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ABSTRACT

Instance Image-Goal Navigation (IIN) requires autonomous agents to identify and
navigate to a target object or location depicted in a reference image captured
from any viewpoint. While recent methods leverage powerful novel view syn-
thesis (NVS) techniques, such as 3D Gaussian splatting (3DGS), they typically
rely on randomly sampling multiple viewpoints or trajectories to ensure com-
prehensive coverage of discriminative visual cues. This approach, however, cre-
ates significant redundancy through overlapping image samples and lacks princi-
pled view selection, substantially increasing both rendering and comparison over-
head. In this paper, we introduce a novel IIN framework with a hierarchical scor-
ing paradigm called GauScoreMap that estimates optimal viewpoints for target
matching. Our approach integrates cross-level semantic scoring, utilizing CLIP-
derived relevancy fields to identify regions with high semantic similarity to the
target object class, with fine-grained local geometric scoring that performs precise
pose estimation within promising regions. Extensive evaluations demonstrate that
our method achieves state-of-the-art performance on simulated IIN benchmarks
and real-world applicability.

1 INTRODUCTION

Instance Image-Goal Navigation (IIN) is critical in embodied navigation, requiring an agent to iden-
tify and move to the object or location depicted in a target image—often captured from any viewpoint
Krantz et al. (2022). This flexibility is essential in real-world scenarios where users may provide
photos from arbitrary perspectives. However, viewpoint discrepancies, cluttered scenes, and occlu-
sions complicate the alignment of target images with the agent’s observations. Effective solutions
must robustly align these visual representations, enabling the agent to accurately interpret and navi-
gate to the specified object or location.

Motivated by advances in novel view synthesis (NVS) methods, such as Neural Radiance Fields
(NeRF) Mildenhall et al. (2021) and 3D Gaussian splatting (3DGS) Kerbl et al. (2023), recent ap-
proaches have begun to explore more expressive, view-consistent scene representations for IIN.
Methods Cui et al. (2024); Wang et al. (2024) combine NeRF rendering with a topological graph,
embedding RGB observations and learned image features into graph nodes. While this strategy re-
tains more detailed appearance information, discretizing the environment into nodes constrains the
agent’s ability to observe scenes from diverse angles or navigate more complex layouts, thereby
limiting truly free-view navigation.

Alternatively, 3DGS-based approaches Lei et al. (2025); Meng et al. (2024); Honda et al. (2025)
preserve a continuous three-dimensional representation, offering high geometric fidelity and robust
performance. However, these methods typically rely on randomly sampling multiple viewpoints
Lei et al. (2025) or trajectories Meng et al. (2024); Honda et al. (2025) to ensure comprehensive
coverage of discriminative visual cues. This sampling strategy in continuous 3D space creates sig-
nificant redundancy through overlapping rendered images, substantially increasing both rendering
and comparison overhead. The resulting trade-off between coverage and efficiency limits the prac-
tical deployment of these approaches.

To address these limitations, we introduce a novel IIN framework named GauScoreMap with a hier-
archical scoring paradigm that efficiently estimates optimal viewpoints for target matching. Our ap-
proach eliminates excessive sampling by integrating two complementary scoring mechanisms over
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Figure 1: Overall method comparison. Prior approaches typically (i) sample many views around
candidate objects or (ii) struggle to match visually dissimilar images. Our method leverages a 2-
stage scoring method to semantically and geometrically locate the target image efficiently.

the built 3DGS scene. First, our global semantic scoring leverages CLIP-derived relevancy fields
to identify regions with high semantic similarity to the target object class. By computing cosine
similarity between CLIP text embeddings of the detected object class and features of each Gaussian,
followed by thresholding and diffusion, we form coherent candidate regions containing potential tar-
get objects. Second, our local geometric scoring employs a two-stage approach: initially performing
region-level scoring by comparing sampled rays from candidate regions with the goal image’s DI-
NOv2 features through cross-attention, then conducting precise pose estimation within the most
promising region.

Recent advances in Gaussian splatting have enabled embodied agents to represent and explore en-
vironments with high visual fidelity. However, existing approaches often suffer from inefficiencies
in view selection or struggle when appearance differ very much between observations and target
images Lei et al. (2025); Meng et al. (2024) as shown in Figure 1. These limitations hinder their
ability to generalize and maintain efficiency across diverse scenarios. To address these challenges,
we propose a new framework that integrates global semantic reasoning with local geometric cues,
enabling robust and efficient localization of target objects. By combining these complementary
perspectives, our approach significantly reduces computational demands while maintaining strong
accuracy, leading to state-of-the-art results in both simulated and real-world benchmarks.

The contributions of our method are mainly summarized as follows: 1) We introduce a two-tier
scoring approach that combines high-level semantic alignment with fine-grained geometric match-
ing, producing a continuous relevance map that highlights where the target image content is most
likely to appear in the 3D environment. 2) We leverage the score map to identify and select the most
informative viewpoints for matching, thereby obviating the need for exhaustive or random sam-
pling throughout the environment. 3) We achieve new state-of-the-art results on instance-specific
image-goal navigation benchmark data and further demonstrate our method’s reliable operation in
real-world indoor environments.

2 RELATED WORK

2.1 INSTANCE IMAGE GOAL NAVIGATION

Deep reinforcement learning approaches have emerged as a major solution to IIN, where end-to-end
policies are learnt to align current observations with target images, achieving promising simulator
results through extensive training Lei et al. (2024); Qin et al. (2025). However, these reactive meth-
ods struggle to retain knowledge of explored areas in complex scenes Krantz et al. (2023), lacking
explicit environment representations and degrading when agents must re-localize after losing sight
of key features. To improve context retention and adaptability, map-based IIN methods incorpo-
rate spatial representations to guide navigation Yu et al. (2023); Majumdar et al. (2022); Yuan et al.
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Figure 2: Overview of our GauScoreMap approach for Instance Image-goal Navigation. Our method
consists of two main stages: (a) Gaussian Reconstruction and Feature Lifting, where we build a 3D
Gaussian representation of the environment and lift CLIP features into this representation; and (b)
Instance-Image Goal Localization, which uses a two-step scoring process to first identify semanti-
cally relevant regions and then precisely locate the target object instance.

(2024). Early approaches used metric maps—typically 2D bird’s-eye view grids from SLAM—to
track spatial locations relative to obstacles and landmarks Chaplot et al. (2020); Lei et al. (2024).
While addressing some reactive strategy limitations, these 2D representations discard 3D geometry
and texture details crucial for goal image matching. Recent work explores structured maps and novel
view synthesis Cui et al. (2024); Wang et al. (2024); Lei et al. (2025); Meng et al. (2024); Honda
et al. (2025), combining visual features with graph nodes to preserve rich appearance cues. These
developments highlight that robust IIN requires representations bridging environment structure with
high-resolution visual information for accurate target localization.

2.2 NOVEL VIEW SYNTHESIS IN EMBODIED VISUAL NAVIGATION

Early efforts like e2e-NeRF-nav Liu et al. (2024b) integrate online Neural Radiance Fields into the
control loop for end-to-end training, but continual NeRF Mildenhall et al. (2021) updates are compu-
tationally expensive. HNR-VLN Wang et al. (2024) shifts complexity from policy learning to look-
ahead synthesis by using NeRF to render candidate viewpoints for graph search. Frontier-enhanced
Topological Memory Cui et al. (2024) extends this by adding ”ghost” nodes to topological graphs,
combining geometric reachability with appearance-based reasoning. However, discrete node repre-
sentations limit diverse viewpoint observation and hinder navigation in complex layouts. GaussNav
Lei et al. (2025) instead uses 3D Gaussian Splatting Kerbl et al. (2023) to preserve high-fidelity
geometry and textures, while BEINGS Meng et al. (2024) employs Monte Carlo model-predictive
control with hypothetical rollout rendering. Despite their effectiveness, 3DGS-based methods suffer
from high computational overhead, motivating our development of a method that leverages fine-
grained local visual information without extensive trajectory or viewpoint sampling.

3 METHOD

3.1 OVERVIEW

In Instance Image-goal Navigation (IIN), an agent navigates to a specific object instance shown
in a goal image Ig . Starting from an initial position and orientation, the agent receives RGB-D
observations and camera poses at each timestep, selecting actions to locate the target. Success is
achieved when the agent reaches the goal vicinity within a maximum action limit.

3
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To address IIN, we propose Gaussian Splatting Score Maps for Visual Navigation (GauScoreMap),
illustrated in Figure 2. Our method operates in two stages: First, the agent explores the environment
to build a Gaussian splatting representation and lifts 2D visual features into a 3D feature-rich Gaus-
sian field. Second, we perform hierarchical scoring—extracting semantic information from the goal
image to generate a global score map identifying candidate regions, then computing local similarity
scores within these regions for precise target localization.

3.2 GAUSSIAN RECONSTRUCTION AND FEATURE LIFTING

3.2.1 GAUSSIAN RECONSTRUCTION

When placed in a new environment, the agent employs a frontier-based exploration strategy Ya-
mauchi (1997); Holz et al. (2010); Juliá et al. (2012) to systematically cover the environment and
collect observations for Gaussian reconstruction.

From the collected observations {(Ii, Di, Pi)|i ∈ [0, N ]} (RGB images, depth maps, and camera
poses), we reconstruct the RGB Gaussian splatting field using a hierarchical approach Yugay et al.
(2023; 2024). For each observation subset {(Ii, Di, Pi)|i ∈ [m,n]}, we initialize a submap by
backprojecting the first frame’s RGB image into 3D space using depth and pose. Subsequent frames
densify the submap with additional Gaussian primitives. Finally, local submaps are merged into a
global field.

During training, we render both color and depth from the Gaussian field. For pixel p viewing from
direction v, the color and depth values are computed from the ordered set Sv,p of Gaussis:

Îv(p) =
∑

i∈Sv,p

ci(v)wi(v, p), D̂i(p) =
∑

i∈Sv,p

di(v)wi(v, p) (1)

where Îi(p) and D̂i(p) are rendered color and depth values, ci(v) and di(v) are color and depth
values of the i-th Gaussian along the ray through pixel p viewing from direction v, wi(v, p) =
αi(v, p)

∏
j∈Sv,p,j<i(1− αj(v, p)) is the rendering weight and αi(v, p) is the transparency value.

The optimization uses a combined loss:

L = λcolorLcolor + λdepthLdepth (2)

where Lcolor = ∥Ii− Îi∥1 and Ldepth = ∥Di−D̂i∥1 are L1 losses between ground truth and rendered
images/depths, and λ terms balance the loss components.

3.2.2 FEATURE LIFTING

The visual features produced by the CLIP Radford et al. (2021) visual encoder are uplifted with
simple aggregation from all collected frames Marrie et al. (2024). For each 3D Gaussian in the
scene, we construct its feature representation as a weighted average of 2D features from all frames.
The feature fi of Gaussian i is:

fi =
∑

(v,p)∈Si

w̄i(v, p)Fv,p with w̄i(v, p) =
wi(v, p)∑

(v,p)∈Si
wi(v, p)

(3)

where Si = {(v, p) : i ∈ Sv,p} is the set of view-pixel pairs passing through Gaussian i. This
weighting is intuitive: larger rendering weights indicate closer proximity to ray termination, so
corresponding features Fv,p contribute more significantly to Gaussian i’s representation.

3.3 GLOBAL SEMANTIC SCORING

After constructing the CLIP feature Gaussian field, we generate a global relevancy score map from
the visual input. Since images contain more than just the target object, directly computing relevancy
with the feature field produces noisy segmentation. We therefore use Mask-RCNN He et al. (2017)
to extract the class label, which is fed to the CLIP text encoder to obtain text embedding ET . For
each Gaussian g with CLIP feature fg , we compute a relevancy score Sg using cosine similarity:
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Sg =
ET · fg

∥ET ∥ · ∥fg∥
(4)

This assigns a relevancy score to each Gaussian, creating a continuous score field. Applying a
threshold τ yields segmented regions of Gaussians likely belonging to the target category. To ad-
dress fragmentation from naive thresholding, we follow LUDVIG Marrie et al. (2024) by incorporat-
ing scene geometry and diffusing the segmentation based on feature similarity between neighboring
Gaussians. This connects fragmented parts of the same instance into well-formed connected compo-
nents, each representing a candidate region containing a potential target. These regions significantly
reduce the search space for subsequent image-based 6D pose estimation, where we match the goal
image against each candidate to precisely locate the target instance.

3.4 LOCAL GEOMETRIC SCORING

After identifying multiple candidate regions through global semantic scoring, we need to further
refine our search in two stages: first determining the most likely local region containing the target
object, and then estimating the precise 6D pose within that region.

3.4.1 LOCAL SCORING FOR REGION SELECTION

For each candidate region identified in the global scoring stage, we sample random Gaussians and
generate rays in the hemisphere defined by the surface normal of each Gaussian (estimated using
neighboring Gaussians). This process yields a set of ray inputs: {(oi, di, ci)|i ∈ [0,K]}, where
oi is the ray origin, di is the ray direction, and ci is the 1-st order spherical harmonic coefficient
representing the color of the ray.

Following the approach in Matteo et al. (2024), we encode these rays using a learned MLP with
positional encoding as ri = MLP(γ(oi), γ(di), γ(ci)), where γ(·) denotes the positional encoding
function. This transforms the ray set into a feature representation of shape (K,C1).

Concurrently, we process the goal image Ig through a DINOv2 Oquab et al. (2023) visual encoder
to get its visual feature Fg of shape (l, C2), where l = h × w represents the spatial dimensions of
the feature map. These features are then compared through a cross-attention mechanism:

A = CrossAttention(r, Fg) ∈ RK×l (5)

By summing along the second dimension L, we get the attention score of ray k as ŝk =
∑L

l=1 Âk,l.
The ray MLP and the cross-attention module are optimized concurrently during training by mini-
mizing the difference between predicted ray scores ŝ and geometric ground truth ray scores s. To
compute ground truth ray scores s, we leverage the insight that relevant rays should intersect at a
common 3D point, indicating the position of the target image. Specifically, among the randomly
sampled K rays, the most relevant rays share a key geometric property: the distance h between
the ground truth camera center and its projection onto the ray should be minimal. Thus, we com-
pute h = ||(vo + ℓvd) − O||2, where vo and vd are the ray origin and direction respectively, O is
the ground truth camera center, and ℓ = max((O − vo) · vd, , 0) is the projection length of vector
(O − vo) onto the ray. The distance h ranges from 0 to +∞, with h = 0 indicating the ray passes
exactly through the camera center. Finally, we map the distance hk of the k-th ray to its ray score
using:

δk = 1− tanh(hk), sk = δk
L∑K
k=1 δ

(6)

Then a softmax function is required to normalize all ground truth ray scores as {sk|k ∈ [1,K]} =
softmax({sk|k ∈ [1,K]}). Then we train the MLP and cross attention modules by minimizing the
L2 loss L = 1

K

∑K
k=1 ||sk− ŝk|| between the predicted ray scores Ŝ and the ground truth ray scores

S.
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Table 1: Success rate and SPL comparison of our method with four sets of baseline methods.
Category Method SR ↑ SPL ↑

MultiON Transfer
MultiON Baseline Wani et al. (2020) 0.066 0.045
MultiON Implicit Marza et al. (2023) 0.143 0.107
MultiON Camera Chen et al. (2022) 0.186 0.142

SOTA IIN
Mod-IIN Krantz et al. (2023) 0.561 0.233
IEVE Mask RCNN Lei et al. (2024) 0.684 0.241
IEVE InternImage Lei et al. (2024) 0.702 0.252

SOTA IIN with
Scene/3DGS Map

Mod-IIN (Scene Map) Krantz et al. (2023) 0.563 0.323
IEVE Mask RCNN (Scene Map) Lei et al. (2024) 0.683 0.331
IEVE InternImage (Scene Map) Lei et al. (2024) 0.705 0.347
GaussNav (3DGS Map) Lei et al. (2025) 0.725 0.578
GauScoreMap (3DGS Map) 0.784 0.605

3.4.2 FINE-GRAINED POSE ESTIMATION FOR PRECISE LOCALIZATION

Once we’ve identified the most promising region, we perform a second, more dense sampling of
Gaussian-ray pairs within this region. This denser sampling allows for more precise localization of
the target object. We select top k Gaussian-ray pairs with the highest scores from the new samples,
and perform triangulation as described in Matteo et al. (2024) to estimate the 6D pose (position and
orientation) of the target object. This two-stage scoring approach—first at the region level and then
at the pose level—enables our system to efficiently narrow down the search space before performing
precise localization, significantly improving both the efficiency and accuracy of the object local-
ization process. These two scoring steps use the same pretrained ray-image cross attention neural
network by minimizing the difference between the predicted camera 6D pose and the gt camera 6D
pose as Matteo et al. (2024).

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Dataset. We conduct our experiments using the Habitat Szot et al. (2021) simulator. For scene
data, we utilize the Habitat-Matterport 3D dataset (HM3D) Yadav et al. (2023). Specifically, we
use version 0.2 of the HM3D dataset and follow the Instance ImageGoal Navigation (IIN) Krantz
et al. (2022) in the Habitat Navigation Challenge 20231. We evaluate our method on the 1,000 val-
idation episodes specified by Krantz et al. Krantz et al. (2022). This validation subset encompasses
six object categories: {chair, couch, bed, toilet, television, plant} and includes 795 unique object
instances.

Agent Configuration. We adopt the standard agent configuration from the Habitat Navigation Chal-
lenge 2023. The agent is modeled as a rigid-body cylinder with zero turning radius, standing 1.41m
tall with a radius of 0.17m. A forward-facing RGB-D camera is mounted at a height of 1.31m. At
each time step t, the agent receives observations consisting of RGB images, depth maps, and sen-
sor poses. The agent operates in a continuous action space with four dimensions: linear velocity,
angular velocity, camera pitch velocity, and velocity stop. Each action dimension accepts values
between -1 and 1, which are then scaled according to their respective configuration parameters. The
maximum linear speed is 35cm/frame, while the maximum angular velocity is 60◦/frame.

Evaluation Metrics. Our evaluation incorporates both effectiveness and navigation efficiency met-
rics. The primary metrics we use are SR (Success Rate) and SPL (Success weighted by Path Length).
A navigation attempt is considered successful when the agent executes the stop action within a 1.0m
radius of the target object and can visually detect the object by adjusting its camera orientation. The
SPL metric, as introduced by Anderson et al. Anderson et al. (2018), provides a balanced assessment
of navigation efficiency by considering both success and path optimality.

1https://aihabitat.org/challenge/2023/
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Table 2: Ablation study of our method.
Method SR ↑ SPL ↑
GauScoreMap 0.784 0.605
GauScoreMap w.o. Global Semantic Scoring 0.608 0.419
GauScoreMap w.o. Local Geometric Scoring 0.421 0.310
GauScoreMap w. GT Match 0.842 0.650
GauScoreMap w. GT Global Localization 0.944 0.742

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

We compare our method against a comprehensive set of baseline approaches as presented in Table
1, with baseline results sourced from GaussNav Lei et al. (2025). The comparison methods are
organized into three categories:

MultiON Transfer Methods. These approaches were originally designed for the MultiON task,
which shares similarities with scene-specific map representations: (1) MultiON Baseline, a standard
implementation of Wani et al. (2020); (2) MultiON Implicit Marza et al. (2023), which learns an
implicit neural representation; and (3) MultiON Camera Chen et al. (2022), which develops an active
camera movement policy. These methods receive the semantic category of the target object as input.

State-of-the-art IIN Methods. Leading IIN approaches include: (1) Mod-IIN Krantz et al. (2022),
which decomposes the task into exploration, goal instance re-identification, goal localization, and
local navigation; (2) IEVE Mask RCNN Lei et al. (2024), which implements a modular architecture
using Mask RCNN He et al. (2017) for object detection; and (3) IEVE InternImage, an enhanced
variant with a more powerful detector.

SOTA IIN with Scene/3DGS Map. This category includes the above methods when augmented
with different map representations: (1-3) Mod-IIN, IEVE Mask RCNN, and IEVE InternImage with
traditional scene maps; (4) GaussNav Lei et al. (2025), which utilizes 3D Gaussian Splatting maps;
and (5) our proposed approach, which also leverages 3DGS maps but enhances performance.

As shown in Table 1, our method significantly outperforms all baselines, achieving the highest
success rate (0.784) and SPL (0.605). Notably, our approach surpasses GaussNav by 5.9% in success
rate and 2.7% in SPL. While both GaussNav Lei et al. (2025) and our method utilize Gaussian
splatting fields for navigation, our method has better performance with our enhanced localization
capabilities.

4.3 ABLATION STUDY

We ablate the design choices of our method and show their inflences on the final performance in
Table 2. And we analyze each module of our method:

GauScoreMap w.o. Global Semantic Scoring. The global semantic scoring module serves as a
prefilter to extract candidate local regions for finer local localization. From Table 2, we can see
that without global semantic scoring, with only local geometric scoring to produce the predicted tar-
get position, the success rate drops by 17.6%. This is because indoor scenes have severe occlusion
and complicated spatial distributions. Simply sampling Gaussians and computing the relationships
between ray features and Gaussians suffers from ambiguity and inefficiency. The global semantic
scoring effectively narrows down the search space by identifying semantically relevant regions first,
allowing the local geometric scoring to focus on promising areas. This two-stage approach signif-
icantly improves both accuracy and computational efficiency compared to relying solely on local
visual scoring.

GauScoreMap w.o. Local Geometric Scoring. When we remove the local geometric scoring com-
ponent and rely only on global semantic scoring, performance decreases dramatically with a 36.3%
drop in success rate. This substantial decline highlights the critical role of fine-grained geometric
matching in precisely localizing the target object. While global semantic scoring can identify can-
didate regions containing objects of the target category, it lacks the precision to distinguish specific
object instances with similar semantic properties. The local geometric scoring module provides this

7
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Table 3: Time Efficiency and Peak VRAM Usage of our method
Stage Substage Time Peak VRAM Usage

Training
GS Recon (GaussNav Lei et al. (2025)) 65 m(inutes) 11.0 GB
GS Recon (Ours) 15 m(inutes) 3.6 GB
Local Scoring Function Training 15 m(inutes) 5.5 GB

Inference

Semantic Extraction (Mask-RCNN forward) 0.10 s 3.5 GB
Global Scoring (Relevancy score calculation) 1.12s 1.1 GB
Local Scoring (Gaussian Sampling) 0.59 s -
Local Scoring (Candidate Selection) 0.32 s 4.2 GB
Local Scoring (Pose Estimation) 0.17 s 4.2 GB

Instance Image Goal GS Reconstruction Global Semantic Scoring Local Geometric Scoring Rendered Target Image

RGB Observation Map Memory RGB Observation Map Memory RGB Observation Map Memory

Time

Figure 3: The localization by scoring (the first row) and the navigation process (the second row) of
an episode of scene 5cdEh9F2hJL in HM3D Yadav et al. (2023).

crucial instance-level discrimination by establishing detailed geometric correspondences between
the goal image features and the 3D scene representation.

GauScoreMap w. GT Match. Using ground truth instance matching improves success rate by
5.8%, revealing room for enhancement in instance-level recognition and matching. This gap sug-
gests that better visual feature extraction and matching could further boost performance.

GauScoreMap w. GT Global Localization. With ground truth global localization, our method
achieves 94.4% success, demonstrating highly effective local navigation from accurate position es-
timates. This indicates that global localization is the primary bottleneck, and improving the global
semantic scoring module could approach this upper bound.

4.4 TIME EFFICIENCY AND PEAK VRAM USAGE EVALUATION

Table 3 evaluates the time efficiency and peak VRAM usage of our method. We analyze each sub-
stage across training and inference phases using three HM3D Yadav et al. (2023) scenes averaging
80 m2 with ∼1000 images each. In the training stage, compared to GaussNav Lei et al. (2025), our
submap division strategy reduces GS reconstruction time by 50 minutes while requiring only one-
third of the VRAM. For local scoring function training, we save 30 minutes over 6DGS Matteo et al.
(2024) (45 minutes) by restricting the camera pose search space to navigable areas defined by the
reconstructed scene.In the inference stage, all substages are efficient except global scoring, which
computes relevancy for all Gaussians in the scene. We address this by sparsifying the GS scene to
∼600,000 Gaussians, and this preserves semantic accuracy since CLIP features remain embedded
in target objects regardless of Gaussian count due to their distinctive semantic properties.

8
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Table 4: Locating Success Rate of our method under different portions of gaussian deletion
Delete 0% Delete 20% Delete 40% Delete 60%

SR 100% 100% 90% 75%

Instance-Image Goal 3DGS Removal and Located Image

Complete 3DGS Remove 20% of 3DGS Remove 40% of 3DGS Remove 60% of 3DGS

Figure 4: The robustness of our method under different portions of gaussian deletion. The red boxed
image of the bottom right corner is the located image by our method.

4.5 ROBUSTNESS TO INCOMPLETE SCENE EXPLORATION

Since our method relies on a reconstructed GS scene for navigation, we evaluate its robustness to in-
complete exploration where target objects may be partially occluded or incompletely reconstructed.
We simulate this by manually deleting portions of target object Gaussians to test localization per-
formance under degraded conditions. We tested 20 successful episodes across 5 HM3D Yadav et al.
(2023) scenes, progressively deleting around 20%, 40%, and 60% of target region Gaussians. Ta-
ble 4 and Figure 4 show that our method maintains high localization success even at 40% deletion.
This robustness stems from two factors: the semantic scoring accurately identifies candidate objects
despite incomplete shapes, while local geometric scoring leverages surrounding texture details to
determine the correct camera pose.

4.6 VISUAL SCORING AND NAVIGATION RESULTS

Figure 3 illustrates the scoring and navigation results of our method. The first row demonstrates
how our hierarchical scoring approach localizes the target image and renders it using reconstructed
Gaussian splats. The second row shows the agent navigating to the identified position in a Habitat
simulator Szot et al. (2021). Additional examples are provided in the appendix.

5 CONCLUSION

In this work, we introduce a novel Instance Image-Goal Navigation framework that tackles the
principal challenges of viewpoint variation, semantic ambiguity, and complex scene layouts. By
combining two-level semantic scoring with fine-grained geometric scoring, the method yields a
continuous score map that obviates the need for exhaustive or random viewpoint sampling. Em-
pirical evaluations on simulated benchmarks confirm state-of-the-art performance, underscoring the
method’s effectiveness and practical applicability. Furthermore, we deploy the proposed approach
on a humanoid agent and validate its performance in real-world indoor environments. A key limi-
tation of our method is that it focuses primarily on static environments and relies on a pre-built GS
scene map. Future directions may include simultaneously exploring and locating the target image
without accuracy loss.
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A APPENDIX

A.1 EXTRA SIMULATION RESULTS

We present two additional examples of our method navigating to instance image goals in Figure 5
and Figure 6. Each example demonstrates both the target localization process (first row) and the
navigation execution (second row).

In the first row, we illustrate the complete target localization pipeline from left to right: the instance
image goal, the Gaussian Splatting (GS) reconstruction of the scene, the heat map generated during
the global semantic scoring step, the local score map within segmented candidate regions, and the
rendered target image using the pose estimated by the local geometric scoring step.

The second row shows three key stages of the navigation process as the agent moves toward the final
goal position.

A.2 LOCALIZATION OF OTHER OBJECTS

Since our method encodes CLIP features into the Gaussian field, it can localize objects beyond the
six evaluation categories (chair, couch, bed, toilet, television, plant) in HM3D Yadav et al. (2023).
Figure 7 demonstrates successful localization of lamp, refrigerator, and bicycle in Gibson Xia et al.
(2018) and ReplicaCAD Straub et al. (2019) scenes.
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Instance Image Goal GS Reconstruction Global Semantic Scoring Local Geometric Scoring Rendered Target Image

RGB Observation Map Memory RGB Observation Map Memory RGB Observation Map Memory

Time

Figure 5: The target localization (the first row) and the navigation process (the second row) of an
episode of scene Nfvxx8J5NCo in HM3D Yadav et al. (2023)’s validation set.

Instance Image Goal GS Reconstruction Global Semantic Scoring Local Geometric Scoring Rendered Target Image

RGB Observation Map Memory RGB Observation Map Memory RGB Observation Map Memory

Time

Figure 6: The target localization (the first row) and the navigation process (the second row) of an
episode of scene Dd4bFSTQ8gi in HM3D Yadav et al. (2023)’s validation set.

A.3 COMPARISON WITH OTHER NERF/GS-BASED LOCALIZATION METHODS

Since localization is the key of our method for successful IIN navigation, we validate our localization
module by replacing only this component while keeping other parts unchanged and compare against
alternative methods. For NeRF-based approaches, we combine iNeRF Yen-Chen et al. (2021) for
pose estimation with NeRF-SLAM Rosinol et al. (2023) for scene reconstruction. For 3DGS meth-
ods, we evaluate 6DGS Matteo et al. (2024) and GS-CPR Liu et al. (2024a), both operating on our
reconstructed 3DGS maps.

We evaluate on a 100-episode subset of the HM3D validation set, with navigation success rates
shown in Table 5.

iNeRF achieves 0% SR due to NeRF-SLAM’s reconstruction failures: the system exhausts GPU
memory when allocating large implicit volumes for HM3D apartments. This reflects well-
documented limitations of implicit NeRF pipelines in large, complex indoor scenes Tancik et al.
(2022); Turki et al. (2022). Gaussian splatting scales better through decomposition into smaller,
independent segments.

GS-CPR also achieves 0% SR because it requires close spatial overlap between query and database
images—rarely satisfied in large-scale scenarios. 6DGS attains 58% SR, respectable given the local-
ization difficulty in complex indoor structures, but substantially below our method’s performance.
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Figure 7: Localization of Lamp (first row), Refridgerator (second row) and Bicycle (third row) on
Gibson and ReplicaCAD scenes.

Method SR

iNeRF Yen-Chen et al. (2021) 0 (OOM)
GS-CPR Liu et al. (2024a) 0
6DGS Matteo et al. (2024) 0.58
GauScoreMap (Ours) 0.76

Table 5: Navigation SR comparison with different localization methods

These results demonstrate that our method achieves an effective balance between computational
efficiency and navigation performance in the IIN task, substantially outperforming alternative local-
ization approaches in large-scale indoor environments.

A.4 REAL WORLD EXPERIMENTS

A.4.1 ENVIRONMENT

The layout of the testing field used for the demonstrations is illustrated in Figure 8. The environ-
ment is intentionally cluttered with numerous common household items to closely mimic real-world
conditions. Additionally, several boxes are strategically placed throughout the area to introduce
obstacles, thereby increasing the complexity and challenging the robot’s navigation and detection
capabilities.

Figure 8: Layout of the testing field (left) along with point-cloud construction (right).
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Figure 9: Unitree G1 robotic platform.

A.4.2 ROBOTIC PLATFORM

For this study, we utilized a Unitree G1 humanoid robot equipped with a Livox Mid-360 LiDAR
and a RealSense D435i RGB-D camera. Simultaneous localization and mapping (SLAM), path
planning, and low-level control are executed entirely on the robot’s onboard computer. In addition
to that image-goal navigation process was performed on an external laptop connected to the robot
via an Ethernet cable. A photograph of the robotic platform is provided in Figure 9.

A.4.3 ODOMETRY AND MAPPING

We employed RTAB-Map Labbé & Michaud (2019) as the primary module for pose estimation,
mapping, and localization. The robot leverages the onboard Livox Mid-360 LiDAR to compute
odometry through RTAB-Map’s ICP-based odometry module. Additionally, RGB-D images cap-
tured by the RealSense camera are integrated into RTAB-Map’s SLAM module, enabling robust
localization, mapping, and global loop closure detection.
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A.4.4 DATA COLLECTION AND GS RECONSTRUCTION

To formulate the input for gaussian splatting reconstruction, for each recorded frame, the humanoid
robot collect the RGB image, the 7D camera pose (a 3D camera position and a 4D camera quater-
nion), and the Lidar point cloud. In this real-world setting, we use the Lidar point cloud as the
geometric scaffold instead of the depth map recorded by the realsense camera because the recorded
depth map contains lots of artifacts and is very inaccurate in a big environment, whereas the Lidar
point cloud is more reliable.

After collecting the data, we first merge the Lidar point cloud of all frames into a complete one using
the collected camera poses as shown in Figure 8. This point cloud serves as the initialization of the
gaussian splatting field, then we optimize the gaussian splatting field as the usual way in Kerbl et al.
(2023).

A.4.5 SAFE PATH PLANNING

Safe navigation and obstacle avoidance are achieved using the ROS Navigation Stack Quigley et al.
(2009). This framework integrates sensor inputs from LiDAR and RGB-D cameras to generate
occupancy grid maps and perform path planning. Specifically, the navigation stack utilizes costmap-
based planning algorithms such as Dijkstra’s algorithm and the Dynamic Window Approach (DWA)
to calculate collision-free paths in real-time, ensuring robust and safe trajectories for the humanoid
robot within cluttered indoor environments.

RGB Observations

Lidar Point Cloud

GS Reconstruction

Instance image Goal

Global Semantic Scoring

Extraction

high

low

Local Geometric Scoring
Pose Estimation & Render

Match

GauScoreMap

Figure 10: An example of finding the goal position of an instance image goal dipicting a chair with
our collected real-world data.

A.4.6 AN EXAMPLE OF IIN USING OUR GAUSCOREMAP

We demonstrate an example of locating an instance image goal using our collected real-world data
in Figure 10. First, we leverage the merged LiDAR point cloud and calibrated RGB images to
reconstruct the Gaussian splatting field of the scene, as shown in the left portion of Figure 10.

An instance image goal depicting a chair is then provided to our GauScoreMap method, which
processes it through two sequential scoring stages. The global semantic scoring stage generates a
coarse localization map that roughly identifies the chair’s position, while the local geometric scoring
stage produces a refined location estimate. The top-k scoring rays are subsequently selected to
estimate the camera pose and render an image of the target position.

As demonstrated on the right side of Figure 10, the rendered image successfully captures the chair
specified in the instance image goal.
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