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Abstract

Open-domain Information Extraction (IE)
plays an essential role in constructing large-
scale knowledge bases and supports down-
stream applications such as Question Answer-
ing, Text Summarization, etc. While most
prior research in IE has centered around ex-
tracting categorical relational tuples (e.g., presi-
dent of, located in), the extraction of numerical
relations (e.g., literacy rate, area, molecular
weight), that link quantitative mentions to cor-
responding entities, remains relatively under-
explored. This work addresses this gap by tar-
geting the extraction of open-domain numeric
assertions, which require identifying both the
relevant entity and the appropriate measuring
attribute associated with a quantity in natural
language text. We begin by refining an existing
OpenlE system through a rule-based approach
where retrieving implicit measuring attributes
for a quantity mention becomes the main chal-
lenge. To overcome this, we propose a neural
framework that jointly identifies the relevant
entity for a numeric mention and infers the mea-
suring attribute to relate them, using contextual
cues in the sentence. Experimental evaluation
shows that our proposed model outperforms the
baseline and a general-purpose large language
model with a significantly large margin.

1 Introduction

Quantitative information is a fundamental aspect
of factual knowledge and plays a crucial role in
enabling downstream NLP tasks (Mausam, 2016),
such as question answering, summarization, rec-
ommendation, and fact verification. Numeric as-
sertions, which link entities and quantities with
appropriate measuring attributes, provide valuable
insights into numerical properties, ranging from
population sizes and distances to prices and per-
centages. Such assertions also enrich knowledge
bases and support reasoning over quantitative facts.

Despite the prevalence of numerical content in
text, existing OpenlE frameworks (Saha et al.,

2017; Cui et al., 2018; Pei et al., 2023) often fail
to capture such numeric assertions, specifically ex-
tracting the measuring attributes of an entity as a re-
lational phrase. For example, in the sentence “With
an estimated spread of 1,774.53 square kilometers,
an estimated 111.8 people live per square kilometer
in Sinanana Dinsho”, existing systems fail to infer
that the first quantity refers to the area of Sinanana
Dinsho, while the second refers to its population
density. While one can consider a simple rule to use
units to identify the measuring attribute, no such
dictionary is present that covers an exhaustive list
of units. Moreover, quantity may be dimensionless,
such as the capacity of a playground or the num-
ber of habitat. Large Language Models (LLMs),
like BERT (Devlin et al., 2019), GPT4 (OpenAl,
2023), Gemini (Anil et al., 2023), etc. are very ef-
fective in capturing contextual cues, which allows
them to generate semantically related measuring
attributes from sentences, but they still struggle
when cues are implicit or ambiguous. For instance,
given the sentence “Hyundai owns 33.88% of Kia”,
GPT-4 often fails to generate the precise measur-
ing attribute share, instead producing semantically
broader terms like ownership. However, very few
systems extract numerical information, but model
them for the information retrieval task (Ho et al.,
2019; Alonso and Sellam, 2018), and therefore fo-
cus on retrieving the context rather than specific
measuring attributes.

This work focuses on extracting numerical as-
sertions from sentences, specifically extracting a
measuring attribute as a relational tuple, where the
object is a quantity. Here, we aim to extract triples
(E, M, Q) from a sentence, where E is an subject
entity, M is the associated measuring attribute, and
Q is the corresponding numerical value with the
unit if available. For example, from a sentence
“Arlescote is fairly remote, with the nearest vil-
lage being 2 miles away”, the valid extraction is
(E: ‘Arlescote’, M: ‘distance from nearest village’,



Q: 2 miles’). To extract the numerical assertions
from sentences, we propose a neural framework
that jointly identify the entity and the measuring at-
tribute for a given quantity in a sentence. As there is
no annotated dataset for numerical triples available
in literature for training the proposed network, we
first generate a large-scale pseudo-labeled dataset
from Wikipedia using a rule-based approach that
converts triples extracted from an existing OpenlE
system to acquire labeled triples. We summarize
our contributions as follows.

* We develop a rule-based approach to generate
numerical triples from Wikipedia on top of an
existing OpenlE system.

* We introduce a neural framework to extract nu-
merical assertions, trained on the dataset gen-
erated by the proposed rule-based pipeline.

* A comparative evaluation of the proposed
models against a few baselines is reported.

* The codes and data generated from the rule-
based model are made public here and the
neural models are available here.

2 Related Works

Open Information Extraction. Early OpenlE
systems, such as KnowlItAll (Etzioni et al., 2004),
TEXTRUNNER (Yates et al., 2007), REVERB (Et-
zioni et al., 2011), use human-defined patterns and
sentence structure to generate facts from web data.
OLLIE (Mausam et al., 2012) overcomes the draw-
backs of REVERB and takes advantage of the pat-
tern learning approach using bootstrapping. While
REVERB is a verb-mediated extractor, RELNOUN
2.0 (Pal and Mausam, 2016) is a noun-mediated
extractor for complex noun phrases and uses lin-
guistic processing for extraction. Open IE 4.2 !
combines SRLIE (Christensen et al., 2011) and
RELNOUN (Pal and Mausam, 2016).

Recently, encoder-decoder architecture is ex-
plored to model the open IE task (Cui et al., 2018).
OpenlE6 (Kolluru et al., 2020a) exploits the BERT-
based encoder to design an iterative grid-level ar-
chitecture that imposes constraint rules and con-
junction rules to improve the earlier system. De-
tIE (Vasilkovsky et al., 2022) trains a model us-
ing BERT (Devlin et al., 2019) and transformer
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encoder architecture with order-agnostic loss to im-
prove efficiency of the OpenlE task. A recent sur-
vey (Pei et al., 2023) categorizes OpenlE systems
and datasets by application. However, all these sys-
tems are generic and do not target numeric relations
or implicit measuring attributes.

Relation Extraction Models. Relation extrac-
tion (RE) is typically framed as a classification
task over predefined relations. State-of-the-art RE
models leverage pre-trained language models like
BERT (Devlin et al., 2019) to capture entity and
context representations (Wu and He, 2019; Tian
et al., 2021; Li et al., 2019). Aman et al. (Madaan
et al., 2016) propose a rule-based relation scoping
and probabilistic graphical model to extract numer-
ical relations, like inflation rate, atomic number,
etc. While RE models perform well on curated
datasets such as TACRED(Zhang et al., 2017) and
KB-37 (Zhang and Wang, 2015), they are limited
to closed schemas and do not generalize to open-
domain numeric assertions. A recent survey (Zhao
et al., 2024) presents a range of relation extraction
methods, however, none of them specifically target
numerical relations.

Extraction of Numerical Assertions.
BONIE (Saha et al., 2017) introduces the
first numerical assertion extractor, built using
the Bootstrapping method. It extracts triples in
the form (Argl, relation phrase, Arg2) where
Arg? captures quantity phrase. While it improves
precision over OpenlE 4.2, it struggles with
conjunctions and implicit measuring attributes.
Many works formulate the information extraction
task as a sequence tagging problem (Ho et al.,
2019; Kolluru et al., 2020b) where input tokens
are tagged according to the required output forms.
There are NLP pipelines (Roy et al., 2015) that
specifically aim to identify quantities in text;
however, they do not retrieve the associated entity
or context that describes the quantities. Addressing
this problem, a few works explored the task
as retrieving related information for a quantity
mention in text (Alonso and Sellam, 2018; Ho
et al., 2019). However, as the target application
is considered open-domain question-answering,
they accept noisy or partial extraction. A recent
work (Zhang, 2022) targets the extraction of nu-
merical assertions from Chinese text by fine-tuning
BERT on question-answering dataset, where they
inquire about the entity and the attribute for a
target quantity in a sentence.
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3 Rule-Based Approach for Training
Data Generation

We introduce an extraction pipeline to construct a
large-scale dataset of numerical triples, in the form
of (E, M, Q ) from natural language text, which we
use to train neural models. Our extraction pipeline
consists of two steps—1) filtering OpenlE outputs
and 2) converting filtered triples to ( E, M, Q ).

3.1 Filtering OpenlE Generated Triples

OpenlE systems are effective in extracting gen-
eral purpose relational tuples, typically in the form
(subject(S), predicate(P), object(O)), but they are
not optimized to identify numerical information or
associate it with appropriate measuring attributes.
Here, we adopt one of the existing OpenlE systems
BONIE (Saha et al., 2017) as it aims at retriev-
ing triples containing numerical mention in any of
the three arguments in (S, P, O) extracted from a
sentence. Hence, we filter the triples extracted by
BONIE using the following rules to find potential
candidate (S, P, O) triples that are later transformed
into numerical assertions.

* We discard triples that do not include any
quantity in the object phrase and have a confi-
dence score less than 0.9.

* We eliminate all (S, P, O) triples that specify
any temporal tags (e.g., date, seconds, etc.) or
geolocation in the subject or object phrase.

» We filter (S, P, O) with multiple quantities in
the object phrase as such triples can introduce
noisy (E, M, Q) during conversion.

3.2 Rule-based method for converting
OpenlE Triples to Numerical Assertions

The retrieved triples may capture the measuring
attribute within the subject or predicate phrase.
Additionally, measuring attributes (e.g., distance,
duration, area) are often implicit or embedded in
nominal phrases, and thus are missed out by the
extractor. Therefore, we devised a rule-based ap-
proach to convert the extracted triples (S, P, O) into
numerical assertions (E, M, Q) by identifying the
quantity ) and measuring the attributes M from
the subject, predicate, or object phrase of extracted
triples by BONIE.

To facilitate effective conversion, we first deter-
mine whether the sentence associated with a given
(S, P, O) triple matches one of the following pat-
terns, defined below.

Sentence Pattern 1: It captures the sentences
for which the predicate (P) extracted by BONIE
contains the verb that is also the syntactic root.
Additionally, the subject phrase (S) must contain at
least one named entity, and the noun phrase in S or
P (identified by a PROPN or NOUN) is linked via
‘nsubj’ or ‘dobj’ to root, respectively.

Sentence Pattern 2: It considers all sentences
that do not follow the syntactic structure of pattern
1, but the extracted S, P, and O contain a noun
phrase, only a verb, and a quantity without any
noun phrase, respectively.

For both sentence patterns, we extract the quan-
tity (Q) from the object phrase (O) using the
QUANTULUMS3 parser (Miindler, 2022). It iden-
tifies the numerical expressions and their associ-
ated units from the extracted object phrase in (S, P,
O) by BONIE. Finally, we apply a set of pattern-
specific rules to retrieve the entity and the measure-
ment attribute.

3.2.1 Extraction Rules for Sentence Pattern 1

We apply the following set of rules to extract the
subject entity (E) and the measuring attribute (M)
from the (S, P, O) and the source sentence that
matches pattern 1.

Extraction of Entity(E): We identify the subject
entity using the syntactic structure of the source
sentences and the entities named in the subject
phrase (S) in (S, P, O) triples. For this, we exploit
the following three heuristic cases.

* case 1: If a named entity is detected in the sub-
ject phrase S using SpaCy NER library, we re-
trieve all connected noun phrases linked to the
entity from the dependency parse tree of the
source sentence, and consider them together
as entity phrase (E). For example, we extract
‘Montreal and the southern Quebec region’ as
entity phrase E from “Montreal and the south-
ern Quebec region receive slightly over 2,000
hours of sunshine annually, with summer be-
ing the sunniest”, whereas the BONIE extracts
only ‘Montreal’ as the subject S.

case 2: If the subject contains a single named
entity that is a proper noun and there are no
linked noun phrases, it is extracted as E.

e case 3: If there are no named entities detected
by SpaCly in subject phrase S, we identify the



proper noun from it as the entity E. If multiple
such noun phrases exist, we choose the last
one as the entity E.

Extraction of Measuring Attribute (M): Con-
sidering the position of the noun phrase in predi-
cates and objects in (S, P, O) triples, we devise the
following rules to identify measuring attributes M.

* Case 1: If the predicate has one noun phrase,
it is extracted as the measuring attribute M;
otherwise, the noun phrase nearest to quantity
Q is chosen.

* Case 2: When predicate P does not contain
any noun phrases, we find all noun phrases in
the object O. If there is only one, we consider
it as the measuring attribute M. Otherwise,
we consider the one closest to the quantity Q
as the measuring attribute. For example, we
extracts ‘surface elevation’ as the measuring
attribute from triple ( Lake Baikal, has, sur-
face elevation of 455.5 meters) extracted by
BONIE from the sentence “Lake Baikal has
surface elevation of 455.5 meters”.

In both cases, if the noun phrase includes the
immediate preposition ‘of’, we consider the linked
phrase with ‘of” as part of the measuring attribute.
For example, the extracted predicate ‘poverty ratio’
from “the country had a poverty ratio of 46.86% of
the households in 2005.” is modified to ‘poverty
ratio of the households’.

3.2.2 Extraction Rules for Sentence Pattern 2

Sentences that match with pattern 2, we first ap-
ply the same entity extraction rule as in Sentence
Pattern 1 (Case 1) and extract linked noun phrases
with the entity. Next, we use the following rules
to retrieve the entity phrase E and the attribute M
jointly from the extracted phrase.

* Case 1: If multiple noun phrases exist and one
of them is possessive, it’s taken as the entity
E. From the rest, the first noun becomes the
measuring attribute M. For example, in “The
average age of the Politburo’s members was
58 years”, the phrase ‘Politburo’s members’
becomes E, and ‘average age’ is considered
as measuring attribute M. Otherwise, the first
noun phrase recognized by NER is considered
as the entity E. The next noun phrase in the
order is selected as the attribute M.

* Case 2: If there is a single noun phrase con-
taining a named entity, the detected entity is
considered E and rest of the phrase becomes
attribute M. For example, in “Chicago’s over-
all sales tax is 9.75% , we identify Chicago
and overall sale tax as the entity E and the
measuring attribute M, respectively. Other-
wise, that noun phrase is considered as E and
the measuring attribute is retrieved by convert-
ing the adjective present within a window of
two words from the quantity Q to the nom-
inal phrase. If no such adjective exists, the
attribute is considered as a null string.

Using these rule-based extractor, we generate a
corpus of over 90,000 numerical assertions from
Wikipedia sentences, which is employed to train
our proposed LLM-based neural extractors, pro-
posed in the next section.

4 LLM-based Extraction of Numerical
Assertions

Identifying patterns and creating corresponding
rules for extracting (E.M,Q) triples for different
types of sentences are labor-intensive and ineffi-
cient for diverse unseen sentence patterns. Fur-
thermore, measuring attributes are often indirectly
referenced in the sentence. Although, BONIE uses
a unit-based dictionary to infer implicit measuring
attributes, its effectiveness is limited based on the
unit coverage of the dictionary. Even when units
are present, they can ambiguously refer to multiple
properties (e.g., monetary units may correspond
to profit, loss, asset, or net worth). In case of di-
mensionless quantity, dictionary-based measuring
attribute inference is not even applicable. These
challenges highlight the importance of contextual
reasoning in identifying the measuring attribute.
To overcome these limitations, we propose am end-
to-end transformer-based neural framework to find
numerical assertions from sentences.

We design a multi-tasking learning framework
by combining a sequence tagging module built
on top of a BERT-based encoder and a generative
transformer decoder. The motivation stems from
the observation that while entities E are usually
mentioned explicitly in sentences and can be effec-
tively extracted via token classification, measuring
attributes M often require generation based on im-
plicit contextual cues from sentences.

Quantity-pivoted encoder module. We design
this module to identify the entity phrase and to
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Figure 1: Quantity-pivoted Sequence Tagging Module

capture the cues for generating measuring attribute
for a given quantity. Similar to sequence tagging
task, the input sentence is fed to BERT encoder
along with the position of a quantity mention as a
pivot, and each token from the input is classified
into three types of tags — Entity, Attribute, and Oth-
ers, depicted in Figure 1. We use BIO encoding to
represent the tags. The quantity embedding layer
provides extra information about the position of
pivot quantity by using a vector of 1’s. Other to-
kens are encoded with vectors of 0’s. Then the aver-
age of quantity and token embeddings is passed to
BERT encoder. The model considers cross-entropy
as the loss function (L.,.) to measure the dispar-
ity between the actual tags (annotations) and the
predicted tags generated by the encoder.

Generative Module. While the entity phrase is
always explicitly present in the input sentence, mea-
suring attribute can be implicit or inferred from
context, as discussed in earlier sections. Hence,
we introduce a decoder for generating measuring
attributes considering the contextual cues provided
by the encoder. Finally, the output from decoder
and encoder can be combined to extract the fi-
nal assertion. For example, consider the sentence
‘Hyundai owns 33.88% of KIA’. The encoder pre-
dicts the tag sequence [B-ent, O, B-qty, I-qty, O,
I-attr] for the input tokens, identifying ‘Hyundai’
as the entity and ‘KIA’ as the attribute. And the de-
coder generates ‘shares of” based on the contextual
cues from encoder, resulting in the final assertions
(Hyundai, shares of KIA, 33.88%). For training
the decoder, we consider the cross-entropy loss be-
tween the generated tokens and the target tokens as
the decoder loss L.

As encoder and decoder modules are perform-
ing two different but related tasks, we propose a

joint training strategy, allowing the encoder and
decoder to be optimized simultaneously. This way
the model leverage the information contained in
the gradients from the encoder to guide the weight
updates on the decoder and vice versa.

We define a unified loss function £, given in
Equation 1, as a weighted linear combination of
the encoder loss (L) and the decoder 1oss (£ 4ec)
mentioned earlier.

L= (1 - Oé) * Lene + (04) * Liec (D

Here, we propose two joint learning frameworks
that consider different information flows to share
the information between the encoder and decoder.

4.1 Tag-aware Joint Extraction

In this approach, we enrich the information flow
from encoder to decoder by providing token posi-
tions predicted as attributes by the encoder with the
cross-attention mechanism. The process involves
concatenating the last hidden state embeddings of
the encoder with a vector representing the token
positions predicted as attributes. This concatenated
tensor is then passed through a Linear layer with
a rectified linear unit (ReLU) activation function,
generating a final embedding of a token. The mod-
ified hidden representation is defined as follows:

Kotr = ReLU(Wattr~[h> Posattr]) 2)

Here, K44, represents the Key and Value passed
to the Decoder’s cross-attention mechanism, A de-
notes the last hidden state embeddings of the En-
coder, and Posg, 1S a binary vector, where ones
indicate the positions predicted as attribute tag in
the sequence tagging module. The framework is il-
lustrated in Figure 2 (a). This enhancement allows
the decoder to more effectively attend to semanti-
cally relevant regions of the input when inferring
measuring attributes.

4.2 Attribute-aware Joint Extraction:

In this variant depicted in Figure 2 (b), we make the
decoder explicitly aware of the measuring attribute
tokens predicted by the encoder. Unlike the conven-
tional Transformer decoder that typically receives
shifted target token IDs as input, we fed the token
IDs corresponding to the predicted attribute spans
as the query into the decoder. This modification
helps the decoder to capture better contextual cues
and anticipate relevant measuring attribute. Addi-
tionally, the encoder’s final hidden state representa-
tions are passed to the decoder via cross-attention
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Figure 2: LLM-based extraction models for numerical assertions

as in the standard Transformer architecture. This
setup allows the decoder to condition its genera-
tion on both: (i) the structural cues derived from
attribute predictions, and (ii) the full contextual
information encoded in the source sentence.

5 Experimental Results

Datasets. We constructed a total of 93,769 nu-
meric assertions using our rule-based extractor
from Wikipedia sentences which is made public.
The dataset statistics are given in Table 1. Since
existing OpenlE benchmark dataset do not focus on
numerical assertions where the measuring attribute
serves as the predicate, we use our dataset gener-
ated using the rule-based method as training data.
To evaluate the quality of this dataset, we randomly
sampled 100 generated triples and assessed how
precise the extraction was with precision, reported
in Table 2. The results indicate that the rule-based
extractor performs more reliably for shorter sen-
tences. Based on this observation, we curated a
cleaner subset of 10,000 high-quality triples ex-
tracted from sentences of length fewer than 15,
which we use to train our LLM-based extraction
models. For evaluation of all baselines and the
proposed models, we created a test dataset by man-
ually annotated 100 Wikipedia sentences with gold
(E, M, Q) triples.

Evaluation Metrics. We primarily use precision,
recall and F1 measure to evaluate the quality of the
extracted entity and measuring attribute for triples.
As these metrics do not consider the word order,
we consider BLUE score as well for the evaluation.

Table 1: Statistics of rule-based dataset

Length of sentences | Complete | Test
<11 5745 25
11<sen. len < 21 26985 25
21 <senlen < 31 36830 25
> 31 24209 25

Table 2: Evaluation of rule-based model using Precision

Sentence Length E M Q
<15 096 0.76 0.94
> 15 086 0.62 0.82

Experimental Setup The hyperparameters for
each model were determined through a 5-fold cross-
validation. We set the best value for « that tunes
the combined loss to 0.5. The batch size and the
learning rate are set to 8 and 1 x e~ respectively.
The dropout value for the FNN in the encoder block
is set to 0.1 and the dropout for the FNN in the Tag-
aware Joint method is set to 0.3. We use 4 decoder
blocks from transformer library.

Baselines We employ BONIE as our underline
extractor for rule-based model. Therefore, we con-
sider our rule-based approach as the primary base-
line, instead of BONIE itself. Furthermore, we use
the encoder-decoder architecture (Cui et al., 2018)
along with GPT-4 as competitors. Additionally, a
fine-tuned GPT 3.5 turbo is also considered as an-
other baseline. We observed that GPT fine-tuning
process is very sensitive towards noise and also
costly. Therefore, we finetune GPT-3.5 turbo with
manually annotated 200 samples, instead of using
the automatically generated training data.



Table 3: Performance of models on extraction of measuring attributes

Performance (Sentence Length < 15)

Models Precision Recall F1 Score BLUE Score
GPT 4* 0.71 0.68 0.69 0.41
fine-tuned GPT-3.5 0.85 0.77 0.81 0.64
Encoder-Decoder Arch. 0.58 0.55 0.56 0.53
Rule Based Model 0.71 0.68 0.69 0.58
Tag-aware Joint Extraction 0.91 0.94 0.92 0.73
Attribute-aware Joint Extraction 0.92 0.90 0.91 0.78

Performance (Sentence Length > 15)
GPT 4* 0.60 0.60 0.60 0.27
fine-tuned GPT-3.5 0.72 0.63 0.67 0.40
Encoder-Decoder Architecture 0.52 0.50 0.51 0.22
Rule Based Model 0.67 0.59 0.63 0.30
Tag-aware Joint Extraction 0.66 0.61 0.63 0.32
Attribute-aware Joint Extraction 0.72 0.68 0.70 0.31

5.1 Evaluation of he Models on Extracting
Measuring Attributes

Table 3 provides a comprehensive evaluation of the
extraction methods for measuring attributes. From
the results presented in Table 3, we can see that the
proposed joint extraction methods significantly out-
perform all baselines w.r.t. all metrics. We can also
observe that tag-aware and attribute-aware extrac-
tion methods perform better in extracting measur-
ing attributes from the smaller sentences (length <
15) compared to the longer ones. This is consistent
with the characteristic of the training data.

Comparing the performance of the proposed
models with the encoder-decoder architecture, we
can ensure that the availability of additional task-
specific information to the decoder from the en-
coder stack significantly contributed to train a bet-
ter model for extracting measuring attributes.

We can also observe from the results that the rule-
base models perform more steadily across different
sentence lengths compare to the proposed neural
models. This characteristic reflects that we are
able to cover sentences with different lengths with
the two patters mentioned in Section 3. However,
the overall performance of the rule-based model
in extracting measuring attributes is inferior. It
is affected by the limitation of BONIE in extract-
ing measuring attributes, as the rule-based model
mainly rearranges the extracted BONIE triples (
S,P,O ) to numerical assertions ( EEM,Q ).

5.2 Evaluation of the Models on Extracting
the Entity Phrases

Table 2 has shown that the precision in retrieving
the entity phrase using the proposed rule-based
model is efficient, reaching 96% precision for
shorter sentences, specifically due to the precise

extraction of entity phrase by BONIE. Overall, we
achieve 91% precision for entity extraction using
the rule-based model. It is important to note here
that the rule-based model is able to detect the con-
jugated entities where BONIE fails.

From the evaluation, we can also see that the per-
formance of the proposed neural models is compa-
rable with the performance of the rule-based model
for extracting entity phrase from shorter sentences
(less than length 15). However, their performance
deteriorates for longer sentences. This result fits
the characteristics of the training data. As they are
trained with shorter sentences, they are unable to
generalize the learning patterns for extracting en-
tity phrases from longer sentences. While the best
performing LL.M-based model achieves an overall
77% F1 score, the rule-based model reaches 81%
F1 score. The similar pattern is also reflected for
the BLUE score. From the results, we can see that
only the fine-tuned GPT-3.5 is able to outperform
the rule-based model in entity extraction. This is
attributed to its exposure to vast underlying data.
However, GPT with zero-shot setup is significantly
underperforming for entity extraction as well.

5.3 Discussion

Here, we can observe from the results presented
in Table 3 and Table 4 that the proposed models
perform comparable to each other. Overall, they
outperform baselines for extracting numerical as-
sertions from shorter sentences. However, the rule-
based model outperforms the entity extraction task
for longer sentences, although overall performance
remains inferior to the neural models. We also ob-
serve from the results that fine-tuned GPT model
significantly outperforms the GPT-4 with zero-shot
set up. While fine-tuned GPT 3.5 built on a LLM



Table 4: Performance of models on extraction of entity phrases

Performance for Sentence Length < 15)

Models Precision Recall F1 Score BLUE Score
GPT 4 0.70 0.86 0.77 0.69
Fine-tuned GPT 3.5 0.87 0.85 0.86 0.82
Encoder-decode Arch. 0.77 0.87 0.82 0.81
Rule Based Model 0.87 0.91 0.89 0.81
Tag-Aware Joint Extraction 0.87 0.93 0.90 0.81
Attribute-Aware Joint Extraction 0.85 0.96 0.90 0.77

Performance for Sentence Length > 15

GPT 4 0.59 0.59 0.59 0.50
Fine-tuned GPT 3.5 0.72 0.66 0.69 0.59
Encoder-decode Arch. 0.58 0.61 0.59 0.49
Rule Based Model 0.79 0.74 0.76 0.65
Tag-Aware Joint Method 0.66 0.65 0.66 0.54
Attribute-Aware Joint Method 0.63 0.62 0.62 0.48

Table 5: Anecdotal Examples of Extracted Numerical Assertions (E, M,Q)

The bridge carries 60 to 70 percent of commercial truck traffic in the region.

Methods Entity Measuring attribute Quantity
GPT4 The bridge share of regional commercial truck traffic car- | 60 to 70%
ried

fine-tuned GPT3.5 | bridge commercial truck traffic share 60 to 70%

Rule-based bridge truck traffic carrier 60 to 70%

Attribute-aware bridge carries commercial truck traffic 60 to 70%

The same poll, 800 Hispanic voters in Florida, had 35 % of non-Cuban Hispanics

supporting Mr. Bush, 59 % Mr. Kerry and 6 % undecided or supporting Mr. Nader.

Methods Entity Measuring attribute Quantity

GPT4 Non-Cuban  His- | support for Mr. Bush 35%
panics

fine-tuned GPT3.5 | Mr. Non-Cuban Hispanics supporting Mr. Bush 35%

Rule-based The Same Poll non-cuban hispanics supporting 35%

Attribute-aware Florida Poll voters 35%

with ~ 175 billion parameters, we consider a com-
paratively smaller LLM with 108 million param-
eters only. Our proposed models are trained with
only ~ 280 million parameters on a relatively small
data set with 10K samples. With these smaller mod-
els, we outperform fine-tuned GPT in most cases.

Table 5 shows anecdotal examples for extracting
numerical triples from different models. We can
see that GPT-4 generates out-of-context tokens as
measuring attributes for the first example, which
is contributed to its poor performance, reflected in
the BLUE and F1 score in Table 3. Fine-tuning
GPT brings improvement in this aspect. For the
example with longer sentence, none of the methods
generates appropriate measuring attribute. Con-
sequently, the performance of entity extraction is
affected. Our proposed model able to understand
that 35% is about poll voter in Florida, which is par-
tially correct. Here, GPT models tends to capture
factual content rather than the measuring attribute.
As reflected in the performance scores, all mod-
els perform well in extracting entity correctly for
shorter sentences.

6 Conclusion

Extracting numerical assertions in the form of ( en-
tity, measurement attribute, quantity) can enhance
the coverage of quantitative facts in knowledge
graphs, as well as the understanding of quantity
in text. This work presents a rule-based extrac-
tion pipeline built on BONIE to generate numeri-
cal triples from text. While the extractor demon-
strates high precision in identifying entities and
quantities, its performance in extracting implicit
or context-dependent measuring attributes remains
limited. Addressing this limitation, we propose
two LLM-based neural models Attribute-aware and
Tag-aware Joint extractor that are trained using the
dataset generated by the rule-based model. We con-
sider BERT as the underlying LLM, which allows
us to create a smaller model with ~ 280 param-
eters, compared to the dominant general purpose
LLM. From the evaluation, we observe that the in-
tegration of additional information flow from the
encoder to the decoder stack helps to learn a better
model that outperforms all baselines for extracting
numerical assertions from shorter sentences.



Limitations

Measuring attribute extraction in open-domain set-
tings remains underexplored, and no benchmark
datasets exist for numerical assertions. To ad-
dress this, we leveraged BONIE and designed a
rule-based approach to generate a pseudo-labeled
dataset for numerical assertions. However, the lim-
itation of BONIE in extracting measuring attribute
from longer sentences adversely impacted the qual-
ity of measuring attribute annotations, reducing
overall extraction quality. This, in turn, restricted
the proposed neural model’s exposure to various
syntactic patterns, limiting its ability to generalize
to longer or more complex inputs. Consequently,
models often capture only partial measuring at-
tributes and may fail to correctly associate the cor-
responding entity for longer sentences.

Another limitation of our work stems from the
architectural choices in our neural model. We ob-
served that the rule-based approach achieved a high
precision for extracting the entity phrase. And
therefore, we prioritized learning robust models
that can capture the representation of measuring
attributes efficiently. Although we investigated the
joint extraction of entity and measuring attribute,
our design choice remains simple for entity ex-
traction, using sequence tagging over fine-tuned
pre-trained language models. This design, com-
bined with training primarily on shorter sentences,
restricts generalzibility of the model and affects per-
formance of entity extraction for longer sentences.
This further affects the extraction of measuring
attribute as both tasks are linked. However, a com-
bined approach that leverages the strengths of both
methods remains a promising direction for future
work.
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