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Abstract001

Open-domain Information Extraction (IE)002
plays an essential role in constructing large-003
scale knowledge bases and supports down-004
stream applications such as Question Answer-005
ing, Text Summarization, etc. While most006
prior research in IE has centered around ex-007
tracting categorical relational tuples (e.g., presi-008
dent of, located in), the extraction of numerical009
relations (e.g., literacy rate, area, molecular010
weight), that link quantitative mentions to cor-011
responding entities, remains relatively under-012
explored. This work addresses this gap by tar-013
geting the extraction of open-domain numeric014
assertions, which require identifying both the015
relevant entity and the appropriate measuring016
attribute associated with a quantity in natural017
language text. We begin by refining an existing018
OpenIE system through a rule-based approach019
where retrieving implicit measuring attributes020
for a quantity mention becomes the main chal-021
lenge. To overcome this, we propose a neural022
framework that jointly identifies the relevant023
entity for a numeric mention and infers the mea-024
suring attribute to relate them, using contextual025
cues in the sentence. Experimental evaluation026
shows that our proposed model outperforms the027
baseline and a general-purpose large language028
model with a significantly large margin.029

1 Introduction030

Quantitative information is a fundamental aspect031

of factual knowledge and plays a crucial role in032

enabling downstream NLP tasks (Mausam, 2016),033

such as question answering, summarization, rec-034

ommendation, and fact verification. Numeric as-035

sertions, which link entities and quantities with036

appropriate measuring attributes, provide valuable037

insights into numerical properties, ranging from038

population sizes and distances to prices and per-039

centages. Such assertions also enrich knowledge040

bases and support reasoning over quantitative facts.041

Despite the prevalence of numerical content in042

text, existing OpenIE frameworks (Saha et al.,043

2017; Cui et al., 2018; Pei et al., 2023) often fail 044

to capture such numeric assertions, specifically ex- 045

tracting the measuring attributes of an entity as a re- 046

lational phrase. For example, in the sentence “With 047

an estimated spread of 1,774.53 square kilometers, 048

an estimated 111.8 people live per square kilometer 049

in Sinanana Dinsho”, existing systems fail to infer 050

that the first quantity refers to the area of Sinanana 051

Dinsho, while the second refers to its population 052

density. While one can consider a simple rule to use 053

units to identify the measuring attribute, no such 054

dictionary is present that covers an exhaustive list 055

of units. Moreover, quantity may be dimensionless, 056

such as the capacity of a playground or the num- 057

ber of habitat. Large Language Models (LLMs), 058

like BERT (Devlin et al., 2019), GPT4 (OpenAI, 059

2023), Gemini (Anil et al., 2023), etc. are very ef- 060

fective in capturing contextual cues, which allows 061

them to generate semantically related measuring 062

attributes from sentences, but they still struggle 063

when cues are implicit or ambiguous. For instance, 064

given the sentence “Hyundai owns 33.88% of Kia”, 065

GPT-4 often fails to generate the precise measur- 066

ing attribute share, instead producing semantically 067

broader terms like ownership. However, very few 068

systems extract numerical information, but model 069

them for the information retrieval task (Ho et al., 070

2019; Alonso and Sellam, 2018), and therefore fo- 071

cus on retrieving the context rather than specific 072

measuring attributes. 073

This work focuses on extracting numerical as- 074

sertions from sentences, specifically extracting a 075

measuring attribute as a relational tuple, where the 076

object is a quantity. Here, we aim to extract triples 077

⟨E, M, Q⟩ from a sentence, where E is an subject 078

entity, M is the associated measuring attribute, and 079

Q is the corresponding numerical value with the 080

unit if available. For example, from a sentence 081

“Arlescote is fairly remote, with the nearest vil- 082

lage being 2 miles away”, the valid extraction is 083

⟨E: ‘Arlescote’, M: ‘distance from nearest village’, 084
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Q: ‘2 miles’⟩. To extract the numerical assertions085

from sentences, we propose a neural framework086

that jointly identify the entity and the measuring at-087

tribute for a given quantity in a sentence. As there is088

no annotated dataset for numerical triples available089

in literature for training the proposed network, we090

first generate a large-scale pseudo-labeled dataset091

from Wikipedia using a rule-based approach that092

converts triples extracted from an existing OpenIE093

system to acquire labeled triples. We summarize094

our contributions as follows.095

• We develop a rule-based approach to generate096

numerical triples from Wikipedia on top of an097

existing OpenIE system.098

• We introduce a neural framework to extract nu-099

merical assertions, trained on the dataset gen-100

erated by the proposed rule-based pipeline.101

• A comparative evaluation of the proposed102

models against a few baselines is reported.103

• The codes and data generated from the rule-104

based model are made public here and the105

neural models are available here.106

2 Related Works107

Open Information Extraction. Early OpenIE108

systems, such as KnowItAll (Etzioni et al., 2004),109

TEXTRUNNER (Yates et al., 2007), REVERB (Et-110

zioni et al., 2011), use human-defined patterns and111

sentence structure to generate facts from web data.112

OLLIE (Mausam et al., 2012) overcomes the draw-113

backs of REVERB and takes advantage of the pat-114

tern learning approach using bootstrapping. While115

REVERB is a verb-mediated extractor, RELNOUN116

2.0 (Pal and Mausam, 2016) is a noun-mediated117

extractor for complex noun phrases and uses lin-118

guistic processing for extraction. Open IE 4.2 1119

combines SRLIE (Christensen et al., 2011) and120

RELNOUN (Pal and Mausam, 2016).121

Recently, encoder-decoder architecture is ex-122

plored to model the open IE task (Cui et al., 2018).123

OpenIE6 (Kolluru et al., 2020a) exploits the BERT-124

based encoder to design an iterative grid-level ar-125

chitecture that imposes constraint rules and con-126

junction rules to improve the earlier system. De-127

tIE (Vasilkovsky et al., 2022) trains a model us-128

ing BERT (Devlin et al., 2019) and transformer129

1https://github.com/allenai/openie-standalone

encoder architecture with order-agnostic loss to im- 130

prove efficiency of the OpenIE task. A recent sur- 131

vey (Pei et al., 2023) categorizes OpenIE systems 132

and datasets by application. However, all these sys- 133

tems are generic and do not target numeric relations 134

or implicit measuring attributes. 135

Relation Extraction Models. Relation extrac- 136

tion (RE) is typically framed as a classification 137

task over predefined relations. State-of-the-art RE 138

models leverage pre-trained language models like 139

BERT (Devlin et al., 2019) to capture entity and 140

context representations (Wu and He, 2019; Tian 141

et al., 2021; Li et al., 2019). Aman et al. (Madaan 142

et al., 2016) propose a rule-based relation scoping 143

and probabilistic graphical model to extract numer- 144

ical relations, like inflation rate, atomic number, 145

etc. While RE models perform well on curated 146

datasets such as TACRED(Zhang et al., 2017) and 147

KB-37 (Zhang and Wang, 2015), they are limited 148

to closed schemas and do not generalize to open- 149

domain numeric assertions. A recent survey (Zhao 150

et al., 2024) presents a range of relation extraction 151

methods, however, none of them specifically target 152

numerical relations. 153

Extraction of Numerical Assertions. 154

BONIE (Saha et al., 2017) introduces the 155

first numerical assertion extractor, built using 156

the Bootstrapping method. It extracts triples in 157

the form ⟨Arg1, relation phrase, Arg2⟩ where 158

Arg2 captures quantity phrase. While it improves 159

precision over OpenIE 4.2, it struggles with 160

conjunctions and implicit measuring attributes. 161

Many works formulate the information extraction 162

task as a sequence tagging problem (Ho et al., 163

2019; Kolluru et al., 2020b) where input tokens 164

are tagged according to the required output forms. 165

There are NLP pipelines (Roy et al., 2015) that 166

specifically aim to identify quantities in text; 167

however, they do not retrieve the associated entity 168

or context that describes the quantities. Addressing 169

this problem, a few works explored the task 170

as retrieving related information for a quantity 171

mention in text (Alonso and Sellam, 2018; Ho 172

et al., 2019). However, as the target application 173

is considered open-domain question-answering, 174

they accept noisy or partial extraction. A recent 175

work (Zhang, 2022) targets the extraction of nu- 176

merical assertions from Chinese text by fine-tuning 177

BERT on question-answering dataset, where they 178

inquire about the entity and the attribute for a 179

target quantity in a sentence. 180
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3 Rule-Based Approach for Training181

Data Generation182

We introduce an extraction pipeline to construct a183

large-scale dataset of numerical triples, in the form184

of ⟨ E, M, Q ⟩ from natural language text, which we185

use to train neural models. Our extraction pipeline186

consists of two steps–1) filtering OpenIE outputs187

and 2) converting filtered triples to ⟨ E, M, Q ⟩.188

3.1 Filtering OpenIE Generated Triples189

OpenIE systems are effective in extracting gen-190

eral purpose relational tuples, typically in the form191

⟨subject(S), predicate(P), object(O)⟩, but they are192

not optimized to identify numerical information or193

associate it with appropriate measuring attributes.194

Here, we adopt one of the existing OpenIE systems195

BONIE (Saha et al., 2017) as it aims at retriev-196

ing triples containing numerical mention in any of197

the three arguments in ⟨S, P, O⟩ extracted from a198

sentence. Hence, we filter the triples extracted by199

BONIE using the following rules to find potential200

candidate ⟨S, P, O⟩ triples that are later transformed201

into numerical assertions.202

• We discard triples that do not include any203

quantity in the object phrase and have a confi-204

dence score less than 0.9.205

• We eliminate all ⟨S, P, O⟩ triples that specify206

any temporal tags (e.g., date, seconds, etc.) or207

geolocation in the subject or object phrase.208

• We filter ⟨S, P, O⟩ with multiple quantities in209

the object phrase as such triples can introduce210

noisy ⟨E, M, Q⟩ during conversion.211

3.2 Rule-based method for converting212

OpenIE Triples to Numerical Assertions213

The retrieved triples may capture the measuring214

attribute within the subject or predicate phrase.215

Additionally, measuring attributes (e.g., distance,216

duration, area) are often implicit or embedded in217

nominal phrases, and thus are missed out by the218

extractor. Therefore, we devised a rule-based ap-219

proach to convert the extracted triples ⟨S, P, O⟩ into220

numerical assertions ⟨E, M, Q⟩ by identifying the221

quantity Q and measuring the attributes M from222

the subject, predicate, or object phrase of extracted223

triples by BONIE.224

To facilitate effective conversion, we first deter-225

mine whether the sentence associated with a given226

⟨S, P, O⟩ triple matches one of the following pat-227

terns, defined below.228

Sentence Pattern 1: It captures the sentences 229

for which the predicate (P) extracted by BONIE 230

contains the verb that is also the syntactic root. 231

Additionally, the subject phrase (S) must contain at 232

least one named entity, and the noun phrase in S or 233

P (identified by a PROPN or NOUN) is linked via 234

‘nsubj’ or ‘dobj’ to root, respectively. 235

Sentence Pattern 2: It considers all sentences 236

that do not follow the syntactic structure of pattern 237

1, but the extracted S, P, and O contain a noun 238

phrase, only a verb, and a quantity without any 239

noun phrase, respectively. 240

241

For both sentence patterns, we extract the quan- 242

tity (Q) from the object phrase (O) using the 243

QUANTULUM3 parser (Mündler, 2022). It iden- 244

tifies the numerical expressions and their associ- 245

ated units from the extracted object phrase in ⟨S, P, 246

O⟩ by BONIE. Finally, we apply a set of pattern- 247

specific rules to retrieve the entity and the measure- 248

ment attribute. 249

3.2.1 Extraction Rules for Sentence Pattern 1 250

We apply the following set of rules to extract the 251

subject entity (E) and the measuring attribute (M) 252

from the ⟨S, P, O⟩ and the source sentence that 253

matches pattern 1. 254

Extraction of Entity(E): We identify the subject 255

entity using the syntactic structure of the source 256

sentences and the entities named in the subject 257

phrase (S) in ⟨S, P, O⟩ triples. For this, we exploit 258

the following three heuristic cases. 259

• case 1: If a named entity is detected in the sub- 260

ject phrase S using SpaCy NER library, we re- 261

trieve all connected noun phrases linked to the 262

entity from the dependency parse tree of the 263

source sentence, and consider them together 264

as entity phrase (E). For example, we extract 265

‘Montreal and the southern Quebec region’ as 266

entity phrase E from “Montreal and the south- 267

ern Quebec region receive slightly over 2,000 268

hours of sunshine annually, with summer be- 269

ing the sunniest”, whereas the BONIE extracts 270

only ‘Montreal’ as the subject S. 271

• case 2: If the subject contains a single named 272

entity that is a proper noun and there are no 273

linked noun phrases, it is extracted as E. 274

• case 3: If there are no named entities detected 275

by SpaCy in subject phrase S, we identify the 276
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proper noun from it as the entity E. If multiple277

such noun phrases exist, we choose the last278

one as the entity E.279

Extraction of Measuring Attribute (M): Con-280

sidering the position of the noun phrase in predi-281

cates and objects in ⟨S, P, O⟩ triples, we devise the282

following rules to identify measuring attributes M.283

• Case 1: If the predicate has one noun phrase,284

it is extracted as the measuring attribute M;285

otherwise, the noun phrase nearest to quantity286

Q is chosen.287

• Case 2: When predicate P does not contain288

any noun phrases, we find all noun phrases in289

the object O. If there is only one, we consider290

it as the measuring attribute M. Otherwise,291

we consider the one closest to the quantity Q292

as the measuring attribute. For example, we293

extracts ‘surface elevation’ as the measuring294

attribute from triple ⟨ Lake Baikal, has, sur-295

face elevation of 455.5 meters⟩ extracted by296

BONIE from the sentence “Lake Baikal has297

surface elevation of 455.5 meters”.298

In both cases, if the noun phrase includes the299

immediate preposition ‘of’, we consider the linked300

phrase with ‘of’ as part of the measuring attribute.301

For example, the extracted predicate ‘poverty ratio’302

from “the country had a poverty ratio of 46.86% of303

the households in 2005.” is modified to ‘poverty304

ratio of the households’.305

3.2.2 Extraction Rules for Sentence Pattern 2306

Sentences that match with pattern 2, we first ap-307

ply the same entity extraction rule as in Sentence308

Pattern 1 (Case 1) and extract linked noun phrases309

with the entity. Next, we use the following rules310

to retrieve the entity phrase E and the attribute M311

jointly from the extracted phrase.312

• Case 1: If multiple noun phrases exist and one313

of them is possessive, it’s taken as the entity314

E. From the rest, the first noun becomes the315

measuring attribute M. For example, in “The316

average age of the Politburo’s members was317

58 years”, the phrase ‘Politburo’s members’318

becomes E, and ‘average age’ is considered319

as measuring attribute M. Otherwise, the first320

noun phrase recognized by NER is considered321

as the entity E. The next noun phrase in the322

order is selected as the attribute M.323

• Case 2: If there is a single noun phrase con- 324

taining a named entity, the detected entity is 325

considered E and rest of the phrase becomes 326

attribute M. For example, in “Chicago’s over- 327

all sales tax is 9.75% ”, we identify Chicago 328

and overall sale tax as the entity E and the 329

measuring attribute M, respectively. Other- 330

wise, that noun phrase is considered as E and 331

the measuring attribute is retrieved by convert- 332

ing the adjective present within a window of 333

two words from the quantity Q to the nom- 334

inal phrase. If no such adjective exists, the 335

attribute is considered as a null string. 336

Using these rule-based extractor, we generate a 337

corpus of over 90,000 numerical assertions from 338

Wikipedia sentences, which is employed to train 339

our proposed LLM-based neural extractors, pro- 340

posed in the next section. 341

4 LLM-based Extraction of Numerical 342

Assertions 343

Identifying patterns and creating corresponding 344

rules for extracting ⟨E,M,Q⟩ triples for different 345

types of sentences are labor-intensive and ineffi- 346

cient for diverse unseen sentence patterns. Fur- 347

thermore, measuring attributes are often indirectly 348

referenced in the sentence. Although, BONIE uses 349

a unit-based dictionary to infer implicit measuring 350

attributes, its effectiveness is limited based on the 351

unit coverage of the dictionary. Even when units 352

are present, they can ambiguously refer to multiple 353

properties (e.g., monetary units may correspond 354

to profit, loss, asset, or net worth). In case of di- 355

mensionless quantity, dictionary-based measuring 356

attribute inference is not even applicable. These 357

challenges highlight the importance of contextual 358

reasoning in identifying the measuring attribute. 359

To overcome these limitations, we propose am end- 360

to-end transformer-based neural framework to find 361

numerical assertions from sentences. 362

We design a multi-tasking learning framework 363

by combining a sequence tagging module built 364

on top of a BERT-based encoder and a generative 365

transformer decoder. The motivation stems from 366

the observation that while entities E are usually 367

mentioned explicitly in sentences and can be effec- 368

tively extracted via token classification, measuring 369

attributes M often require generation based on im- 370

plicit contextual cues from sentences. 371

Quantity-pivoted encoder module. We design 372

this module to identify the entity phrase and to 373

4



Figure 1: Quantity-pivoted Sequence Tagging Module

capture the cues for generating measuring attribute374

for a given quantity. Similar to sequence tagging375

task, the input sentence is fed to BERT encoder376

along with the position of a quantity mention as a377

pivot, and each token from the input is classified378

into three types of tags – Entity, Attribute, and Oth-379

ers, depicted in Figure 1. We use BIO encoding to380

represent the tags. The quantity embedding layer381

provides extra information about the position of382

pivot quantity by using a vector of 1’s. Other to-383

kens are encoded with vectors of 0’s. Then the aver-384

age of quantity and token embeddings is passed to385

BERT encoder. The model considers cross-entropy386

as the loss function (Lenc) to measure the dispar-387

ity between the actual tags (annotations) and the388

predicted tags generated by the encoder.389

Generative Module. While the entity phrase is390

always explicitly present in the input sentence, mea-391

suring attribute can be implicit or inferred from392

context, as discussed in earlier sections. Hence,393

we introduce a decoder for generating measuring394

attributes considering the contextual cues provided395

by the encoder. Finally, the output from decoder396

and encoder can be combined to extract the fi-397

nal assertion. For example, consider the sentence398

‘Hyundai owns 33.88% of KIA’. The encoder pre-399

dicts the tag sequence [B-ent, O, B-qty, I-qty, O,400

I-attr] for the input tokens, identifying ‘Hyundai’401

as the entity and ‘KIA’ as the attribute. And the de-402

coder generates ‘shares of’ based on the contextual403

cues from encoder, resulting in the final assertions404

⟨Hyundai, shares of KIA, 33.88%⟩. For training405

the decoder, we consider the cross-entropy loss be-406

tween the generated tokens and the target tokens as407

the decoder loss Ldec.408

As encoder and decoder modules are perform-409

ing two different but related tasks, we propose a410

joint training strategy, allowing the encoder and 411

decoder to be optimized simultaneously. This way 412

the model leverage the information contained in 413

the gradients from the encoder to guide the weight 414

updates on the decoder and vice versa. 415

We define a unified loss function L, given in 416

Equation 1, as a weighted linear combination of 417

the encoder loss (Lenc) and the decoder loss (Ldec) 418

mentioned earlier. 419

L = (1− α) ∗ Lenc + (α) ∗ Ldec (1) 420

Here, we propose two joint learning frameworks 421

that consider different information flows to share 422

the information between the encoder and decoder. 423

4.1 Tag-aware Joint Extraction 424

In this approach, we enrich the information flow 425

from encoder to decoder by providing token posi- 426

tions predicted as attributes by the encoder with the 427

cross-attention mechanism. The process involves 428

concatenating the last hidden state embeddings of 429

the encoder with a vector representing the token 430

positions predicted as attributes. This concatenated 431

tensor is then passed through a Linear layer with 432

a rectified linear unit (ReLU) activation function, 433

generating a final embedding of a token. The mod- 434

ified hidden representation is defined as follows: 435

Kattr = ReLU(Wattr.[h, Posattr]) (2) 436

Here, Kattr represents the Key and Value passed 437

to the Decoder’s cross-attention mechanism, h de- 438

notes the last hidden state embeddings of the En- 439

coder, and Posattr is a binary vector, where ones 440

indicate the positions predicted as attribute tag in 441

the sequence tagging module. The framework is il- 442

lustrated in Figure 2 (a). This enhancement allows 443

the decoder to more effectively attend to semanti- 444

cally relevant regions of the input when inferring 445

measuring attributes. 446

4.2 Attribute-aware Joint Extraction: 447

In this variant depicted in Figure 2 (b), we make the 448

decoder explicitly aware of the measuring attribute 449

tokens predicted by the encoder. Unlike the conven- 450

tional Transformer decoder that typically receives 451

shifted target token IDs as input, we fed the token 452

IDs corresponding to the predicted attribute spans 453

as the query into the decoder. This modification 454

helps the decoder to capture better contextual cues 455

and anticipate relevant measuring attribute. Addi- 456

tionally, the encoder’s final hidden state representa- 457

tions are passed to the decoder via cross-attention 458
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(a) Tag-aware Joint method (b) Attribute-aware Joint method

Figure 2: LLM-based extraction models for numerical assertions

as in the standard Transformer architecture. This459

setup allows the decoder to condition its genera-460

tion on both: (i) the structural cues derived from461

attribute predictions, and (ii) the full contextual462

information encoded in the source sentence.463

5 Experimental Results464

Datasets. We constructed a total of 93,769 nu-465

meric assertions using our rule-based extractor466

from Wikipedia sentences which is made public.467

The dataset statistics are given in Table 1. Since468

existing OpenIE benchmark dataset do not focus on469

numerical assertions where the measuring attribute470

serves as the predicate, we use our dataset gener-471

ated using the rule-based method as training data.472

To evaluate the quality of this dataset, we randomly473

sampled 100 generated triples and assessed how474

precise the extraction was with precision, reported475

in Table 2. The results indicate that the rule-based476

extractor performs more reliably for shorter sen-477

tences. Based on this observation, we curated a478

cleaner subset of 10,000 high-quality triples ex-479

tracted from sentences of length fewer than 15,480

which we use to train our LLM-based extraction481

models. For evaluation of all baselines and the482

proposed models, we created a test dataset by man-483

ually annotated 100 Wikipedia sentences with gold484

⟨E, M, Q⟩ triples.485

Evaluation Metrics. We primarily use precision,486

recall and F1 measure to evaluate the quality of the487

extracted entity and measuring attribute for triples.488

As these metrics do not consider the word order,489

we consider BLUE score as well for the evaluation.490

Table 1: Statistics of rule-based dataset

Length of sentences Complete Test
< 11 5745 25

11≤sen. len < 21 26985 25
21 ≤ sen len < 31 36830 25

≥ 31 24209 25

Table 2: Evaluation of rule-based model using Precision

Sentence Length E M Q
≤ 15 0.96 0.76 0.94
> 15 0.86 0.62 0.82

Experimental Setup The hyperparameters for 491

each model were determined through a 5-fold cross- 492

validation. We set the best value for α that tunes 493

the combined loss to 0.5. The batch size and the 494

learning rate are set to 8 and 1× e−5 respectively. 495

The dropout value for the FNN in the encoder block 496

is set to 0.1 and the dropout for the FNN in the Tag- 497

aware Joint method is set to 0.3. We use 4 decoder 498

blocks from transformer library. 499

Baselines We employ BONIE as our underline 500

extractor for rule-based model. Therefore, we con- 501

sider our rule-based approach as the primary base- 502

line, instead of BONIE itself. Furthermore, we use 503

the encoder-decoder architecture (Cui et al., 2018) 504

along with GPT-4 as competitors. Additionally, a 505

fine-tuned GPT 3.5 turbo is also considered as an- 506

other baseline. We observed that GPT fine-tuning 507

process is very sensitive towards noise and also 508

costly. Therefore, we finetune GPT-3.5 turbo with 509

manually annotated 200 samples, instead of using 510

the automatically generated training data. 511
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Table 3: Performance of models on extraction of measuring attributes

Performance (Sentence Length ≤ 15)
Models Precision Recall F1 Score BLUE Score

GPT 4* 0.71 0.68 0.69 0.41
fine-tuned GPT-3.5 0.85 0.77 0.81 0.64
Encoder-Decoder Arch. 0.58 0.55 0.56 0.53
Rule Based Model 0.71 0.68 0.69 0.58
Tag-aware Joint Extraction 0.91 0.94 0.92 0.73
Attribute-aware Joint Extraction 0.92 0.90 0.91 0.78

Performance (Sentence Length > 15)
GPT 4* 0.60 0.60 0.60 0.27
fine-tuned GPT-3.5 0.72 0.63 0.67 0.40
Encoder-Decoder Architecture 0.52 0.50 0.51 0.22
Rule Based Model 0.67 0.59 0.63 0.30
Tag-aware Joint Extraction 0.66 0.61 0.63 0.32
Attribute-aware Joint Extraction 0.72 0.68 0.70 0.31

5.1 Evaluation of he Models on Extracting512

Measuring Attributes513

Table 3 provides a comprehensive evaluation of the514

extraction methods for measuring attributes. From515

the results presented in Table 3, we can see that the516

proposed joint extraction methods significantly out-517

perform all baselines w.r.t. all metrics. We can also518

observe that tag-aware and attribute-aware extrac-519

tion methods perform better in extracting measur-520

ing attributes from the smaller sentences (length ≤521

15) compared to the longer ones. This is consistent522

with the characteristic of the training data.523

Comparing the performance of the proposed524

models with the encoder-decoder architecture, we525

can ensure that the availability of additional task-526

specific information to the decoder from the en-527

coder stack significantly contributed to train a bet-528

ter model for extracting measuring attributes.529

We can also observe from the results that the rule-530

base models perform more steadily across different531

sentence lengths compare to the proposed neural532

models. This characteristic reflects that we are533

able to cover sentences with different lengths with534

the two patters mentioned in Section 3. However,535

the overall performance of the rule-based model536

in extracting measuring attributes is inferior. It537

is affected by the limitation of BONIE in extract-538

ing measuring attributes, as the rule-based model539

mainly rearranges the extracted BONIE triples ⟨540

S,P,O ⟩ to numerical assertions ⟨ E,M,Q ⟩.541

5.2 Evaluation of the Models on Extracting542

the Entity Phrases543

Table 2 has shown that the precision in retrieving544

the entity phrase using the proposed rule-based545

model is efficient, reaching 96% precision for546

shorter sentences, specifically due to the precise547

extraction of entity phrase by BONIE. Overall, we 548

achieve 91% precision for entity extraction using 549

the rule-based model. It is important to note here 550

that the rule-based model is able to detect the con- 551

jugated entities where BONIE fails. 552

From the evaluation, we can also see that the per- 553

formance of the proposed neural models is compa- 554

rable with the performance of the rule-based model 555

for extracting entity phrase from shorter sentences 556

(less than length 15). However, their performance 557

deteriorates for longer sentences. This result fits 558

the characteristics of the training data. As they are 559

trained with shorter sentences, they are unable to 560

generalize the learning patterns for extracting en- 561

tity phrases from longer sentences. While the best 562

performing LLM-based model achieves an overall 563

77% F1 score, the rule-based model reaches 81% 564

F1 score. The similar pattern is also reflected for 565

the BLUE score. From the results, we can see that 566

only the fine-tuned GPT-3.5 is able to outperform 567

the rule-based model in entity extraction. This is 568

attributed to its exposure to vast underlying data. 569

However, GPT with zero-shot setup is significantly 570

underperforming for entity extraction as well. 571

5.3 Discussion 572

Here, we can observe from the results presented 573

in Table 3 and Table 4 that the proposed models 574

perform comparable to each other. Overall, they 575

outperform baselines for extracting numerical as- 576

sertions from shorter sentences. However, the rule- 577

based model outperforms the entity extraction task 578

for longer sentences, although overall performance 579

remains inferior to the neural models. We also ob- 580

serve from the results that fine-tuned GPT model 581

significantly outperforms the GPT-4 with zero-shot 582

set up. While fine-tuned GPT 3.5 built on a LLM 583
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Table 4: Performance of models on extraction of entity phrases

Performance for Sentence Length ≤ 15)
Models Precision Recall F1 Score BLUE Score

GPT 4 0.70 0.86 0.77 0.69
Fine-tuned GPT 3.5 0.87 0.85 0.86 0.82
Encoder-decode Arch. 0.77 0.87 0.82 0.81
Rule Based Model 0.87 0.91 0.89 0.81
Tag-Aware Joint Extraction 0.87 0.93 0.90 0.81
Attribute-Aware Joint Extraction 0.85 0.96 0.90 0.77

Performance for Sentence Length > 15
GPT 4 0.59 0.59 0.59 0.50
Fine-tuned GPT 3.5 0.72 0.66 0.69 0.59
Encoder-decode Arch. 0.58 0.61 0.59 0.49
Rule Based Model 0.79 0.74 0.76 0.65
Tag-Aware Joint Method 0.66 0.65 0.66 0.54
Attribute-Aware Joint Method 0.63 0.62 0.62 0.48

Table 5: Anecdotal Examples of Extracted Numerical Assertions ⟨E, M,Q⟩

The bridge carries 60 to 70 percent of commercial truck traffic in the region.
Methods Entity Measuring attribute Quantity
GPT4 The bridge share of regional commercial truck traffic car-

ried
60 to 70%

fine-tuned GPT3.5 bridge commercial truck traffic share 60 to 70%
Rule-based bridge truck traffic carrier 60 to 70%
Attribute-aware bridge carries commercial truck traffic 60 to 70%
The same poll, 800 Hispanic voters in Florida, had 35 % of non-Cuban Hispanics
supporting Mr. Bush, 59 % Mr. Kerry and 6 % undecided or supporting Mr. Nader.
Methods Entity Measuring attribute Quantity
GPT4 Non-Cuban His-

panics
support for Mr. Bush 35%

fine-tuned GPT3.5 Mr. Non-Cuban Hispanics supporting Mr. Bush 35%
Rule-based The Same Poll non-cuban hispanics supporting 35%
Attribute-aware Florida Poll voters 35%

with ≈ 175 billion parameters, we consider a com-584

paratively smaller LLM with 108 million param-585

eters only. Our proposed models are trained with586

only ≈ 280 million parameters on a relatively small587

data set with 10K samples. With these smaller mod-588

els, we outperform fine-tuned GPT in most cases.589

Table 5 shows anecdotal examples for extracting590

numerical triples from different models. We can591

see that GPT-4 generates out-of-context tokens as592

measuring attributes for the first example, which593

is contributed to its poor performance, reflected in594

the BLUE and F1 score in Table 3. Fine-tuning595

GPT brings improvement in this aspect. For the596

example with longer sentence, none of the methods597

generates appropriate measuring attribute. Con-598

sequently, the performance of entity extraction is599

affected. Our proposed model able to understand600

that 35% is about poll voter in Florida, which is par-601

tially correct. Here, GPT models tends to capture602

factual content rather than the measuring attribute.603

As reflected in the performance scores, all mod-604

els perform well in extracting entity correctly for605

shorter sentences.606

6 Conclusion 607

Extracting numerical assertions in the form of ⟨ en- 608

tity, measurement attribute, quantity⟩ can enhance 609

the coverage of quantitative facts in knowledge 610

graphs, as well as the understanding of quantity 611

in text. This work presents a rule-based extrac- 612

tion pipeline built on BONIE to generate numeri- 613

cal triples from text. While the extractor demon- 614

strates high precision in identifying entities and 615

quantities, its performance in extracting implicit 616

or context-dependent measuring attributes remains 617

limited. Addressing this limitation, we propose 618

two LLM-based neural models Attribute-aware and 619

Tag-aware Joint extractor that are trained using the 620

dataset generated by the rule-based model. We con- 621

sider BERT as the underlying LLM, which allows 622

us to create a smaller model with ≈ 280 param- 623

eters, compared to the dominant general purpose 624

LLM. From the evaluation, we observe that the in- 625

tegration of additional information flow from the 626

encoder to the decoder stack helps to learn a better 627

model that outperforms all baselines for extracting 628

numerical assertions from shorter sentences. 629
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Limitations630

Measuring attribute extraction in open-domain set-631

tings remains underexplored, and no benchmark632

datasets exist for numerical assertions. To ad-633

dress this, we leveraged BONIE and designed a634

rule-based approach to generate a pseudo-labeled635

dataset for numerical assertions. However, the lim-636

itation of BONIE in extracting measuring attribute637

from longer sentences adversely impacted the qual-638

ity of measuring attribute annotations, reducing639

overall extraction quality. This, in turn, restricted640

the proposed neural model’s exposure to various641

syntactic patterns, limiting its ability to generalize642

to longer or more complex inputs. Consequently,643

models often capture only partial measuring at-644

tributes and may fail to correctly associate the cor-645

responding entity for longer sentences.646

Another limitation of our work stems from the647

architectural choices in our neural model. We ob-648

served that the rule-based approach achieved a high649

precision for extracting the entity phrase. And650

therefore, we prioritized learning robust models651

that can capture the representation of measuring652

attributes efficiently. Although we investigated the653

joint extraction of entity and measuring attribute,654

our design choice remains simple for entity ex-655

traction, using sequence tagging over fine-tuned656

pre-trained language models. This design, com-657

bined with training primarily on shorter sentences,658

restricts generalzibility of the model and affects per-659

formance of entity extraction for longer sentences.660

This further affects the extraction of measuring661

attribute as both tasks are linked. However, a com-662

bined approach that leverages the strengths of both663

methods remains a promising direction for future664

work.665
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