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Abstract— LiDAR semantic segmentation pre-training is hin-
dered by the lack of large, diverse datasets. Moreover, most point
cloud segmentation architectures incorporate custom network
layers, limiting the transferability of advances from vision-based
architectures. Inspired by recent advances in universal founda-
tion models, we propose BALViT, a novel approach that leverages
frozen vision foundation models as amodal feature encoders for
learning strong LiDAR encoders. Specifically, BALViT incor-
porates both range-view and bird’s-eye-view LiDAR encoding
mechanisms, which we combine through 3D positional encoding.
While the range-view features are processed through a frozen
image backbone, our bird’s-eye-view branch enhances them
through multiple cross-attention interactions. Thereby, we
continuously improve the vision network with domain-dependent
knowledge, resulting in a strong LiDAR encoding mechanism
with minimal parameter updates. Extensive evaluations of
BALViT on the SemanticKITTI and nuScenes benchmarks
demonstrate that it outperforms state-of-the-art methods on
small data regimes. We make the code and models publicly
available at http://balvit.cs.uni-freiburg.de.

I. INTRODUCTION

Self-driving vehicles often rely on LiDAR sensors to seman-
tically perceive their surroundings in various lighting condi-
tions [1]. Recently, self-supervised representation learning has
been introduced to pretrain perception models on unlabeled
data, boosting performance with minimal labeled fine-tuning.
While these techniques excel with images [2], [3] and natural
language, the performance improvements are limited for
LiDAR data. This is primarily due to the absence of large and
diverse pre-training datasets that cover the significant domain
shifts between different LiDAR sensors [4], [5]. Consequently,
label-efficient techniques that leverage foundation models pre-
trained on other modalities are required. Prior work in this
direction focuses on extending vision and language foundation
models [6], [7] for 3D perception, however these methods still
train a randomly initialized LiDAR sub-network and require
synchronized camera and LiDAR streams as shown in Fig. 1.
We motivate the paradigm of a universal foundation model
where only the patch embedding and the decoder are tailored
to 3D point clouds [8]–[12]. Consequently, these methods
can benefit from strong pre-trained feature extractors and can
easily leverage advances in the field of foundation models [8],
as the structured 2D grid representation of range view images
preserves strong spatial priors that enable effective transfer
of visual backbones despite differences from natural images.
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Fig. 1. Framework of different LiDAR semantic segmentation models.
Learned modules are colored in red and frozen components in blue. (a) Vision
or language models are employed to distill knowledge into tailored LiDAR
architectures. (b) Transferring a pre-trained vision model into the LiDAR
domain using a 2D-3D adapter (ours).

In this paper, we introduce BALViT (Bird-Eye-View
Adapted LiDAR ViT), which seamlessly transforms vision
foundation models with a novel 2D-3D adapter for label-
efficient LiDAR semantic segmentation. In particular, we
extend the vision model-based network RangeViT [8] with a
lightweight, polar Bird’s-Eye View (BEV)-based adapter. We
reason that vision models excel at detecting object shapes,
whereas our adapter incorporates geometric reasoning. Finally,
we incorporate a separate BEV decoder branch to address
and correct misclassifications, ensuring the model generates
accurate 3D semantic segmentation by refining the output
through complementary branches.

Our main contributions can be summarized as follows: 1)
BALViT, a LiDAR semantic segmentation architecture that
leverages pre-trained vision foundation models as a backbone.
2) a 2D-3D adapter for label-efficient refinement of vision
models for sparse 3D segmentation. 3) Extensive evaluations
on six label-efficient training settings. 4) Pre-trained models
at http://balvit.cs.uni-freiburg.de.

II. RELATED WORK

LiDAR Semantic Scene Segmentation networks leverage
voxel [13], point [14] or range-view [8], [15] representations.
However, voxel- and point-based approaches are resource-
intensive and leverage custom architectures that are unaffected
by advances in 2D vision research. Conversely, range-
view networks convert point clouds into 2D projections,
which facilitates use of standard ViT backbones [8]. We
propose a 2D-3D adapter to enhance the geometric prediction
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capabilities of pre-trained vision models for label-efficient
LiDAR semantic segmentation.
Parameter-Efficient Fine-tuning adapts foundation models to
a specific task with minimal parameter updates. A common
practice is updating only bias terms [16]. Further, visual
prompt tuning (VPT) [16] inserts learnable prompts while
LoRA [17] focuses on attaching trainable rank decomposition
matrices to frozen transformer blocks. For dense prediction
tasks, ViT-Adapter [18] introduces a separate stem that
interacts with the backbone via cross-attention. For dense
3D point clouds, various adapters target the transformation
of 3D pre-trained models [9]–[12]. However, prior work
shows that vision or language foundation models paired with
3D-adaptation mechanisms can surpass 3D pre-training for
single-object segmentation [19]–[22]. Driven by this approach,
we propose BALViT which is the first 2D-3D adapter for
sparse, outdoor point cloud processing.

III. TECHNICAL APPROACH

Our proposed BALViT is tailored for adapting pre-trained
vision transformer (ViT) backbones for LiDAR semantic
segmentation. We argue that these architectures enable amodal
feature encoding, which we enhance with our label-efficient
2D-3D adapter. Specifically, we first encode the point cloud
in two separate branches, a range-view (RV) and a BEV
encoder. Next, the RV features are processed by a frozen ViT
backbone. During this backbone traversal, we continuously
enhance the RV features with BEV features using our novel
2D-3D adapter. Finally, we decode each feature branch with
separate 3D decoders to combine the strengths of both views,
effectively reducing misclassifications. Fig. 2 provides an
overview of our architecture.

A. Range-View Encoding

The network input is a LiDAR point cloud P ∈ RN×4

composed of N points, each with four values (x, y, z, i). The
variables (x, y, z) are Cartesian coordinates, and i represents
the returned LiDAR beam intensity. To convert the LiDAR
point cloud into a range projection of size H ×W , we first
compute the pixel position for each point pj ∈ P as follows:[
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where rj =
√
x2
j + y2j + z2j corresponds to the range of the

point pj and fv = fup − fdown being the vertical view of the
LiDAR sensor [8]. We then construct the RV image IRV

according to IRV
hj ,wj

= [rj , zj , ij ] . We argue that range-views
are best suited for direct processing with a pre-trained ViT
backbone since this representation most closely resembles
camera images. To encode images, a ViT backbone [23]
commonly applies a single linear projection. To bridge the
domain gap between camera images and IRV , we replace this
layer with our Conv PatchEmbed block that is composed of
four residual blocks inspired by SalsaNext [24]. We later refer
to features after this operation as RVstem. We employ average
pooling with a kernel size of (PHRV ,PWRV ) and a final

1×1 convolution to convert RVstem to DRV channels. Finally,
we add a classification token and 2D positional embedding
E2D ∈ R(M+1)×DRV to transfer the flattened M features into
a suitable format for further encoding by a ViT backbone [8].

B. Polar Bird-Eye View Encoding

We complement the RV features with an orthogonal
lightweight BEV branch. Specifically, we use a polar BEV
representation IBEV with grid cell dimension HBEV , WBEV ,
and ZBEV . We first convert the (xj , yj , zj) coordinates of
each point pj into polar coordinates according to:ρjϕj

θj

 =


√
x2
j + y2j

− arctan 2(yj ,−xj)
(zj−fdown)ZBEV

fv

 . (2)

Then, we randomly select Np points per BEV grid cell and
leverage a PointNet-inspired encoder [25] consisting of 4
blocks of fully-connected layers to compute a pointwise
embedding of dimension DBEV . Next, we perform max
pooling over the ZBEV -dimension to obtain BEV features of
size (DBEV , HBEV , WBEV ). We create multi-scale BEV
features with our spatial prior module to enhance context
capture. This module consists of a ResNet-inspired stem
and three convolutional blocks to transform the acquired
BEV features into multi-scale representations c1, c2, c3, c4
with a channel dimension of DRV . Subsequently, we add
a 2D learnable positional embedding to maintain the scale
correlations when flattening the features.

C. Adapter Module

Before combining the two encoder branches, we add 3D
positional embeddings E3D ∈ R(M+1)×DRV to both feature
maps. Our sinusoidal positional embedding is computed
separately in x, y, and z dimensions following the original
transformer’s positional encoding [26]. Then, we concatenate
the component-wise embeddings and upscale the resulting
vector with two 1× 1 convolutions to obtain a positional em-
bedding of dimension DRV . We leverage the transformations
in Eq. (1) and Eq. (2) to extract the Cartesian coordinates of
each feature in the two views, RV and BEV. We then use these
geometric positions to infer their positional embeddings and
add them to the respective feature maps. Our 3D positional
embedding ensures that the feature map interactions account
for the spatial geometries of the 3D scene.

The RV features are further encoded through subsequent
blocks of the frozen ViT backbone. We perform feature inte-
gration of our two branches (RV and BEV) at different layers
of the ViT backbone using our tailored interaction modules.
Each interaction entails two parallel injector modules where
one injector module (INJ) updates the features of one network
branch (X) by performing sparse cross-attention with the other
branch (Y) following Eq. (3). The second injector performs
the same operation but with reversed branches.

FX
i = FX

i + γiAttention(norm(FX
i ), norm(FY

i )). (3)
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Fig. 2. Our network BALViT encodes a point cloud in orthogonal range-view (RV) and bird-eye-view (BEV) branches. Our spatial prior module converts
the BEV branch into multi-scale features, which interact with the RV branch during its traversal of the frozen ViT backbone. Last, our two decoders
independently obtain pointwise class labels from the respective feature maps.

Our parallel stacked cross-attentions enhance the RV
features from the frozen ViT backbone branch with domain-
specific knowledge from the BEV branch (X=RV, Y=BEV),
while the BEV features are refined with novel context from
the RV features (X=BEV, Y=RV). We repeat these interactions
after layers 5, 11, 17, and 23 of the ViT backbone. Since
the backbone is frozen, only the weights of the interaction
modules are updated, making our method parameter-efficient.

D. Decoder

We attach separate LiDAR decoders to the RV and
BEV network branches to predict semantic segmentation
on each view independently. For the RV branch, we use
the decoder proposed by RangeViT [8], which is composed
of a convolutional decoder, a PixelShuffle layer, and a 3D
refiner. For the BEV branch, we propose a progressive decoder
to combine the multi-scale BEV feature maps. First, we
aggregate features maps c1, c2, c3, and c4 to obtain combined
features c1:4 using UpConv blocks and skip connections. Last,
we upsample the feature map to the original BEV input
resolution using PixelShuffle [27]. We then use three blocks
of convolutions to recover the ZBEV -dimension and predict
a semantic class for every BEV cell grid. Finally, we employ
a grid sampler to reproject our polar BEV predictions from
polar (S, WBEV , HBEV , ZBEV ) to 3D coordinates (x, y, z)
as detailed in Sec. III-B, where S is the number of classes.

We train each decoder branch separately using using multi-
class Focal [28] and Lovász-Softmax [29] losses. During
inference, we merge pointwise RV and BEV predictions
based on their highest logits.

IV. EXPERIMENTAL EVALUATION

In this section, we quantitatively and qualitatively evaluate
the performance of BALViT on LiDAR semantic segmentation
and highlight our contribution in an ablation study. We
evaluated our method on two benchmark autonomous driving
datasets, SemanticKITTI and nuScenes. SemanticKITTI [30]
comprises 19,130 training and 4,071 validation scans captured
using a 64-beam LiDAR, annotated point-wise for 19 semantic
classes. On the other hand, nuScenes [31] includes 28,130
training and 6,019 validation scans recorded with a 32-beam
LiDAR, with point-wise annotations for 16 semantic classes.

TABLE I
LABEL-EFFICIENT TRAINING RESULTS ON 0.1%, 1%, 10% OF THE

SEMANTICKITTI AND NUSCENES DATASETS.

mIoU [%]

SemanticKITTI nuScenesMethod 0.1% 1 % 10% 0.1% 1 % 10%

FS

SR-Unet18 [32] - 39.50 - - 30.30 56.15
FRNet [15] 30.09 40.78 61.55 28.03 48.98 69.99
SphereFormer [13] 29.21 42.81 58.81 30.42 50.06 69.25
RangeViT [8] 28.74 43.53 58.53 27.79 52.88 71.84

V
D

SLidR [33] - 44.60 - - 38.30 59.84
ST-SLidR [34] - 44.72 - - 40.75 60.75
SEAL [35] - 46.63 - - 45.84 62.97
CLIP2Scene [36] - 42.60 - - 56.30 -

PE
FT

Frozen ViT backbone 29.97 45.91 58.10 28.72 54.70 63.28
Bias tuning 30.86 45.63 58.14 28.15 56.05 65.08
LoRA [17] 31.65 46.27 59.53 28.27 57.57 66.38
VPT [16] 31.07 46.08 58.38 29.68 55.67 65.52
Vit Adapter [18] 29.55 45.01 57.43 27.50 56.06 67.71
BALViT (Ours) 32.85 51.80 61.91 31.86 59.27 70.13

The results are reported on the val set, and all metrics are in [%]. FS: fully-
supervised methods. VD: vision distillation. PEFT: parameter-efficient
fine-tuning.

We use a Cityscapes pre-trained ViT-S backbone. Refer
supplementary material for additional details.

A. Quantitative Results

We compare BALViT with four fully supervised methods
and four vision model distillation schemes that leverage self-
supervised pretraining on the entire nuScenes dataset. We se-
lect the fully supervised models based on comparable size and
top performance on SemanticKITTI 100%, using published
code and the augmentations described in Sec. S.0.A. For the
vision model distillation schemes, we report their published
performance. We also compare against five parameter-efficient
fine-tuning methods that we integrate into the RangeViT
architecture [8], using the same training configurations as our
approach. All models are evaluated with the mean intersection-
over-union (mIoU) metric.

Results on SemanticKITTI and nuScenes are presented
in Tab. I. Notably, BALViT outperforms all supervised and
self-supervised baselines by at least 1.44pp on the 0.1% and
1% settings. This can be attributed to the strong vision priors
from the pretrained ViT, which are effectively enhanced by
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Fig. 3. Qualitative results of BALViT on LiDAR semantic segmentation on SemanticKITTI and nuScenes.

TABLE II
ABLATION STUDY ON VARIOUS COMPONENTS OF BALVIT.

SemanticKITTI mIoU (%)
2D-3D Adapter 3D PE SPM BEV decoder 1%

45.91
✓ 48.53
✓ ✓ 49.06
✓ ✓ ✓ 49.70
✓ ✓ ✓ ✓ 51.80

3D PE: 3D positional embedding, SPM: Spatial Prior Module.

our novel 2D-3D adapter. However, at the 10% settings, the
performance gap narrows, indicating that LiDAR-specific
transformers have strong encoding capabilities that require
more labeled data. In the last block of Tab. I, we compare
parameter-efficient methods on the same base architecture as
our method. We find that parameter-efficient fine-tuning is
preferred to full-finetuning (RangeViT) in all scenarios. We
conclude that 2D pre-trained networks provide strong priors
for 3D segmentation, benefiting more from enhancement
than from retraining. BALViT outperforms other parameter-
efficient fine-tuning methods by at least 1.80pp on the 1% and
10% training settings. Our method of combining RV and BEV
features within a frozen ViT model adds spatial knowledge
in the feature encoding process, which outperforms standard
parameter-efficient vision approaches.

B. Ablation Study and Qualitative Results

In this section, we study the impact of various network
components of our approach. We perform all ablation experi-
ments on the 1% SemanticKITTI setting.

1) Influence Network Components: In Tab. II, we incremen-
tally integrate our network components into the Frozen ViT
backbone configuration, observing cumulative performance
gains at each step. First, adding the 2D-3D adapter with
unaligned single-scale improves performance by 2.62pp,
enhancing RV features via the BEV feature branch. Aligning
RV and BEV features with our 3D positional embedding
adds 0.53pp, likely due to better cross-attention between co-
ordinated features. Mutli-scale BEV features further improve
performance by 0.63pp, and lastly incorporating the BEV
decoder yields an additional gain of 2.1pp.

2) Influence of Pre-trained Vision Backbone: We assess
the impact of different pretrained vision backbones on our
network’s performance in Tab. III. A randomly initialized
ViT yields the lowest performance, emphasizing the need for
strong vision models in our network. While Dino v2 [6] and
MoCo v3 [37] pretrainings result in superior performance on

TABLE III
COMPARISON WITH DIFFERENT VISION BACKBONE INTITIALIZATION.

SemanticKITTI mIoU (%)
Backbone initialization 1 %

Supervised random init.† 44.58
Depth Anything [38] 45.11
Dino [39] 46.94
Dino v2 [6] 47.65
MoCo v3 [37] 48.47
Supervised ImageNet [40] 48.68
Cityscapes [41] 51.80

†: vision backbone is updated during
training.

2D vision benchmarks, we observe the highest score when
leveraging a network pre-trained on a similar domain (i.e.
Cityscapes dataset). Consequently, we reason that popular
foundation models are biased towards their training modality
and lack amodal feature representations.

3) Qualitative Results: We qualitatively compare BALViT
with the best-performing parameter-efficient method
LoRA [17] in Fig. 3, confirming our BALViT’s superior
segmentation performance. Our method produces more
coherent predictions with fewer misclassifications and
patchified regions. Unlike LoRA, which misclassifies entire
objects in a, BALViT correctly labels them using independent
decoder branches. It also better segments larger objects
in b and d due to improved localization. On nuScenes in
c, BALViT refines class boundaries (sidewalk, road) by
leveraging multi-scale BEV features for finer boundary
delineation. These results highlight BALViT’s stronger
semantic understanding in low-label settings.

V. CONCLUSION

We present BALViT, a novel method for LiDAR semantic
segmentation tailored for small data regimes. Our approach
encodes a RV projection with a frozen ViT backbone
which we enhance with our 2D-3D adapter. Subsequently,
we merge the predictions of our RV and BEV decoders
for improved performance. We observe that our approach
outperforms existing state-of-the-art supervised and self-
supervised baselines on label-efficient training settings of
0.1% and 1% on the SemanticKITTI and nuScenes datasets.
The proposed method is one of the early works to show
that 2D vision foundation models provide valuable priors
for LiDAR semantic scene segmentation. Consequently, we
motivate future work to focus on efficient 2D-3D adaption
mechanism and enhancing foundation models with amodal
learning capabilities.
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A. Implementation Details

We use RV projections of size (64, 2048) with the patch
size being defined as PWrv = 8 and PHrv = 2. We set the
dimensionality of our RV features to Drv = 384. Our polar
BEV representation contains 480× 360× 32 grid cells for
the full point cloud, with each feature having Dbev = 512
dimensions. We train our networks and baselines for 100,
500, and 1000 epochs with dataset splits of 0.1%, 1%, and
10%, respectively. We use a batch size of 4, a learning
rate of 0.0004, and a cosine learning rate scheduler with
20 warm-up epochs. Further, we take random RV crops
of size (64, 384) for SemanticKITTI and (64, 768) for
nuScenes. The wider crop for nuScenes accounts for its lower
horizontal resolution and overall sparser lidar compared to
SemanticKITTI. Consequently, we equally subsample our
BEV features, resulting in polar grid sizes of 480× 68× 32
and 480 × 135 × 32, respectively. We augment the point
clouds with random horizontal flips with a probability of 0.5
and scale the point cloud in ranges of [0.95-1.05]. Further,
we randomly resample rare class points. For nuScenes, we
additionally randomly rotate in all three axes in the range of
−5 and 5 degrees with a 50% likelihood.

B. Inference

During inference, we merge pointwise RV and BEV
predictions according to a predefined threshold s:

Output =


ŷRV, if ŷRV > s

ŷRV if ŷRV ≤ s and ŷBEV < s

ŷBEV, if ŷRV ≤ s and ŷBEV > s

, (1)

where ŷRV and ŷBEV are the highest logits of the RV
and BEV predictions, respectively. We set the inference
threshold s to 0.9 in all experiments. The fusion leverages
the complementary strengths of RV and BEV views. RV
generally provides stronger fine-grained local details, while
BEV offers a more globally consistent geometric context that
is more effective for larger spatial reasoning. By selecting
predictions with high confidence, the mechanism acts as a
simple yet effective uncertainty-aware selector, allowing the
model to favor the view with stronger evidence at each point.
With this merging strategy, we can correct miss-predictions
in the RV feature branch, which results in a further boost in
performance as presented in Sec. IV-B.
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TABLE S.1
ABLATION STUDY ON VARYING SEQUENCES OF INJECTOR (INJ) ON 1%

SEMANTICKITTI TRAINING SETTING.

SemanticKITTI mIoU (%)
Injector strategy 1 %

INJbev,rv-ViTBlock-INJrv,bev 46.17
INJrv,bev-ViTBlock-INJbev,rv 48.42
ViTBlock-INJrv,bev∥INJbev,rv 51.80

C. Ablation on Influence of Injector Modules

As described in Sec. III-C, we perform our two injector
operations (INJ) in parallel to enhance the information flow
between the two feature branches. In this section, we study the
order of operations in our 2D-3D adapter module. Specifically,
we analyze the impact of applying one injector before a ViT
block and the second INJ after the same block in Tab. S.1. In
the first row, we refine the BEV features before the block and
the RV feature after, while in the second row we reverse the
order. In the third row, we show that applying both injection
operations in parallel results in the highest performance. These
results show that parallel injectors enhance the learning of
different aspects simultaneously, which allows the network
to capture more diverse features.

D. Ablation Influence of Increased Training Data

We emphasize that our proposed method is tailored for
small data regimes, whereas tailored LiDAR architectures
benefit from training on more data, as shown in Tab. S.2.
Consequently, we argue that when large quantities of data are
available, LiDAR-specific models are preferred. Nevertheless,
we show that our method also outperforms full fine-tuning
of the RangeViT architecture when training on 100% of
the dataset, which confirms the effectiveness of our 2D-3D
adapter and independent decoder branches.



TABLE S.2
PERFORMANCE ON 100% SEMANTICKITTI TRAINING DATA.

SemanticKITTI mIoU (%)
Method 100 %

SphereFormer 67.8†
FRNet 68.7†

RangeViT [8] 60.28
Frozen ViT 60.51
Bias tuning [16] 61.94
LoRA [17] 59.53
VPT [16] 61.46
Vit Adapter [18] 61.29
BALViT (Ours) 62.37

†: performance recorded in pub-
lished work.
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