
Under review as submission to TMLR

An Efficient Sparse Fine-Tuning with Low Quantization Error
via Neural Network Pruning

Anonymous authors
Paper under double-blind review

Abstract

Fine-tuning is an important step in adapting foundation models such as large language
models to downstream tasks. To make this step more accessible to users with limited
computational budgets, it is crucial to develop fine-tuning methods that are memory and
computationally efficient. Sparse Fine-tuning (SpFT) and Low-rank adaptation (LoRA)
are two frameworks that have emerged for addressing this problem and have been adopted
widely in practice. In this work, we develop a new SpFT framework, based on ideas from
neural network pruning. At a high level, we first identify "important" neurons/nodes using
feature importance metrics from network pruning (specifically, we use the structural pruning
method), and then perform fine-tuning by restricting to weights involving these neurons.
Experiments on common language tasks show our method improves SpFT’s memory efficiency
by 20–50% while matching the accuracy of state-of-the-art methods like LoRA’s variants.

1 Introduction

The paradigm of pre-training followed by fine-tuning has seen tremendous success in the last few years. Very
large models (often referred to as foundation models) are first trained, typically using very large amounts
of data and computational resources, using self-supervised learning approaches (Dosovitskiy, 2020; Achiam
et al., 2023; Dubey et al., 2024; Zhou et al., 2024). When building a model for a new task (which could be
a supervised learning task), the idea is to start with the foundation model and then tune its parameters,
possibly after adding additional classification layers, by training using task-specific data. The pre-train then
fine-tune paradigm has been shown to have significant advantages over training a new model from scratch for
the new task. Often, high accuracy can be obtained using much smaller datasets for the new task.

Despite the success, fine-tuning a model with billions of parameters requires access to heavy computational
resources, even when the task datasets are fairly small. Fortunately, studies (e.g., Panigrahi et al. (2023) and
references therein) show that fine-tuning only a small fraction of parameters can be effective. Parameter-
efficient fine-tuning (PEFT) methods have thus been proposed to carry out this idea and address the challenge
of making fine-tuning more accessible (Lialin et al., 2023). A leading PEFT approach, Low-Rank Adaptation
(LoRA, Hu et al. 2022), achieves memory efficiency by simply making low-rank updates to the weight matrices
in the different layers. Another class of PEFT methods is sparse fine-tuning (SpFT, Sung et al. 2021; Guo
et al. 2021; Ansell et al. 2022; Nikdan et al. 2024), which learns a sparse matrix, typically an unstructured one,
for updating the pre-trained weights. However, SpFT typically incurs higher memory costs than LoRA during
the fine-tuning process, because of the unstructured sparsity. Several works aim to mitigate the memory
complexity of SpFT (Mofrad et al., 2019; Holmes et al., 2021; Nikdan et al., 2023; 2024), often at the cost of
increased running time and more complex implementations of sparse kernels. Besides PEFTs, techniques like
Zeroth-Order optimization (Malladi et al., 2023; Guo et al., 2024b) and quantization (Gholami et al., 2022;
Dettmers et al., 2022; 2024) can further enhance memory and training efficiency for fine-tuning, including
LoRA and SpFT.

As LLMs increase in scale, advancing efficient sparse matrix computation, PEFT, and efficient training remains
a crucial problem. Towards this goal, we study the question: Can sparse fine-tuning be improved to create a
memory- and parameter-efficient framework, while avoiding additional implementations of sparse operations

1

Under review as submission to TMLR

and without increasing the training time complexity? We answer this question in the affirmative, by proposing a
new SpFT framework for fine-tuning LLMs that achieves memory- and parameter-efficiency while maintaining
or even improving performance on downstream tasks. Our approach utilizes NN pruning techniques to
identify a subset of fine-tuning parameters and employs a matrix decomposition-based computation for
efficient fine-tuning. This design enables the integration of ideas from model compression, SpFT, and matrix
decomposition methods.

1.1 Our Contributions

At a high level, our contributions are as follows:

• We leverage ideas from network pruning to improve SpFT, achieving a significant memory efficiency
considerably lower than that of the popular LoRA. Our method uses only standard tensor operations,
eliminating the need for custom sparse tensor operations. Additionally, our approach supports
fine-tuning quantized base models to further reduce memory footprints.

• We analyze the memory assignment of several PEFT methods and suggest that computation graphs
can affect memory more significantly than the number of trainable parameters. In addition, we
validate our methods in various fine-tuning tasks and provide practical guidance on training strategies.

• We propose two variants of the Taylor importance for different settings in image and language tasks:
class-aware Taylor and Zeroth-Order Taylor. The first is designed for tasks where class-wise accuracy
is important (in addition to overall accuracy), such as image classification. Zeroth-Order Taylor is
designed for large language models and requires memory only equal to that of a forward pass. In
addition, we show how to effectively reduce the estimation variance of the Zeroth-Order estimator.

The rest of the paper is organized as follows. We discuss existing PEFT methods in Section 2 and analyze
the existing problem in memory efficiency in Section 3. Following this, we describe our approach in detail in
Section 4. Section 5 describes the settings of our experiments. We then present and discuss our results in
Section 6. Section 7 concludes with some directions for future work along our lines.

2 Background and Related Work

Parameter-Efficient and Memory-Efficient Fine-Tuning: In various language and vision tasks, the
“pre-train then fine-tune” paradigm has been shown highly effective. PEFT methods (Lialin et al., 2023)
fine-tune a small subset of the parameters of a large pre-trained model in order to accelerate the training
process. We begin by introducing SpFT and LoRA, two popular approaches for PEFT.

Sparse Fine-Tuning: SpFT formulates the fine-tuning process as learning another weight matrix δ:

Ŵ = W + δ, (1)
h = f(Ŵ, x) = f(W + δ, x), (2)

where h ∈ Rdout and x ∈ Rdin are the input and output of the hidden layer, respectively, f(·) is the forward
function, W ∈ Rdout×din represents the frozen pre-trained parameters, and Ŵ ∈ Rdout×din denotes the
final parameters used during inference for the fine-tuning task. The matrix δ ∈ Rdout×din is sparse and is
initialized at 0. Such a decomposition is done for every layer in the neural network. SpFT methods try
to limit the number of parameters to fine-tune. For selecting non-zero indices, Diff pruning (Guo et al.,
2021) learns a mask for δ (using a standard Backprop algorithm), while FISH Mask (Sung et al., 2021) uses
Fisher information to identify important indices in W. Lottery Ticket SpFT (Ansell et al., 2022) fine-tune
the whole model for one epoch, then use δ itself as an importance score to decide which parameters to
fine-tune subsequently. Robust Adaptor (RoSA, Nikdan et al. 2024) combines the above SpFTs with LoRA
and outperforms all these approaches. However, the key challenge of all SpFT methods is that they do not
sufficiently reduce memory usage, as δ keeps the dimensionality of W, and thus standard libraries do not
yield memory improvements.

2

Under review as submission to TMLR

Techniques for Efficient Sparse Computation: To reduce memory redundancy in sparse tensor com-
putations, various data formats like compressed sparse column/row (CSC/CSR, Mofrad et al., 2019; Lu
et al., 2024) and semi-structured formats (Holmes et al., 2021) have been proposed. These formats enable
efficient operations like Sparse Matrix Multiplication (SpMM), which is crucial for dot products and matrix
multiplications. Upon these techniques, sparse backpropagation is built to improve training efficiency (Zhang
et al., 2020; Gale et al., 2020; Peste et al., 2021; Schwarz et al., 2021; Hoefler et al., 2021; Jiang et al.,
2022; Nikdan et al., 2023; Xu et al., 2024). Beyond sparse tensor techniques, NVIDIA also offers memory
optimization techniques for efficient training1.

However, these techniques come with trade-offs, particularly in terms of time complexity and implementation
complexity. Achieving memory efficiency often requires a significant increase in time complexity. To mitigate
this, some approaches employ optimizations implemented in C++ or lower-level languages, such as those
used in (Gale et al., 2020; Nikdan et al., 2023; 2024), to accelerate the training process.

Low-Rank Adaptation (LoRA): Instead of requiring δ to be sparse, low-rank adaptation aims to find
update matrices that are of small rank:

Ŵ = W + α

r
BA, (3)

h = f(Ŵ, x) = f(W, x) + f(α

r
BA, x), (4)

where α is the LoRA scaling hyper-parameter, B ∈ Rdout×r, A ∈ Rr×din are the low-rank matrices with
r ≪ din, dout. During inference, the BA term can be merged into W to maintain the inference latency of
the original model. During training, owing to the fact that f is additive for both the self-attention blocks
and the subsequent feed-forwarding neworks (FFN) of transformers (Vaswani, 2017), backpropagation can
be performed efficiently for the B, A parameters. Due to LoRA’s simplicity and effectiveness, numerous
variants have been proposed to enhance the performance, e.g., QLoRA (Dettmers et al., 2022; Guo et al.,
2024a; Li et al., 2024; Dettmers et al., 2024), DoRA (Liu et al., 2024), RoSA (Nikdan et al., 2024), and
VeRA (Kopiczko et al., 2024). These methods have achieved exceptional performance, often comparable to
full fine-tuning across a range of tasks.

Neural Network Pruning: Besides PEFTs, neural network pruning is another widely applied technique
that exploits parameter sparsity to reduce model complexity and speed up inference (LeCun et al., 1989; Han
et al., 2015; Han, 2017; Hoefler et al., 2021). Most pruning methods assess importance of neural network
weights (or neurons) and remove the least important parameters. Unstructured pruning zeros out individual
weights while preserving the network architecture, whereas structured pruning removes parameter groups
like channels or neurons, which reduce model size (Liu et al., 2021; Fang et al., 2023; Ma et al., 2023). Both
approaches often require retraining to recover lost accuracy during pruning. While effective for classical NNs,
pruning LLMs is costly due to high memory demands for computing importance scores and the prohibitive
retraining step, making memory-efficient LLM pruning an active research area (Frantar & Alistarh, 2023;
Sun et al., 2024).

3 Number of Trainable Parameters Is Not Everything

Before introducing our approach, we want to emphasize that in PEFT research, reducing the number of
trainable parameters is not the most critical factor for minimizing memory consumption. While certain PEFT
methods explicitly aim to lower the number of trainable parameters to reduce memory usage, the impact
of this reduction diminishes once the parameter count is sufficiently small. To investigate this further, we
compare several representative methods of SpFT and low-rank methods, focusing on their memory footprints
during training, as shown in Figure 1. For precisely, we assume full-precision training to exclude memory
costs introduced by quantization or other compression techniques and implementations. Notably, quantizing
the model to 4-bit precision can yield an additional memory savings of approximately 75%.

During neural network training, backpropagation requires caching a large number of intermediate activations
to compute gradients efficiently. The memory cost of these intermediate values is largely influenced by

1Available at https://pytorch.org/torchtune/stable/tutorials/memory_optimizations.html

3

https://pytorch.org/torchtune/stable/tutorials/memory_optimizations.html

Under review as submission to TMLR

the structure of the computation graph. When the number of trainable parameters is small, the memory
consumed by intermediate activations (see green bars in Figure 1) often dominates memory usage apart from
the model weights.

Among the LoRA-based methods, VeRA attempts to reduce memory by sharing a pair of low-rank matrices
across layers, thereby reducing the number of trainable parameters. However, as shown in Figure 1, this results
in only marginal memory savings—around 0.5GB to 2GB depending on the maximum token length, which is
almost negligible. In contrast, DoRA and RoSA incur significantly higher memory usage due to their more
complex computation graphs and reliance on unstructured sparse matrices. For instance, DoRA decomposes
LoRA’s matrices into separate magnitude and direction components (see Figure 4 in Appendix D.4), which
substantially increases memory requirements for activation caching. While DoRA’s trainable parameter cost
is similar to that of LoRA, its overall memory consumption is considerably higher. RoSA also consumes much
more memory than LoRA despite incorporating efficiency-oriented design choices. These findings suggest
that a simple computation graph can be a far more significant contributor to memory usage than reducing
trainable parameters.

53.33

74.72 74.56

52.84

47.49

40.52

51.67
46.75

39.14 37.87
34.06

40.18
35.83

32.16 32.91

0.00

15.00

30.00

45.00

60.00

75.00

LoRA DoRA RoSA VeRA Ours LoRA DoRA RoSA VeRA Ours LoRA DoRA RoSA VeRA Ours

max token=2048 max token=1024 max token=512

Memery footprints for fine-tuning Llama 2 (7B)

gradients + activations

param

dropout

model

Figure 1: Memory footprints (in GB) of fine-tuning full precision Llama2 using LoRA (Hu et al., 2022),
RoSA (Nikdan et al., 2024), DoRA (Liu et al., 2024), VeRA (Kopiczko et al., 2024), and ours. We set
r = 32, d = 1.2% for RoSA, r = 128 for ours, and r = 64 for the others. Note that RoSA has its own official
implementation, which may influence memory consumption, whereas LoRA, DoRA, and VeRA are integrated
into the PEFT library provided by Hugging Face. More details please see Appendix D.3.

4 Our Method

To address the challenges mentioned above, we propose Structured-Pruning-based Sparse Fine-Tuning
(SPruFT), as illustrated in Figure 2. This is a novel approach designed to streamline computation graphs
and eliminate the need for implementing sparse tensor operations. This method ensures memory efficiency
while maintaining competitive fine-tuning performance.

4

Under review as submission to TMLR

𝐖

𝑖1

𝑖2

𝑖3

𝑖4

𝑖5

∆𝐖𝐖 𝐖

𝜂1

⋮

𝜂𝑖

⋮

Importance score 𝜼𝐖: 𝑑𝑜𝑢𝑡 × 𝑑𝑖𝑛 ∆𝐖: 𝑟 × 𝑑𝑖𝑛

Figure 2: The illustration of SPruFT: we evaluate the importance score for each neuron to select the
fine-tuning indices. Then we construct the lower-dimensional fine-tuning parameter matrix ∆W.

4.1 Proposed Method

SPruFT utilizes structured neural network pruning to select a subset of the parameters for fine-tuning. NN
pruning methods have been studied extensively (see Section 2) with the goal of reducing the size of a network
(often fewer neurons) while preserving accuracy. These methods develop techniques for identifying neurons
that are important for a given task. Our key insight is to use these importance metrics to indicate which
neurons to focus on during fine-tuning. Note that, unlike pruning, where importance often reflects a neuron’s
role in the original task, here it pertains to the downstream fine-tuning task, which may have a different
input distribution and loss. In Section 4.3, we discuss various importance metrics from pruning research and
discuss their use in fine-tuning.

Our method selects the top-r important neurons based on an importance score η, where r is determined
by the desired number of fine-tuning parameters. It follows that the choice of importance matric becomes
crucial, which we discuss in Section 4.3. Let the top r neuron indices be i1, i2, . . . , ir. After obtaining η, we
next construct a lower-dimensional parameter matrix ∆W ∈ Rr×din , with the row selection matrix Mijj = 1
for all j ∈ [r] and zeros elsewhere. Using notations from Section 2, we initialize ∆W to zero and define the
final parameters Ŵ as Equation 1 where δ = M∆W.

Let us now examine how to implement the forward to make backpropagation memory-efficient2. If the
computation graph were to pass through W + M∆W (as a naïve implementation would), the gradients
would be computed for all din × dout parameters, which is redundant. Instead, we use the additivity of the
forward function: we have, analogous to the setting of LoRA,

f(Ŵ, x) = f(W + M∆W, x) = f(W, x) + f(M∆W, x), (5)

As W remains frozen during fine-tuning, backpropagation only needs to keep track of the derivatives of
the second term on the RHS. In addition, M is now a fixed matrix, so the only trainable parameters are
those in ∆W and f(∆W, x) will not be cached, while LoRA requires the cache of f(A, x) for computing ∂h

∂B
(backpropagation, Rumelhart et al. 1986). Besides, as an SpFT framework, our method does not rely on any
dropout layer, which also saves a huge amount of memory. We explain this in detail in Appendix D.5 and we
show that the benefits in terms of memory cost are significant in Section 6.1.

4.2 QSPruFT: Extension Approach with Low Quantization Error

Our approach is model-agnostic, allowing users to integrate recent advances in PEFT such as QLoRA (Dettmers
et al., 2024), LoftQ (Li et al., 2024), and QPiSSA (Meng et al., 2024). QLoRA quantizes the base model to
Normal Float 4-bit (NF4) and fine-tunes full-precision LoRA matrices A and B. Based on QLoRA, LoftQ
and QPiSSA propose alternative initialization strategies for A and B to reduce quantization error. This error

2While updating the corresponding rows of W is the most efficient training, updating δ provides more flexibility for adapting
multiple tasks, see discussion in LoRA (Hu et al., 2022).

5

Under review as submission to TMLR

is defined as:

Wres = W − WNF4, (6)

and both LoftQ and QPiSSA use singular value decomposition (SVD) to initialize A and B such that
BinitAinit ≈ Wres.

In our method, when applied to quantized base models, we do not require decomposition to approximate
Wres. Since we fine-tune only selected rows, we can directly initialize ∆W using the corresponding rows
from Wres, where the quantization error of the fine-tuning rows is zero. This offers a potential advantage
over QLoRA, QDoRA, LoftQ, and QPiSSA in terms of accuracy.

4.3 Broader Impacts: Importance Metrics

Importance evaluation plays a crucial role in our approach, as discussed above. We try various choices in
our work: the first is the simple ℓ2 norm of the weight vector corresponding to each neuron; the second is
the widely-used Taylor importance (LeCun et al., 1989). By considering the gradients, Taylor importance
captures more information about the input distribution as well as the relevance of a neuron for the fine-tuning
task of interest (which can be different from the original model). We also consider different variants of Taylor
importance, as we discuss below. We remark that norm-based importance can be quite powerful on its own,
as is the case with norm-sampling in the matrix approximation literature (Frieze et al., 2004).

4.3.1 Class Aware Taylor Importance

In our experiments on image classification tasks, we also consider a “class aware” variant of Taylor importance,
which may be of independent interest. The motivation here comes from the observation that the importance
of a neuron may depend on the class of an input example (as a toy example, a whisker-detecting neuron may
be very important to the cat class, but not much to others; hence not too important on average). Another
motivation comes from the observation that when we perform a vanilla (class agnostic) fine-tuning, the
accuracy of some classes can be much worse than others — an undesirable outcome. This is shown in Table 1.

Table 1: The distribution of accuracies across different labels is summarized by statistics including the
minimum (Min), first quartile (Q1), median (Med), third quartile (Q3), and maximum (Max) accuracies.
#labels is the number of labels. The reported accuracies are the validation results of full fine-tuning DeiT for
5 epochs. Models and Datasets are described in Section 5.

#labels Mean Min Q1 Med Q3 Max

CIFAR100 100 90.18 65 88 92 95 99

Tiny-ImageNet 200 87.55 62 84 88 92 100

We define the class-wise Taylor importance as follows: for neuron i and label t,

ηt
i := |L(Dt, F́i) − L(Dt, F)| ≈ |(θ(i))⊤∇θ(i)L(Dt, F)|, (7)

where F is the forward function of the entire model, L(Dt, F) denotes the average loss of F over inputs in
class t, F́i represents the forward without channel/neuron i, and θ(i) is the parameter vector of channel
i. One natural choice of importance of neuron i motivated by the above discussion is maxt ηt

i . We find
that this score is “too sensitive” (importance of neurons may be over-estimated because of just one class),
leading to lower overall accuracy. On the other hand, the average (over t) of ηt

i corresponds to the standard
Taylor importance. We find that the intermediate quantity of Quantiles-Mean, defined as the average of the
0%, 10%, 20%, . . . , 100% quantiles of the ηt

i , works well in reducing the accuracy imbalance across labels, and
also achieving a high overall accuracy. Formally,

ηi =
∑10

l=0 Ql({ηi
t}p

t=1)
11 , (8)

where Ql represents the l × 10-th quantile. See Appendix A for more details.

6

Under review as submission to TMLR

4.3.2 Zero-Order Taylor Importance

As discussed, Taylor importance can incorporate information about the data distribution and the fine-tuning
task when evaluating important neurons. However, for large models like Llama-3, it turns out that the
computational overhead required for computing Taylor importances is prohibitively large.3 In these cases, we
apply the idea from the memory-efficient zeroth-order optimizer (MeZO, Malladi et al. 2023) to estimate the
gradient in Taylor importance. The classical Zeroth-Order (ZO) setting is defined as below.
Definition 4.1 (Simultaneous Perturbation Stochastic Approximation or SPSA (Spall, 1992)). Given a
model with parameters θ ∈ Rd and a loss function L, SPSA estimates the gradient on a dataset D as

∇̂L(θ, D) = L(θ + ϵz) − L(θ − ϵz)
2ϵ

z,

where z ∈ Rd is drawn from z ∼ N (0, Id), and ϵ is the scale of the perturbation. The n-SPSA estimate
averages ∇̂L(θ, D) over n randomly sampled z. Note that as ϵ → 0, the estimate above converges to
z(z⊤∇L(θ, D)), which is equal to ∇L(θ, D) in expectation.

By applying SPSA, the Zero-Order Taylor (ZOTaylor) importance can be defined as follows:

ηi := |(θ(i))⊤g(i)|, η̂i := |(θ(i))⊤ĝ(i)|, (9)

where we denote [∇L(θ, D)] and its estimate as g and ĝ for convenience, and ηi, (θ(i))⊤, and g(i) are the
importance score, the parameter vector, and the gradient vector for neuron i.

We now assess the efficiency and effectiveness of ZOTaylor for our LLM. For efficiency, a naïve implementation
of SPSA still requires twice the memory of inference because of the need to store z. However, MeZO uses
the trick of regenerating z dynamically using a random seed (of much smaller size than the model), thus
eliminating the storage and ensuring memory usage that is equal to that of inference. We then justify the
effectiveness of ZOTaylor in the following.
Property 4.2. n-SPSA is an unbiased and consistent estimator with the variance vector (σ2

1 , · · · , σ2
d) where

σ2
j =

g2
j +

∑d
l=1 g2

l

n
.

Property 4.2 can be proved by simply noting that the covariance matrix of z is Id, details can be found
in Appendix B. With this property, we know that n-SPSA can accurately estimate the gradient. However,
the variance can be large when d is large. Here, we first note that since we aim to find the most important
neurons, we do not care about the gradient estimate itself. That is, given ηi1 > ηi2 , our goal is to have a
higher probability p (η̂i1 − η̂i2 > 0) which is exactly equal to:

pZ∼N (0,1)

Z > − |g(i1)θ(i1)| − |g(i2)θ(i2)|√(∑
j∈{j(i1)}

σ2
j

θ2
j

2 +
∑

j∈{j(i2)}
σ2

j
θ2

j

2

)
/2

 , (10)

where {j(i1)} and {j(i2)} are the indices of neuron i1 and i2, and di1 = |{j(i1)}|, di2 = |{j(i2)}|. The trivial
lower bound of Equation 10 is 0.5 and the probability will close to 0.5 when the variance is large or when ηi1

and ηi2 are too close to one another. In our experiments, the values of ĝj from a single SPSA are almost
uniformly in [−100, 100] with variances ranging from 107 to 108 and the values of θj are mostly in [−1, 1],
thus the probability above turns out to be too close to 0.5.

To address this issue, we utilize a simple but highly effective strategy (J Reddi et al., 2015): we partition
the training data into k calibration sets. For each calibration set, we generate n distinct perturbations z to

3The Taylor importance here refers to computing the exact value without relying on approximations of the importance score
or the gradient matrix used for deriving the importance score.

7

Under review as submission to TMLR

perform n-SPSA, producing n × k gradient estimates. Consequently, the variance of n-SPSA is effectively

reduced to g2
j +
∑d

l=1
g2

l

nk
4.

Theorem 4.3. Suppose a model parameter θ satisfies |θ|∞ ≤ uθ and a gradient g satisfies |g|2 ≤ ug for some
parameter ug. Also assume that ηi’s are drawn IID from a distribution Pη that is α-smooth and supported in
the interval [0, uη]. Let ηi1 and ηi2 be the importance values of the top-q1% and top-q2% important neurons
and define Φ to be the CDF of Gaussian distribution, then we have

p (η̂i1 − η̂i2 > 0) ≥ pZ∼N (0,1)

Z > − 2
√

nk(ηi1 − ηi2)√
(di1 + di2)u2

θu2
g

 ≥ 1 − Φ

−2
√

nk(q2 − q1)/100

α
√

(di1 + di2)u2
θu2

g

 . (11)

Theorem 4.3 follows directly from the variance expression σj provided in Property 4.2; detailed steps are
included in Appendix B. Using this result, we now show how to estimate the required value of

√
nk to reliably

identify most of the desired neurons.

We argue that for any ξ, if we select the top-ξ% important neurons according to the η̂ values (for some
ξ ∈ [0, 100]), most of top-ξ% neurons according to the true η values will be correctly selected with high
probability, when nk is large enough. To formalize this, let iξ = ξ

100 dη where dη is the number of neurons
and let η1 ≥ η2 ≥ . . . ≥ ηdη . Let Xi be the random variable that is 1 if η̂i is among the top iξ of {η̂j}j∈[dη]
and 0 otherwise. Define pi to be p (Xi = 1).

We can now bound p(Xi = 0) as follows. If Xi = 0 for i = iξ, then at least one of the values
η̂iξ+1, η̂iξ+2, . . . , η̂dη , say η̂j , must be > η̂i. Thus, for all i ≤ iξ

p(Xi = 0) ≤ 1 −
dη∏

j=iξ+1
p(η̂i > η̂j) ≤ 1 − p(η̂i > η̂iξ

)dη−iξ =⇒ pi ≥ p(η̂i > η̂iξ
)dη−iξ . (12)

The next result bounds the expected number of the “correct” neurons (or indices) chosen, in terms of n, k.
Theorem 4.4. Let ϵξ ∈ (0, 1] be any desired error ratio, and let Xi be as defined above. Then there exist a
positive constant cdη such that the inequality E[

∑iξ

i=1 Xi] ≥ (1 − ϵξ) · iξ holds, as long as
√

nk ≥ cdη · α
√

(di1 + di2)u2
θu2

g. (13)

Theorem 4.4 can be proved by using Equation 12 and Theorem 4.3; detailed steps are given in Appendix B.

Unfortunately, the above threshold of
√

nk is too large in our experiments. To balance the variance of
estimates and computation resources, we set nk = 2048 in our experiments. The error ϵξ=10 is likely to be
higher than 20% under this setting, but our experimental results show that this setting is good enough to
boost the fine-tuning performance.

5 Experimental Setup

Main experiments:

For language tasks, we fine-tune LLaMA-2-7B and LLaMA-3-8B in both full-precision (float32) and
NF4 (Dettmers et al., 2024) on the training splits of 8 commonsense reasoning datasets (see Appendix E),
and evaluate them on their respective test splits. We then assess the models’ mathematical reasoning by
fine-tuning them on the GSM8K (Cobbe et al., 2021) training split and evaluating performance using the
EleutherAI LM Harness (Gao et al., 2021). Finally, we evaluate instruction-following ability by fine-tuning
on Alpaca-GPT (Taori et al., 2023) and scoring responses with MT-Bench (Zheng et al., 2023), using Gemini
2.5 flash (Team et al., 2023) as the judge5.

4We note that this is not a formal guarantee; indeed, if k is too large or the dataset is too small, there is additional variance
across calibration sets that will become significant.

5We use Gemini 2.5 instead of GPT-4 due to lower cost and competitive performance.

8

Under review as submission to TMLR

We incorporate the PEFT approaches including our SPruFT, QSPruFT, LoRA (Hu et al., 2022),
QLoRA (Dettmers et al., 2024), VeRA (Kopiczko et al., 2024), DoRA (Liu et al., 2024), QDoRA, RoSA (Nikdan
et al., 2024), LoftQ (Li et al., 2024), and QPiSSA (Meng et al., 2024). RoSA is chosen as the representative
SpFT method and is the only SpFT due to the high memory demands of other SpFT approaches, while full
fine-tuning is excluded for the same reason. We freeze Llama’s classification layers and fine-tune only the
linear layers in attention and FFN blocks.

For training configurations setting, we use a learning rate of 2 · 10−5 with linear decay (rate 0.01) for our
method, and 10−4 for other PEFT methods, with α = 16 and dropout rate 0.1. All methods apply linear
decay after a 3% warmup. For commonsense reasoning, we train on 2048 samples (256 per dataset) and
evaluate on 500 test examples per dataset. For GSM8K, we fine-tune on 2048 random training samples and
evaluate on the full test set. For Alpaca-GPT, we train the models on 1024 samples and evaluate the models
on the whole MT-bench. Instruction-style prompts are used for commonsense datasets,6 while GSM8K uses
question-answering prompts. We fine-tune all models for 3 epochs.

Our framework is built on torch-pruning (Fang et al., 2023), PyTorch (Paszke et al., 2019), and HuggingFace
Transformers (Wolf et al., 2020). Most experiments are conducted on a single A100-80GB GPU, except
DoRA and RoSA (at 2048 max tokens) which run on an H100-96GB. We use the Adam optimizer (Kingma
& Ba, 2015) and train with a fixed epoch budget without early stopping.

Experiments for importance metrics: In the comparison of different importance metrics, we also use
our approach to fine-tune DeiT (Touvron et al., 2021), ViT (Dosovitskiy, 2020), ResNet101 (He et al.,
2016), and ResNeXt101 (Xie et al., 2017) on Tiny-ImageNet (Tavanaei, 2020), CIFAR100 (Krizhevsky et al.,
2009), and Caltech101 (Li et al., 2022). For these tasks, we set the fine-tuning ratio at 5%, meaning the
trainable parameters are a total of 5% of the backbone plus classification layers. Following this, we discuss
the computational resource requirements for fine-tuning.

For image models, the learning rate is set to 10−4 with cosine annealing decay (Loshchilov & Hutter, 2017),
where the minimum learning rate is 10−9. All image models used in this study have been pre-trained
on ImageNet. Note that memory efficiency is not emphasized for small-scale models, as dataset-related
memory—particularly with large batch sizes—dominates consumption in these cases. The main advantage of
our method in these cases is the reduced FLOPs due to fewer trainable parameters.

Table 2: Main results of fine-tuning full precision Llama2 and Llama3. “mem” represents the memory cost in
training excluding the model itself, with further details provided in Appendix D.3. #param is the number of
trainable parameters. HS, OBQA, and WG represent HellaSwag, OpenBookQA, and WinoGrande datasets.
All reported results for commonsense reasoning tasks are accuracies, while the results for GSM8k are the
exact match score. The ablation study for different r can be found in Appendix D.6. All reported results are
accuracies on the corresponding tasks. Bold indicates the best result on the same task.

Model, ft setting mem #param BoolQ PIQA SIQA HS WG ARC-c ARC-e OBQA Avg GSM8k

Llama2(7B), pretrained - - 58.00 40.00 29.00 15.40 4.80 14.00 16.20 25.40 25.35 0.00

LoRA, r = 64 23.46GB 159.9M(2.37%) 77.00 76.20 67.80 84.20 62.60 70.00 82.00 74.00 74.23 18.42
VeRA, r = 64 22.97GB 1.374M(0.02%) 47.80 51.80 41.80 37.60 50.40 36.80 43.20 32.80 41.53 0.00
DoRA, r = 64 44.85GB 161.3M(2.39%) 75.20 75.40 64.60 78.60 63.00 65.20 82.20 70.60 71.85 21.46
RoSA, r = 32, d = 1.2% 44.69GB 157.7M(2.34%) 79.80 73.40 70.20 76.00 57.00 68.80 80.80 71.60 72.20 21.99
SPruFT, r = 128 17.62GB 145.8M(2.16%) 80.00 75.20 67.60 85.00 63.40 70.80 82.40 71.80 74.53 22.90

Llama3(8B), pretrained - - 58.80 41.60 38.00 10.20 11.20 55.20 63.00 27.40 38.18 0.00

LoRA, r = 64 30.37GB 167.8M(2.09%) 84.20 77.00 63.20 84.20 67.20 76.40 88.80 71.00 76.50 41.77
VeRA, r = 64 29.49GB 1.391M(0.02%) 61.00 62.40 55.60 41.80 49.60 59.60 77.60 60.00 58.45 0.00
DoRA, r = 64 51.45GB 169.1M(2.11%) 83.20 82.80 69.00 89.40 70.80 77.20 89.00 80.40 80.23 46.02
RoSA, r = 32, d = 1.2% 48.40GB 167.6M(2.09%) 79.00 81.00 69.20 84.80 68.60 79.00 90.40 78.40 78.80 45.72
SPruFT, r = 128 24.49GB 159.4M(1.98%) 87.60 77.40 71.40 85.40 70.20 79.80 90.80 81.80 80.55 46.10

6LLaMA-3 performs well with question-answering prompts, and fine-tuning yields limited gains, suggesting possible pre-training
on these datasets with question-answering prompts.

9

Under review as submission to TMLR

6 Results and Discussion

We now present the results of fine-tuning image models and Llamas using our framework. We first apply our
SPruFT to fine-tune Llama2 and Llama3 and compare the results with those obtained using LoRA and its
variants. Following this, we examine the performance of our approach by utilizing various importance metrics.

6.1 Main Results of LLM

We apply our SPruFT method to fine-tune Llama2-7B and Llama3-8B, comparing the results with those
obtained through LoRA and its variants. We select the magnitude of the neuron vector as the importance
metric due to its low memory requirements, simplicity, and widely tested effectiveness. In contrast, gradient-
based metrics like Taylor and Hessian are as memory-intensive as full LLM fine-tuning. While Wanda (Sun
et al., 2024) and AWQ (Lin et al., 2024) offer two activation-based metrics to evaluate neuron importance,
for pruning LLMs, they require one epoch of data forwarding and significantly more memory than inference
to compute the activation-based importance7.

Table 3: Comparing fine-tuning all linear layers with fine-tuning only the FFN on commonsense reasoning
tasks. ‡ indicates that we freeze the layers for queue, key, and value projection. Full table please refer to
Table 17 in Appendix D.7.

Models Llama2(7B) Llama3(8B)

Setting mem #param Common(Avg) mem #param Common(Avg)

LoRA, r = 16 21.64GB 40.0M(0.59%) 72.48 28.86GB 41.9M(0.52%) 78.95
LoRA‡, r = 32 17.95GB 54.8M(0.81%) 72.90 25.28GB 65.0M(0.81%) 78.35

LoRA, r = 32 22.21GB 80.0M(1.19%) 72.03 29.37GB 83.9M(1.04%) 79.50
LoRA‡, r = 64 18.81GB 109.6M(1.63%) 73.00 26.04GB 130.0M(1.62%) 77.73

SPruFT, r = 32 15.57GB 36.4M(0.54%) 72.25 22.62GB 39.8M(0.50%) 78.53
SPruFT‡, r = 64 14.67GB 47.7M(0.71%) 72.45 21.81GB 54.5M(0.68%) 79.05

SPruFT, r = 64 16.20GB 72.9M(1.08%) 72.65 23.23GB 79.7M(0.99%) 77.88
SPruFT‡, r = 128 15.58GB 95.4M(1.42%) 73.98 22.71GB 109.1M(1.36%) 80.45

Table 2 demonstrates the exceptional memory efficiency of our approach8 while achieving comparable accuracy.
As shown, the accuracies of fine-tuned models remain similar across most PEFT methods, while memory
usage varies significantly. VeRA, despite having significantly fewer trainable parameters, shows noticeably
lower accuracy. Notably, our approach consistently requires substantially less memory than all other PEFT
methods listed in the table.

We then demonstrate that strategically assigning trainable parameters saves more memory than merely
reducing them, without compromising accuracy on commonsense reasoning tasks. Section 3 highlights the
importance of the computation graph in memory consumption. Strategically assigning trainable parameters
can be an effective solution. For instance, Shi et al. (2024) suggest that layers such as output, down, up,
and gate projections contribute more significantly than queue, key, and value projections, which leads to the
strategy of freezing queue, key, and value projections. We compare fine-tuning all linear layers and fine-tuning
only the FFN and output-project layer, with results shown in Table 3. The former requires more memory for
the same number of trainable parameters, as distributing trainable parameters across the model increases the
need for caching intermediate values. Table 3 shows an exceptional memory saving by freezing some layers
in attention blocks. In addition, the accuracy remains nearly unchanged. Given that Llama models have
been pre-trained on extensive datasets, their attention layers likely already capture crucial patterns for token
interactions.

We further evaluate models’ instruction-following abilities using MT-Bench. As shown in Table 4, SPruFT
with magnitude-based importance falls short of other methods. However, incorporating ZOTaylor significantly

7We encountered an OOM error when using Wanda’s official implementation. When pruning a neural network, each layer
computes activation vector’s norm and is pruned immediately, gradually reducing the model size. However, in the fine-tuning
process, the model size remains unchanged. Additionally, storing the activation values for computing importance scores further
increases memory consumption, making memory cost significantly higher than when using activation for pruning.

8Also refer to Table 14 in Appendix D.6, even with r = 128, our method’s memory usage remains significantly lower than
that of LoRA with r = 16.

10

Under review as submission to TMLR

Table 4: MT-Bench results of fine-tuning full precision Llama2 and Llama3 on Alpaca-GPT4. Bold indicates
the best result on the same task.

Model, ft setting Coding Extraction Humanities Math Reasoning Roleplay Stem Writing Avg

Llama2(7B), pretrained 1.00 2.63 1.65 1.50 1.59 1.65 1.70 1.55 1.66

LoRA, r = 64 1.50 2.59 5.21 2.43 3.27 5.40 4.59 3.84 3.60
VeRA, r = 64 1.47 2.75 2.30 1.42 3.06 2.55 3.06 2.10 2.34
DoRA, r = 64 1.13 2.55 4.22 1.93 3.50 4.15 4.35 4.35 3.27
RoSA, r = 32, d = 1.2% 1.73 3.35 5.00 2.64 4.90 4.80 3.94 3.84 3.78
SPruFT, r = 128 1.82 2.55 4.80 2.08 4.07 4.79 4.50 3.53 3.52

LoRA‡, r = 64 2.36 1.89 4.89 1.92 3.36 4.30 4.05 3.84 3.33
VeRA‡, r = 64 1.47 2.50 2.15 1.39 3.06 2.90 2.32 1.85 2.20
DoRA‡, r = 64 1.10 1.75 4.25 2.46 3.62 4.89 4.21 3.58 3.23
RoSA‡, r = 32, d = 1.2% 2.00 3.11 5.60 2.50 4.43 4.50 4.11 3.74 3.75
SPruFT‡, r = 128 1.08 2.10 4.60 1.15 3.80 4.22 4.33 3.42 3.09

Llama3(8B), pretrained 3.56 5.56 2.95 1.32 2.00 2.84 3.56 3.75 3.19

LoRA, r = 64 2.88 3.88 5.05 4.33 4.25 5.89 5.72 5.22 4.65
VeRA, r = 64 3.18 5.28 4.05 1.00 2.39 3.55 4.72 3.00 3.40
DoRA, r = 64 3.82 4.85 6.40 5.00 4.00 6.21 5.88 4.65 5.10
RoSA, r = 32, d = 1.2% 3.50 7.31 6.30 4.31 4.58 5.75 7.19 5.30 5.53
SPruFT, r = 128 3.88 5.11 6.11 3.83 4.21 5.35 6.44 5.40 5.04

LoRA‡, r = 64 3.75 4.78 6.15 4.42 4.75 5.15 6.06 5.95 5.12
VeRA‡, r = 64 3.33 5.32 4.35 1.00 1.76 3.50 4.25 4.00 3.44
DoRA‡, r = 64 3.90 5.56 6.75 4.42 3.82 6.50 6.88 5.05 5.36
RoSA‡, r = 32, d = 1.2% 3.63 5.88 6.05 4.43 2.92 5.32 6.87 5.30 5.05
SPruFT‡, r = 128 4.75 4.78 5.16 3.67 3.31 6.25 6.06 5.00 4.87

improves performance: Table 6 (Section 6.2) shows that SPruFT with ZOTaylor outperforms most approaches
on instruction-following tasks, ranking second in all cases. Only RoSA performs better overall, but it requires
substantially more memory than our method.

6.2 Importance Metrics

Table 5: Importance metrics on fine-tuning image models by our SPruFT for 5 epochs. FFT, ℓ2, Taylor,
and QMTaylor represent full fine-tuning, the magnitude, Taylor importance, and Quantiles-Mean Taylor
importance (Equation 8). Note that QMTaylor is not applied to fine-tuning Caltech101 due to its significantly
imbalanced labels. All reported results are validation accuracies. Bold indicates the superior results achieved
through different importance metrics.

model imp CIFAR100 Tiny-ImageNet Caltech101

DeiT FFT 90.18 87.55 97.33

ℓ2 88.05 89.31 95.01
Taylor 88.70 89.69 95.41
Hessian 88.73 89.66 95.10
QMTaylor 89.37 89.75 -

ViT FFT 90.13 88.45 97.16

ℓ2 87.13 90.78 92.69
Taylor 88.06 90.87 93.96
Hessian 87.63 90.56 93.70
QMTaylor 88.51 90.90 -

RN FFT 86.21 77.78 96.50

ℓ2 82.25 79.83 93.13
Taylor 82.36 79.66 92.56
Hessian 82.50 79.67 92.74
QMTaylor 83.50 80.02 -

RNX FFT 87.30 79.51 97.07

ℓ2 86.12 83.88 95.71
Taylor 85.94 83.88 95.84
Hessian 85.77 84.53 95.63
QMTaylor 86.93 84.17 -

We apply various importance metrics to fine-tune Llamas and image models using our approach and report
the results to compare their performance. As shown in Table 5 and Table 6, Quantile-Mean Taylor and
ZOTaylor offer slight improvements over other importance metrics. For image tasks, while the differences
among importance metrics are not substantial, the results consistently indicate that Quantile-Mean Taylor

11

Under review as submission to TMLR

slightly outperforms standard Taylor importance. Additionally, both Quantile-Mean Taylor and standard
Taylor importance outperform magnitude-based importance.

Table 6: Importance evaluation for Llama2 and Llama3 on commonsense reasoning tasks, GSM8k, and
MT-Bench. We also present the results of freezing queue-, key-, and value-projection in this table (‡). Full
table with different ranks for commonsense tasks please refer to Table 15 and Table 16 in Appendix D.6.

Model Llama2(7B) Llama3(8B)

Settings Common(Avg) GSM8K MT-Bench(Avg) Common(Avg) GSM8k MT-Bench(Avg)

r = 128, random 69.80 22.52 3.45 76.08 42.53 4.40
r = 128, ℓ2 74.53 22.90 3.52 80.55 46.10 5.04
r = 128, ZOTaylor 74.35 23.50 3.62 81.28 55.12 5.34

r = 128‡, random 72.08 21.08 3.60 77.20 39.50 5.05
r = 128‡, ℓ2 73.98 19.48 3.09 80.45 42.53 4.87
r = 128‡, ZOTaylor 74.30 24.34 3.66 81.80 46.02 5.21

Similarly, in the cases of Llama2 and Llama3, our findings suggest that ZOTaylor provides a slight performance
boost for fine-tuned models. This improvement is likely due to ZOTaylor’s ability to capture richer data
information, whereas magnitude-based importance tends to focus more on identifying generally important
neurons. However, the observed performance gain remains modest, potentially due to the variance of the
estimates, as discussed in Section 4.3.2. Beyond these observations, an interesting finding is that models
fine-tuned with random row selection significantly outperform VeRA, likely suggesting that overly aggressive
parameter reduction can substantially degrade performance.

6.3 Results of Quantized Models

Table 7: Main results of fine-tuning NF4-quantized LLaMA-2 and LLaMA-3. QSPruFT∗ denotes our approach
with ∆W initialized randomly, while QSPruFT† uses ∆W initialized with the corresponding rows from the
quantization residual Wres.

Model, ft setting BoolQ PIQA SIQA HS WG ARC-c ARC-e OBQA Avg GSM8k

Llama2(7B), pretrained 37.00 37.00 19.20 20.00 4.40 15.40 17.80 20.80 21.48 0.00
pretrained-NF4 58.00 40.00 29.00 15.40 4.80 14.00 16.20 25.40 25.35 0.00

QLoRA, r = 64 75.20 74.80 66.80 73.80 63.60 63.40 77.60 65.40 70.08 18.88
QDoRA, r = 64 77.40 72.00 68.40 81.60 63.20 64.60 80.20 70.60 72.25 25.63
LoftQ, r = 64 73.80 73.20 72.60 81.60 64.20 67.60 82.00 71.60 73.33 20.55
QPiSSA, r = 64 79.40 72.40 68.60 77.40 65.00 67.40 78.60 69.80 72.33 21.08
QSPruFT∗, r = 128 78.00 72.60 69.00 79.40 63.20 67.20 79.60 74.80 72.98 20.32
QSPruFT†, r = 128 82.00 71.80 69.20 83.20 65.40 67.20 79.20 72.40 73.80 22.14

Llama3(8B), pretrained 58.80 41.60 38.00 10.20 11.20 55.20 63.00 27.40 38.18 0.00
pretrained-NF4 52.00 37.80 11.60 8.40 0.20 48.80 53.80 16.20 28.60 0.00

QLoRA, r = 64 77.40 81.60 72.80 87.60 69.60 75.80 90.20 78.60 79.20 41.17
QDoRA, r = 64 79.00 79.20 68.20 82.20 66.40 75.80 87.40 77.20 76.93 46.17
LoftQ, r = 64 87.00 82.80 69.40 90.20 62.40 74.80 91.00 79.60 79.65 44.96
QPiSSA, r = 64 87.60 82.00 71.00 82.60 71.80 77.20 89.60 77.20 79.88 45.87
QSPruFT∗, r = 128 89.80 79.40 65.40 89.80 68.40 76.20 91.80 78.00 79.85 47.76
QSPruFT†, r = 128 90.40 82.40 68.60 89.40 69.20 76.80 90.80 76.40 80.50 49.13

Tables 7 and 8 present the results of fine-tuning NF4-quantized models using various PEFT methods9. In
these quantized experiments, we use magnitude-based importance metric to save processing time, as quantized
parameters increase latency during training and inference. The results show that our method, with ∆W
initialized from Wres, consistently achieves strong performance across tasks. These findings support that
SPruFT is a simple, effective, and memory-efficient fine-tuning strategy.

9We omit the results of QPiSSA in Table 8 because its training loss was not reasonably low in our experiments. While the
original paper (Meng et al., 2024) suggests disabling dropout to accelerate convergence, we observed that doing so leads to
overfitting in all tasks. Instead, we set the dropout rate to 0.1 (consistent with LoRA’s setting), which yielded better performance
on commonsense reasoning tasks and GSM8k. However, for AlpacaGPT4, the training loss of QPiSSA remained above 2,
whereas all other methods achieved losses below 0.1. One possible explanation for the underperformance of QPiSSA is its slight
modification of the frozen parameter matrix WNF4. Although the matrix Ŵ in QPiSSA before training is similar to those
in other methods, QPiSSA changes the frozen matrix WNF4 slightly, which may require more training data to achieve good
performance.

12

Under review as submission to TMLR

Table 8: Main results of fine-tuning NF4-quantized LLaMA-2 and LLaMA-3. QSPruFT∗ denotes our approach
with ∆W initialized randomly, while QSPruFT† uses ∆W initialized with the corresponding rows from the
quantization residual Wres.

Model, ft setting Coding Extraction Humanities Math Reasoning Roleplay Stem Writing Avg

Llama2(7B), pretrained 1.00 2.63 1.65 1.50 1.59 1.65 1.70 1.55 1.66
pretrained-NF4 1.00 2.84 1.60 1.19 1.67 1.85 1.80 1.40 1.67

QLoRA, r = 64 1.00 3.05 4.74 1.79 3.23 5.15 4.69 3.55 3.40
QDoRA, r = 64 1.46 3.78 5.42 1.92 3.63 4.63 4.63 4.05 3.69
LoftQ, r = 64 1.46 3.90 5.55 2.45 4.69 4.60 4.37 3.89 3.87
QSPruFT∗, r = 128 0.88 3.75 5.65 2.29 2.77 4.58 3.82 4.40 3.52
QSPruFT†, r = 128 1.92 4.70 5.45 1.93 4.57 5.20 4.78 4.60 4.14

Llama3(8B), pretrained 3.56 5.56 2.95 1.32 2.00 2.84 3.56 3.75 3.19
pretrained-NF4 1.57 4.32 2.35 1.75 2.50 2.80 3.11 2.21 2.58

QLoRA, r = 64 4.43 5.41 4.74 3.00 4.79 5.65 4.74 4.68 4.68
QDoRA, r = 64 3.56 6.26 6.00 4.43 3.83 5.95 5.28 5.06 5.05
LoftQ, r = 64 4.30 7.00 6.60 5.55 3.73 5.90 5.60 6.30 5.62
QSPruFT∗, r = 128 2.43 3.74 4.26 2.90 3.40 3.53 3.89 3.95 3.51
QSPruFT†, r = 128 4.50 5.41 7.06 4.00 4.62 5.42 5.79 5.80 5.32

7 Conclusions and Future Work

We propose a parameter-efficient fine-tuning (PEFT) framework that integrates various techniques and
importance metrics from model compression research to enhance sparse fine-tuning (SpFT). Using our
method, we can fine-tune LLMs and vision transformers using significantly less computation resources than
the popular LoRA (Low-Rank Adaptation) technique, while achieving similar accuracy. We also explore
the effects of using different importance metrics. There are several future directions: (1) For importance
metrics, while Quantile-Mean Taylor shows slight improvements, these gains are relatively minor compared
to the standard Taylor metric in some cases of DeiT and ViT. We may wish to explore better metrics for
classification tasks with a large number of labels. (2) Developing memory-efficient importance metrics for
LLMs is another future direction. While Zeroth-Order Taylor is effective for incorporating data-specific
information without requiring large memory, the large variance of estimate is a challenge. Although we
reduce the variance effectively by increasing the number of estimations, exploring a simple method to reduce
variance without increasing estimation times is essential for further advancements in this field. (3) Our
results show that fine-tuning a small number of neurons can significantly improve model performance on
downstream tasks. This observation naturally raises the question: do the selected neurons play a distinctive
role in specific tasks? This question is related to the explainability of neural networks, which is an extensive
area of research. It will be interesting to understand if (and how) individual neurons chosen for fine-tuning
contribute to the new task.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo

Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Alan Ansell, Edoardo Ponti, Anna Korhonen, and Ivan Vulić. Composable sparse fine-tuning for cross-lingual
transfer. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 1778–1796, 2022.

Roy Bar-Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo Giampiccolo, Bernardo Magnini, and Idan Szpektor.
The second PASCAL recognising textual entailment challenge. 2006.

Luisa Bentivogli, Ido Dagan, Hoa Trang Dang, Danilo Giampiccolo, and Bernardo Magnini. The fifth
PASCAL recognizing textual entailment challenge. 2009.

Irénée-Jules Bienaymé. Considérations à l’appui de la découverte de Laplace sur la loi de probabilité dans la
méthode des moindres carrés. Imprimerie de Mallet-Bachelier, 1853.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about physical
commonsense in natural language. In Thirty-Fourth AAAI Conference on Artificial Intelligence, 2020.

13

Under review as submission to TMLR

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-Gazpio, and Lucia Specia. SemEval-2017 task 1: Semantic
textual similarity multilingual and crosslingual focused evaluation. In Steven Bethard, Marine Carpuat,
Marianna Apidianaki, Saif M. Mohammad, Daniel Cer, and David Jurgens (eds.), Proceedings of the
11th International Workshop on Semantic Evaluation (SemEval-2017), pp. 1–14, Vancouver, Canada,
August 2017. Association for Computational Linguistics. doi: 10.18653/v1/S17-2001. URL https:
//aclanthology.org/S17-2001.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina Toutanova.
Boolq: Exploring the surprising difficulty of natural yes/no questions. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 2924–2936, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge. arXiv preprint
arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word
problems. arXiv preprint arXiv:2110.14168, 2021.

Ido Dagan, Oren Glickman, and Bernardo Magnini. The PASCAL recognising textual entailment challenge. In
Machine learning challenges. evaluating predictive uncertainty, visual object classification, and recognising
tectual entailment, pp. 177–190. Springer, 2006.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255. Ieee,
2009.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix multiplication
for transformers at scale. Advances in Neural Information Processing Systems, 35:30318–30332, 2022.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning of
quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

William B Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases. In
Proceedings of the International Workshop on Paraphrasing, 2005.

Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards any
structural pruning. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 16091–16101, 2023.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in one-shot.
In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

Alan Frieze, Ravi Kannan, and Santosh Vempala. Fast monte-carlo algorithms for finding low-rank approxi-
mations. J. ACM, 51(6):1025–1041, November 2004. ISSN 0004-5411. doi: 10.1145/1039488.1039494. URL
https://doi.org/10.1145/1039488.1039494.

Trevor Gale, Matei Zaharia, Cliff Young, and Erich Elsen. Sparse gpu kernels for deep learning. In SC20:
International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–14.
IEEE, 2020.

14

https://aclanthology.org/S17-2001
https://aclanthology.org/S17-2001
https://doi.org/10.1145/1039488.1039494

Under review as submission to TMLR

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence Golding,
Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, et al. A framework for few-shot language model evaluation.
Version v0. 0.1. Sept, 10:8–9, 2021.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. A survey of
quantization methods for efficient neural network inference. In Low-Power Computer Vision, pp. 291–326.
Chapman and Hall/CRC, 2022.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and Bill Dolan. The third PASCAL recognizing textual
entailment challenge. In Proceedings of the ACL-PASCAL workshop on textual entailment and paraphrasing,
pp. 1–9. Association for Computational Linguistics, 2007.

Demi Guo, Alexander Rush, and Yoon Kim. Parameter-efficient transfer learning with diff pruning. In Annual
Meeting of the Association for Computational Linguistics, 2021.

Han Guo, Philip Greengard, Eric Xing, and Yoon Kim. LQ-loRA: Low-rank plus quantized matrix decom-
position for efficient language model finetuning. In The Twelfth International Conference on Learning
Representations, 2024a. URL https://openreview.net/forum?id=xw29VvOMmU.

Wentao Guo, Jikai Long, Yimeng Zeng, Zirui Liu, Xinyu Yang, Yide Ran, Jacob R Gardner, Osbert Bastani,
Christopher De Sa, Xiaodong Yu, et al. Zeroth-order fine-tuning of llms with extreme sparsity. arXiv
preprint arXiv:2406.02913, 2024b.

Song Han. Efficient methods and hardware for deep learning. PhD thesis, Stanford University, 2017.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for efficient
neural network. Advances in neural information processing systems, 28, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. Debertav3: Improving deberta using electra-style pre-training
with gradient-disentangled embedding sharing. In The Eleventh International Conference on Learning
Representations, 2023.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep learning:
Pruning and growth for efficient inference and training in neural networks. Journal of Machine Learning
Research, 22(241):1–124, 2021.

Connor Holmes, Minjia Zhang, Yuxiong He, and Bo Wu. Nxmtransformer: semi-structured sparsification
for natural language understanding via admm. Advances in neural information processing systems, 34:
1818–1830, 2021.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen, et al. Lora:
Low-rank adaptation of large language models. In International Conference on Learning Representations,
2022.

Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and Alexander J Smola. On variance reduction
in stochastic gradient descent and its asynchronous variants. Advances in neural information processing
systems, 28, 2015.

Peng Jiang, Lihan Hu, and Shihui Song. Exposing and exploiting fine-grained block structures for fast and
accurate sparse training. Advances in Neural Information Processing Systems, 35:38345–38357, 2022.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International Conference on
Learning Representations (ICLR), 2015.

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M Asano. VeRA: Vector-based random matrix adaptation.
In The Twelfth International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=NjNfLdxr3A.

15

https://openreview.net/forum?id=xw29VvOMmU
https://openreview.net/forum?id=NjNfLdxr3A
https://openreview.net/forum?id=NjNfLdxr3A

Under review as submission to TMLR

Alex Krizhevsky et al. Learning multiple layers of features from tiny images. 2009.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information processing
systems, 2, 1989.

Fei-Fei Li, Marco Andreeto, Marc’Aurelio Ranzato, and Pietro Perona. Caltech 101, Apr 2022.

Yixiao Li, Yifan Yu, Chen Liang, Nikos Karampatziakis, Pengcheng He, Weizhu Chen, and Tuo Zhao. Loftq:
LoRA-fine-tuning-aware quantization for large language models. In The Twelfth International Conference
on Learning Representations, 2024. URL https://openreview.net/forum?id=LzPWWPAdY4.

Vladislav Lialin, Vijeta Deshpande, and Anna Rumshisky. Scaling down to scale up: A guide to parameter-
efficient fine-tuning. arXiv preprint arXiv:2303.15647, 2023.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan Xiao,
Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for on-device llm
compression and acceleration. Proceedings of Machine Learning and Systems, 6:87–100, 2024.

Liyang Liu, Shilong Zhang, Zhanghui Kuang, Aojun Zhou, Jing-Hao Xue, Xinjiang Wang, Yimin Chen,
Wenming Yang, Qingmin Liao, and Wayne Zhang. Group fisher pruning for practical network compression.
In International Conference on Machine Learning, pp. 7021–7032. PMLR, 2021.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-Ting
Cheng, and Min-Hung Chen. DoRA: Weight-decomposed low-rank adaptation. In Forty-first International
Conference on Machine Learning, 2024. URL https://openreview.net/forum?id=3d5CIRG1n2.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. In International
Conference on Learning Representations, 2017.

Xudong Lu, Aojun Zhou, Yuhui Xu, Renrui Zhang, Peng Gao, and Hongsheng Li. SPP: Sparsity-preserved
parameter-efficient fine-tuning for large language models. In Forty-first International Conference on
Machine Learning, 2024. URL https://openreview.net/forum?id=9Rroj9GIOQ.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. LLM-pruner: On the structural pruning of large language
models. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=J8Ajf9WfXP.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi Chen, and Sanjeev Arora.
Fine-tuning language models with just forward passes. Advances in Neural Information Processing Systems,
36:53038–53075, 2023.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular vectors
adaptation of large language models. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet,
J. Tomczak, and C. Zhang (eds.), Advances in Neural Information Processing Systems, volume 37, pp.
121038–121072. Curran Associates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/
paper/2024/file/db36f4d603cc9e3a2a5e10b93e6428f2-Paper-Conference.pdf.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct electricity?
a new dataset for open book question answering. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pp. 2381–2391, 2018.

Mohammad Hasanzadeh Mofrad, Rami Melhem, Yousuf Ahmad, and Mohammad Hammoud. Multithreaded
layer-wise training of sparse deep neural networks using compressed sparse column. In 2019 IEEE High
Performance Extreme Computing Conference (HPEC), pp. 1–6. IEEE, 2019.

Mahdi Nikdan, Tommaso Pegolotti, Eugenia Iofinova, Eldar Kurtic, and Dan Alistarh. SparseProp:
Efficient sparse backpropagation for faster training of neural networks at the edge. In Andreas
Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scar-
lett (eds.), Proceedings of the 40th International Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pp. 26215–26227. PMLR, 23–29 Jul 2023. URL https:
//proceedings.mlr.press/v202/nikdan23a.html.

16

https://openreview.net/forum?id=LzPWWPAdY4
https://openreview.net/forum?id=3d5CIRG1n2
https://openreview.net/forum?id=9Rroj9GIOQ
https://openreview.net/forum?id=J8Ajf9WfXP
https://openreview.net/forum?id=J8Ajf9WfXP
https://proceedings.neurips.cc/paper_files/paper/2024/file/db36f4d603cc9e3a2a5e10b93e6428f2-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/db36f4d603cc9e3a2a5e10b93e6428f2-Paper-Conference.pdf
https://proceedings.mlr.press/v202/nikdan23a.html
https://proceedings.mlr.press/v202/nikdan23a.html

Under review as submission to TMLR

Mahdi Nikdan, Soroush Tabesh, Elvir Crnčević, and Dan Alistarh. RoSA: Accurate parameter-efficient
fine-tuning via robust adaptation. In Forty-first International Conference on Machine Learning, 2024. URL
https://openreview.net/forum?id=FYvpxyS43U.

Abhishek Panigrahi, Nikunj Saunshi, Haoyu Zhao, and Sanjeev Arora. Task-specific skill localization in
fine-tuned language models. In International Conference on Machine Learning, pp. 27011–27033. PMLR,
2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems, 32, 2019.

Alexandra Peste, Eugenia Iofinova, Adrian Vladu, and Dan Alistarh. Ac/dc: Alternating com-
pressed/decompressed training of deep neural networks. Advances in neural information processing
systems, 34:8557–8570, 2021.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of EMNLP, pp. 2383–2392. Association for Computational
Linguistics, 2016.

Jorma J Rissanen. Fisher information and stochastic complexity. IEEE transactions on information theory,
42(1):40–47, 1996.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-propagating
errors. nature, 323(6088):533–536, 1986.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adversarial
winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. Social IQa: Commonsense
reasoning about social interactions. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.),
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 4463–4473, Hong
Kong, China, November 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1454.
URL https://aclanthology.org/D19-1454/.

Jonathan Schwarz, Siddhant Jayakumar, Razvan Pascanu, Peter E Latham, and Yee Teh. Powerpropagation:
A sparsity inducing weight reparameterisation. Advances in neural information processing systems, 34:
28889–28903, 2021.

Guangyuan Shi, Zexin Lu, Xiaoyu Dong, Wenlong Zhang, Xuanyu Zhang, Yujie Feng, and Xiao-Ming Wu.
Understanding layer significance in llm alignment. arXiv preprint arXiv:2410.17875, 2024.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank. In
Proceedings of EMNLP, pp. 1631–1642, 2013.

James C Spall. Multivariate stochastic approximation using a simultaneous perturbation gradient approxima-
tion. IEEE transactions on automatic control, 37(3):332–341, 1992.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach for large
language models. In The Twelfth International Conference on Learning Representations, 2024.

Yi-Lin Sung, Varun Nair, and Colin A Raffel. Training neural networks with fixed sparse masks. Advances in
Neural Information Processing Systems, 34:24193–24205, 2021.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, and
Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model. https://github.com/
tatsu-lab/stanford_alpaca, 2023.

17

https://openreview.net/forum?id=FYvpxyS43U
https://aclanthology.org/D19-1454/
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

Under review as submission to TMLR

Amirhossein Tavanaei. Embedded encoder-decoder in convolutional networks towards explainable ai. arXiv
preprint arXiv:2007.06712, 2020.

Pafnutii Tchébychef. Des valeurs moyennes, volume 12. Journal de Mathématiques Pures et Appliquées 2,
1867.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé Jégou.
Training data-efficient image transformers & distillation through attention. In International conference on
machine learning, pp. 10347–10357. PMLR, 2021.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bowman. Neural network acceptability judgments. arXiv
preprint 1805.12471, 2018.

Adina Williams, Nikita Nangia, and Samuel R. Bowman. A broad-coverage challenge corpus for sentence
understanding through inference. In Proceedings of NAACL-HLT, 2018.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art natural language
processing. In Proceedings of the 2020 conference on empirical methods in natural language processing:
system demonstrations, pp. 38–45, 2020.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual transformations
for deep neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 1492–1500, 2017.

Mengwei Xu, Wangsong Yin, Dongqi Cai, Rongjie Yi, Daliang Xu, Qipeng Wang, Bingyang Wu, Yihao Zhao,
Chen Yang, Shihe Wang, et al. A survey of resource-efficient llm and multimodal foundation models. arXiv
preprint arXiv:2401.08092, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine really
finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics. Association for Computational Linguistics, 2019.

Zhekai Zhang, Hanrui Wang, Song Han, and William J Dally. Sparch: Efficient architecture for sparse matrix
multiplication. In 2020 IEEE International Symposium on High Performance Computer Architecture
(HPCA), pp. 261–274. IEEE, 2020.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and chatbot arena.
Advances in Neural Information Processing Systems, 36:46595–46623, 2023.

Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun Luo, Zipeng Qin, Shaoqing Lu, Anya Jia, Linqi Song,
Mingjie Zhan, et al. Solving challenging math word problems using gpt-4 code interpreter with code-based
self-verification. In The Twelfth International Conference on Learning Representations, 2024.

18

Under review as submission to TMLR

A Importance Metrics

Taylor importance is the Taylor expansion of the difference between the loss of the model with and without
the target neuron: (we denote θ(i) by w here for convenience.)

ηi = L(D, F́i) − L(D, F)

≈ −w⊤∇wL(D, F) + 1
2w⊤∇2

wL(D, F)w + O(∇3
wL(D, F))

(∗)
≈ 1

2w⊤∇2
wL(D, F)w + O(∇3

wL(D, F))
(∗∗)
≈ 1

2(Gw)⊤(Gw) + O(∇3
wL(D, F)),

where G = ∇wL(D, F). (**) is from the result of Fisher information Rissanen (1996):

∇2
wL(D, F) ≈ ∇wL(D, F)⊤∇wL(D, F).

Note that (*) is from ∇wL(D, F) ≈ 0, as removing one channel/neuron from a large neural network typically
results in only a negligible reduction in loss. To efficiently compute ηi, the equation can be further derived as:

ηi ≈ (Gw)⊤(Gw) =
∑

j

(1
|D|

∑
x∈D

∂L(x, F)
∂wj

wj)2 (14)

≈
∑

j

| 1
|D|

∑
x∈D

∂L(x, F)
∂wj

wj |2, (15)

where w = (w1, . . . , wj , . . .). Thus, people often compute
∑

j | 1
|D|
∑

x∈D
∂L(x,F)

∂wj
wj | without taking square to

evaluate the importance score. In this study, we describe this as Taylor importance and consider eq 14 as
hessian importance.

Magnitude importance is the ℓ2-norm of the neuron vector computed as
√∑

j w2
j .

B Missing Proofs

Proof of Property 4.2

Proof. To prove Property 4.2, we first calculate the expectation and variance of SPSA. For convenience, we
denote [∇L(θ, D)] as g. Then, the expectation is as follows:

E[ĝ] ≈ E[zz⊤∇L(θ, D)] = E[zz⊤]∇L(θ, D) = Id∇L(θ, D).

19

Under review as submission to TMLR

The variance can then be derived as follows:

Var[ĝi] ≈ Var[zi(z⊤g)] = E[(zi(z⊤g))2] − E[zi(z⊤g)]2 = E[z2
i (

d∑
i=1

zigi)2] − E[zi(
d∑

l=1
zlgl)]2

= E[z2
i (

d∑
i=1

zigi)2] − E[z2
i gi + (zi

∑
l ̸=i,l∈[d]

zlgl)]2

= E[z2
i (

d∑
i=1

zigi)2] −

E[z2
i]︸ ︷︷ ︸

1

gi +
∑

l ̸=i,l∈[d]

E[zizl]︸ ︷︷ ︸
0

gl

2

= E[z2
i (

d∑
i=1

zigi)2] − g2
i

= E[z2
i (zigi +

∑
l ̸=i,l∈[d]

zlgl)2] − g2
i

= E[z2
i (z2

i g2
i + 2zigi(

∑
l ̸=i,l∈[d]

zlgl) + (
∑

l ̸=i,l∈[d]

zlgl)2] − g2
i

= E[z4
i g2

i + 2z3
i gi(

∑
l ̸=i,l∈[d]

zlgl) + z2
i (

∑
l ̸=i,l∈[d]

zlgl)2] − g2
i

= E[z4
i g2

i] + 2E[z3
i gi]E[

∑
l ̸=i,l∈[d]

zlgl] + E[z2
i]E[(

∑
l ̸=i,l∈[d]

zlgl)2] − g2
i

= g2
i E[z4

i]︸ ︷︷ ︸
3

+2giE[z3
i]

∑
l ̸=i,l∈[d]

gl E[zl]︸︷︷︸
0

+E[z2
i]︸ ︷︷ ︸

1

(
∑

l ̸=i,l∈[d]

g2
l E[z2

l]︸ ︷︷ ︸
1

+
∑

k ̸=l ̸=i,k,l∈[d]

gkgl E[zkzl]︸ ︷︷ ︸
0

) − g2
i

= 3g2
i + (

∑
l ̸=i,l∈[d]

g2
l) − g2

i = g2
i +

d∑
l=1

g2
l

E[zl] = 0, E[z2
i] = Var[zi] = 1, and E[zkzl]l ̸=k = 0 are because z ∼ N (0, Id). E[z4

i] = 3 is obtained from the
moment generating function of standard normal:

E[z4
i] = d4

dt4 (e t2
2)
∣∣
t=0 = (3e

t2
2 + 6t2e

t2
2 + t4e

t2
2)
∣∣
t=0 = 3.

Thus, the expectation and variance of n-SPSA estimate are (ĝ(j)
i is the jth estimate of ĝi here):

E[
∑n

j=1 ĝ(j)
i

n
] =

∑n
j=1 E[ĝ(j)

i]
n

=
∑n

j=1 gi

n
= gi,

Var[
∑n

j=1 ĝ(j)
i

n
] =

∑n
j=1 Var[ĝ(j)

i]
n2 = Var[ĝi]

n
=

g2
i +

∑d
l=1 g2

l

n
.

Then, we are going to prove the consistency of n-SPSA estimate. Given any small ϵ > 0, we can derive the
following inequality by Chebyshev’s Inequality (Bienaymé, 1853; Tchébychef, 1867):

Pr[|
∑n

j=1 ĝ(j)

n
− g| > ϵ] ≤

Var[
∑n

j=1
ĝ(j)

n]
ϵ2 =

g2
i +

∑d
l=1 g2

l

ϵ2n2

which converges to 0 as n → ∞.

Proof of Theorem 4.3

20

Under review as submission to TMLR

Proof.

p (η̂i1 − η̂i2 > 0) = pZ∼N (0,1)

Z > − ηi1 − ηi2√(∑
j∈{j(i1)}

σ2
j

θ2
j

2 +
∑

j∈{j(i2)}
σ2

j
θ2

j

2

)
/2

 (16)

di∑
j=1

σ2
j θ2

j =
di∑

j=1

g2
j +

∑d
l=1 g2

l

nk
θ2

j ≤
∑di

j=1 g2
j + di

∑d
l=1 g2

l

nk
u2

θ

(∗)
≈

diu
2
θ

∑d
l=1 g2

l

nk
(17)

=⇒

(∑
j∈{j(i1)} σ2

j θ2
j

2 +
∑

j∈{j(i2)} σ2
j θ2

j

2

)
/2 ≤

(di1 + di2)u2
θ

∑d
l=1 g2

l

4nk
≤

(di1 + di2)u2
θu2

g

4nk
(18)

=⇒ p (η̂i1 − η̂i2 > 0) ≥

Z > − 2
√

nk(ηi1 − ηi2)√
(di1 + di2)u2

θu2
g

 (∗∗)
≥ 1 − Φ

−2
√

nk(q2 − q1)/100

α
√

(di1 + di2)u2
θu2

g

 . (19)

(*): di is the dimensionality of neuron i and d is the number of parameters, so we have d ≫ di and, further,
di

∑d
l=1 g2

l ≫
∑di

j=1 g2
j .

(**): ηi is α-smooth in [0, uη], so pηi
(ηi2 ≤ ηi ≤ ηi1) = q2 − q1

100 ≤ α(ηi1 − ηi2), implying that ηi1 − ηi2 ≥
(q2−q1)/100

α .

Proof of Theorem 4.4

Proof. We will argue that for any i ≤ iξ(1 − ϵξ

2), we have p(Xi = 1) ≥ 1 − ϵξ

2 . This implies that

iξ∑
i=1

pi ≥ iξ

(
1 − ϵξ

2

)2
≥ iξ(1 − ϵξ), (20)

as desired. Let us thus focus on p(Xi = 1) for some i ≤ iξ(1− ϵξ

2). Using the lower bound on pi from equation 12,
it suffices to prove that

p(η̂i > η̂iξ
) ≥ 1 − ϵξ

2dη
.

Thus using Theorem 4.3, it suffices to prove that

Φ

−
2cdη α

√
(di + diξ

)u2
θu2

g(ϵξ/2)/100

α
√

(di + diξ
)u2

θu2
g

 = Φ
(

−
cdη ϵξ

100

)
≤ ϵξ

2dη
. (21)

Given the fact that Φ
(
− cdη ϵξ

100
)

= pZ∼N (0,1)

(
Z ≤ −

cdη ϵξ

100

)
, we have the following statement: the greater

the cdη is, the smaller the Φ
(
− cdη ϵξ

100
)

is. This concludes that, there must exist a constant Cdη such that
Φ
(
− cdη ϵξ

100
)

satisfies Equation 21 ∀cdη ≥ Cdη .

C Parameter Dependency

Dependencies of parameters between neurons or channels across different layers exist in NNs. These include
basic layer connections, residual connections, tensor concatenations, summations, and more, as shown in
Figure 3. The black neurons connected by real lines represent the dependent parameters that are in the
same group. Pruning any black neurons results in removing the parameters connected by the real lines. Liu
et al. (2021) introduced a group pruning method for CNN models that treats residual connections as grouped

21

Under review as submission to TMLR

dependencies, evaluating and pruning related channels within the same group simultaneously. Similarly, Fang
et al. (2023) proposed a novel group pruning technique named Torch-Pruning, which considers various types
of dependencies and achieves state-of-the-art results. Ma et al. (2023) further applied this procedure to
pruning LLMs. Torch-Pruning can be applied to prune a wide range of neural networks, including image
transformers, LLMs, CNNs, and more, making it a popular toolkit for neural network pruning.

(a) Basic connection (b) Residual connection (c) Concatenation

෍

(d) Summation

concat

Figure 3: Common dependencies of parameters in neural networks.

In this study, we also evaluate the influences of incorporating parameter dependency in our approach. We put
the experimental results of whether incorporating parameter dependency in Appendix D.2. In the experiments,
parameter dependency becomes the following process for our approach: first, searching for dependencies
by tracing the computation graph of gradient; next, evaluating the importance of parameter groups; and
finally, fine-tuning the parameters within those important groups collectively. For instance, if W(a)

·j and W(b)
i·

are dependent, where W(a)
·j is the j-th column in parameter matrix (or the j-th input channels/features) of

layer a and W(b)
i· is the i-th row in parameter matrix (or the i-th output channels/features) of layer b, then

W(a)
·j and W(b)

i· will be fine-tuned simultaneously while the corresponding M(a)
dep for W(a)

·j becomes column
selection matrix and δ(a) becomes ∆W(a)

depM(a)
dep. Consequently, fine-tuning 2.5% output channels for layer b

will result in fine-tuning additional 2.5% input channels in each dependent layer. Therefore, for the 5% of
desired fine-tuning ratio, the fine-tuning ratio with considering dependencies is set to 2.5%10 for the approach
that includes dependencies.

The forward function of layer a for column selection mentioned above can be written as the following equation:

f(Ŵ(a), x) = f(W(a), x) + f(M(a)∆W(a), x) + f(∆W(a)
depM(a)

dep, x).

Note that in this example, as the dependency is connection between the output feature/channel of b and the
input feature/channel of a, the dimension d

(a)
in is equal to d

(b)
out where W(a) ∈ Rd

(a)
out×d

(a)
in , W(b) ∈ Rd

(b)
out×d

(b)
in .

D Ablation Studies and Related Analysis

In this section, we first discuss the hyperparameter settings. While we do not include DeBERTaV3 (He
et al., 2023) in the main context, we fine-tune DeBERTaV3-base (He et al., 2023) on GLUE. The learning
rate is set to 2 · 10−5 with linear decay, where the decay rate is 0.01. The model is fine-tuned on the full
training split of 8 tasks from the GLUE benchmark. The maximum sequence length is fixed to 256 with
longer sequences truncated and shorter sequences padded. Note that memory efficiency is not emphasized for
small-scale models, as dataset-related memory—particularly with large batch sizes—dominates consumption
in these cases. The main advantage of our method in these cases is the reduced FLOPs due to fewer trainable
parameters.

Following this, we discuss the computational resource requirements for fine-tuning. Figure 5 illustrates
the computation and cache requirements during backpropagation. Next, we provide an ablation study on

10In some complex models, considering dependencies results in slightly more than twice the number of trainable parameters.
However, in most cases, the factor is 2.

22

Under review as submission to TMLR

the impact of different rank settings for our approach and LoRA, as shown in Table 14. Finally, Table 17
demonstrates the advantages of freezing self-attention blocks to reduce memory usage while maintaining
performance.

Table 9: Fine-tuning on CIFAR100 and Tiny-ImageNet. #ep and #param represent the number of epochs
and the number of trainable parameters, where SPruFT is our method with Taylor importance. Full and Head
indicate full fine-tuning and head-finetuning, which only fine-tunes the classification layer. All reported losses
and accuracies are based on validation results. Bold denotes the best results of each fine-tuning approach (in
the same column) on the same model and dataset.

CIFAR100 Tiny-ImageNet Caltech101

Full Head SPruFT Full Head SPruFT Full Head SPruFT

#ep loss, acc loss, acc loss, acc loss, acc loss, acc loss, acc loss, acc loss, acc loss, acc

DeiT DeiT DeiT

#param: 86.0M 0.2M 4.6M 86.1M 0.3M 4.8M 86.0M 0.2M 4.6M

5 0.36, 90.18 0.76, 80.25 0.37, 88.70 0.54, 87.55 0.60, 85.09 0.40, 89.69 0.11, 97.33 1.09, 89.02 0.30, 95.41
10 0.44, 90.04 0.64, 81.83 0.42, 88.62 0.69, 86.32 0.54, 85.72 0.49, 88.96 0.11, 97.55 0.53, 93.22 0.17, 96.28
30 0.62, 89.03 0.55, 83.42 0.64, 88.61 0.94, 84.27 0.52, 86.06 0.72, 88.67 0.11, 97.11 0.22, 95.06 0.12, 96.50

ViT ViT ViT

#param: 85.9M 0.1M 4.5M 86.0M 0.2M 4.6M 85.9M 0.1M 45.2M

5 0.38, 90.13 1.01, 74.78 0.40, 88.13 0.51, 88.45 0.65, 84.10 0.36, 90.87 0.12, 97.16 1.60, 85.70 0.43, 93.96
10 0.45, 89.85 0.85, 77.05 0.45, 87.55 0.66, 86.78 0.58, 84.95 0.44, 90.48 0.11, 97.20 0.85, 89.98 0.23, 95.54
30 0.62, 88.78 0.71, 79.51 0.69, 87.83 0.96, 84.20 0.55, 85.49 0.61, 90.56 0.12, 97.24 0.33, 92.65 0.16, 96.02

ResNet101 ResNet101 ResNet101

#param: 42.7M 0.2M 2.2M 42.9M 0.4M 2.4M 42.7M 0.2M 2.2M

5 0.50, 86.21 1.62, 60.78 0.59, 82.36 0.92, 77.78 1.64, 62.06 0.76, 79.66 0.14, 96.50 1.25, 82.33 0.48, 92.56
10 0.58, 86.41 1.39, 63.06 0.60, 82.33 1.10, 76.81 1.50, 63.19 0.79, 79.54 0.14, 96.54 0.69, 90.24 0.23, 95.58
30 0.80, 84.72 1.21, 65.63 0.80, 82.49 1.54, 74.09 1.43, 64.47 1.08, 78.58 0.18, 95.80 0.31, 93.00 0.16, 95.89

ResNeXt101 ResNeXt101 ResNeXt101

#param: 87.0M 0.2M 4.9M 87.2M 0.4M 5.1M 87.0M 0.2M 4.9M

5 0.47, 87.30 1.42, 65.07 0.47, 85.94 0.86, 79.51 1.46, 65.59 0.61, 83.88 0.12, 97.07 1.25, 83.16 0.28, 95.84
10 0.56, 87.17 1.23, 67.55 0.53, 86.04 1.01, 79.27 1.35, 66.73 0.69, 83.47 0.13, 96.89 0.68, 90.94 0.18, 96.28
30 0.71, 86.59 1.08, 69.45 0.69, 86.33 1.41, 76.55 1.29, 67.93 0.90, 82.83 0.16, 96.63 0.31, 92.87 0.14, 96.76

D.1 Hyperparameter Settings

We report the results of three approaches over several epochs as table 9 and table 10. Overall, full fine-tuning
over higher epochs is more prone to overfitting, while head fine-tuning shows the exact opposite trend. Except
for the results on caltech10111, the loss patterns across all models consistently reflect this trend, and most
accuracy results further support this conclusion. However, our approach demonstrates a crucial advantage by
effectively balancing the tradeoff between performance and computational resources.

Table 9 clearly shows that both our approach and full fine-tuning achieve optimal results within a few epochs,
while head fine-tuning requires more training. Notably, all models have been pre-trained on ImageNet-1k,
which may explain the strong performance observed with head fine-tuning on Tiny-ImageNet. However, even
with this advantage, full fine-tuning still outperforms head fine-tuning, and our approach surpasses both. In
just 5 epochs, our approach achieves results comparable to full fine-tuning on all datasets with significantly
lower trainable parameters.

In contrast to Table 9, the results in Table 10 show more variation. Although the validation loss follows a
similar trend, we report only the evaluation metrics due to the different patterns observed in these metrics.
One potential reason for this variation is the varying amounts of training data across the GLUE tasks. As
shown in the table, tasks with fewer samples often require more epochs to achieve better performance for
both full fine-tuning and our approach. Conversely, for tasks with large amounts of training data such as
‘MNLI’, ‘QNLI’, ‘QQP’, and ‘SST-2’, the results show tiny improvement from 3 to 10 epochs. Nevertheless,
the results still demonstrate that our approach significantly balances the tradeoff between performance
and computational resources. Our method achieves near full fine-tuning performance with remarkably less
trainable parameters.

11The inconsistent trend observed in Caltech101 results is likely due to its significantly smaller sample size.

23

Under review as submission to TMLR

Table 10: Fine-tuning DeBERTaV3 on GLUE. ‘mcc’, ‘acc’, and ‘corr’ represent ‘Matthews correlation’,
‘accuracy’, and ‘Pearson correlation’, respectively. #param is the number of trainable parameters. SPruFT
is our method with Taylor importance, while Full and Head indicate full fine-tuning and head-finetuning,
which only fine-tunes the classification layer. All reported metrics are based on validation results, and are
percentages. Bold denotes the best results of each fine-tuning approach on the same task.

task CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B

#train 8.5k 393k 3.7k 108k 364k 2.5k 67k 7k

method #param epochs mcc acc acc acc acc acc acc corr

Full 184.42M 3 69.96 89.42 89.71 93.57 92.08 80.14 95.53 90.44
Full 5 69.48 89.29 87.74 93.36 92.08 83.39 94.72 90.14
Full 10 68.98 88.55 90.20 93.15 91.97 80.51 93.81 90.71

Head 592.13K 3 24.04 62.64 68.38 70.73 80.18 52.71 65.48 5.66
Head 5 45.39 61.75 68.38 72.32 80.59 47.29 78.44 26.88
Head 10 47.32 63.98 68.38 71.99 80.96 47.29 74.66 49.59

SPruFT 103.57M 3 64.08 89.58 81.62 93.10 90.70 70.40 95.18 86.58
SPruFT 5 65.40 90.21 86.03 93.17 90.93 74.37 95.30 87.36
SPruFT 10 65.56 89.55 87.50 93.15 91.57 80.14 95.41 89.14

D.2 Considering Dependency

We evaluate our approach with and without considering parameter dependency, as shown in Table 11 and
Table 12.

Table 11: Fine-tuning image models by our SPruFT for 5 epochs. “dep” refers to whether parameter
dependencies are involved or not. ℓ2, Taylor, and QMTaylor represent the magnitude, Taylor importance,
and Quantiles-Mean Taylor importance (Equation 8). Note that QMTaylor is not applied to fine-tuning
Caltech101 due to its significantly imbalanced labels. All reported results are validation accuracies. Bold
indicates the superior results achieved through dependency searching compared to not searching. Underline
highlights the best fine-tuning results.

data CIFAR100 Tiny-ImageNet Caltech101

model dep ℓ2 Taylor QMTaylor ℓ2 Taylor QMTaylor ℓ2 Taylor

DeiT % 88.05 88.70 89.37 89.31 89.69 89.75 95.01 95.41
! 86.43 87.33 88.08 85.56 85.92 86.49 65.35 78.04

ViT % 87.13 88.06 88.51 90.78 90.87 90.90 92.69 93.96
! 85.24 86.83 87.91 88.83 88.95 89.67 56.30 77.82

RN % 82.25 82.36 83.50 79.83 79.66 80.02 93.13 92.56
! 78.63 78.62 81.18 69.87 69.24 72.51 54.68 52.71

RNX % 86.12 85.94 86.93 83.88 83.88 84.17 95.71 95.84
! 84.71 85.01 85.48 79.39 78.95 79.54 92.13 91.82

We utilize various importance metrics to fine-tune both models using our approach, with and without
incorporating parameter dependencies, and report the results to compare their performances. Searching
for dependencies in structured pruning is natural, as dependent parameters are pruned together. However,
important neurons in a given layer do not always have dependent neurons that are also important in their
respective layers. As demonstrated in Table 11, fine-tuning without considering parameter dependencies
outperforms fine-tuning incorporating dependencies in all cases. For importance metrics, although the
differences between them are not substantial, all results consistently conclude that the Quantile-Mean Taylor
importance demonstrates a slight improvement over the standard Taylor importance. Furthermore, both the
Quantile-Mean Taylor and standard Taylor metrics outperform the magnitude importance.

Table 12 suggests a slightly different conclusion: the impact of parameter dependencies on performance
is minor, nearly negligible12. However, searching for dependencies involves additional implementations
and computational overhead. Combining the results of image models, the conclusion is not searching for

12The results of using magnitude importance on the RTE task show significant variation, but this is likely due to the small
sample size and the hardness of the task, which result in the unstable performances observed in our experiments. Aside from
RTE, the results on other tasks are not significantly different.

24

Under review as submission to TMLR

Table 12: Fine-tuning DeBERTaV3 on GLUE by our SPSFT for 10 epochs. “dep” refers to whether parameter
dependencies are involved or not. Taylor and ℓ2 indicate the magnitude and Taylor importance. The
importance score is Taylor. We do not apply QMTaylor since the number of labels is tiny. ‘mcc’, ‘acc’,
and ‘corr’ represent ‘Matthews correlation’, ‘accuracy’, and ‘Pearson correlation’, respectively. All reported
metrics are based on validation results. Bold indicates the best results of whether considering dependencies.

task CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B

imp dep mcc acc acc acc acc acc acc corr

Taylor % 65.56 89.55 87.50 93.15 91.57 80.14 95.41 89.14
! 67.49 89.85 87.25 93.30 91.63 79.42 95.07 89.98

ℓ2 % 65.40 89.77 83.33 92.64 91.34 74.73 94.04 88.69
! 66.80 90.22 84.07 93.94 91.57 79.06 95.07 87.39

the parameter dependencies. For importance metrics, this experiment shows that magnitude and Taylor
importance perform similarly.

D.3 Memory Measurement

In this study, we detail the memory measurement methodology employed. The total memory requirements
can be categorized into three main components:

memTTL = memM + memFT + memAux,

where:

1. memTTL is the total memory consumed during training.

2. memM represents the memory consumed by the base model itself.

3. memFT corresponds to the memory required for the fine-tuning parameters and their gradients.

4. memAux accounts for any additional memory usage, including optimizer states, caching, and other
intermediate computations.

We yield memM by measuring the memory usage during inference on the training data using the pre-trained
model. The combined memory usage of memFT and memAux is calculated as the difference between memTTL
and memModel. For simplicity, we consistently report memFT+memAux as “mem” in all comparisons presented
in this study.

Table 13: The requirements of computation resources for fine-tuning. ‘mem’ traces memTTL − memM. ‡

indicates that we freeze the layers for queue, key, and value projection. All fine-tuning parameters are stored
in full precision. We also examined the training time and observed that DoRA requires 50% to 100% more
time than other methods, while LoRA, RoSA, and our approach need similar training time (differing only
by a few seconds). However, due to the influence of various factors on training time and the difficulty of
ensuring a fair comparison, we chose not to include these results in our report.

Llama2(7B) Llama3(8B)

FT setting #param memTTL memM mem #param memTTL memM mem

LoRA, r = 64 159.9M(2.37%) 53.33GB 29.87GB 23.46GB 167.8M(2.09%) 64.23GB 33.86GB 30.37GB
RoSA, r = 32, d = 1.2% 157.7M(2.34%) 74.56GB 29.87GB 44.69GB 167.6M(2.09%) 82.26GB 33.86GB 48.40GB
DoRA, r = 64 161.3M(2.39%) 74.72GB 29.87GB 44.85GB 169.1M(2.11%) 85.31GB 33.86GB 51.45GB
VeRA, r = 64 1.37M(0.02%) 52.84GB 29.87GB 22.97GB 1.39M(0.02%) 63.35GB 33.86GB 29.49GB
SPruFT, r = 128 145.8M(2.16%) 47.49GB 29.87GB 17.62GB 159.4M(1.98%) 58.35GB 33.86GB 24.49GB

LoRA‡, r = 64 109.6M(1.63%) 48.68GB 29.87GB 18.81GB 130.0M(1.62%) 59.90GB 33.86GB 26.04GB
RoSA‡, r = 32, d = 1.2% 113.2M(1.68%) 69.70GB 29.87GB 39.83GB 139.1M(1.74%) 77.60GB 33.86GB 43.74GB
DoRA‡, r = 64 110.5M(1.64%) 64.05GB 29.87GB 34.18GB 131.2M(1.64%) 77.97GB 33.86GB 44.11GB
VeRA, r = 64 0.84M(0.01%) 47.63GB 29.87GB 17.76GB 1.05M(0.01%) 59.64GB 33.86GB 25.78GB
SPruFT‡, r = 128 95.4M(1.42%) 45.45GB 29.87GB 15.58GB 109.1M(1.36%) 56.57GB 33.86GB 22.71GB

25

Under review as submission to TMLR

D.4 Resource Requirements

𝐱

∆V = BA

∇∆V=
∇W′

V + ∆V 𝑐

Next layer

Τ𝜕𝐿 𝜕𝐦

DoRA Initial V = W, 𝐦 = W 𝑐

𝐱
∇𝐱= ∇𝐡 ∙ W′

V + ∆V ∈ ℝ𝑑𝑜𝑢𝑡 ×𝑑𝑖𝑛V

BA

W′ =
V + ∆V

V + ∆V 𝑐

∇W′= ∇𝐡 ∙ 𝐱

𝐡 = W′𝐱
∇𝐡= ∇out ∙ 𝐦

𝐡out = 𝐦
V + ∆V

V + ∆V 𝑐
𝐱

∇out= Τ𝜕L 𝜕𝐡out

𝐦𝐡

W′𝐱

Τ𝜕𝐿 𝜕B

Τ𝜕𝐿 𝜕A

previous layer

dropout

Figure 4: The illustration of DoRA’s computation
graph. Black operations occur during the forward
pass, while orange operations take place during
the backward pass.

Table 13 presents the resource requirements of various
PEFT methods. We compare our approach with LoRA
and several of its variants that maintain or surpass LoRA’s
performance. As shown, our method is the most resource-
efficient among these approaches. The subsequent ab-
lation study further demonstrates that our approach
achieves performance comparable to LoRA. We exclude
comparisons with VeRA (Kopiczko et al., 2024), which
proposes sharing a single pair of random low-rank ma-
trices across all layers to save memory footprint. While
VeRA achieves some memory savings, its performance
often deteriorates.

We note that while our approach offers significant memory
efficiency, this benefit is less pronounced in small-scale
models, where the primary memory consumption arises
from the dataset—especially with large batch sizes. The
main advantage of our method in these cases is the reduced
FLOPs due to fewer trainable parameters. Therefore, we
do not highlight memory efficiency in small-scale model
scenarios.

In Section 3, we explain that the memory usage of DoRA is
significantly higher than that of LoRA due to its complex
computation. We demonstrate the computation graph
of DoRA here, as shown in Figure 4. DoRA decomposes
W into magnitude m and direction V and computes
the final parameters matrix by W′ = m V+∆V

||V+∆V||c
. This

complicated computation significantly increases memory
usage because it requires caching a lot of intermediate
values for computing gradients of B, A, and m. As
illustrated in Figure 4, each node passed by backpropagation stores some intermediate values for efficient
gradient computing.

D.5 Cache Benefit

In the main context, we have already shown the memory cost of dropout layers in LoRA, in this section, we
will discuss some other benefits of our approach. Figure 5 illustrates the computation and cache requirements
in backpropagation (Rumelhart et al., 1986). For simplicity, we replace the notation f(·, ·) with different h.
With the same number of trainable parameters, our approach eliminates the need to cache h = ∆Wx shown
in the figure. While this benefit is negligible under lower rank settings (r) or when the number of fine-tuning
layers is small, it becomes significant as the model size and rank settings increase. Although the caching
requirement for h can be addressed by recomputing h = Ax during backpropagation, this would result in
increased time complexity during training.

D.6 Rank Settings

We present an ablation study of rank settings here. Table 14 demonstrates that r = 16 is sufficient for LoRA
when fine-tuning Llama-2 and Llama-3. In contrast, increasing r for our approach yields slight performance
improvements. The most remarkable observation in Table 14 is the exceptional memory efficiency of our
approach: even with r = 128, the memory usage of our method is significantly lower than that of LoRA with
r = 16.

Table 15 and Table 16 are the full tables of importance evaluation for Llama2 and Llama3.

26

Under review as submission to TMLR

𝐱

W𝐱 A𝐱

B𝐡

𝐡right = BA𝐱

Cache ∇right= Τ𝜕L 𝜕𝐡right

𝐡left + 𝐡right

𝐡left = W𝐱

Next layer

Cache 𝐡out = 𝐡left + 𝐡right

Cache 𝐡 = A𝐱

Τ𝜕𝐿 𝜕B = ∇right𝐡

𝐱

W𝐱 W𝑓𝐱

M𝐡

𝐡right = MW𝑓𝐱

No cache ∇right

𝐡left + 𝐡right

𝐡left = W𝐱

Next layer

Cache 𝐡out = 𝐡left + 𝐡right

No cache 𝐡 = W𝑓𝐱

LoRA Our approach

Cache 𝐱 Cache 𝐱

Fix M

dropout

Cache dropout mask
No cache dropout mask

Figure 5: The illustration of backpropagation highlights the operations involved. Black operations occur
during the forward pass, while orange operations take place during the backward pass. Blue operations
highlight the benefits of our approach. Notably, since M is non-trainable, caching ∆Wx during the forward
pass is unnecessary, leading to significant memory savings. Additionally, in practice, PyTorch caches ∂L

∂hright

to efficiently compute ∂L
∂B , although this caching is not strictly required for backpropagation.

Table 14: Similar to Table 2, this is the full table with different rank settings for our SPruFT and LoRA. We
also present the results of freezing queue-, key-, and value-projection in this table (‡)

Model, ft setting mem #param BoolQ PIQA SIQA HS WG ARC-c ARC-e OBQA Avg

Llama2(7B), LoRA, r = 16 21.64GB 40.0M(0.59%) 76.4 71.4 69.4 81.2 59.8 67.0 81.4 73.2 72.48
Llama2(7B), SPruFT, r = 32 15.57GB 36.4M(0.54%) 78.2 73.6 67.4 79.4 58.8 69.0 82.2 69.4 72.25

Llama2(7B), LoRA, r = 32 22.21GB 80.0M(1.19%) 74.8 74.2 71.4 78.4 58.6 67.0 82.2 69.6 72.03
Llama2(7B), SPruFT, r = 64 16.20GB 72.9M(1.08%) 78.0 73.8 66.4 83.4 59.6 69.4 79.0 71.6 72.65

Llama2(7B), LoRA, r = 64 23.46GB 159.9M(2.37%) 77.0 76.2 67.8 84.2 62.6 70.0 82.0 74.0 74.23
Llama2(7B), SPruFT, r = 128 17.62GB 145.8M(2.16%) 80.0 75.2 67.6 85.0 63.4 70.8 82.4 71.8 74.53

Llama2(7B), LoRA‡, r = 16 17.62GB 27.4M(0.41%) 80.4 75.6 68.2 77.4 58.0 66.4 80.2 71.8 72.25
Llama2(7B), SPruFT‡, r = 32 14.29GB 23.9M(0.35%) 82.6 73.0 64.4 80.0 61.4 64.8 80.4 70.2 72.10

Llama2(7B), LoRA‡, r = 32 17.95GB 54.8M(0.81%) 75.6 76.0 68.6 79.2 63.6 67.2 82.0 71.0 72.90
Llama2(7B), SPruFT‡, r = 64 14.67GB 47.7M(0.71%) 78.2 75.8 66.4 81.4 59.2 67.8 78.8 72.0 72.45

Llama2(7B), LoRA‡, r = 64 18.81GB 109.6M(1.63%) 79.6 73.8 67.0 80.4 62.6 69.2 81.0 70.4 73.00
Llama2(7B), SPruFT‡, r = 128 15.58GB 95.4M(1.42%) 81.4 75.0 67.2 80.4 65.0 69.2 79.8 73.8 73.98

Llama3(8B), LoRA, r = 16 28.86GB 41.9M(0.52%) 85.2 80.8 68.4 81.8 69.0 79.4 90.0 77.0 78.95
Llama3(8B), SPruFT, r = 32 22.62GB 39.8M(0.50%) 81.2 82.2 68.2 85.4 63.4 79.4 87.6 80.8 78.53

Llama3(8B), LoRA, r = 32 29.37GB 83.9M(1.04%) 85.2 81.8 68.2 87.8 67.0 76.4 89.2 80.4 79.50
Llama3(8B), SPruFT, r = 64 23.23GB 79.7M(0.99%) 83.2 80.6 69.4 86.0 60.6 78.4 83.4 81.4 77.88

Llama3(8B), LoRA, r = 64 30.37GB 167.8M(2.09%) 84.2 77.0 63.2 84.2 67.2 76.4 88.8 71.0 76.50
Llama3(8B), SPruFT, r = 128 24.49GB 159.4M(1.98%) 87.6 77.4 71.4 85.4 70.2 79.8 90.8 81.8 80.55

Llama3(8B), LoRA‡, r = 16 24.88GB 32.5M(0.41%) 83.8 83.6 73.8 86.6 67.4 79.6 91.2 78.6 80.58
Llama3(8B), SPruFT‡, r = 32 21.37GB 27.3M(0.34%) 83.2 82.6 66.6 86.0 65.6 82.4 89.8 80.4 79.58

Llama3(8B), LoRA‡, r = 32 25.28GB 65.0M(0.81%) 83.0 68.8 71.4 85.2 66.2 81.0 91.6 79.6 78.35
Llama3(8B), SPruFT‡, r = 64 21.81GB 54.5M(0.68%) 84.4 78.0 71.0 83.2 69.0 79.0 84.4 83.4 79.05

Llama3(8B), LoRA‡, r = 64 26.04GB 130.0M(1.62%) 86.2 81.6 67.8 81.8 66.0 73.8 86.2 78.2 77.73
Llama3(8B), SPruFT‡, r = 128 22.71GB 109.1M(1.36%) 89.4 79.0 71.2 86.2 71.8 83.0 86.8 76.2 80.45

27

Under review as submission to TMLR

Table 15: Similar to Table 6, this is the full table with different rank settings. We also present the results of
freezing queue-, key-, and value-projection in this table (‡).

Model, ft setting BoolQ PIQA SIQA HS WG ARC-c ARC-e OBQA Avg

Llama2(7B), SPruFT

r = 32, random 72.2 70.8 65.6 77.0 55.4 71.0 77.0 69.2 69.80
r = 32, ℓ2 78.2 73.6 67.4 79.4 58.8 69.0 82.2 69.4 72.25
r = 32, ZOTaylor 74.4 72.0 66.6 80.4 63.4 71.8 76.6 73.6 72.35

r = 64, random 71.0 68.0 62.8 74.2 63.6 66.6 78.0 71.4 69.45
r = 64, ℓ2 78.0 73.8 66.4 83.4 59.6 69.4 79.0 71.6 72.65
r = 64, ZOTaylor 78.2 71.0 68.4 80.8 62.0 69.6 81.0 71.4 72.80

r = 128, random 80.0 70.6 69.8 68.2 57.4 67.6 74.6 70.2 69.80
r = 128, ℓ2 80.0 75.2 67.6 85.0 63.4 70.8 82.4 71.8 74.53
r = 128, ZOTaylor 79.4 74.4 67.0 82.4 65.0 72.4 83.0 71.2 74.35

r = 32‡, random 78.0 71.2 64.8 72.6 55.8 67.8 76.4 69.8 69.55
r = 32‡, ℓ2 82.6 73.0 64.4 80.0 61.4 64.8 80.4 70.2 72.10
r = 32‡, ZOTaylor 77.4 71.2 65.6 78.0 59.4 68.8 79.8 69.0 71.15

r = 64‡, random 75.8 71.0 64.4 70.0 58.8 71.2 79.8 72.0 70.38
r = 64‡, ℓ2 78.2 75.8 66.4 81.4 59.2 67.8 78.8 72.0 72.45
r = 64‡, ZOTaylor 81.4 71.4 67.0 82.2 61.6 71.2 80.0 72.0 73.34

r = 128‡, random 75.8 75.2 67.2 79.2 64.0 69.6 77.0 68.6 72.08
r = 128‡, ℓ2 81.4 75.0 67.2 80.4 65.0 69.2 79.8 73.8 73.98
r = 128‡, ZOTaylor 81.0 74.4 69.0 81.0 64.6 70.6 81.2 72.8 74.30

Llama3(8B), SPruFT

r = 32, random 83.8 78.4 59.2 86.4 69.8 79.4 88.4 76.6 77.75
r = 32, ℓ2 81.2 82.2 68.2 85.4 63.4 79.4 87.6 80.8 78.53
r = 32, ZOTaylor 81.6 78.4 70.4 85.0 63.2 79.2 88.2 84.6 78.83

r = 64, random 82.6 73.4 68.8 72.6 63.4 74.0 81.6 75.0 73.93
r = 64, ℓ2 83.2 80.6 69.4 86.0 60.6 78.4 83.4 81.4 77.88
r = 64, ZOTaylor 81.8 78.0 68.4 85.4 64.6 77.6 85.8 82.4 78.00

r = 128, random 84.2 77.4 70.2 72.0 72.4 72.8 84.0 75.6 76.08
r = 128, ℓ2 87.6 77.4 71.4 85.4 70.2 79.8 90.8 81.8 80.55
r = 128, ZOTaylor 89.0 78.8 70.6 86.2 69.4 80.4 92.0 83.8 81.28

r = 32‡, random 81.6 80.0 69.2 87.6 69.8 82.4 89.6 85.0 80.65
r = 32‡, ℓ2 83.2 82.6 66.6 86.0 65.6 82.4 89.8 80.4 79.58
r = 32‡, ZOTaylor 86.2 77.6 72.2 84.0 65.6 78.8 90.0 86.4 80.10

r = 64‡, random 81.2 80.2 61.8 82.8 70.6 79.6 89.2 82.0 78.43
r = 64‡, ℓ2 84.4 78.0 71.0 83.2 69.0 79.0 84.4 83.4 79.05
r = 64‡, ZOTaylor 84.6 79.0 72.4 88.0 61.2 78.4 88.8 86.8 79.90

r = 128‡, random 82.8 75.2 68.8 83.8 67.8 78.2 83.0 78.0 77.20
r = 128‡, ℓ2 89.4 79.0 71.2 86.2 71.8 83.0 86.8 76.2 80.45
r = 128‡, ZOTaylor 90.6 77.0 71.0 84.0 72.6 80.0 92.6 86.6 81.80

Table 16: Importance evaluation for Llama2 and Llama3 on MT-Bench. We also present the results of
freezing queue-, key-, and value-projection in this table (‡). Bold indicates the best result on the same task.

Model, ft setting Coding Extraction Humanities Math Reasoning Roleplay Stem Writing Avg

Llama2(7B), SPruFT

r = 128, random 0.67 3.44 5.11 1.67 3.50 4.95 4.41 3.89 3.45
r = 128, ℓ 1.82 2.55 4.80 2.08 4.07 4.79 4.50 3.53 3.52
r = 128, ZOTaylor 1.42 2.63 5.16 2.36 3.67 5.20 4.39 4.11 3.62

r = 128‡, random 2.31 2.90 4.75 2.77 2.94 4.61 4.35 4.15 3.60
r = 128‡, ℓ 1.08 2.10 4.60 1.15 3.80 4.22 4.33 3.42 3.09
r = 128‡, ZOTaylor 2.44 2.63 5.20 2.21 2.93 5.00 4.94 3.95 3.66

Llama3(8B), SPruFT

r = 128, random 3.22 3.74 4.72 3.33 3.50 5.20 6.38 5.11 4.40
r = 128, ℓ 3.88 5.11 6.11 3.83 4.21 5.35 6.44 5.40 5.04
r = 128, ZOTaylor 4.13 4.78 6.89 6.33 4.08 5.95 5.39 5.16 5.34

r = 128‡, random 3.56 5.06 5.68 4.69 4.00 5.26 6.17 6.00 5.05
r = 128‡, ℓ 4.75 4.78 5.16 3.67 3.31 6.25 6.06 5.00 4.87
r = 128‡, ZOTaylor 4.13 5.38 6.05 4.79 5.00 5.22 5.88 5.21 5.21

28

Under review as submission to TMLR

D.7 Benefit of Freezing Attention Blocks

Table 17: Same results of Table 14 with a reordering of the rows. This table is for comparing fine-tuning all
linear layers with freezing queue-, key-, and value-projection.

Model, ft setting mem #param BoolQ PIQA SIQA HS WG ARC-c ARC-e OBQA Avg

Llama2(7B), LoRA, r = 16 21.64GB 40.0M(0.59%) 76.4 71.4 69.4 81.2 59.8 67.0 81.4 73.2 72.48
Llama2(7B), LoRA‡, r = 32 17.95GB 54.8M(0.81%) 75.6 76.0 68.6 79.2 63.6 67.2 82.0 71.0 72.90

Llama2(7B), LoRA, r = 32 22.21GB 80.0M(1.19%) 74.8 74.2 71.4 78.4 58.6 67.0 82.2 69.6 72.03
Llama2(7B), LoRA‡, r = 64 18.81GB 109.6M(1.63%) 79.6 73.8 67.0 80.4 62.6 69.2 81.0 70.4 73.00

Llama2(7B), SPruFT, r = 32 15.57GB 36.4M(0.54%) 78.2 73.6 67.4 79.4 58.8 69.0 82.2 69.4 72.25
Llama2(7B), SPruFT‡, r = 64 14.67GB 47.7M(0.71%) 78.2 75.8 66.4 81.4 59.2 67.8 78.8 72.0 72.45

Llama2(7B), SPruFT, r = 64 16.20GB 72.9M(1.08%) 78.0 73.8 66.4 83.4 59.6 69.4 79.0 71.6 72.65
Llama2(7B), SPruFT‡, r = 128 15.58GB 95.4M(1.42%) 81.4 75.0 67.2 80.4 65.0 69.2 79.8 73.8 73.98

Llama3(8B), LoRA, r = 16 28.86GB 41.9M(0.52%) 85.2 80.8 68.4 81.8 69.0 79.4 90.0 77.0 78.95
Llama3(8B), LoRA‡, r = 32 25.28GB 65.0M(0.81%) 83.0 68.8 71.4 85.2 66.2 81.0 91.6 79.6 78.35

Llama3(8B), LoRA, r = 32 29.37GB 83.9M(1.04%) 85.2 81.8 68.2 87.8 67.0 76.4 89.2 80.4 79.50
Llama3(8B), LoRA‡, r = 64 26.04GB 130.0M(1.62%) 86.2 81.6 67.8 81.8 66.0 73.8 86.2 78.2 77.73

Llama3(8B), SPruFT, r = 32 22.62GB 39.8M(0.50%) 81.2 82.2 68.2 85.4 63.4 79.4 87.6 80.8 78.53
Llama3(8B), SPruFT‡, r = 64 21.81GB 54.5M(0.68%) 84.4 78.0 71.0 83.2 69.0 79.0 84.4 83.4 79.05

Llama3(8B), SPruFT, r = 64 23.23GB 79.7M(0.99%) 83.2 80.6 69.4 86.0 60.6 78.4 83.4 81.4 77.88
Llama3(8B), SPruFT‡, r = 128 22.71GB 109.1M(1.36%) 89.4 79.0 71.2 86.2 71.8 83.0 86.8 76.2 80.45

We now assess different fine-tuning strategies. Table 17 highlights the importance of selecting fine-tuning layers
strategically to minimize redundant memory usage. Freezing the self-attention blocks achieves performance
comparable to fine-tuning all layers while significantly reducing memory consumption during training. This
efficiency stems from reducing the need to cache intermediate outputs for gradient computation. For example,
as illustrated in Figure 5, using LoRA, ∇out must be cached to compute ∂L

∂A for the subsequent layer. Freezing
the next layer eliminates this caching requirement, further optimizing memory usage.

E Details of Datasets

E.1 Vision Benchmarks

CIFAR100: CIFAR100 (Krizhevsky et al., 2009) has 100 classes with 600 images of size 32x32 per class, while
the CIFAR10 has 10 classes with 6000 images per class. In this study, we use the CIFAR100 downloaded from
huggingface (https://huggingface.co/datasets/uoft-cs/cifar100) with 500 training images and 100
validation images per class. In our experiments, we resize the images to 256x256, crop the center to 224x224,
and normalize them using the CIFAR mean (0.507, 0.487, 0.441) and standard deviation (0.267, 0.256, 0.276)
for the three channels.

Tiny-ImageNet: Tiny-ImageNet (Tavanaei, 2020) has 200 classes with images of size 64x64, while the
full ImageNet-1k (Deng et al., 2009) has all 1000 classes where each image is the standard size 224x224. In
this study, we use the Tiny-ImageNet downloaded from huggingface (https://huggingface.co/datasets/
zh-plus/tiny-imagenet) with 500 training images and 50 validation images per class. In our experi-
ments, we resize the images to 256x256, crop the center to 224x224, and normalize them using the mean
(0.485, 0.456, 0.406) and standard deviation (0.229, 0.224, 0.225) for the three channels.

caltech101: Caltech101 (Li et al., 2022) consists of 101 classes, with images of varying sizes typically having
edge lengths between 200 and 300 pixels. Each class contains approximately 40 to 800 images, resulting in a
total of around 9,000 images. In this study, we use the Caltech101 dataset provided by PyTorch (https:
//pytorch.org/vision/main/generated/torchvision.datasets.Caltech101.html), allocating 75% of
the images for training and the remaining 25% for validation. In our experiments, we preprocess the
images by resizing them to 256×256, cropping the center to 224×224, and normalizing them using the mean
(0.485, 0.456, 0.406) and standard deviation (0.229, 0.224, 0.225) for the three channels.

29

https://huggingface.co/datasets/uoft-cs/cifar100
https://huggingface.co/datasets/zh-plus/tiny-imagenet
https://huggingface.co/datasets/zh-plus/tiny-imagenet
https://pytorch.org/vision/main/generated/torchvision.datasets.Caltech101.html
https://pytorch.org/vision/main/generated/torchvision.datasets.Caltech101.html

Under review as submission to TMLR

E.2 General Language Understanding Evaluation Benchmark (GLUE)

CoLA: The Corpus of Linguistic Acceptability (CoLA) is a dataset for assessing linguistic acceptabil-
ity (Warstadt et al., 2018). This task is a binary classification for predicting whether a sentence is grammati-
cally acceptable. The dataset is primarily from books and journal articles on linguistic theory.

MNLI: The Multi-Genre Natural Language Inference (MultiNLI) is a dataset designed to evaluate a model’s
ability to perform natural language inference (NLI). The task is to predict whether the premise entails the
hypothesis, contradicts the hypothesis, or neither. The data set contains 433k sentence pairs annotated with
textual entailment information (Williams et al., 2018).

MRPC: The Microsoft Research Paraphrase Corpus (Dolan & Brockett, 2005) is a dataset designed for
evaluating paraphrase detection systems. It consists of sentence pairs, with binary labels of whether the two
sentences in the pair are equivalent. The data are automatically extracted from online news and labeled by
humans.

QNLI: The Stanford Question Answering Dataset (SQuAD) is a dataset designed for machine comprehension
of text (Rajpurkar et al., 2016). The dataset consists of question-paragraph pairs, where one of the sentences
in the paragraph contains the answer to the corresponding question. The paragraphs are from Wikipedia and
the questions are written by human annotators.

QQP: The Quora Question Pairs (QQP) dataset is a dataset of question pairs (https://data.quora.com/
First-Quora-Dataset-Release-Question-Pairs). The task is to determine whether two questions are
semantically equivalent.

RTE: The Recognizing Textual Entailment (RTE) datasets are a series of challenges that evaluate models’
ability to determine whether a premise can entail a given hypothesis (Dagan et al., 2006; Bar-Haim et al.,
2006; Giampiccolo et al., 2007; Bentivogli et al., 2009). The data are constructed based on the texts from
Wikipedia and news. The datasets have been used to evaluate the performance of both traditional language
models and the state-of-the-art LLMs.

SST-2: The Stanford Sentiment Treebank is a dataset of sentences extracted from movie reviews (Socher
et al., 2013). Each sentence is labeled as either positive or negative. The task is to predict whether the
sentence is positive or negative.

STS-B: The Semantic Textual Similarity Benchmark (STSB) is a dataset with sentence pairs collected from
news headlines, video and image captions, and natural language inference data (Cer et al., 2017). The task is
to predict the semantic similarity between pairs of sentences. Each pair of sentences is annotated with a
similarity score ranging from 0 to 5, where 0 indicates no semantic similarity and 5 indicates semantically
equivalent.

E.3 Text-Generation Datasets

GSM8k: GSM8K (Grade School Math 8K) is a dataset of 8792 high-quality grade school math problems,
including problems in diverse languages. These problems take between 2 and 8 steps of elementary calculations
using basic arithmetic operations (+ − ×÷) to solve. The dataset was created to support the task of question
answering on basic mathematical problems to evaluate the model’s ability of basic arithmetic reasoning.

Stanford Alpaca: Alpaca is an instruction dataset designed for instruction training of pre-trained language
models (Taori et al., 2023). It contains 52002 instruction-response pairs generated by OpenAI’s text-davinci-
003 engine or written by humans. Note that there is only a training split in this dataset. Models fine-tuned
on Alpaca are often evaluated by other tasks like “EleutherAI LM Harness”. Alpaca-GPT is an updated
version with the answers generated by GPT-4 (Achiam et al., 2023).

ARC: The AI2 Reasoning Challenge (ARC) dataset consists of grade-school level, multiple-choice science
questions (Clark et al., 2018). ARC dataset includes a Challenge Set and an Easy Set. The easy set contains
questions that can be answered with straightforward reasoning, while the challenge set requires deeper
understanding and more reasoning skills. The ARC-Easy includes 2251 training samples, 570 validation

30

https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs

Under review as submission to TMLR

samples, and 2376 test samples and the ARC-Challenge includes 1119 training samples, 299 validation samples,
and 1172 test samples.

BoolQ: Boolean Questions (BoolQ) is a dataset of yes/no question answering (Clark et al., 2019) and includes
9427 training samples and 3270 validation samples. The dataset is designed to assess models’ comprehension
and reasoning abilities. Each example contains question, passage, answer, and title.

HellaSwag: HellaSwag is a dataset designed to evaluate the models’ abilities in generating reasonable
contexts (Zellers et al., 2019). It consists of prompts with a short context followed by multiple possible
continuations. The goal is to find the correct or most plausible option. The training set, validation set, and
test set have 39905 samples, 10042 samples, 10003 samples, respectively.

OpenBookQA: OpenBookQA is a question-answering dataset (Mihaylov et al., 2018) comprising 4957
training samples, 500 validation samples, and 500 test samples. It requires reasoning ability and a deeper
understanding of common knowledge to answer questions. Each data contains a short passage with multiple
possible answers. The dataset emphasizes the integration of world knowledge and reasoning skills, making it
a challenging benchmark for natural language processing models. It tests models’ abilities to understand and
apply factual information effectively to solve problems.

WinoGrande: WinoGrande is a dataset of 44k problems for choosing the right option for a given sen-
tence (Sakaguchi et al., 2021). It includes 40938 samples in the training set, 1,267 in the validation set,
and 1,267 in the test set. The dataset is designed to assess models’ commonsense reasoning abilities. The
examples contain sentences with fill-in-blanks that require the model to select the most appropriate option to
complete the sentence.

SocialIQA: The SocialIQA dataset is a benchmark designed to evaluate a model’s ability to reason about
social interactions, including understanding social dynamics, intentions, and the effects of human actions (Sap
et al., 2019). SocialIQA includes 33410 samples in the training set and 1954 in the validation set.

PIQA: The PIQA (Physical Interaction Question Answering) dataset is a benchmark designed to evaluate a
model’s ability to understand and reason about everyday physical interactions and affordances (Bisk et al.,
2020). Here are some key details about PIQA: (Sakaguchi et al., 2021). PIQA contains 16113 samples in the
training set and 1838 in the validation set.

31

	Introduction
	Our Contributions

	Background and Related Work
	Number of Trainable Parameters Is Not Everything
	Our Method
	Proposed Method
	QSPruFT: Extension Approach with Low Quantization Error
	Broader Impacts: Importance Metrics
	Class Aware Taylor Importance
	Zero-Order Taylor Importance

	Experimental Setup
	Results and Discussion
	Main Results of LLM
	Importance Metrics
	Results of Quantized Models

	Conclusions and Future Work
	Importance Metrics
	Missing Proofs
	Parameter Dependency
	Ablation Studies and Related Analysis
	Hyperparameter Settings
	Considering Dependency
	Memory Measurement
	Resource Requirements
	Cache Benefit
	Rank Settings
	Benefit of Freezing Attention Blocks

	Details of Datasets
	Vision Benchmarks
	General Language Understanding Evaluation Benchmark (GLUE)
	Text-Generation Datasets

