Token-wise Diagonal Matrix

The effectiveness of TopLoRA depends on the careful design of its token-wise diagonal matrix,
Y x, which is generated by a specialized network, I' . Notably, the parameters @ employ Kaiming
initialization [§]], consistent with the initialization of matrix A, ensuring stable training when using
a uniform learning rate for all parameters. Further, to facilitate effective learning of X x, we apply
root mean square normalization (RMSNorm) [49] followed by an exponential transformation on the
network output, © X, as shown below:

¥ x = Diag(Exp(RMSNorm(0X))). @)

RMSNorm ensures that the value of I'x is not influenced by the magnitude of token X or the projec-
tion parameter ©. It essentially broadens the distribution range of ¥ x, thus increasing the differences
between the diagonal matrices of different tokens. The exponential transformation converts the
zero-centered normalized values into strictly positive scaling factors. It prevents information loss
from near-zero values of ©®X and ensures that even subtle but important variations in the normalized
projections can be effectively captured.

3.3 Comparison with Low-Rank Adaptation

TopLoRA introduces a dynamic term, 3 x, which enhances standard LoRA by enabling the explicit
modeling of token-specific information. Specifically, the output of TopLoRA can be decomposed
into two components as follows:

AWxX = BSxAX = BAX + B(Sx — 1)AX, (8)



where I denotes the identity matrix. The first term, BAX, represents the standard LoRA output,
capturing global patterns across all input tokens. The second term, B(Xx — I)AX, introduces
a dynamic, input-dependent adaptation mechanism that models fine-grained variations unique to
each token. Here, X x serves as a learned gating mechanism that adjusts the importance of different
feature dimensions for each token. Note that when > x = I, TopLoRA reverts to standard LoRA.
This architecture retains the advantages of low-rank parameterization while significantly enhancing
LoRA’s expressive power, particularly for tasks where tokens require distinct projections.

It is worth noting that MoELoRA [30]] adopts the mixture-of-experts mechanism and achieves similar
token adaptive weights. Specifically, MOELoRA trains multiple LoRA adapters {(A;, B;) | i > 1} as
experts, each specializing in distinct knowledge. It also maintains a routing network that dynamically
combines the values of these adapters to generate adaptive weights. However, the motivation of
this paper differs from that of MoOELoRA. MoELoRA utilizes the mixture-of-experts architecture
to cope with the knowledge diversity in training data and downstream tasks. Unlike MoELoRA,
our analysis reveals that LoRA’s expressiveness may be constrained by the shared input-output
projection. TopLoRA overcomes this limitation more efficiently and directly. Moreover, the TopLoRA
structure can be incorporated into each expert in MoOELoRA to further enhance its expressiveness. In
the following section, we will experimentally demonstrate the superior performance of TopLoRA
compared to an improved MoELoRA method.

4 Experiments

4.1 General Settings

Datasets and Models. In this section, we evaluate TopLoRA on three benchmarks using different
model architectures. First, we assess TopLoRA’s natural language understanding (NLU) capabilities
on the GLUE benchmark [42], which includes eight sub-tasks. The models used are RoOBERTa-
Base and RoBERTa-Large [28]. Next, we examine TopLoRA’s natural language generation (NLG)
capabilities on two reasoning benchmarks compiled by Hu et al. [[11]: mathematical reasoning
and commonsense reasoning, which consist of 10k and 170k training samples, respectively. The
mathematical reasoning benchmark comprises six sub-tasks, whereas the commonsense reasoning
benchmark includes eight. To demonstrate TopLoRA’s versatility, we evaluate it across multiple
architectures and scales, including Gemma-7B [36], LLaMA-3-8B [35], and Qwen2.5-14B [47].

Baseline Methods. The effectiveness of TopLoRA is demonstrated by comparison with several
baseline methods, including LoRA [10] and its variants: DoRA [27], MELoRA [33]], and HydraLoRA
[37]. Each of these methods introduces distinct modifications to the original LoRA framework. For
example, DoRA improves LoRA by decomposing pretrained weights into magnitude and direction
components. The magnitude is learned through a trainable vector, while the direction is updated using
LoRA. MELoRA enhances LoRA by incorporating mini-ensemble low-rank adapters, achieving a
higher rank at a reduced parameter cost compared to the standard LoRA approach. HydraLoRA
refines LoRA further with an asymmetric architecture that increases parameter efficiency. It employs
a shared A matrix and multiple B matrices, which are dynamically routed to optimize performance.
Essentially, Hydral.oRA improves upon MoELoRA by facilitating better knowledge sharing and
differentiation among the experts. These methods represent different strategies for improving LoRA,
including better optimization, higher rank, and the mixture-of-experts architecture. By comparing
with these techniques, we can clearly demonstrate the superiority of TopLoRA.

General Hyperparammeters. In the main experiments, we evaluate the accuracy of LoRA across
ranks 8, 16, and 32 to analyze the trade-off between the number of parameters and model performance.
For TopLoRA, we test ranks 8 and 16. For the three LoRA variants, we adjust the number of trainable
parameters to match those of LoORA with a rank of 16. Specifically, we set the rank of DoRA to 16,
while HydraLoRA uses a rank of 8 with three B matrices. For MELoRA, the Mini-LoRA rank is
set to 16, with four Mini-LoRA groups. The general settings include the AdamW optimizer [29], a
LoRA dropout rate of 0.05, and no weight decay. Each experiment is repeated three times, and the
average results are reported. Further details can be found in Appendix [A]and [B}



Table 1: The accuracy of different methods on General Language Understanding tasks with various
pretrained models. The highest average precision is bolded, and the second-highest is underlined.

#Params RTE MRPC STS-B CoLA SST-2 QNLI MNLI QQP Avg

LoRA(r =8) 029M 7256 8725 87.12 56.10 93.46 91.58 8489 8746 82.55
2 LoRA(r = 16) 059M 7292 8799 8746 5521 9381 91.89 8552 8779 82.82
& LoRA(r = 32) 1.1ISM  75.09 8922 88.01 5858 9358 90.12 8584 8837 83.60
‘FL“ DoRA(r = 16) 0.61IM 7485 87.83 8848 5646 9339 91.86 8525 87.89 83.25
% MELoRA(r = 16) 0.59M 7545 8873 8727 5443 93.00 9151 8493 8753 82.86
A HydraLoRA(r =8) 0.65M 73.65 89.46 8853 57.03 9323 91.89 8552 87.57 83.36
~  TopLoRA(r = 8) 044M 7834 8799 90.05 5855 9243 9202 8560 88.12 84.14

TopLoRA(r = 16) 0.8OM 7834 8873 8890 60.34 9335 92.11 8565 8843 84.48

LoRA(r = 8) 0.79M 7196 8840 89.88 59.76 9541 93.07 88.67 87.89 84.38
& LoRA(r = 16) 1.57M 7774 8848 90.60 6123 9557 9372 89.29 8825 85.61
5‘ LoRA(r = 32) 3.15M 8135 89.64 9145 6090 9560 9376 89.52 88.61 86.35
cF'v DoRA(r = 16) 1.62M  80.14 88.73 9094 61.73 9568 9345 8930 8829 86.03
% MELoRA(r = 16) 1.57M 7948 8775  90.17 60.59 95.87 9321 88.86 87.89 8548
A HydraLoRA(r=8) 172M 7942 8946 90.63 61.07 9576 9339 89.25 8326 8591
&  TopLoRA(r = 8) 1.18M 80.51 8930 91.54 6175 9564 9389 89.66 88.83 86.39

TopLoRA(r = 16) 236M 8520 9044 9150 6456 95.64 9420 89.94 8894 87.55

4.2 Natural Language Understanding Tasks

Implementation Details. The GLUE benchmark comprises eight sub-tasks, each with distinct
training and test sets. For each sub-task, we fine-tuned the model on the training set and assessed its
accuracy on the corresponding test set. The learning rates for ROBERTa-Base and RoBERTa-Large
were set to 3e-4 and le-4, respectively. A warm-up ratio of 0.03 and linear learning rate decay
were used. The number of training epochs varied across sub-tasks; further details are provided in
Appendix [A] TopLoRA and the baseline methods were only applied to the query and value weights.

Results on the GLUE Tasks. As shown in Table[l] increasing the LoRA rank improves fine-tuning
performance. Specifically, raising the rank from 8 to 32 increases the average accuracy of LoRA
by 1.05% and 1.97% on RoBERTa-Base and RoBERTa-Large, respectively. Compared to LoRA
(r = 8), TopLoRA (r = 8) achieves an accuracy improvement of 1.5% and 2.01%, surpassing LoRA
(r = 32). Notably, TopLoRA’s parameter count is only about 1.5 times that of LoRA at the same rank.
The improvements of other baselines are relatively modest. DoRA (r = 16) shows an improvement
of approximately 0.4% over LoRA (r = 16), while HydraLoRA (r = 8) demonstrates a 0.5%
improvement. MELoRA (r = 16) shows no significant improvement. In contrast, TopLoRA (r = 8)
uses fewer parameters while yielding significantly higher accuracy, highlighting the effectiveness of
token-wise input-output projections. Moreover, increasing the rank of TopLoRA further enhances
accuracy. This scalability will be discussed in more detail in Section4.3]

4.3 Natural Language Generation Tasks

Implementation Details. Both mathematical and commonsense reasoning benchmarks include
a training corpus and multiple test sub-tasks. For each benchmark, we fine-tune the models on the
training data and assess their performance across all sub-tasks. The learning rate is set to le-4 with
100 warm-up steps and linear decay, and the model is trained for one epoch. Both TopLoRA and
baseline methods are applied to the query, key, and value weights. The implementation of these two
reasoning tasks strictly adheres to the code provided in [[L1]].

Results on the Mathematical Reasoning Tasks. As shown in Table [2] TopLoRA achieves the
highest accuracy in mathematical reasoning tasks. Compared to LoRA with the same rank (r =
8), TopLoRA improves the average accuracy of the three models by 1.67%, 3.65%, and 1.43%,
respectively. Notably, these gains surpass those achieved by increasing LoRA’s rank by a factor of
four, demonstrating that TopLoRA’s adaptive input-output projection significantly enhances LoRA’s
expressiveness. Regarding the three LoRA variants, MELoRA’s performance is comparable to or even
exceeds that of DoRA and HydralLoRA, unlike its results on the GLUE dataset. However, the overall
improvements provided by these methods remain considerably smaller than those of TopLoRA.



Table 2: The accuracy of different methods on Mathematical Reasoning tasks with various pretrained
models. The highest average precision is bolded, and the second-highest is underlined.

#Params AddSub MultiArith  SingleEq GSM8K AQuA SVAMP Avg

LoRA(r = 8) 4.82M 87.59 90.33 89.76 56.10 29.13 7570  71.44
LoRA(r = 16) 9.63M 86.84 92.83 89.57 58.15 30.71 7490  72.17
£ LoRA(r = 32) 19.3M 86.58 91.50 91.93 58.45 32.28 75.50 7271
é DoRA(r = 16) 9.98M 87.59 94.17 91.34 58.68 27.95 7580  72.59
g MELoRA(r = 16) 9.63M 87.26 9222 91.01 59.49 32.15 7497  T72.85
© HydraLoRA(r =8) 11.IM 87.34 92.67 90.16 58.83 27.95 7550  72.08
TopLoRA(r = 8) 6.88M 87.85 94.78 91.80 58.43 30.97 7487  73.11
TopLoRA(r = 16) 13.8M 86.33 94.83 92.52 59.29 31.10 75.60  73.28
LoRA(r = 8) 4.72M 82.28 87.06 91.60 55.65 24.02 68.53  68.19
@ LoRA(r = 16) 9.44M 84.56 91.22 92.26 57.22 25.72 70.17  70.19
o LoRA(r = 32) 18.9M 87.17 93.39 93.50 57.87 26.25 71.83  71.67
© DoRA(r = 16) 9.63M 85.95 89.67 92.62 56.52 26.19 7040  70.23
g MELoRA(r = 16) 9.44M 85.82 87.83 91.54 55.34 24.41 7120  69.36
j HydraLoRA(r = 8)  9.04M 86.08 91.00 91.14 55.50 25.98 68.10  69.63
TopLoRA(r = 8) 7.8TM 87.34 92.83 92.91 59.21 24.02 74770  71.84
TopLoRA(r = 16) 15.7M 88.86 92.17 93.31 61.11 28.74 73.50  72.95
LoRA(r = 8) 8.65M 93.16 96.67 92.32 75.66 31.10 85.60  79.09
m LoRA(r =16) 17.3M 91.90 96.33 9291 74.37 34.65 86.40  79.43
¥ LoRA(r =32) 34.6M 92.24 97.39 92.98 76.37 34.78 87.13 80.15
‘{'\l'ﬁ. DoRA(r = 16) 17.6M 92.41 96.39 92.39 75.92 36.22 86.80  80.02
5 MELoRA(r = 16) 17.3M 92.91 97.33 92.13 75.89 33.86 85.60  79.62
5 HydraLoRA(r =8) 16.4M 92.41 96.22 92.45 76.32 36.61 86.97  80.16
TopLoRA(r = 8) 14.6M 91.31 97.67 93.44 77.31 35.96 87.43  80.52
TopLoRA(r = 16) 29.IM 91.65 98.50 93.90 75.74 37.40 87.40  80.76

Results on the Commonsense Reasoning Tasks. As shown in Table |3 TopLoRA also achieves the
highest accuracy in commonsense reasoning tasks, and the experimental conclusions were consistent
with those in mathematical reasoning tasks. At the same rank (r = 8), TopLoRA outperforms LoRA
by 2.02%, 1.14%, and 0.61% in the average accuracy across the three models, respectively. In
comparison, increasing LoRA’s rank by four times yields improvements of 0.66%, 1.27%, and 0.45%.
This demonstrates that TopLoRA can achieve comparable fine-tuning performance while reducing
parameter requirements by nearly fourfold or more. Note that Qwen2.5-14B achieves very high
accuracy in this task, making the improvements from various methods less noticeable. Additionally,
TopLoRA outperforms the other three LoRA variants in accuracy while using fewer parameters.

4.4 Ablation Studies

To optimize the token-wise diagonal matrix X x effectively, TopLoRA incorporates RMSNorm and
exponential functions into the projector I' ¢, as shown in formula (7). To assess the impact of these
components, we conducted an ablation study on mathematical reasoning tasks, fixing the rank at 8.
The results in Table d]indicate that removing either the exponential function or the normalization step
significantly reduces model accuracy. However, omitting the normalization step results in a more
substantial performance decline. This is due to the small values of © X ; without normalization, the
elements in X x remain close to 1, limiting TopLoRA’s ability to capture complex patterns. It is worth
noting that TopLoRA reverts to standard LoORA when X x = I.

4.5 Scalability Analysis

In this section, we evaluate the scalability of TopLoRA by varying the LoRA rank and tuning
granularity. Our experiments focus on mathematical reasoning tasks using the LLama-3-8B model. To
investigate the effect of different LoRA ranks, we tune the rank from the set {2, 4, 8, 16, 32, 64, 128}.
The results, shown in Figure [2(a)] demonstrate that TopLoRA consistently surpasses LoRA across
all tested ranks. Next, we examine how TopLoRA scales when different tuning granularity are
applied. By default, LoRA and TopLoRA are only applied to the query, key, and value weights.
Here, we extend the evaluation to include four additional configurations: Q, QV, QKVUD, and



Table 3: The accuracy of different methods on Commonsense Reasoning tasks with various pre-
trained models. The highest average precision is bolded, and the second-highest is underlined.

#Param BoolQ PIQA SIQA HellaSwag WinoGrande ARC-c ARC-e OBQA Avg

LoRA(r = 8) 4.82M  70.15 88.96 78.05 94.08 89.82 83.96  94.02 88.60  85.95
LoRA(r = 16) 9.63M  75.17 88.74 77.58 95.21 89.11 84.73 92.93 88.00 86.43
2 LoRA(r =32) 193M 7434  89.72 78.10 95.77 88.95 84.73 94.11 87.20 86.61
E<'“ DoRA(r = 16) 9.98M 7349 9044 79.19 95.03 90.00 84.73 93.79 88.67  86.92
g MELOoRA(r = 16) 9.63M 7349 89.50 79.99 94.60 89.90 84.30  93.18 89.40  86.79
© HydraLoRA(r =8) 11.IM  72.14 89.21 81.30 95.11 89.45 8532  94.56 89.00  87.01
TopLoRA(r = 8) 6.88M 7520 90.15 82.80 95.94 90.92 85.67 95.12 88.00 87.97
TopLoRA(r =16) 13.8M 7498 90.81 83.01 95.86 89.98 86.60 9524 91.00 88.44
LoRA(r = 8) 472M  73.17  89.34  80.64 93.22 87.42 80.20 9251 87.13 8545
o LoRA(r = 16) 9.44M  73.54 89.50 81.18 94.18 88.00 81.11 93.15 88.53  86.15
% LoRA(r = 32) 189M  73.87 90.01 82.09 94.95 88.37 8220  93.57 88.73  86.72
: DoRA(r = 16) 9.63M  73.85 88.79 81.83 94.35 89.11 81.48 93.56 88.20 86.40
E MELoRA(r = 16) 9.44M 7359 89.77 81.85 94.84 88.29 82.00  93.06 88.93  86.54
_'j HydraLoRA(r =8) 9.04M  72.66 89.39 80.96 93.84 87.53 81.14  92.85 88.20 85.82
TopLoRA(r = 8) 7.8TM 7352 89.50 82.09 94.42 87.92 81.74  93.73 89.80  86.59
TopLoRA(r =16) 157M 7428 90.10 83.42 94.47 88.00 82.00  94.02 88.40 86.84
LoRA(r = 8) 8.65M 7599 9380 84.34 96.39 92.34 94.03 98.06 9500 91.24
m LOoRA(r =16) 17.3M  76.15 9374 84.44 96.87 92.50 9420 9836  95.80 9151
Y LoRA(r =32) 34.6M 7670 9391 84.90 96.91 92.42 94.62  98.23 95.80  91.69
2 DoRA(r = 16) 17.6M  76.68 9376 84.72 96.97 92.45 94.48 98.20  95.67 91.62
5 MELoRA(r = 16) 17.3M 7697 93.89 84.90 97.12 91.95 94.62  98.06 96.33 91.73
5 HydraLoRA(r =8) 164M 7670 9342 84.54 96.74 92.74 94.11 98.11 95.80 91.52
TopLoRA(r = 8) 14.6M  77.09 93.63 84.80 97.11 93.29 9394 9836  96.60 91.85
TopLoRA(r =16) 29.IM 7728 93.53 85.11 97.17 93.29 94.62 9844  96.00 91.93

Table 4: The accuracy of TopLoRA on mathematical reasoning tasks using LL.ama-3-8B, without
employing the exponential function or the RMSNorm operation.

AddSub MultiArith  SingleEq GSMSK AQuA SVAMP  Avg

TopLoRA 87.85 94.78 91.80 58.43 30.97 74.87 7311
Gemma-7B TopLoRA w.o. Exp 88.10 93.67 90.94 58.15 31.10 7510  72.84
TopLoRA w.o. RMSNorm  88.10 92.83 90.94 58.23 29.53 76.50  72.69
TopLoRA 87.34 92.83 9291 59.21 24.02 7470  71.84
LLama-3-8B  TopLoRA w.o. Exp 83.80 93.83 92.32 56.86 26.77 69.80  70.56
TopLoRA w.o. RMSNorm  88.35 94.33 92.52 58.23 25.20 7200 71.77
TopLoRA 91.31 97.67 93.44 77.31 35.96 87.43  80.52
Qwen2.5-14B  TopLoRA w.o. Exp 92.24 96.61 92.85 76.22 35.83 86.13  79.98
TopLoRA w.o. RMSNorm  90.38 96.17 92.52 75.74 38.98 87.60  80.23

QKVOGUD, where the symbols O, G, U, and D represent output, gate, up, and down projection
weights, respectively. Under the same rank of 8, the results presented in Figure 2(b)| further confirm
that TopLoRA outperforms LoRA under various tuning granularity.

5 Related Work

To reduce fine-tuning overhead, LoRA [10] decomposes the weight update AW € R™*™ into two
low-rank matrices, A € R"*" and B € R™*", where the LoRA rank r determines the number
of trainable parameters. LoRA can be integrated into a model without altering its architecture or
increasing inference overhead. Recent studies have investigated various aspects of LoRA to enhance
its performance, including better optimization [27], initialization methods [31} 45} 18], learning rates
[6], and dynamic parameter allocation [50, [22]], as well as the use of higher ranks [35} [12, |4} [19].
For instance, DoRA [27]] decomposes pretrained weights into magnitude and direction components.
The magnitude is learned via a trainable vector, while the direction is updated using LoRA. PiSSA
[31] and LoRA-GA [45] perform singular value decomposition (SVD) on pretrained weights and
sampled gradients to initialize the matrices A and B. Li et al. [18]] present a comprehensive analysis
of LoRA initialization, showing that non-zero initialization improves the robustness of fine-tuning to
variations in learning rate. LoORA+ [6] uses a larger learning rate for the matrix B to enhance fine-
tuning performance. AdaL.oRA [50]] dynamically adjusts the LoRA rank for different layers during
fine-tuning. VB-LoRA [22] combines low-rank matrices from different LoORA layers using a shared
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Figure 2: The scalability analysis on mathematical reasoning tasks using LL.ama-3-8B. (a) Accuracy
of TopLoRA at varying ranks. (b) Accuracy of TopLoRA at different tuning granularity. The figures
present only the average accuracy, and the detailed results are available in Appendix

vector bank. HiRA [12]] and KronA [4] employ the Hadamard and Kronecker products, respectively,
to enhance the rank of LoRA weights. Similar low-rank decompositions based on Hadamard and
Kronecker products have also been widely used for efficient communication in distributed training
(20,146, [13]]. MELoRA [35]] achieves a higher rank by stacking low-rank matrices along the diagonal.
ReLoRA [26] periodically merges learned LoRA adapters into the pretrained weights to increase
the rank of weight updates. BoRA [19] reformulates LoRA as a block matrix multiplication, in
which the low-rank factors are partitioned into multiple blocks and each block pair is modulated by a
distinct diagonal matrix. This design enhances the diversity and rank of LoRA weights, substantially
improving expressivity with minimal parameter overhead. More related work on LoRA variants and
extensions is provided in Appendix [C]

In this paper, we analyze LoRA from the perspective of input-output projections and express the
LoRA weights as BA = QpPQ 4, where Q4 and () denote the input and output spaces, and
P denotes the input-output projection. LoRA-XS [[1] and LoRA-SB [32]] demonstrate a similar
structure, where the LoORA weight is decomposed as BRA, with A € R"*"™ and B € R™*" being
frozen, while only R € R"*" is trained. Essentially, these methods fix the input and output spaces,
learning only the input-output projection. Different from existing studies, TopLoRA learns distinct
input-output projections for different tokens to further improve the expressiveness of LoRA. Although
the MoELoRA [30] and HydraLLoRA [37/]] architectures use different weights for different tokens, they
do not adequately address the limitations of shared input-output projections. Moreover, experimental
results show that their performance does not match that of TopLoRA.

6 Conclusion

In this paper, we investigate LoRA from the perspective of input-output projections, decomposing
the LoRA weights into three components: the input space, the output space, and the input-output
projections. Beyond the LoRA rank, we identify another factor that limits its expressiveness: the
shared input-output projection in LoRA is insufficient for capturing token-specific information. To
address this limitation, we propose TopLoRA, which learns token-wise input-output projections in an
end-to-end manner. Specifically, by adjusting the LoRA weights with token-wise diagonal matrices,
TopLoRA enables finer-grained adaptation, even with a limited rank. Extensive experiments show
that TopLoRA outperforms LoRA and its variants across a range of tasks and model scales. Notably,
TopLoRA achieves a 2-4% accuracy improvement over LoRA at the same rank.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the main contributions and scope of
this paper: A simple yet powerful extension to LoRA is proposed to improve the fine-tuning
performance.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: A potential limitation of TopLoRA is discussed in Appendix
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: This paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully discloses all necessary information to reproduce the main
experimental results, including datasets, model architectures, and evaluation metrics, which
can be found in Section[d]and Appendix [A]

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper provides open access to the data and code, along with sufficient
instructions for reproduction. Relevant information is available in the provided anonymous
repository.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The paper specifies all training and test details in Section[d]and Appendix [A]
Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: The statistical significance is discussed in Appendix [B.1}
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides sufficient information on the compute resources.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This research conforms in every respect with the NeurIPS Code of Ethics.
Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: The paper discusses both potential societal impacts in Appendix [E]
Guidelines:
» The answer NA means that there is no societal impact of the work performed.
* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations

(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

16


https://neurips.cc/public/EthicsGuidelines

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models) used in
the paper, properly credited, and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All existing assets used in the paper are properly credited, and their licenses
and terms of use are explicitly mentioned and respected. Details can be found in Section [4]

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This research does not involve human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve Large Language
Models (LLMs) as any important, original, or non-standard components. LLMs were only
used to assist with grammar checking during the paper writing process and did not impact
the core methodology, scientific rigor, or originality of the research.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Detailed Experimental Settings

Datasets and Models. The GLUE benchmark [42] includes two single-sentence classification tasks
(CoLA, SST-2), five pairwise text classification tasks (MNLI, RTE, QQP, MRPC, and QNLI), and
one text similarity prediction task (STS-B). This paper reports the overall matched and mismatched
accuracy for MNLI, Matthew’s correlation for CoLA, Pearson correlation for STS-B, and accuracy
for the remaining tasks. Due to the differing dataset sizes, the number of epochs varies: 10 epochs for
RTE and MRPC, 5 epochs for STS-B and CoLA, 2 epochs for SST-2 and QNLI, and 1 epoch for
MNLI and QQP. The models used are RoBERTa-Base and RoBERTa-Large [128]].

LoRA Hyperparameters. The scaling factor is set to a = 2r, where r is the LoRA rank. LoRA is
applied to the query and value weights with a dropout rate of 0.05, using full precision (FP32).

Training Hyperparameters. AdamW [29] is used with 5; = 0.9, 82 = 0.999, ¢ = 1e—8, and no
weight decay. The learning rate is selected from the set {3e—5, 1le—4, 3e—4, 1e—3}, with optimal
values of 3e—4 for RoBERTa-Base and 1le—4 for RoBERTa-Large. A warm-up ratio of 0.03 is
applied, and the batch size is set to 32. The maximum sequence length is 512.

A.1 Experiments on Mathematical and Commonsense Reasoning Tasks

Datasets. Mathematical and commonsense reasoning tasks contain 10K and 170K training samples,
respectively, along with several test tasks. Note that we directly utilize the data from [11] for our
experiments. The training process consists of a single epoch. Three models are employed: Gemma-7B
[36]], LLama-3-8B [3]], and Qwen2.5-14B [47].

LoRA Hyperparameters. The scaling factor is set to o = 2r, where r is the LoRA rank. LoRA is
applied to the query, key, and value weights with a dropout rate of 0.05, using half precision (BF16).

Training Hyperparameters. AdamW is employed with the same settings as previously mentioned.
The learning rate is chosen from the set {3e—5, le—4, 3e—4, le—3} and is set to le—4. A warm-up
of 100 steps is applied, and the batch size is set to 16. The maximum sequence length is 256.

B Additional Experimental Results

B.1 Standard Deviations

In the main experiments, each setting was repeated three times, and the average results are reported.
For conciseness, standard deviations are provided in the Appendix. Table [5] shows the standard
deviations for each GLUE dataset, where a separate model was trained for each. Table[6|presents the
standard deviation of the average accuracy for the commonsense and mathematical reasoning tasks,
where a single model was used across these sub-tasks. Notably, the standard deviation remains stable
and is much smaller than the accuracy improvement achieved by TopLoRA.

Table 5: The standard deviation of different methods on the GLUE benchmark.

RTE MRPC STS-B CoLA SST-2 QNLI MNLI QQP

LoRA(r = 8) 0.51 0.46 0.27 0.57 0.11 0.15 0.11 0.10
LoRA(r = 16) 0.84  0.40 0.34 0.64 0.29 0.11 0.04  0.08
LoRA(r = 32) 078 035 0.39 0.56 0.14 1.00 0.11  0.03
DoRA(r = 16) 095 046 0.31 0.57 0.14 0.02 024  0.11

RoBERTa-Base  yipy RA(r—16) 096 064 062 052 029 014 014 003

HydraLoRA(r =8) 0.59  0.87 0.75 0.61 0.34 0.17 0.21 0.08
TopLoRA(r = 8) 0.89 031 0.39 0.38 0.61 0.14 0.11 0.03
TopLoRA(r =16) 0.72  0.58 1.01 0.47 0.29 0.03 023 0.16

LoRA(r = 8) 055 081 0.26 0.64 0.50 0.22 023 0.05
LoRA(r = 16) 0.51 0.20 0.59 0.98 0.19 0.16 027  0.04
LoRA(r = 32) 040  0.66 0.13 0.65 0.33 0.44 032  0.02
DoRA(r = 16) 048 0.20 0.13 0.56 0.14 0.33 0.13  0.07

RoBERTa-Large  yipy RA(r—16) 045 035 055 064 034 013 025 004

HydraLoRA(r =8) 0.67 0.72 0.21 0.29 0.09 0.09 040  0.09
TopLoRA(r = 8) 090 031 0.07 0.16 0.09 0.35 0.15  0.04
TopLoRA(r =16) 034  0.58 0.14 0.78 0.14 0.12 025  0.10
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Table 6: The standard deviation of the average accuracy on mathematical and commonsense reasoning

tasks.
Mathematical Reasoning Commonsense Reasoning
Gemma-7B LLama-3-8B  Qwen2.5-14B  Gemma-7B LLama-3-8B  Qwen2.5-14B
LoRA(r = 8) 0.19 0.88 0.60 0.63 0.13 0.13
LoRA(r = 16) 0.61 0.62 0.50 0.22 0.19 0.10
LoRA(r = 32) 0.48 0.80 0.78 0.18 0.29 0.06
DoRA(r = 16) 0.58 0.25 0.31 0.46 0.05 0.07
MELoRA(r = 16) 0.31 0.67 0.32 0.56 0.16 0.18
HydraLoRA(r = 8) 0.63 0.39 0.12 0.33 0.24 0.09
TopLoRA(r = 8) 0.33 0.30 0.28 0.79 0.26 0.09
TopLoRA(r = 16) 0.52 0.46 0.38 0.43 0.37 0.04

B.2 Detailed Results of the Scalability Analysis

In Section the scalability of TopLoRA was evaluated using LLama-3-8B on mathematical
reasoning tasks from two perspectives: the LoRA rank and tuning granularity. Figure 2] presents the
average accuracy of different settings across sub-tasks. Complete experimental results are available
in Tables [7] and [§]for further comparison.

Table 7: The accuracy of LoRA and TopLoRA with varying target modules on mathematical reasoning
tasks using LLama-3-8B.

Target Modules Method #Params AddSub MultiArith SingleEq GSM8K AQuA SVAMP Avg
o LoRA 210M 7443 86.39 8845 5226 2664 6167 6497
TopLoRA  3.15M 77381 90.33 8924 5560 2546 6273  66.86
oK LoRA 341M 8127 90.00 9154 5625 2283 6640  68.05
TopLoRA  55IM 8658 92.28 9331 5757 2533 7180 7114
0KV LoRA 470M 8228 87.06 9160 5565 2402 6853 68.19
TopLoRA  7.87M 8734 92.83 9291 5921 2402 7470 71.84
OKVUD LoRA 142M  88.69 9211 9383 5979 2493 7350 7214
TopLoRA  220M 9038 93.00 9429 6050 2638 7610 7344
LoRA 200M  87.59 93.28 9390 5941 2415 7503 7223
QKVOGUD 11 0RA  309M 8928 96.33 9469 6141 2717 7587 7412

Table 8: The accuracy of LoRA and TopLoRA with varying ranks on mathematical reasoning tasks
using LLama-3-8B.

Rank Method #Params AddSub MultiArith  SingleEq GSM8K AQuA SVAMP  Avg
r—9 LoRA 1.18M 77.64 85.56 89.24 52.87 23.36 65.53  65.70
a TopLoRA  1.97M 81.77 88.39 90.55 55.60 25.59 68.20  68.35
" LoRA 2.36M 79.49 86.83 88.85 55.12 23.10 66.03  66.57
a TopLoRA  3.93M 82.11 89.61 91.27 56.94 25.20 66.57  68.62
=8 LoRA 4.72M 82.28 87.06 91.60 55.65 24.02 68.53  68.19
o TopLoRA  7.87M 87.34 92.83 9291 59.21 24.02 74770 71.84
r—16 LoRA 9.44M 84.56 91.22 92.26 57.22 25.72 70.17  70.19
a TopLoRA  15.7M 88.86 92.17 93.31 61.11 28.74 7350  72.95
r— 32 LoRA 18.9M 87.17 93.39 93.50 57.87 26.25 71.83  71.67
o TopLoRA  31.5M 89.62 93.67 94.29 60.42 27.17 7520  73.39
N LoRA 37 M 88.10 94.33 93.70 60.05 25.20 73.10 7241
a TopLoRA  62.9M 90.89 97.17 94.88 60.42 24.41 75.10  73.81
=128 LoRA 75.5M 89.87 94.28 93.04 61.13 24.54 75.40  73.04
a TopLoRA  125.8M  90.38 96.00 94.88 61.56 28.74 7430 7431
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C More Related Work

In Section@ we discuss various LoRA variants. In addition to LoRA, two other widely used PEFT
methods are the adapter-based and soft prompt-based approaches. The adapter-based method [9, (7, [39]]
introduces new layers into the model and fine-tunes only these layers, significantly reducing resource
consumption. The soft prompt-based method [14} 21, 34] adds learnable soft tokens (prompts) to the
input, enabling the model to adapt to specific tasks. Through effectiveness, these methods typically
introduce computational overhead during inference and thus increase inference latency. In contrast,
LoRA applies weight updates directly to the pretrained weights after fine-tuning, avoiding additional
inference latency.

More broadly, LoRA can be regarded as a compression technique. A variety of model compression
methods have been proposed to reduce computational and storage costs, such as quantization [[15]],
pruning [[16], and knowledge distillation [43]]. We expect to see tighter integration between LoRA
and these complementary approaches to further enhance efficiency. Beyond efficiency, it is also
valuable to explore the deployment of LoRA and TopLoRA in distributed environments [24} 44, [17]
and continual learning scenarios [25} 23], as well as in addressing out-of-distribution generalization
under distributional shifts [33]], which represent promising directions for future research.

D Limitations

A potential limitation of TopLoRA is the inference latency. TopLoRA shows improved accuracy over
standard LoRA; however, it relies on token-wise LoORA weights, which cannot be directly integrated
into pretrained weights after fine-tuning. This requires additional computations during inference and
thus increases inference latency. Similar trade-offs between dynamic adaptation and computational
overhead are observed in related approaches, such as MoELoRA [30] and HydraLLoRA [37]. Future
work could explore optimizations to reduce inference costs while preserving TopLoRA’s superiority.
In addition, this paper does not address certain aspects of TopLoRA: (1) Beyond language models, can
TopLoRA be applied to other (e.g., visual) tasks? (2) Can more theoretical or convincing explanations
be provided to justify the advantages of TopLoRA? We are actively investigating these questions.
Nonetheless, we are encouraged by the promising results of TopLoRA in our current experiments
and look forward to further tests and feedback from the community.

E Broader Impacts

This paper presents TopLoRA, a method that enhances LoRA by learning token-wise input-output
projections. TopLoRA achieves the same fine-tuning performance as LoRA while utilizing fewer
parameters, thereby reducing computational overhead and promoting energy efficiency. Additionally,
TopLoRA paves the way for new research directions in dynamic weight LoRA. As an extension of
the established LoRA framework, TopLoRA does not introduce any significant social concerns that
would require further discussion.
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