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Abstract
In recent years, studies such as (Carmon et al.,
2019; Gowal et al., 2021; Xing et al., 2022) have
demonstrated that incorporating additional real or
generated data with pseudo-labels can enhance
adversarial training through a two-stage train-
ing approach. In this paper, we perform a the-
oretical analysis of the asymptotic behavior of
this method in high-dimensional linear regression.
While a double-descent phenomenon can be ob-
served in ridgeless training, with an appropriate
L2 regularization, the two-stage adversarial train-
ing achieves a better performance. Finally, we
derive a shortcut cross-validation formula specifi-
cally tailored for the two-stage training method.

1. Introduction
The development of machine learning and deep learning
methods has led to breakthrough performance in various
applications. However, recent studies, e.g., (Goodfellow
et al., 2014), observe that these models are vulnerable when
the data are perturbed by adversaries. Attacked inputs can
be imperceptibly different from clean inputs to humans but
can cause the model to make incorrect predictions.

To defend against adversarial attacks, adversarial training
is a popular and promising way to improve the adversarial
robustness of modern machine learning models. Adversarial
training first generates attacked samples, then calculates
the gradient of the model based on these augmented data.
Such a procedure can make the model less susceptible to
adversarial attacks in real-world situations.

There are fruitful results in the theoretical justification and
methodology development in adversarial training. Among
various research directions, one interesting aspect is to im-
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prove adversarial training with extra unlabeled data. Recent
works successfully demonstrate great improvements in the
adversarial robustness with additional unlabeled data. For
example, (Xing et al., 2021), show that additional external
real data help improve adversarial robustness; (Gowal et al.,
2021; Wang et al., 2023) use synthetic data to improve the
adversarial robustness and achieve the highest 65% to 70%
adversarial testing accuracy for CIFAR-10 dataset under
AutoAttack (AA) in (Croce et al., 2020)1.

A recent study (Xing et al., 2022) reveals that adversar-
ial training gains greater benefits from unlabeled data than
clean (natural) training. The key observation is that adver-
sarially robust models rely on the conditional distribution
of the response given the features (Y |X) and the marginal
distribution of the features (X). In contrast, clean training
only depends on Y |X in their study. As a result, adversarial
training can benefit more than clean training from unlabeled
data.

Besides adversarial training, high dimensional statistics is
another important field of traditional machine learning to
solve real-world problems from genomics, neuroscience to
image processing. While many studies focus on obtaining a
better performance via regularization, one surprising phe-
nomenon in this field is the double descent phenomenon
(Belkin et al., 2019; Hastie et al., 2019), which refers to a
U-shaped curve in the test error as a function of the model
complexity, together with a second descent phase occur-
ring in the over-parameterized regime. This phenomenon
challenges the conventional wisdom that increasing model
complexity always leads to over-fitting. It provides sig-
nificant implications for designing and analyzing machine
learning algorithms in high-dimensional settings.

Given the substantial achievements in high-dimensional
statistics, this paper aims to extend the analysis of (Xing
et al., 2022) to a high-dimensional regression setup, in which
both the data dimension d and the sample size of the labeled
data n1 increase and d/n1 → γ asymptotically. Although
(Xing et al., 2022) provides a theoretical explanation for
the benefits of unlabeled data in the large sample regime
(n1 ≫ d), the asymptotic behavior of the two-stage method

1https://robustbench.github.io
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in other scenarios remains unclear.

Our contributions are summarized as follows:

• We derived the asymptotic convergence of the two-
stage adversarial training when d/n1 → γ for some
constant γ > 0. (Section 3.1).

• It is observed that a proper ridge penalty in the clean
training stage benefits the two-stage method. However,
the optimal ridge penalty for the clean estimate in the
first stage of (Xing et al., 2022) differs from the one
yielding the best clean performance. We conjecture
that this discrepancy arises from the change in the
error decomposition from clean training to two-stage
adversarial training. To facilitate more efficient hyper-
parameter tuning, we propose adaptations to existing
cross validation (CV) methods, improving the time-
consuming vanilla CV approach (Sections 3.2 and 3.3).

1.1. Related Works

Below is a summary of related works in adversarial training,
high-dimensional statistics, and cross validation.

Adversarial Training. There are many studies in the area
of adversarial training. Some studies, e.g., (Goodfellow
et al., 2014; Zhang et al., 2019; Wang et al., 2019b; Cai et al.,
2018; Zhang et al., 2020a; Carmon et al., 2019; Gowal et al.,
2021), work in methodology. Theoretical investigations
have also been conducted from different perspectives. For
instance, Chen et al. (2020); Javanmard et al. (2020); Taheri
et al. (2021); Yin et al. (2018); Raghunathan et al. (2019);
Najafi et al. (2019); Min et al. (2020); Hendrycks et al.
(2019); Dan et al. (2020); Wu et al. (2020); Deng et al.
(2021) study the statistical properties of adversarial training;
Sinha et al. (2018); Wang et al. (2019a); Xiao et al. (2022)
study the optimization perspective; Gao et al. (2019); Zhang
et al. (2020b); Zhang and Li (2023); Mianjy and Arora
(2022); Lv and Zhu (2021); Xiao et al. (2021) work on deep
learning.

Double Descent and High-Dimensional Statistics. Dou-
ble descent phenomenon is an observation in the learning
curves of machine learning models. It describes the behav-
ior of the generalization gap, i.e., the difference between the
model performance on the training data and testing data. In
a typical learning curve, the generalization error decreases
and then increases with larger model complexity. However,
in the double descent phenomenon, after the first decrease-
increase pattern, the error decreases again when further
enlarging the model complexity in the over-fitting regime.
This non-monotonic behavior of the learning curve has been
observed in various machine learning settings. Comprehen-
sive investigations into the double descent phenomenon can

be found in (Belkin et al., 2019; Hastie et al., 2019; Ba et al.,
2020; d’Ascoli et al., 2020; Adlam and Pennington, 2020;
Liu et al., 2021; Rocks and Mehta, 2022).

Cross Validation. Cross validation (CV) is a resampling
procedure used to evaluate the performance of machine
learning models. This paper mainly considers leave-one-out
CV. For leave-one-out CV, it trains the model using all-but-
one samples and repeats this process so that every sample is
left in the estimation once. The final model performance is
then averaged across all the models. The model can gener-
alize better to new data by optimizing the hyperparameters
in the model, e.g., regularization, through CV.

However, although a leave-one-out CV is an effective
method for selecting hyperparameters, it is time-consuming
by its design. Consequently, some studies propose short-
cut formulas for the leave-one-out CV to reuse some terms
when estimating the model using different data. Studies re-
lated to CV can be found in (Stone, 1978; Picard and Cook,
1984; Shao, 1993; Browne, 2000; Berrar, 2019).

2. Model Setup
In this section, we present the data generation model and
the two-stage adversarial training framework.

Data generation model. We assume that the attributes
X ∼ N(0,Σ) with covariance matrix Σ = Id, and the
response Y satisfies Y = X⊤θ0 + ε for ∥θ0∥ = r = O(1)
and a Gaussian noise ε with V ar(ε) = σ2.

Two-stage adversarial training. There are two stages in
this training framework. In the first stage, we utilize n1

i.i.d. labeled samples, i.e., (xi, yi) for i = 1, . . . , n1. We
consider the scenario where d ≍ n1. The first stage solves
the following clean training problem

1

n1

n1∑
i=1

(x⊤
i θ − yi)

2 + λ∥θ∥2 (2.1)

and obtain the clean estimate θ̂0(λ).

In the second stage, we use the trained model θ̂0(λ) to
generate a pseudo response for a set of unlabeled data, i.e.,

ŷi = x⊤
i θ̂0(λ) + εi

for i = n1 + 1, . . . , n1 + n2. In this paper, we consider the
scenario where n2 = ∞. We also assume σ2 is known and
εi are generated from N(0, σ2). Finally we use the extra
data with pseudo response to do adversarial training and
minimize the following loss w.r.t θ:

1

n2

n1+n2∑
i=n1+1

sup
z∈B2(xi,ϵ)

(z⊤θ − ŷi)
2. (2.2)
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Denote the final solution as θ̃ϵ(λ).

Remark 1. The two-stage method in this paper is slightly
different from the original one in (Gowal et al., 2021; Xing
et al., 2022). We only utilize the generated data in the second
stage. This simplifies the theoretical analysis. In addition,
when d/n1 = γ is a large constant, we empirically observe
that the two-stage method is better than an adversarial
training with only labeled data, i.e., the right of Figure 1.

Remark 2. Our initial trial indicates that adding additional
regularization in equation (2.2) does not help much. Thus,
we only inject a penalty in the clean training stage.

Expected Adversarial Risk Under the model assumption
of (X,Y ), the population adversarial risk for any given
estimate θ becomes

Rϵ(θ,θ0) = ∥θ − θ0∥2Σ
+2c0ϵ∥θ∥

√
∥θ − θ0∥2Σ + σ2 + ϵ2∥θ∥2,

where ∥ · ∥ is the L2 norm, and c0 =
√
2/π is derived from

the exact distribution of (X,Y ). We rewrite Rϵ(θ,θ0) as
Rϵ(θ) for simplicity when no confusion arises.

Remark 3. One can denote θϵ = argminθ Rϵ(θ,θ0) as
the best robust model. However, from Rϵ(θ,θ0), we are
interested in ∥θ − θ0∥Σ and ∥θ∥ rather than ∥θ − θϵ∥.

Based on (Xing et al., 2021), when an estimate θ → θϵ,
the excess adversarial risk Rϵ(θ,θ0)−Rϵ(θϵ,θ0) can be
approximated by a function of θ − θϵ. However, when
θ − θϵ diverges in the high-dimensional setup, such an
approximation leads to a large error.

3. Analyzing the Two-Stage Adversarial
Training Framework

This section presents the main theoretical results and simu-
lation studies. We first demonstrate the main theory of the
convergence of the two-stage method in Section 3.1, take
different λ under different attack strength ϵ in Section 3.2,
and finally introduce a CV method in Section 3.3.

3.1. Convergence Result

For the two-stage adversarial framework, to study θ̃ϵ(λ),
we denote the following function

mγ(−λ) =
−(1− γ + λ) +

√
(1− γ + λ)2 + 4λγ

2γλ
,

which is used to describe the asymptotic behavior of
tr
(
(
∑n1

i=1 xix
⊤
i + λId)

−1
)

as in (Hastie et al., 2019).

After defining mγ , one can obtain the convergence of θ̂0(λ),
and further figure out the asymptotic behavior of θ̂ϵ(λ). The

convergence of the two-stage adversarial training framework
is as follows:

Theorem 1 (Convergence of Two-Stage Adversarial Train-
ing). With probability tending to 1, θ̂0(λ) satisfies

∥θ̂0(λ)− θ0∥2 → λ2r2m′
γ(−λ)

+σ2γ
(
mγ(−λ)− λm′

γ(−λ)
)
,

∥θ̂0(λ)∥2 → r2[1− 2λmγ(−λ) + λ2m′
γ(−λ)]

+σ2γ[mγ(−λ)− λm′
γ(−λ)].

For the two-stage adversarial estimate θ̃ϵ(λ), assuming
n2 = ∞, θ̃ϵ(λ) satisfies

∥θ̃ϵ(λ)− θ0∥2 → 1

(1 + αϵ(λ))2
∥θ̂0(λ)∥2

+r2 − 2

(1 + αϵ(λ))
θ̂0(λ)

⊤θ0,

∥θ̃ϵ(λ)∥2 → 1

(1 + αϵ(λ))2
∥θ̂0(λ)∥2,

where 2θ̂0(λ)
⊤θ0 can be calculated via

2θ̂0(λ)
⊤θ0 = ∥θ0∥2 + ∥θ̂0(λ)∥2 − ∥θ̂0(λ)− θ0∥2,

and αϵ(λ) is the solution of α in

α+ ϵc0
α∥θ̂0(λ)∥√

∥θ̂0(λ)∥2α2 + σ2(1 + α)2

= ϵc0

√
∥θ̂0(λ)∥2α2 + σ2(1 + α)2

∥θ̂0(λ)∥
+ ϵ2.

The proof of Theorem 1 is in the appendix. We first study
the convergence of θ̂0(λ), and then evaluate θ̃ϵ(λ).

From Theorem 1, similar to θ̂0, one can see that ∥θ̃ϵ(λ)−
θ0∥2 and ∥θ̃ϵ(λ)∥2 converges to some value as a function
of (γ, λ, ϵ, σ2) asymptotically.

We conduct a simulation to verify Theorem 1 and study
the risk of the two-stage adversarial training. In the exper-
iment, we take n1 = 100 and n2 = ∞, i.e., we directly
use the population adversarial risk in the second stage. We
change the data dimension d to obtain different γ = d/n1.
The data follows X ∼ N(0, Id), Y = X⊤θ0 + ε with
θ0 ∼ N(0, Id/d) and ε ∼ N(0, 1). The adversarial attack
is taken as ϵ = 0.3. We repeat the experiment 100 times to
obtain the average performance. We use the excess adversar-
ial risk, i.e., Rϵ(θ)−Rϵ(θϵ) for θ ∈ {θ̂0(λ), θ̂ϵ(λ), θ̃ϵ(λ)},
to evaluate the performance of the three methods. The model
θ̂ϵ(λ) refers to the vanilla adversarial training as an addi-
tional benchmark, i.e., we conduct adversarial training using
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Figure 1. Simulation: Excess adversarial risk of clean training,
vanilla adversarial training, and the two-stage adversarial training,
without ridge penalty.

Figure 2. Theoretical value corresponding to Figure 1.

the n1 labeled samples. The simulation results are summa-
rized in Figure 1, 2, 3, 4.

In Figure 1, we take λ → 0 to align with the experiments
in the double descent literature. There are several observa-
tions from Figure 1. First, if we compare the performance
of the two-stage adversarial training and the clean training,
the two-stage adversarial training is better than clean train-
ing. Second, when d/n1 gets larger, the performance of
the two-stage adversarial training is better than the vanilla
adversarial training, indicating that the information of the ad-
ditional extra data matters. Finally, for all the three training
methods, they all observe a double-descent phenomenon.

In addition, we plot the theoretical curves for the excess
adversarial risk associating with the two-stage adversarial
training. From Figure 2, the theoretical curve and the simu-
lation result match with each other.

Finally, we examine how the ridge penalty affects the perfor-
mance. In the simulation in Figure 3, we take ϵ = 0, 0.3 and
compare the performance when λ = 0 and λ is taken to min-

Figure 3. Simulation: Ridgeless regression and ridge regression
with the best penalty in clean training and the two-stage adversarial
training respectively. Adversarial training benefits more from a
proper penalty.

Figure 4. Theoretical value corresponding to Figure 3

imize the risk. In Figure 3, the y-axis is the corresponding
excess adversarial risk, i.e., ϵ = 0, 0.3 for the corresponding
groups respectively. The corresponding theoretical curves
can be found in Figure 4.

From Figure 3, one can see that the excess risk for the ridge-
less regression is similar, while the two-stage adversarial
training (ϵ = 0.3) benefits more than clean training (ϵ = 0)
when taking a proper ridge penalty, which motivates us to
further investigate in the penlaty term in the following sec-
tions. In addition, the theoretical curves in Figure 4 align
with the simulation results in 3 as well.

3.2. A Better Clean Estimate May Not Be Preferred

Different from ridgeless regression in the large-sample
regime, with high-dimensional data, it is essential to uti-
lize ridge penalty or other regularization to improve the
testing performance. While one can adjust the penalty to
control the performance of the clean estimate, we would
like to ask:
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Figure 5. Simulation: How the tuning parameter λ in clean ridge
regression affects the final adversarial robustness when using extra
unlabeled data in training. While a small λ minimizes the popula-
tion clean risk, this choice of λ is sub-optimal when using θ̂0(λ)
to create pseudo response. Besides the cases of ϵ ∈ {0, 0.3, 0.5},
when ϵ = 0.7, the best penalty λ is extremely large and is not
included in the figure.

Is a better clean estimate (measured by clean testing
performance) always preferred in the two-stage method?

To answer the above question, it is essential to investigate the
role of the clean estimate in the two-stage method. Recall
that the population adversarial risk is written as

Rϵ(θ,θ0) = ∥θ − θ0∥2Σ
+2c0ϵ∥θ∥

√
∥θ − θ0∥2Σ + σ2 + ϵ2∥θ∥2,

where taking expectation on training data we have

E∥θ̃ϵ(λ)− θ0∥2Σ = ∥Eθ̃ϵ(λ)− θ0∥2Σ + tr(V ar(θ̃ϵ(λ))),

and

E∥θ̃ϵ(λ)∥2 = ∥Eθ̃ϵ(λ)∥2 + tr(V ar(θ̃ϵ(λ))).

The above decompositions imply that the while ridge regres-
sion balances bias and variance of θ̂0(λ), the importance
of bias and variance are changed in θ̃ϵ(λ). As a result, the
optimal λ for the clean estimate may not be the best when
applied in the two-stage adversarial training.

To investigate how the optimal λ changes in the two-stage
method, a simulation study is conducted in Figure 5. We
take n1 = 50. The data X ∼ N(0, Id) and d = 200.
The response Y = θ⊤

0 X + ε with θ0 = 1/
√
d and ε ∼

N(0, 0.12). Besides the n1 labeled data, we take n2 = ∞.
We repeat 30 times to get the average result and check the
best λ under different attack strength ϵ.

From Figure 5, one can see that the optimal λ gets larger
when the attack strength gets larger. When ϵ = 0, the

optimal λ is closed to zero. When ϵ = 0.3, the best λ is
around 1, and 3 when ϵ = 0.5, both of which are much
larger than the case for ϵ = 0.

3.3. Cross Validation

Observing that the optimal λ for clean training is not the best
for the two-stage adversarial training, we next investigate
how to better select a proper λ.

While one can always use the leave-one-out procedure for
any estimate, it is time-consuming. As a result, existing liter-
ature, e.g. (Hastie et al., 2019), utilize ways to approximate
the leave-one-out CV procedure.

Recall that when n2 = ∞, the second stage of the two-stage
method minimizes

Rϵ(θ, θ̂0(λ)) = ∥θ − θ̂0(λ)∥2Σ + σ2 + ϵ2∥θ∥2

+2c0ϵ∥θ∥
√
∥θ − θ̂0(λ)∥2Σ + σ2,

and the solution is

θ̃ϵ(λ) = (Σ+ αϵ(λ)Id)
−1Σθ̂0(λ),

for some αϵ(λ) ≥ 0. One needs to rerun the CV procedure
for n1 times and obtain different θ̃ϵ(λ)−j , the leave-one-out
estimate of θ̃ϵ(λ) leaving the jth labeled sample.

Given that the above formula θ̃ϵ(λ) is a transformation
of θ̂0(λ), one can borrow the idea of approximating CV
in clean training to the two-stage adversarial training. To
be specific, since both the αϵ(λ) and θ̂0(λ) relate to each
labeled sample, assuming the jth sample is discarded, the
estimate of the two-stage method will be

(Σ+ α−jId)Σθ̂−j
0 (λ), (3.1)

and we approximate both α−j and θ̂−j
0 (λ).

The following lemma shows how to approximate αϵ(λ) in
the leave-one-out CV:

Lemma 1. Rewrite θ̃ϵ(λ) as θ̃, θ̂0(λ) as θ̂0, and α = αϵ(λ)

for simplicity. Denote ∆j = θ̂−j
0 − θ̂0, and

A1 =
1

∥θ̃ − θ̂0∥Σ∥θ̃∥
θ̃⊤(Σ+ αId)

−2Σθ̂0

− ∥θ̃∥
∥θ̃ − θ̂0∥3Σ

(θ̃ − θ̂0)
⊤Σ(Σ+ αId)

−2Σθ̂0,

A2 =
1

∥θ̃ − θ̂0∥Σ∥θ̃∥
(θ̃ − θ̂0)

⊤Σ(Σ+ αId)
−2Σθ̂0

−∥θ̃ − θ̂0∥Σ
∥θ̃∥3

θ̃⊤Σ(Σ+ αId)
−2θ̂0,
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ϵ 0.3 0.5 0.7
Cross validation (CV loss in training) 0.8750 0.9663 1.0300

Cross validation (corresponding population risk) 0.8871 0.9751 1.0270
Cross validation for clean regression (corresponding population risk) 0.8873 1.0076 1.1140

Best λ (corresponding population risk) 0.8741 0.9648 1.0185

Table 1. Adversarial risks using cross validation and the best λ.

A3 =

(
Id + ϵc0

∥θ̃∥
∥θ̃ − θ0∥Σ

)
Σ(Σ+ αId)

−1θ̃

+

(
ϵc0

∥θ̃ − θ̂0∥Σ
∥θ̃∥

+ ϵ2

)
(Σ+ αId)

−1θ̃,

A4 =
1

∥θ̃ − θ̂0∥Σ∥θ̃∥
θ̃⊤(Σ+ αId)

−1Σ

+
∥θ̃∥

∥θ̃ − θ̂0∥3Σ
α(θ̃ − θ̂0)

⊤Σ(Σ+ αId)
−1,

A5 =
1

∥θ̃ − θ̂0∥Σ∥θ̃∥
α(θ̃ − θ̂0)

⊤Σ(Σ+ αId)
−1

−∥θ̃ − θ̂0∥Σ
∥θ̃∥3

θ̃⊤(Σ+ αId)
−1Σ,

then when ∥θ̂0 − θ̂−j
0 ∥ = o(1), the leave-one-out estimate

of α satisfies

α−j − α =

(
ϵc0A1Σ(θ̃ − θ̂0) + ϵc0A2θ̃ +A3

)⊤
∥ϵc0A1Σ(θ̃ − θ̂0) + ϵc0A2θ̃ +A3∥2

×
(
ϵc0A4∆jΣ(θ̃ − θ̂0) + ϵc0A5∆j θ̃

)
+ o,

where o represents negligible terms.

The proof of Lemma 1 can be found in the appendix. Based
on the result in Lemma 1, we can use

α̂−j − α =

(
ϵc0A1Σ(θ̃ − θ̂0) + ϵc0A2θ̃ +A3

)⊤
∥ϵc0A1Σ(θ̃ − θ̂0) + ϵc0A2θ̃ +A3∥2

×
(
ϵc0A4∆jΣ(θ̃ − θ̂0) + ϵc0A5∆j θ̃

)
to approximate α−j .

In terms of the leave-on-out estimate of θ̂0(λ), i.e., θ̂−j
0 (λ),

one can use the Kailath Variant fomular (from 3.1.2 of
Petersen and Pedersen, 2008) and obtain

θ̂0(λ)− θ̂−j
0 (λ) =

yj − ŷj(λ)

1− Sj(λ)
(X⊤X + nλId)

−1xj ,

where X ∈ Rn1×d denotes the labeled data matrix, and
ŷj(λ) = θ̂0(λ)

⊤xj as the fitted value of the jth observation.

After obtaining the estimate α̂−j and θ̂−j
0 (λ), one can put

them into (3.1) to obtain the leave-one-out estimate of θ̃ϵ(λ).
The following theorem justifies the correctness of the above
procedure:

Theorem 2. Denote

CV (λ, ϵ) =
1

n1

∑(
|x⊤

i θ̃
−j
ϵ (λ)− yi|+ ϵ∥θ̃−j

ϵ (λ)∥
)2

,

and θ̆−j
ϵ (λ) = (Σ + α̂−jId)Σθ̂

−j
0 (λ) as the approxima-

tion of the leave-one-out estimate using Lemma 1. Then
under the Gaussian model assumption of (X,Y ), the ap-
proximated CV converges to the actual CV result, i.e.,

1

n1

∑(
|x⊤

i θ̆
−j
ϵ (λ)− yi|+ ϵ∥θ̆−j

ϵ (λ)∥
)2 P−→ CV (λ, ϵ).

We use the simulation setting in Figure 5 to examine the
performance of the above cross validation method. The
results are summarized in Table 1.

From Table 1, there are two observations. First, one can
see that using the cross validation, the CV loss in training is
closed to the corresponding population risk.

In addition, the performance of the proposed algorithm is
closed to the optimal λ, and using clean regression in cross
validation leads to a worse performance.

4. Conclusion and Future Directions
This paper studies the asymptotics of the two-stage adver-
sarial training in a high-dimensional linear regression setup.
Double descent is observed for the ridge-less regression
case, and a better performance can be achieved via L2 reg-
ularization. We also derive the shortcut cross validation
formula for this two-stage method to simplify the computa-
tion for cross validation.

The results in this paper can be extended in some directions.
First, in literature, e.g., (Ba et al., 2020), the double descent
phenomenon is also related to two-layer neural networks.
An interesting future direction is to extend the analysis in
this paper to the neural network setup. Second, since the
shortcut formula for cross validation is distribution specific
and assumes n2 = ∞, one may investigate in a more general
cross validation procedure or relax to the scenario with a
finite n2.
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A. Proofs
A.1. Theorem 1

Proof of Theorem 1. We first analyze ∥θ̂0(λ)− θ0∥2 and ∥θ̂0(λ)∥2.

For ∥θ̂0(λ)∥2, denoting y and ε as the vector of response and noise, we have

∥θ̂0(λ)∥2 = y⊤X(X⊤X + λn1Id)
−2X⊤y

= θ⊤
0 X

⊤X(X⊤X + λn1Id)
−2X⊤Xθ0 + ε⊤X(X⊤X + λn1Id)

−2X⊤ε

+2θ⊤
0 X

⊤X(X⊤X + λn1Id)
−2X⊤ε.

We look at the each term respectively. In probability, we have

θ⊤
0 X

⊤X(X⊤X + λn1Id)
−2X⊤Xθ0

= r2 − 2λn1θ
⊤
0 (X

⊤X + λn1Id)
−1θ0 + λ2n2

1θ
⊤
0 (X

⊤X + λn1Id)
−2θ0

→ r2
[
1− 2λmγ(−λ) + λ2m′

γ(−λ)
]
,

and

ε⊤X(X⊤X + λn1Id)
−2X⊤ε → σ2

[
1

n1
tr((Σ̂+ λId)

−1)− 1

n1
λtr((Σ̂+ λId)

−2)

]
→ σ2

[
γmγ(−λ)− λγm′

γ(−λ)
]
,

where the function mγ is obtained from (Hastie et al., 2019). For the cross term, we also have[
θ⊤
0 X

⊤X(X⊤X + λn1Id)
−2X⊤ε

]2
→ σ2tr

[
X⊤X(X⊤X + λn1Id)

−2X⊤X(X⊤X + λn1Id)
−2X⊤Xθ0θ

⊤
0

]
P−→ 0.

As a result,

∥θ̂0(λ)∥2
P−→ r2

[
1− 2λmγ(−λ) + λ2m′

γ(−λ)
]
+ σ2γ

[
mγ(−λ)− λm′

γ(−λ)
]
.

For ∥θ̂0(λ)− θ0∥2, we have

∥θ̂0(λ)− θ0∥2 = ∥θ̂0(λ)∥2 + ∥θ0∥2 − 2θ̂0(λ)
⊤θ0,

where in probability, [
εX(X⊤X + λn1Id)

−1θ0

]2 → 0,

and

θ̂0(λ)
⊤θ0 = θ0X

⊤X(X⊤X + λn1Id)
−1θ0 + εX(X⊤X + λn1Id)

−1θ0

→ r2 − λn1θ0(X
⊤X + λn1Id)

−1θ0

→ r2 − λr2mγ(−λ).

Consequently, in probability,

∥θ̂0(λ)− θ0∥2 → r2λ2m′
γ(−λ) + σ2γ[mγ(−λ)− λm′

γ(−λ)].

For adversarial training, from (Javanmard et al., 2020; Xing et al., 2021) we know that the minimizer of Rϵ(θ, θ̂0(λ)) is

θ̃ϵ(λ) = (Σ+ αId)
−1Σθ̂0(λ),
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where c0 =
√

2/π and α satisfies

α

1 + ϵc0
∥θ̃∥√

∥θ̃ − θ̂0∥2Σ + σ2

 =

ϵc0

√
∥θ̃ − θ̂0∥2Σ + σ2

∥θ̃∥
+ ϵ2

 .

When Σ = Id, the above is reduced to

α+ ϵc0
α∥θ̂0∥√

∥θ̂0∥2α2 + σ2(1 + α)2
= ϵc0

√
∥θ̂0∥2α2 + σ2(1 + α)2

∥θ̂0∥
+ ϵ2.

Since ∥θ̂0(λ)∥2 asymptotically converges to some fixed value, the solution of α also asymptotically converges.

A.2. Cross Validation

We present the proof of Lemma 1 and Theorem 2 in this section.

Proof of Lemma 1. To do cross validation, we know that α satisfies

α

1 + ϵc0
∥θ̃∥√

∥θ̃ − θ̂0∥2Σ + σ2

 =

ϵc0

√
∥θ̃ − θ̂0∥2Σ + σ2

∥θ̃∥
+ ϵ2

 .

For the optimal solution in the adversarial training stage, we have

0 = ▽Rϵ(θ, θ̂0) = 2

[
Σ(θ − θ̂0) + ϵc0

∥θ − θ̂0∥Σ
∥θ∥

θ + ϵc0
∥θ∥

∥θ − θ̂0∥Σ
Σ(θ − θ̂0) + (ϵ2)θ

]

= 2

[(
Id + ϵc0

∥θ∥
∥θ − θ0∥Σ

)
Σ(θ − θ̂0) +

(
ϵc0

∥θ − θ̂0∥Σ
∥θ∥

+ ϵ2

)
θ

]
.

For leave-one-out CV, we have

0 = ▽Rϵ(θ, θ̂
−j
0 ) = 2

[
Σ(θ − θ̂−j

0 ) + ϵc0
∥θ − θ̂−j

0 ∥Σ
∥θ∥

θ + ϵc0
∥θ∥

∥θ − θ̂−j
0 ∥Σ

Σ(θ − θ̂−j
0 ) + (ϵ2)θ

]

= 2

[(
Id + ϵc0

∥θ∥
∥θ − θ−j

0 ∥Σ

)
Σ(θ − θ̂−j

0 ) +

(
ϵc0

∥θ − θ̂−j
0 ∥Σ

∥θ∥
+ ϵ2

)
θ

]
.

Consequently, (
Id + ϵc0

∥θ̃∥
∥θ̃ − θ0∥Σ

)
Σ(θ̃ − θ̂0) +

(
ϵc0

∥θ̃ − θ̂0∥Σ
∥θ̃∥

+ ϵ2

)
θ̃

=

(
Id + ϵc0

∥θ̃−j∥
∥θ̃−j − θ−j

0 ∥Σ

)
Σ(θ̃−j − θ̂−j

0 ) +

(
ϵc0

∥θ̃−j − θ̂−j
0 ∥Σ

∥θ̃−j∥
+ ϵ2

)
θ̃−j .

Denote

∆j = θ̂−j
0 − θ̂0,

and denote α−j as the best α without jth sample. Then

θ̃−j − θ̃ = (Σ+ α−jId)
−1Σθ̂−j

0 − (Σ+ αId)
−1Σθ̂0

= (Σ+ αId)
−1Σ∆j − (α−j − α)(Σ+ αId)

−1θ̃ +R0.
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When ∥θ̂0∥ and ∥θ̃∥ are away from zero,

∥R0∥ = O(|α−j − α|∥∆j∥).

As a result,

(
Id + ϵc0

∥θ̃∥
∥θ̃ − θ0∥Σ

)
Σ(θ̃ − θ̂0) +

(
ϵc0

∥θ̃ − θ̂0∥Σ
∥θ̃∥

+ ϵ2

)
θ̃

=

(
Id + ϵc0

∥θ̃−j∥
∥θ̃−j − θ−j

0 ∥Σ

)
Σ(θ̃−j − θ̂−j

0 ) +

(
ϵc0

∥θ̃−j − θ̂−j
0 ∥Σ

∥θ̃−j∥
+ ϵ2

)
θ̃−j

+

(
Id + ϵc0

∥θ̃∥
∥θ̃ − θ0∥Σ

)
Σ(θ̃−j − θ̂−j

0 ) +

(
ϵc0

∥θ̃ − θ̂0∥Σ
∥θ̃∥

+ ϵ2

)
θ̃−j

−

(
Id + ϵc0

∥θ̃∥
∥θ̃ − θ0∥Σ

)
Σ(θ̃−j − θ̂−j

0 )−

(
ϵc0

∥θ̃ − θ̂0∥Σ
∥θ̃∥

+ ϵ2

)
θ̃−j

= ϵc0

(
∥θ̃−j∥

∥θ̃−j − θ−j
0 ∥Σ

− ∥θ̃∥
∥θ̃ − θ0∥Σ

)
Σ(θ̃−j − θ̂−j

0 ) + ϵc0

(
∥θ̃−j − θ̂−j

0 ∥Σ
∥θ̃−j∥

− ∥θ̃ − θ̂0∥Σ
∥θ̃∥

)
θ̃−j

+

(
Id + ϵc0

∥θ̃∥
∥θ̃ − θ0∥Σ

)
Σ(θ̃−j − θ̂−j

0 ) +

(
ϵc0

∥θ̃ − θ̂0∥Σ
∥θ̃∥

+ ϵ2

)
θ̃−j ,

and changing the order of the terms in the above, we have

(
Id + ϵc0

∥θ̃∥
∥θ̃ − θ0∥Σ

)
Σ(θ̃−j − θ̂−j

0 ) +

(
ϵc0

∥θ̃ − θ̂0∥Σ
∥θ̃∥

+ ϵ2

)
θ̃−j − ▽Rϵ(θ̃, θ̂0)

=

(
Id + ϵc0

∥θ̃∥
∥θ̃ − θ0∥Σ

)
Σ(θ̃−j − θ̃ −∆j) +

(
ϵc0

∥θ̃ − θ̂0∥Σ
∥θ̃∥

+ ϵ2

)
(θ̃−j − θ̃)

= −ϵc0

(
∥θ̃−j∥

∥θ̃−j − θ−j
0 ∥Σ

− ∥θ̃∥
∥θ̃ − θ̂0∥Σ

)
Σ(θ̃ − θ̂0)− ϵc0

(
∥θ̃−j − θ̂−j

0 ∥Σ
∥θ̃−j∥

− ∥θ̃ − θ̂0∥Σ
∥θ̃∥

)
θ̃ +R1,

for

∥R1∥ = O(∥θ̃−j − θ̂0∥∥∆j∥) = O(∥∆j∥2 + |α−j − α|∥∆j∥).

We know that

∥θ̃−j∥
∥θ̃−j − θ̂−j

0 ∥Σ
− ∥θ̃∥

∥θ̃ − θ̂0∥Σ

=
1

∥θ̃ − θ̂0∥Σ
θ̃⊤(θ̃−j − θ̃)

∥θ̃∥
− (θ̃ − θ̂0)

⊤Σ(θ̃−j − θ̃ −∆j)

∥θ̃ − θ̂0∥3Σ
∥θ̃∥+O(∥R0∥),
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and rewriting θ̃ and θ̃−j as functions of α and α−j , the first-order terms can be represented as

1

∥θ̃ − θ̂0∥Σ
θ̃⊤(θ̃−j − θ̃)

∥θ̃∥
− (θ̃ − θ̂0)

⊤Σ(θ̃−j − θ̃ −∆j)

∥θ̃ − θ̂0∥3Σ
∥θ̃∥

=
1

∥θ̃ − θ̂0∥Σ

θ̃⊤
(
(Σ+ αId)

−1Σ∆j − (α−j − α)(Σ+ αId)
−2Σθ̂0

)
∥θ̃∥

−
(θ̃ − θ̂0)

⊤Σ
(
(Σ+ αId)

−1Σ∆j − (α−j − α)(Σ+ αId)
−2Σθ̂0 −∆j

)
∥θ̃ − θ̂0∥3Σ

∥θ̃∥+O(∥R0∥)

=
1

∥θ̃ − θ̂0∥Σ∥θ̃∥

(
θ̃⊤(Σ+ αId)

−1Σ∆j − (α−j − α)θ̃⊤(Σ+ αId)
−2Σθ̂0

)
+O(∥R0∥)

− ∥θ̃∥
∥θ̃ − θ̂0∥3Σ

(
(θ̃ − θ̂0)

⊤Σ(Σ+ αId)
−1Σ∆j − (α−j − α)(θ̃ − θ̂0)

⊤Σ(Σ+ αId)
−2Σθ̂0 − (θ̃ − θ̂0)

⊤Σ∆j

)
=

1

∥θ̃ − θ̂0∥Σ∥θ̃∥
αθ̃⊤(Σ+ αId)

−2Σθ̂0 −
∥θ̃∥

∥θ̃ − θ̂0∥3Σ
α(θ̃ − θ̂0)

⊤Σ(Σ+ αId)
−2Σθ̂0︸ ︷︷ ︸

:=A1α

+

(
1

∥θ̃ − θ̂0∥Σ∥θ̃∥
θ̃⊤(Σ+ αId)

−1Σ+
∥θ̃∥

∥θ̃ − θ̂0∥3Σ
α(θ̃ − θ̂0)

⊤Σ(Σ+ αId)
−1

)
︸ ︷︷ ︸

:=A4

∆j

−α−j

(
1

∥θ̃ − θ̂0∥Σ∥θ̃∥
θ̃⊤(Σ+ αId)

−2Σθ̂0 −
∥θ̃∥

∥θ̃ − θ̂0∥3Σ
(θ̃ − θ̂0)

⊤Σ(Σ+ αId)
−2Σθ̂0

)
︸ ︷︷ ︸

=A2

+O(∥R0∥).

Similarly,

∥θ̃−j − θ̂−j
0 ∥Σ

∥θ̃−j∥
− ∥θ̃ − θ̂0∥Σ

∥θ̃∥

=
(θ̃ − θ̂0)

⊤Σ(θ̃−j − θ̃ −∆j)

∥θ̃∥∥θ̃ − θ̂0∥Σ
− ∥θ̃ − θ̂0∥Σθ̃⊤(θ̃−j − θ̃)

∥θ̃∥3

=
1

∥θ̃ − θ̂0∥Σ∥θ̃∥
α(θ̃ − θ̂0)

⊤Σ(Σ+ αId)
−2Σθ̂0 −

∥θ̃ − θ̂0∥Σ
∥θ̃∥3

αθ̃⊤(Σ+ αId)
−2Σθ̂0︸ ︷︷ ︸

:=A2α

+

(
1

∥θ̃ − θ̂0∥Σ∥θ̃∥
α(θ̃ − θ̂0)

⊤Σ(Σ+ αId)
−1 − ∥θ̃ − θ̂0∥Σ

∥θ̃∥3
θ̃⊤(Σ+ αId)

−1Σ

)
︸ ︷︷ ︸

:=A5

∆j

−α−j

(
1

∥θ̃ − θ̂0∥Σ∥θ̃∥
(θ̃ − θ̂0)

⊤Σ(Σ+ αId)
−2Σθ̂0 −

∥θ̃ − θ̂0∥Σ
∥θ̃∥3

θ̃⊤Σ(Σ+ αId)
−2θ̂0

)
︸ ︷︷ ︸

=A2

+O(∥R0∥).
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As a result, (
Id + ϵc0

∥θ̃∥
∥θ̃ − θ0∥Σ

)
Σ(θ̃−j − θ̃ −∆j) +

(
ϵc0

∥θ̃ − θ̂0∥Σ
∥θ̃∥

+ ϵ2

)
(θ̃−j − θ̃)

= −1

2

(
ϵc0
(
A1 +A2∆j − α−jA3

)
Σ(θ̃ − θ̂0) + ϵc0

(
A4 +A5∆j − α−jA6

)
θ̃
)
+O(∥R0∥+ ∥R0∥)

=

(
Id + ϵc0

∥θ̃∥
∥θ̃ − θ0∥Σ

)
Σ
(
(Σ+ αId)

−1Σ∆j − (α−j − α)(Σ+ αId)
−2Σθ̂0 −∆j

)
+

(
ϵc0

∥θ̃ − θ̂0∥Σ
∥θ̃∥

+ ϵ2

)(
(Σ+ αId)

−1Σ∆j − (α−j − α)(Σ+ αId)
−2Σθ̂0

)
=

[
−α

(
Id + ϵc0

∥θ̃∥
∥θ̃ − θ0∥Σ

)
+

(
ϵc0

∥θ̃ − θ̂0∥Σ
∥θ̃∥

+ ϵ2

)]
(Σ+ αId)

−1Σ︸ ︷︷ ︸
=0

∆j

+α

[(
Id + ϵc0

∥θ̃∥
∥θ̃ − θ0∥Σ

)
Σ+

(
ϵc0

∥θ̃ − θ̂0∥Σ
∥θ̃∥

+ ϵ2

)]
(Σ+ αId)

−1θ̃︸ ︷︷ ︸
:=A3

−α−j

[(
Id + ϵc0

∥θ̃∥
∥θ̃ − θ0∥Σ

)
Σ+

(
ϵc0

∥θ̃ − θ̂0∥Σ
∥θ̃∥

+ ϵ2

)]
(Σ+ αId)

−1θ̃,

that is,

−ϵc0A1∆jΣ(θ̃ − θ̂0)− ϵc0αA3∆j θ̃

= (α−j − α)
(
ϵc0A2Σ(θ̃ − θ̂0) + ϵc0A4θ̃ −A5

)
+O(∥R0∥+ ∥R0∥),

and

α−j − α ≈

(
ϵc0A2Σ(θ̃ − θ̂0) + ϵc0A4θ̃ +A5

)⊤
∥ϵc0A2Σ(θ̃ − θ̂0) + ϵc0A4θ̃ +A5∥2

(
ϵc0A1∆jΣ(θ̃ − θ̂0) + ϵc0A3∆j θ̃

)
.

Proof of Theorem 2. From Lemma 1, we know that when ∥∆j∥ = o(1), α−j − α = o(1). In this proof, we check whether
∥∆j∥ → 0 for all j = 1, . . . , n1.

One can use the Kailath Variant fomular (from 3.1.2 of (Petersen and Pedersen, 2008)) to obtain

θ̂0(λ)− θ̂−j
0 (λ)

= (X⊤X + nλId)
−1X⊤y

−

[
(X⊤X + nλId)

−1 +
(X⊤X + nλId)

−1xjx
⊤
j (X

⊤X + nλId)
−1

1− x⊤
j (X

⊤X + nλId)−1xj

]
X⊤

−jy−j

= yj(X
⊤X + nλId)

−1xj −
ŷj(X

⊤X + nλId)
−1xj

1− Sj(λ)
+

yjSj(λ)(X
⊤X + nλId)

−1xj

1− Sj(λ)

=
yj − ŷj(λ)

1− Sj(λ)
(X⊤X + nλId)

−1xj ,

where ŷj(λ) = θ̂0(λ)
⊤xj .
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Based on (Hastie et al., 2019), almost surely, denote Ai = n1(X
⊤
−iX−i + λn1Id)

−1, and δi =
xi√
n1

, then

x⊤
i (X

⊤X + λn1Id)
−2xi =

1

n1
δi

(
Ai −

Aiδiδ
⊤
i Ai

1 + δ⊤i Aiδi

)2

δi

=
1

n1
δi

(
A2

i − 2
A2

i δiδ
⊤
i Ai

1 + δ⊤i Aiδi
+

Aiδiδ
⊤
i A2

i δiδ
⊤
i Ai

(1 + δ⊤i Aiδi)2

)
δi

=
1

n1

(
δiA

2
i δi − 2

δ⊤i A2
i δiδ

⊤
i Aiδi

1 + δ⊤i Aiδi
+

(δ⊤i Aiδi)
2δ⊤i A2

i δi
(1 + δ⊤i Aiδi)2

)
=

1

n1

δ⊤i A2
i δi

(1 + δ⊤i Aiδi)2

a.s.−−→ 1

n1

γm′
γ(−λ)

(1 + γmγ(−λ))2
.

Finally, for yi − ŷi, we have

yi − ŷi = yi − x⊤
i (X

⊤X + λn1Id)
−1X⊤(Xθ0 + ε)

= εi − x⊤
i (X

⊤X + λn1Id)
−1X⊤ε+ λn1x

⊤
i (X

⊤X + λn1Id)
−1θ0.

Using Sherman–Morrison formula, we have

x⊤
i (X

⊤X + λn1Id)
−1θ0 = x⊤

i

[
1

n1
Ai −

Aixix
⊤
i Ai/n

2
1

1 + x⊤
i Aixi/n1

]
θ0,

thus (
x⊤
i (X

⊤X + λn1Id)
−1θ0

)2
= x⊤

i

1

n2
1

Aiθ0θ
⊤
0 Aixi −

2

n1
x⊤
i Aiθ0θ0

Aixix
⊤
i Ai/n

2
1

1 + x⊤
i Aixi/n1

xi + x⊤
i

Aixix
⊤
i Ai/n

2
1

1 + x⊤
i Aixi/n1

θ0θ0
Aixix

⊤
i Ai/n

2
1

1 + x⊤
i Aixi/n1

xi

= Op(tr
(
A2

iθ0θ
⊤
0

)
/n2

1)

= Op

(
mγ(−λ)/n2

1

)
.

In addition,(
x⊤
i (X

⊤X + λn1Id)
−1X⊤ε

)2 → σ2x⊤
i (X

⊤X + λn1Id)
−1X⊤X(X⊤X + λn1Id)

−1xi,

which converges to a constant.

Finally, given the distribution of ε, we have with probability tending to 1,

sup
j

∥θ̂0(λ)− θ̂−j
0 (λ)∥2 = o((log n1)/n1).


