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Abstract

We consider Imitation Learning with dynamics variation between the expert demonstration
(source domain) and the environment (target domain). Based on the popular framework of
Adversarial Imitation Learning, we propose a novel algorithm – Dynamics Adapted Imitation
Learning (DYNAIL), which incorporates the dynamics variation into the state-action occu-
pancy measure matching as a regularization term. The dynamics variation is modeled by
a pair of classifiers to distinguish between source dynamics and target dynamics. Theoreti-
cally, we provide an upper bound on the divergence between the learned policy and expert
demonstrations in the source domain. Our error bound only depends on the expectation of
the discrepancy between the source and target dynamics for the optimal policy in the target
domain. The experiment evaluation validates that our method achieves superior results on
high dimensional continuous control tasks, compared to existing imitation learning methods.

1 Introduction

For sequential decision making tasks, recent years have witnessed the success of Reinforcement Learning
(RL) with carefully designed reward functions (e.g. Li et al., 2011; Mnih et al., 2015; Haarnoja et al., 2017;
Thomas et al., 2017; Silver et al., 2018; Vinyals et al., 2019; Kendall et al., 2019; Bellemare et al., 2020;
Sutton & Barto, 2018). However, it is challenging to define the reward signal in many scenarios, such as
learning “socially acceptable” interactions (Fu et al., 2018; Qureshi et al., 2018; 2019), autonomous driving
(Kuderer et al., 2015; Kiran et al., 2021), etc.

Recently, modern imitation learning (IL) methods (Ho & Ermon, 2016; Fu et al., 2018; Finn et al., 2016;
Kostrikov et al., 2019; Ghasemipour et al., 2020; Orsini et al., 2021) propose to use adversarial approaches.
More specifically, these Adversarial Imitation Learning (AIL) methods leverage the mechanism of GAN
(Goodfellow et al., 2014): they alternate between training a policy whose trajectories cannot be distinguished
from the expert’s trajectories, and training a discriminator to distinguish between the generated policy and
expert trajectories. It has been shown that using different reward functions (based on the discriminator
above) in AIL corresponds to the different choices of divergences between the marginal state-action distribu-
tion of the expert and the policy. We refer the readers to Ghasemipour et al. (2020) and Orsini et al. (2021)
for an in-depth discussion on this topic.

However, in real world scenarios, high quality expert demonstrations are often scarce. For expert demonstra-
tion efficiency considerations, limited expert demonstrations are applied to different environments with the
same objective. Thus, there may exist dynamics variation between the expert demonstration and the envi-
ronment. This issue has already been addressed in a line of research (Dulac-Arnold et al., 2020; Mankowitz
et al., 2020; Eysenbach et al., 2021; Liu et al., 2022a; Fu et al., 2018; Qureshi et al., 2019; Kim et al., 2020; Liu
et al., 2020; Kirk et al., 2021). Under the transfer learning framework (Pan & Yang, 2009), we are interested
in the problem setting where the transition dynamics in the source domain (expert demonstration) and the
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Figure 1: An illustration of Dynamics Adapted Imitation Learning problems without any reward signal. In
(a), we are provided with the expert demonstrations Ddemo with the underlying dynamics M ′. τexp shows
an expert’s trajectory from the starting point (round) to the goal (triangle). In (b), an agent aims to
make decisions in the target domain (environment) with the same observation space and (unknown) reward
function yet different dynamics M . We inject the dynamics variation by adding an obstacle (shaded area).
In (c), let π∗ denote the optimal policy in the target domain. The orange dashed line and red solid line are
examples of the trajectories of π∗ and π̂.

target domain (environment) are different. For example, in healthcare treatment, we have the same goal
(reward function) for each patients, but they may react differently to treatments (transition dynamics) due
to individual differences; in autonomous driving, it is common to encounter different road surfaces different
from the expert demonstrations, which also change the transition dynamics. Hence, in this paper, we focus
on the imitation learning problem under dynamics variation.

We illustrate the problem setting in Figure 1, where we use an obstacle to denote the dynamics variation.
The source domain is for expert demonstrations and the target domain shares the same observation space
and (unknown) reward function. However, the transition dynamics of the target domain M is different from
the source domain. It has been shown (e.g. Xu et al., 2021) that the policy value gap in Imitation Learning
directly depends on the divergence between the state-action distribution of πexp and π denoted by ρexp and
ρπ (please refer to Section 2 for formal definitions). In this paper, we directly use the divergence between
ρexp and ρπ as a proxy for the policy value gap, and we aim to find a policy π̂ in the target domain, which
has close performance closed to π∗.

1.1 Main contributions

• (Algorithm) We consider dynamics adaptation in imitation learning where the underlying transi-
tion dynamics of the expert demonstration (source domain) and the environment (target domain)
are different. To tackle this issue, we propose a novel algorithm – Dynamics Adapted Imitation
Learning (DYNAIL, Algorithm 1). The core ingredient of our algorithm is incorporating the dy-
namics variation into the state-action occupancy measure matching as a regularization term. The
regularization for the dynamics discrepancy is modeled by a pair of classifiers to distinguish between
source dynamics and target dynamics. Our algorithm builds upon the popular AIL framework,
hence it’s simple to implement, and computationally efficient.

• (Theoretical guarantees) We analyze our algorithm in terms of divergence minimization with
a regularization on the discrepancy between the source and target dynamics. We establish a π∗-
dependent upper bound on the suboptimality of our algorithm and has no requirement for all other
possible policies, where π∗ is the optimal policy in the target domain. Although π∗ is unknown, our
upper bounds only depends on the discrepancy between the source and target dynamics for π∗. Our
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upper bounds explicitly account for the discrepancy between the source and target dynamics. It
offers valuable insights into the relationship between the proposed method and the target domain’s
optimal policy (Section 4).

• (Empirical validations) We validate the effectiveness of DYNAIL on a variety of high-dimensional
continuous control benchmarks with dynamics variations. Section 5 and Appendix show that our
algorithm achieves superior results compared to state-of-the-art imitation learning methods.

1.2 Related work

Domain adaptation in IL. Most IL methods consider the unchanged transition dynamics (e.g. Pomerleau,
1988; Ho & Ermon, 2016; Brantley et al., 2019; Sasaki & Yamashina, 2021; Rajaraman et al., 2020; Liu et al.,
2022b). Recently, there are different lines of research dealing with domain adaptation in imitation learning.
Inverse RL methods – AIRL (Fu et al., 2018) and EAIRL (Qureshi et al., 2019) – are able to deal with
dynamics variation in imitation learning settings with warm-up in source domain. Kim et al. (2020) and
Raychaudhuri et al. (2021) achieve Markov decision process (MDP) alignment by interacting with both
source and target domains. However, the source domain is inaccessible in most Imitation Learning settings
since domains are much harder to store than demonstrations especially in real-world scenarios. Furthermore,
(Kim et al., 2020) directly transferring expert policies from source domain to target domain requires online
expert policy, which is an additional assumption to imitation learning settings. Liu et al. (2020) align state
sequences to learn to focus on imitating states and the alignment of policy and its prior serves as a constraint
in the policy update objective. The policy prior derives from the variational auto-encoder and (generally
challenging) inverse dynamics model which are hard to train. Fickinger et al. (2021) utilize the Gromov-
Wasserstein distance to compare different domains through the whole trajectories. However, sampling the
whole trajectories instead of state-action joint distributions brings high variance. Chae et al. (2022) also deal
with dynamics variation in Imitation Learning, however, it requires experiences from multiple source domains
to complete the similar task in target domain. In the contrast, our method only needs demonstrations from
one source domain to realize domain adaptation.

Off-dynamics RL. Different from IL, RL has direct access to the reward function. A recent survey (Kirk
et al., 2021) provides a thorough introduction on the generalization of RL, which includes state, dynamics,
observation or reward function variation. Most relevant to our work, Eysenbach et al. (2021) and Liu et al.
(2022a) consider dynamics variation problems in RL. More specifically, Eysenbach et al. (2021) propose
reward modification for optimizing the policy in the source domain to obtain the near-optimal policy in the
target domain. Liu et al. (2022a) extend the idea of reward modification to the offline setting.

Transfer RL. Transfer RL is aimed at learning robust policy among several domains in RL settings. Unlike
Off-dynamics RL, representation is a more popular topic than dynamics in this field. Some previous works
focus on learning domain-agnostic representations (Zhang et al., 2020a;b; Tomar et al., 2021) to improve the
generalization of representation, while other works (Tirinzoni et al., 2018; Huang et al., 2021) propose to
make use of both domain-shared and domain-specific representations.

2 Background and Problem Setting

2.1 Markov Decision Process and Imitation Learning

We first introduce the background of MDP and IL without considering dynamics variation. An MDP
⟨S, A, r, M, d0, γ⟩ consists of a state space S, an action space A, a reward function r : S × A → R, an
unknown transition dynamics M : S × A → ∆(S), an initial state distribution d0 ∈ ∆(S), and a discounted
factor γ ∈ (0, 1). An agent following the policy π(a|s) in an MDP with dynamics M(s′|s, a) generates the
trajectory τπ = {s1, a1, · · · , sT , aT }, where T is the termination step. We define the probability distribution
ρM

π,t(s, a) ∈ ∆(S × A) to denote the marginal joint stationary distribution for state and action at time-step
t. Then we define the discounted stationary state-action distribution ρM

π (s, a) = (1 − γ)
∑

t γtρM
π,t(s, a), and

the discounted stationary state distribution dM
π (s) =

∑
a∈A ρM

π (s, a). The goal of RL is to find a policy π
to maximize the expected cumulative reward Vπ = Eτ∼π [

∑
t γtr(st, at)].
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Without any reward signal, Imitation Learning algorithms (e.g. Osa et al., 2018) aim to obtain a policy to
mimic the expert’s behavior using a demonstration dataset Ddemo = {(si, ai)}N

i=1, where N is the sample
size of the dataset. In IL, we are interested in the policy value gap Vexp − Vπ, where Vexp is the value of the
expert’s policy. A classic type of IL methods is Behavior Cloning (Pomerleau, 1988), which uses supervised
learning (e.g., maximum likelihood estimation) to learn the policy π.

Another line of research uses the idea of Inverse RL (Russell, 1998; Ng & Russell, 2000), which infers the
expert’s reward function from its demonstrations dataset, and then trains a policy to optimize this learned
reward. Early works on Inverse RL (Abbeel & Ng, 2004) rely on matching feature expectations or moments
between policies and experts. After that, Max Entropy Inverse RL (Ziebart et al., 2008; Ziebart, 2010)
can handle the ambiguity problem of the policy optimization, where there are many optimal policies that
can explain the expert demonstrations. Max Entropy Inverse RL addresses this issues by optimizing the
maximum entropy objective to ensure that the solution is unique. More specifically, the following generative
model is trained according to the trajectory τ :

max
θ

Eτ∼Ddemo [log pθ(τ)], where pθ(τ) = 1
Z

p(s0) ×
T∏

t=0
M(st+1 | st, at) exp(rθ(st, at)/η), (1)

where Z is the normalization for the parameterization of pθ(τ), and η is the temperature parameter. The
formulation Equation (1) connects the reward learning problem with maximum likelihood problem.

2.2 Adversarial Imitation Learning

Modern IL methods (Ho & Ermon, 2016; Fu et al., 2018; Finn et al., 2016; Ghasemipour et al., 2020;
Orsini et al., 2021) use adversarial approaches for generative modeling by casting Equation (1) as a GAN
(Goodfellow et al., 2014) optimization procedure, alternating between optimizing the discriminator and
updating the policy. The discriminator deals with the binary classification by taking (s, a) as the input, and
assigning the expert trajectories positive labels and the generated samples negative labels, and then calculate
the corresponding reward function. For example, AIRL (Fu et al., 2018) uses the following reward function:

rθ(s, a) = log Dθ(s, a) − log(1 − Dθ(s, a)). (2)

It is shown that the minimization of the discriminator function is equivalent to the maximization of the
likelihood function Equation (1). With the reward function Equation (2) in hand, we can use standard
policy learning algorithms to update the policy.

It has been shown that, without dynamics variation, AIL methods are equivalent to minimizing the diver-
gence between the ρπ(s, a) and ρexp(s, a) (Ghasemipour et al., 2020; Xu et al., 2021), which often yield
better performance with a few expert demonstrations compared to Behavior Cloning. Under the divergence
minimization framework (Ghasemipour et al., 2020), AIRL is equivalent to

π̂AIRL = arg min
π

D (ρπ(s, a) ∥ ρexp(s, a)), (3)

which is the so-called reverse KL divergence. Since the policy value gap in Imitation Learning directly
depends on the divergence between ρexp and ρπ (Xu et al., 2021), we directly use the divergence between
ρexp and ρπ as a proxy for the policy value gap.

2.3 Expert Demonstration Efficiency

Imitation learning, the method of learning from previously collected expert demonstrations, acquires near-
optimal policy without the complex reward engineering in standard RL. However, collecting expert demon-
stration can be costly and the collected expert demonstrations are usually domain-specific with certain
dynamics and policy information. Thus, vanilla imitation learning utilizing expensive expert demonstrations
to complete the task in specific domains leads to low expert demonstration efficiency. A natural idea arises:
expert demonstrations collected from a single source domain should be used for learning in different target
domains, which can significantly improve expert demonstration efficiency (Liu et al., 2020; Fickinger et al.,
2021; Chae et al., 2022).
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2.4 Dynamics Adaptation in Imitation Learning

In this section, we consider Imitation Learning methods for dynamics adaptation. We use M ′(s′ | s, a) to
denote the transition dynamics in the source domain, and M(s′ | s, a) to denote the target domain. Directly
applying vanilla Behavior Cloning or Inverse RL algorithms requires the same transition dynamics for the
environment as the expert demonstrations (Fu et al., 2018), which limits their applicability. This is due
to the fact that the learned rewards in vanilla Inverse RL are not transferable to environments featuring
different dynamics.

There have been some attempts based on Inverse RL to obtain a reward function which is transferable and
robust to dynamics variation (Fu et al., 2018; Qureshi et al., 2019). By minimizing the KL-divergence,
these methods are able to deal with dynamics variation in the setting of imitation learning when the source
environment is accessible for limited interactions to learn a robust reward function.

Other methods (e.g. Liu et al., 2020; Fickinger et al., 2021) use state distribution matching or trajectory
matching rather than state-action distribution matching to realize dynamics adaptation. Liu et al. (2020)
additionally train an inverse dynamics model and variational auto-encoder to derive a policy prior to reg-
ularize the state distribution matching. Fickinger et al. (2021) introduce the Gromov-Wasserstein distance
into trajectory matching to find an isometric policy.

We introduce the following assumption on the transition dynamics for our problem setting.
Assumption 1. If the transition probability in the target domain is positive, then the transition probability
in the source domain is positive, i.e., M(s′ | s, a) > 0 ⇒ M ′(s′ | s, a) > 0, ∀s, s′ ∈ S, a ∈ A.

This assumption is modest and common in previous literature (e.g. Koller & Friedman, 2009; Eysenbach
et al., 2021). If it does not hold, the trajectory induced by the optimal policy in the target domain π∗ might
incur invalid behaviors in the source domain.

3 Our Algorithm

To better identify the role of the transition dynamics in the distribution of the trajectories, we directly
compare the distribution over the trajectories. In the source domain with transition dynamics M ′, the goal of
Max Entropy Inverse RL (Ziebart et al., 2008) is to maximize the likelihood given the expert demonstrations
data Ddemo by the following parameterization.

max
θ

Eτ∼Ddemo [log pθ(τ ; source)], (4)

pθ(τ ; source) = 1
Z

p(s0) ×
∏

t

M ′(st+1 | st, at) exp(rθ(st, at)/η), (5)

where Z is the normalization of pθ(τ ; source), and η is the temperature parameter.

On the other hand, for the target domain with transition dynamics M , the policy πθ(at | st) yields the
distribution over trajectory τ :

pπ(τ ; target) = p(s0)
∏

t

M(st+1 | st, at)π(at | st). (6)

3.1 Divergence minimization with dynamics shift

Based on the divergence minimization framework for imitation learning (Ho & Ermon, 2016; Finn et al., 2016;
Fu et al., 2018; Ghasemipour et al., 2020; Eysenbach et al., 2021), our motivation is to learn a policy π running
under the target domain dynamics whose behavior has high likelihood based on the expert demonstrations.
Hence we minimize the reverse KL divergence1

min
π

D (pπ(τ ; target) ∥ pθ(τ ; source)). (7)

1The KL divergence has been widely used in the RL literature, and we leave the discussion to the Appendix A.
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Expanding Equation (7) yields the policy objective Equation (8)

max
π

Eτ∼π,M

[ ∑
t

rθ(st, at) − η log π(at | st) + ηΦ(st, at, st+1)︸ ︷︷ ︸
Discrepancy Regularization

]
, (8)

where the discrepancy regularization equals

Φ(st, at,st+1) = log M ′(st+1 | st, at) − log M(st+1 | st, at).

Note that we neglect the normalization term in Equation (8). Following the AIL framework introduced in
Section 2.2, the reward function term rθ can be obtained from generating the policy in the environment and
training a discriminator. The log π(at | st) term is considered to be the entropy regularizer. These two terms
are actually equivalent to the vanilla AIRL (Fu et al., 2018).

Importantly, the regularization term Φ(st, at, st+1) represents the dynamics shift from M ′ to M by calculating
log M ′(st+1 | st, at)−log M(st+1 | st, at). When summed over the trajectory induced by π under the dynamics
M , this is equivalent to a regularization term

E(s,a)∼ρM
π

[−D (M(· | s, a) ∥ M ′(· | s, a))]

in the reward maximizing objective. When the source and target dynamics are equal, the regularization
term Φ is zero and our method reduces to the vanilla AIL methods (Ho & Ermon, 2016; Fu et al., 2018).

This discrepancy between the source and target dynamics has been previously applied to dynamics adaptation
in RL literature (e.g., online RL (Eysenbach et al., 2021) and offline RL(Liu et al., 2022a)). We provide a
novel – and to the best of our knowledge, the first algorithm to incorporate the dynamics discrepancy in
the state-action occupancy measure matching for Imitation Learning problems. In the next subsection, we
propose practical methods (see Equation (11) and Equation (12)) to estimate Φ(s, a, s′).

3.2 Dynamics Adapted Imitation Learning

To maximize the likelihood function over the trajectories of the experts Equation (4), we use adversarial
approaches for generative modeling by casting Equation (1) as a GAN (Goodfellow et al., 2014) optimization.
As introduced in Section 2, we leverage the reward function formulation r = log( D

1−D ), which is equivalent
to distribution matching under KL divergence as in Equation (3). We summarize our algorithm Dynamics
Adapted Imitation Learning (DYNAIL) in Algorithm 1. The overall procedure of our algorithm follows from
the GAN (Goodfellow et al., 2014) which alternates between optimizing the discriminator/classifiers and
updating the policy.

Training the discriminator. The discriminator Dθ is designed to distinguish expert policy and current
running π. The training of the discriminator Dθ follows from

min
Dθ

−Eτ∼Ddemo [log Dθ(st, at)] − Eτ∼π,M [log(1 − Dθ(st, at))] , (10)

where we train the discriminator, Dθ = exp(rθ/η−Φ)
log π+exp(rθ/η−Φ) , by labelling the expert demonstrations Ddemo

from source domain as positive. The negative samples are the trajectory from running policy π in the target
domain under the dynamics M . As justified in Fu et al. (2018), training on Dθ results in optimizing the
likelihood function in Equation (4).

Training the classifiers. The discrepancy regularization term is obtained by training two classifiers,

Φ(st, at, st+1) = log M ′(st+1 | st, at) − log M(st+1 | st, at)
(i)= log Pr(source|s, a, s′)

Pr(target|s, a, s′) − log Pr(source|s, a)
Pr(target|s, a) ,

where (i) follows from the fact that M ′(s′|s, a) = Pr(s′|s, a, source) = Pr(source|s,a,s′) Pr(s,a,s′)
Pr(source|s,a) Pr(s,a) , and

M(s′|s, a) = Pr(s′|s, a, target) = Pr(target|s,a,s′) Pr(s,a,s′)
Pr(target|s,a) Pr(s,a) .
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Algorithm 1 Dynamics Adapted Imitation Learning (DYNAIL)
1: Input: Expert demonstrations Ddemo from the source domain, hyperparameter η.
2: Output: Policy π̂ in the target domain with different dynamics.
3: Randomly initialize π.
4: for t = 0 to T − 1 do
5: Sample trajectories τ = {(st, at, s′

t)}T
t=1 by running π in the target domain’s environment.

6: Train the discriminator Dθ: the expert demonstrations Ddemo from source domain are positive and
the trajectory from policy π are negative via Equation (10).

7: Train the classifier qsa and qsas with cross-entropy loss via Equation (11) and Equation (12).
8: Update the reward function r̃(s, a, s′) via the following equation,

r̃(s, a, s′) = log(Dθ) − log(1 − Dθ) + η

(
log qsas

1 − qsas
− log qsa

1 − qsa

)
. (9)

9: Update the policy π with respect to {(st, at, s′
t, r̃t)}T

t=1 using standard RL algorithm.
10: end for
11: Return: Policy π.

Hence we parameterize Pr(source|s, a, s′) and Pr(source|s, a) with the two classifiers qsas(s, a, s′) and qsa(s, a)
respectively. We optimize the cross-entropy loss for the binary classification by labelling the trajectories
Ddemo from source domain as positive. The negative samples are the trajectory from running policy π in the
target domain under the dynamics M .

min
qsas

− Eτ∼Ddemo [log qsas(s, a, s′)] − Eτ∼π,M [log(1 − qsas(s, a, s′))] , (11)

min
qsa

− Eτ∼Ddemo [log qsa(s, a)] − Eτ∼π,M [log(1 − qsa(s, a))] . (12)

Hence the discrepancy regularization Φ(st, at, st+1) = log qsas(st,at,st+1)
1−qsas(st,at,st+1) − log qsa(st,at)

1−qsa(st,at) . Compared to the
vanilla AIRL (Fu et al., 2018), we only incur computational overhead by training two additional classifiers.
We note that we only learn the classifiers rather than the transition models. Hence our method is suitable
to handle high-dimensional tasks, which is validated on a 111-dimensional ant environment in Section 5.

Updating the policy. With Equation (9) in hand, we can update the reward function for the collected
trajectory – {(st, at, s′

t, r̃t)}T
t=1. We note that η is the hyperparameter for the regularization term in the

reward function. Besides the entropy term which is considered for policy regularization, optimizing the
policy objective π w.r.t. Equation (9) shares the same structure as Equation (8).

4 Theoretical Analysis

Let πexp denote the expert policy in the source domain, and ρexp(s, a) denote its corresponding distribution
of (s, a). As introduced in Equation (3), AIL methods can be interpreted as minimizing the divergence
between ρπ(s, a) and ρexp(s, a) (Ho & Ermon, 2016; Ghasemipour et al., 2020; Xu et al., 2021), and this
serves as a proxy for the policy value gap. Our theoretical analysis shows that by imposing the discrepancy
regularization on the objective function, our error bound for the KL divergence compared to π∗ only depends
on the discrepancy between the source and target dynamics for the expert policy in the target domain.

To distinguish the expert demonstrations and the generated trajectory of the policy π, the optimal discrim-
inator for Equation (10) (line 6 of Algorithm 1) is achieved2 at

D∗(s, a) = ρexp(s, a)
ρexp(s, a) + ρM

π (s, a) .

2We consider the asymptotic results and assume that the optimal Dθ can be achieved.
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We note that a simple proof was included in Goodfellow et al. (2014). We plug in this D∗(s, a) to the reward
function log( D

1−D ), and clip the logits of the discriminator to the range [−C, C] (C is a universal constant
such as 10). The Equation (9) in Algorithm 1 with D∗ is equivalent to the following optimization problem
with ηΦ as a regularization term

max
π

Eτ∼π,M

[ ∑
t

log ρexp(st, at) − log ρM
π (st, at) + ηΦ(st, at, st+1)

]
, (13)

where the temperature η > 0 is a tuning regularization hyperparameter to be chosen. According to KKT
condition, there exists an ε > 0, such that regularized formulation Equation (13) is equivalent to the
constrained formulation (The equivalence is straightforward and we leave the details to the Appendix A)
Equation (14), where the deviation in KL divergence with different dynamics for any policy π ∈ Πε is
controlled by some ε.

max
π

E(s,a)∼ρM
π

[
log ρexp(s, a) − log ρM

π (s, a)
]

, subject to π ∈ Πε, (14)

where Πε =
{

π | E(s,a)∼ρM
π

[D (M(· | s, a) ∥ M ′(· | s, a))] ≤ ε
}

. (15)

By leveraging the regularization/constraint to the reward maximizing optimization, we show that, surpris-
ingly, our theoretical guarantees only depend on the smallest positive ε of Equation (15) for the optimal
policy in the target domain.
Definition 4.1. Let π∗ be the optimal policy in the target domain, and ε∗ be the smallest positive solution
of Equation (15) for π∗, i.e.,

E(s,a)∼ρM
π∗

[D (M(· | s, a) ∥ M ′(· | s, a))] ≤ ε∗.

We note that the ε∗ in Definition 4.1 can always be achieved, since η is a tuning hyperparameter. And for a
fixed pair of M and M ′, a smaller hyperparameter η corresponds to a larger ε. Then there always exists a
pair of η and ε such that Definition 4.1 is satisfied for π∗. Although the π∗ is unknown, this critical quantity
ε∗ only depends on the discrepancy between the source and target dynamics for π∗, rather than any other
policy candidates.

Our Theorem 4.1 bounds the KL divergence between ρM ′

π̂
(s, a) and ρexp(s, a). We focus on the term ρM ′

π̂
(s, a),

which denotes the state-action distribution while executing the policy π̂ in the source domain with the
transition dynamics M ′. Since ρexp is the provided expert demonstration, the upper bound for the quantity
DKL(ρM ′

π̂
∥ ρexp) directly relates to the sub-optimality of the value function, which is a natural metric as

introduced in Section 2.2. Compared to executing π∗ (the optimal policy in the target domain) in the source
domain, the KL divergence with the optimal ρexp(s, a) only incurs an additive error of O( γ

1−γ

√
ε∗).

Theorem 4.1. Let ρexp(s, a) denote the distribution of (s, a) for the expert policy in the source domain,
and π∗ be the optimal policy in the target domain. Under Assumption 1 and Definition 4.1, we have

D
(

ρM ′

π̂
∥ ρexp

)
≤ D

(
ρM ′

π∗ ∥ ρexp

)
+ O( γ

1 − γ

√
ε∗). (16)

Remark 4.1. The theoretical analysis is restricted to the source domain. Due to the nature of Imitation
Learning, we provide the upper bound for the quantity DKL(ρM ′

π̂
∥ ρexp). If the reward signal is provided,

we can extend the bounds to the target domain. The proof is deferred to the Appendix A. In Equation (16),
we provide theoretical upper bounds by the “π∗-dependent” quantity ε∗, and has no requirement for all other
possible policies. Following the previous statistics literature (Donoho & Johnstone, 1994; Wainwright, 2019),
we refer to such bounds as the oracle property – the error upper bounds can automatically “adapt” to the
dynamics discrepancy of the trajectory induced by π∗. Although the optimal policy π∗ in the target domain
is unknown, our upper bound identifies the discrepancy of KL divergence for π∗ via the “oracle” property.
Furthermore, the linear dependency on 1

1−γ (which is the effective horizon for the discounted MDP) matches
the best known results (Rajaraman et al., 2020; Xu et al., 2021) for IL methods. When the dynamics in the
source domain and target domain are the same, i.e., ε → 0, and we recover π̂ = π∗, which is also the expert
policy in the source domain.
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(a) The normalized return vs. the iterations on different target domains. The dashed line stands for the performance
of π∗, which is the optimal results in each target domain. BC is a straight line for no interaction with the target
domain. The shaded area stands for one standard deviation for 20 trials. In the left plot, the target domain is the
same as the source domain, and all the methods have good convergence properties. When there exists dynamics
variations (middle and right plots) DYNAIL has superior performance compared to AIRL, SOAIRL (the shorthand
for state-only AIRL), EAIRL, GAIFO, GWIL and BC. The performance gap is widening as ncrippledlegs grows (from
left to right).

(b) The snapshot in the corresponding target environments. Different levels of dynamics variations are represented
by different ncrippledlegs in CustomAnt-v0, DisabledAnt-v1 and DisabledAnt-v2 (from left to right).

Figure 2: Performance on different target domains for ant environment. For all the experiments, we use the
same pre-collected 40 expert trajectories on source domain (CustomAnt-v0) as expert demonstrations.

5 Experiments

In this paper, we propose an imitation learning method which deals with the dynamics variation between
demonstrations and interactions. Our experiments aim to investigate the following questions: (1) Does our
method outperform prior work in dynamics adaptation? (2) What degree of dynamics shift can our method
address? We briefly present the performance of our algorithm in this section, and defer the ablation study
to the Appendix B.

Experimental setup. We compare our algorithm DYNAIL with a number of baselines introduced in
Section 2.4. A natural baseline is to use Behavior Cloning (BC) on the expert demonstrations, and then
directly apply it to the target domain without the consideration of dynamics variation. We investigate AIRL
(Fu et al., 2018), its variant State-only AIRL (SOAIRL), Empowered AIRL (EAIRL) (Qureshi et al., 2019)
and GAIFO (Torabi et al., 2018). We also evaluate our algorithm by comparing its performance against the
state-of-the-art baseline GWIL (Fickinger et al., 2021).

Since these baselines and our algorithm share the similar training procedure, we use the same net architecture.
We use PPO (Schulman et al., 2017) for the generator in AIL framework except for humanoid task where we
use SAC (Haarnoja et al., 2018) for the generator, to optimize the policy and use 10 parallel environments to
collect transitions on target domains. The discriminator Dθ, classifiers qsa and qsas have the same structure
of hidden layers, 2 layers of 256 units each, and a normalized input layer. We use ReLU as activation after
each hidden layer. In all experiments, discounting factor is considered as 0.99. A key hyperparameter for
our method is η, which serves as a tuning regularization. and we defer the full ablation study on η to the
Appendix B.
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Figure 3: The normalized return vs. the iterations on different target domains for continuous control tasks.
The baselines are the same with Figure 2, hence the descriptions are omitted. For all the experiments, we use
the same pre-collected 40 expert trajectories on source domain (HalfCheetah-v3, Reacher-v0, Quadruped and
Humanoid-v3) as expert demonstrations, and the snapshots for different environments are leaved to Figure 5
in the Appendix.

For all the experiments, the expert demonstrations are collected by using RL algorithms in Stable Baselines3
(Raffin et al., 2019) by interacting with the source domains without access to target domains. We use 40
trajectories collected by expert as demonstrations. For all the environments used in our experiments have
fixed horizon, which is the maximum length of episode in the environment.

5.1 Different levels of dynamics variation

For the environment setup, we follow the simulator previously used in Qureshi et al. (2019), where we use a
custom ant as source domain and several differently disabled ant as target domains.

Custom ant. Custom ant is basically the same as ant from OpenAI Gym (Brockman et al., 2016) except
for joint gear ratios. With lower joint gear ratios, the robot flips less often and the agent learns fast. We
refer this environment as CustomAnt-v0. The dimension of observation space is 111 and that of action space
is 8.

Differently disabled ant. Disabled ant differs custom ant in crippled legs whose impact on the dynamics
of robot is bigger than crippled joint in broken ant domain. The degree of disability depends on the number
of crippled legs, ncrippledlegs = 1, 2, which corresponds to DisabledAnt-v1 and DisabledAnt-v2.

We present the experimental results in Figure 2. The experts represented by dashed lines in the plots are
RL agents trained with reward in the target domain. The shaded area of all the curves stands for standard
deviation for 20 trials. BC does not require interaction with the target domain, hence its performance are
straight lines in the plots. In the left plot, the target domain CustomAnt-v0 is the same as the source
domain, and all the methods have good convergence properties. With the increase of ncrippledlegs, we observe
that the performance of baselines decreases, yet our method still outperforms the baselines in different target
domains. This demonstrates the effectiveness of our method for imitation learning in the target domain with
dynamics variation.
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5.2 Different continuous control tasks

We extend our experiments to four continuous control tasks with crippled bodies and obstacles, and a real-
world scenario3. The target environments derived from standard environments are widely studied in previous
works (Eysenbach et al., 2021; Dulac-Arnold et al., 2020). Due to space limit, we defer the detailed setup of
the target environments to the Appendix B.

We present the experimental results in Figure 3. In all the experiments with dynamics variations,
our algorithm DYNAIL achieves superior performance compared to the baselines. We note that in
HalfCheetahObstacle-v3, our method even obtains higher reward than the “optimal” policy in the target
domain which is trained via standard RL algorithm in the target domain. This is due to that it is easier
to run backwards in HalfCheetahObstacle-v3, the expert tends to run backwards and is prevented by the
obstacle with limited reward. However, our algorithm DYNAIL learns to run forwards and gets more reward
with the assistance of demonstrations provided by expert running forwards in the source domain. This
phenomenon for the environment is also observed in Eysenbach et al. (2021).

6 Conclusion and future work

We’ve proposed a novel algorithm to incorporate dynamics variation into imitation learning and learns a
superior near-optimal policy to the baselines. Compared with prior work (Liu et al., 2020; Kim et al., 2020;
Raychaudhuri et al., 2021; Fickinger et al., 2021), it is achieved without access to source domain or any
assistance of the online expert and complex dynamics model. There are several avenues for the future work:
since our work is actually a Meta-Algorithm designed for dynamics variation, which builds upon Adversarial
Imitation Learning. We can leverage previous work on AIL to improve the sample complexity (Kostrikov
et al., 2019). Any improvement in the time/sample complexity of AIL methods would benefit from the
robustness to dynamics variation by our algorithm. Also, we can leverage a Real world RL control suite
(Dulac-Arnold et al., 2020), Grid2Op (Donnot, 2020) and CityLearn (Vazquez-Canteli et al., 2020) for the
experiments, it would be of interest to apply our algorithm with real data, such as autonomous driving,
girdpower operation and demand response.
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A Proofs

A.1 Facts about KL divergence

We introduce Assumption 1 on the transition dynamics, which assumes that if M(s′ | s, a) > 0, then
M ′(s′ | s, a) > 0, ∀s, s′ ∈ S, a ∈ A. If it does not hold, then the trajectory induced by the optimal policy in
the target domain π∗ might involve invalid behaviors in the source domain. The reverse of Assumption 1 is
not necessary to be true.

The usage of KL divergence in Imitation Learning, Reinforcement Learning and Control is ubiquitous (Fu
et al., 2018; Levine, 2018; Ghasemipour et al., 2020). Similar assumptions on transition dynamics are also
widely used in Koller & Friedman (2009) and Eysenbach et al. (2021). We note the Assumption 1 is also
consistent with the definition of KL divergence in Equation (7).

min
π

D (pπ(τ ; target) ∥ pθ(τ ; source)).

However, such assumptions may not hold for simulation environments with deterministic transition dynamics
such as MuJoCo, due to mathematical definition. Hence, it is found important for the practical implemen-
tation to use the combination of clipped discriminator logits, and tuning the gradient penalty for effective
training of Adversarial Imitation Learning methods (Ghasemipour et al., 2020; Orsini et al., 2021).

A.2 Proof of Theorem 4.1

Based on the constrained optimization formulation Equation (14), we first build a uniform bound
(Lemma A.1) for the deviation of all policies in the constraint set Πε.
Lemma A.1 (Uniform Bound). Under Assumption 1, for all the policy in the constraint set Πε, we have

|EρM
π

[
log ρexp − log ρM

π

]
− EρM′

π

[
log ρexp − log ρM ′

π

]
| = O( γ

1 − γ

√
ε), ∀π ∈ Πε, (17)

where Πε =
{

π | E(s,a)∼ρM
π

[D (M(· | s, a) ∥ M ′(· | s, a))] ≤ ε
}

.

Proof of Lemma A.1. For the LHS of Equation (17), we consider the following function

E(s,a)∼ρπ

[
log ρexp(s, a)

ρπ(s, a)

]
= −D (ρπ ∥ ρexp),

which is actually the KL divergence function between ρπ and ρexp. The KL divergence is Lipschitz continuous
with respect to ρπ(s, a) in ℓ1 norm. This is due to the constant C for the upper and lower bound on the
logits of the discriminator.

We then present the perturbation bound on ℓ1 norm for the stationary function of state dM
π . The techniques

are from the perturbation theory (Schulman et al., 2015; Xu et al., 2021). Let P M
π (s′ | s) =

∑
a∈A M(s′ |

s, a)π(a|s) as the state transition function for a given policy π. Then the stationary distribution of d can be
written as

dM
π = (1 − γ)

∞∑
t=0

γt Pr(st = s; π, M, d0)

= (1 − γ)(I − γP M
π )−1d0

where d0 is the initial state distribution.

Then we calculate the difference in the distribution

dM ′

π − dM
π = γ(I − γP M ′

π )−1(P M ′

π − P M
π )dM

π
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Based on the bound in Lemma 7 of Xu et al. (2021), we have

∥dM ′

π − dM
π ∥1 ≤ γ∥(I − γP M ′

)−1∥1∥(P M ′
− P M )dM

π ∥1 (18)
(i)
≤ γ

1 − γ
∥(P M ′

− P M )dM
π ∥1 (19)

(ii)
≤ γ

1 − γ
E(s,a)∼ρM

π
[|M(· | s, a) − M ′(· | s, a)|] (20)

(iii)
≤

√
2γ

1 − γ

√
ε, (21)

where (i) follows from the fact
∥∥∥(I − γP M ′)−1

∥∥∥
1

≤
∑∞

t=0 γt = 1
1−γ , (ii) follows from the definition of

P M
π (s′ | s), and (iii) follows from the Pinsker’s inequality for bounding the ℓ1 norm via KL divergence, and

the definition for ε. Similar techniques are also used in Schulman et al. (2015) and Xu et al. (2021).

The last step is bounding the
∥∥∥ρM ′

π (s, a) − ρM
π (s, a)

∥∥∥
1

by
∥∥∥dM ′

π − dM
π

∥∥∥
1

in Equation (20),

∥ρM ′

π (s, a) − ρM
π (s, a)∥1

(i)
≤ ∥dM ′

π − dM
π ∥1

≤
√

2γ

1 − γ

√
ε,

where (i) follows from the definition of ρπ(s, a) and dπ.

Putting together the pieces, we have

|EρM
π

[
log ρexp − log ρM

π

]
− EρM′

π

[
log ρexp − log ρM ′

π

]
| = O( γ

1 − γ

√
ε)

for all the policies in the constraint set Πε.

Theorem A.1 (Theorem 4.1). Let ρexp(s, a) denote the distribution of (s, a) for the expert policy in the
source domain, and π∗ be the optimal policy in the target domain. Under Assumption 1 and Definition 4.1,
we have

D
(

ρM ′

π̂
∥ ρexp

)
≤ D

(
ρM ′

π∗ ∥ ρexp

)
+ O( γ

1 − γ

√
ε∗). (22)

Proof of Theorem 4.1. To distinguish the expert demonstrations and the generated trajectory of the policy
π, the optimal discriminator for Equation (10) (line 6 of Algorithm 1) is achieved at

D∗(s, a) = ρexp(s, a)
ρexp(s, a) + ρM

π (s, a) . (23)

The simple proof was included in Goodfellow et al. (2014), and the logits of the discriminator is clipped to
be within the range, for example, [−10, 10] (Ghasemipour et al., 2020).

Plugging in the Equation (23), and we are solving the RL problem with the discrepancy regularizer

max
π

Eτ∼π,M

[∑
t

log ρexp(st, at) − log ρM
π (st, at) + ηΦ(st, at, st+1)

]
, (24)

Since we have Φ(st, at, st+1) = log M ′(st+1 | st, at) − log M(st+1 | st, at), the regularization term is actually
equivalent to the constraint set

Πε =
{

π | E(s,a)∼ρM
π

[D (M(· | s, a) ∥ M ′(· | s, a))] ≤ ε
}
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Hence we have the following optimization in the domain of ρ.

max
π

E(s,a)∼ρM
π

[
log ρexp(s, a) − log ρM

π (s, a)
]

, subject to π ∈ Πε. (25)

The next step is analyzing the objective function of Equation (25) – based on the optimality condition of π̂
in Algorithm 1 and the feasibility of π∗ in the constraint formulation Definition 4.1, we have

EρM

π̂

[
log ρexp − log ρM

π̂

]
≥ EρM

π∗

[
log ρexp − log ρM

π∗

]
(26)

We then apply Lemma A.1 twice.

EρM′

π̂

[
log ρexp − log ρM ′

π̂

]
≥ EρM′

π∗

[
log ρexp − log ρM ′

π∗

]
− O( γ

1 − γ

√
ε∗).

Finally, we have

D
(

ρM ′

π̂
∥ ρexp

)
≤ D

(
ρM ′

π∗ ∥ ρexp

)
+ O( γ

1 − γ

√
ε∗).

B Full Experiments

B.1 Hyperparameters

To use the popular framework of Adversarial Imitation Learning, we use the regularization method and their
hyperparameters according to previous papers (e.g. Brantley et al., 2019; Orsini et al., 2021). Besides the
policy learning algorithm and the discriminator in AIL framework, our algorithm DYNAIL also includes two
classifiers qsa and qsas, and we use the same architecture and hyperparameter as the discriminator. For the
parameter η, we explain our methods in the next subsection. The hyperparameters are shown in Table 1.

Table 1: Hyperparameters in Algorithm 1

Hyperparameter Values considered Final Value
Parallel Environments 8, 10 10
ℓ2 regularization 0 0
Entropy coefficient 0.01 0.01
Gradient clipping 0.1, 1.0 1.0
Policy learning rate 3 ∗ 10−4 3 ∗ 10−4

Generator batchsize 100, 200 100
Discriminator learning rate 1 ∗ 10−3 1 ∗ 10−3

Discriminator batchsize 800, 1000 1000
Discriminator updates 5, 10 5
Discriminator weight decay 0.01, 0.1 0.01
Discriminator logits clipping 5, 10, 20 20
Classifier learning rate 1 ∗ 10−3 1 ∗ 10−3

Classifier batchsize 800, 1000 1000
Classifier updates 5, 10 5
Classifier weight decay 0.01, 0.1 0.01
Discrepancy Regularization Φ clipping 5, 10, 20 5
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B.2 Ablation study on parameter η

The workhorse of Algorithm 1 is incorporating the dynamics variation into the state-action occupancy
measure matching as a regularization term. When we optimize the policy via the reward function

r̃(s, a, s′) = log(Dθ) − log(1 − Dθ) + η

(
log qsas

1 − qsas
− log qsa

1 − qsa

)
,

it is important to select the tuning parameter η. Also, to achieve the ε∗ in Definition 4.1 and Theorem 4.1,
we need to use an appropriate η. In this section, we describe our method to select this hyperparameter, and
present the empirical performance.

Recall that our goal is to minimize the reverse KL divergence via Equation (7), which is

min
π

D (pπ(τ ; target) ∥ pθ(τ ; source)).

When we use Algorithm 1 with different hyperparameter η, we obtain the learned policy π̂η. We use the
“reverse KL divergence” between the π̂η and the expert demonstrations as a metric to select the hyperpa-
rameter η. More specifically, we train a classifier Qη for the (s, a, s′) between the expert demonstrations
Ddemo and π̂η. Let µ denote the stationary distribution of (s, a, s′). Similar to the analysis of discriminator
introduced in Section 4, the classifier Qη achieves its optimum at

Qη(s, a, s′) = µexp(s, a, s′)
µexp(s, a, s′) + µ

π̂η
(s, a, s′) .

Then the average of negative logit value on the generated trajectory equals

−E(s,a,s′)∼µ
π̂η

log µexp(s, a, s′)
µ

π̂η
(s, a, s′) = D

(
µ

π̂η
∥ µexp

)
. (27)

Hence we choose the hyperparameter η, which yields the smallest the D
(

µ
π̂η

∥ µexp

)
. We present the ablation

study of η and its corresponding performance for the target domain DisabledAnt-v1. in Figure 4. More specif-
ically, we use the expert demonstrations from the source domain, apply different η in {0.5, 1, 2, 4, 8 · · · , 1024},
and run Algorithm 1 respectively. For different η, we calculate the Equation (27) for each π̂η, and present
it on the left plot of Figure 4. In the right plot of Figure 4, we present the normalized reward vs. iterations
for different η. We observe that a smaller KL divergence for π̂η in the left plot leads to better performance
of the normalized return in the right plot. Consistent to our theory, this provides an accurate method for
model selection on different hyperparameter η.

B.3 Experiments Details

In Section 5.2, we compare our algorithm with several baselines on different simulation platforms, which
are previously studied in Eysenbach et al. (2021) and Dulac-Arnold et al. (2020). Details for these target
environments are as follows, and the snapshots are provided in Figure 5.

BrokenHalfCheetah-v3. This environment is based on the source environment HalfCheetah-v3 from
OpenAI Gym (Brockman et al., 2016). The goal of this environment is to make the agent move forwards.
Episode length is 1000 steps long. This environment differs source environment from the 0th joint (0-indexed)
which is broken: the input torque at this joint is ignored.

HalfCheetahObstacle-v3. This environment is based on the source domain HalfCheetah-v3 from Ope-
nAI Gym (Brockman et al., 2016). The goal of this environment is to make the agent move forwards. Episode
length is 1000 steps long. A key modification is that the agent is rewarded for running both forwards and
backwards. Because it is easier to learn to run backwards, an obstacle behind the agent is used in this target
environment. The agent bounces off the obstacle when running backwards and thus runs forwards for more
reward.
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Figure 4: Ablation study results for the DisabledAnt-v1 environment. The left plot shows the D
(

µ
π̂η

∥ µexp

)
for different π̂η. The right plot shows the normalized reward vs. iterations for different η. The shaded area
stands for one standard deviation for 20 trials. We observe a smaller KL divergence for π̂η does lead to
better performance of the normalized return. Consistent to our theory, this provides an accurate method for
model selection on different hyperparameter η.

Figure 5: The snapshot in the corresponding target environment (BrokenHalfCheetah-v0,
HalfCheetahObstacle-v0, BrokenReacher-v0, LowFrictionQuadruped and BrokenHumanoid-v3 are pre-
sented from left to right).

BrokenReacher-v0. The reacher in this environment is constructed by the 7DOF robot arm in Pusher
environment from OpenAI Gym (Brockman et al., 2016). The goal of this environment is to move the end
effector close to the target. Episode length is 100 steps long. This environment differs source environment
from the 2nd joint (0-indexed) which is broken: the input torque at this joint is ignored.

LowFrictionQuadruped. This environment is based on the source domain “quadruped" with “real-
walk" task from realworldrl-suite (Dulac-Arnold et al., 2020). The goal of this environment is to make the
agent walk forwards. Episode length is 1000 steps long. The contact friction of the source domain ranges
from 0.1 to 4.5 with the standard deviation of 0.5, while we lower the friction to 0.1 as a constant in the
target domain. With a low contact friction, it is harder for the agent to walk forwards.
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BrokenHumanoid-v3. This environment is based on the source environment Humanoid-v3 from OpenAI
Gym (Brockman et al., 2016). The goal of this environment is to make the agent move forwards. Maximum
episode length is 1000 steps long, however, episode may terminate early due to unhealthy conditions. This
environment differs source environment from the 0th joint (0-indexed) which stands for the red broken
abdomen in Figure 5: the input torque at this joint is ignored.

C Societal Impact

Real world Reinforcement Learning and Imitation Learning are closely related to our work (Dulac-Arnold
et al., 2020; Kirk et al., 2021). Recent years witness the success of using RL and IL in a series of artificial
domains. Nevertheless, many state-of-the-art Imitation Learning and Inverse RL algorithms are hard to
deploy in real-world scenarios since the underlying assumptions are rarely satisfied in practice (Dulac-Arnold
et al., 2020). Our research is aligned with previous papers – we study the generalization performance
for Imitation Learning algorithms (more specifically, under dynamics variation). We mainly focus on the
algorithm design and do not consider specific applications.
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