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Abstract

Bayesian nonparametric methods are naturally suited to the problem of out-of-distribution
(OOD) detection. However, these techniques have largely been eschewed in favor of simpler
methods based on distances between pre-trained or learned embeddings of data points.
Here we show a formal relationship between Bayesian nonparametric models and the relative
Mahalanobis distance score (RMDS), a commonly used method for OOD detection. Building
on this connection, we propose Bayesian nonparametric mixture models with hierarchical
priors that generalize the RMDS. We evaluate these models on the OpenOOD detection
benchmark and show that Bayesian nonparametric methods can improve upon existing OOD
methods, especially in regimes where training classes differ in their covariance structure and
where there are relatively few data points per class.

1 Introduction

Machine learning systems inevitably face data that deviate from their training distributions. Generally, this
data is either sparsely labeled or wholly unsupervised. Faced with such a dynamic environment, an intelligent
system must accurately detect outliers and respond appropriately. This capability is the subject of modern
research on out-of-distribution (OOD) detection (Hendrycks & Gimpel, 2017), anomaly detection Chandola
et al. (2009), and open-set recognition (Scheirer et al., 2012).

Outlier detection is one of the oldest problems in statistics (Anscombe, 1960), and there are well-established
methods for tackling this canonical problem. For example, Bayesian nonparametric methods offer a coherent,
probabilistic framework for estimating the probability that a data point belongs to a new cluster (Ferguson,
1973; Antoniak, 1974; Lo, 1984; Sethuraman, 1994; MacEachern, 1994; Neal, 2000). Here, we use Dirichlet
Process Mixture Models (DPMMs) to fit a generative model to the training data. Under this model, OOD
detection reduces to a straightforward computation of the probability that a data point belongs to a novel
class.

Care must be taken with Bayesian nonparametric methods, however. Modern machine learning systems
are often built on foundation models that have been trained on massive datasets (Dosovitskiy et al., 2020;
Caron et al., 2021; Oquab et al., 2024; Darcet et al., 2024; Chen et al., 2020a;b). These models yield feature
embeddings of data points that can be used for several downstream tasks, but the embeddings are high-
dimensional. When fitting a Gaussian DPMM, for example, we must implicitly estimate the covariance of
embeddings within and across classes, which presents both computational and statistical challenges. We
propose a hierarchical model that adaptively shares statistical strength across classes when estimating these
high-dimensional covariance matrices.

Generative classifiers like these have been largely eschewed in favor of simpler distance metrics, like the
relative Mahalanobis distance score (RMDS; Ren et al., 2021). Here, we show both theoretically and em-
pirically that RMDS is a close approximation to the outlier probability under a Gaussian DPMM with tied
covariance matrices, connecting this widely-used approach to inference in a Bayesian nonparametric model.
From this perspective, we propose hierarchical models that generalize RMDS by relaxing the assumption of
equal covariance matrices across classes.
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We find that hierarchical Gaussian DPMMs offer a well-grounded and practically competitive approach to
OOD detection. Section 2 reviews related work, and Section 3 covers important background on DPMMs.
We make a theoretical connection between RMDS and DPMMs in Section 4. This connection motivates our
use of hierarchical models for estimating the high-dimensional covariance matrices in DPMMs — including
a novel “coupled diagonal covariance” model — which we describe in Section 5 and evaluate in Section 6.
We compare these models to existing baselines on synthetic datasets as well as the OpenOOD benchmark

to characterize the regimes where Bayesian nonparameteric yield improved OOD performance *.

2 Related Work

The OOD detection task has been widely studied and many solutions have been proposed. For example,
some approaches alter the architecture or objective of a classifier (Tack et al., 2020; Huang & Li, 2021;
Wei et al., 2022; Linderman et al., 2023), and others exploit auxiliary outlier datasets (Hendrycks et al.,
2019; Zhang et al., 2023). Our approach is related to a class of post-hoc methods including max softmax
probability (MSP; Hendrycks & Gimpel, 2017), temperature-scaled MSP (Guo et al., 2017), ODIN (Liang
et al., 2018), energy-based OOD Liu et al. (2020), the Mahalanobis distance score (MDS; Lee et al., 2018),
and the Relative MDS (Ren et al., 2021), which derive OOD scores from embeddings or activations of a
pre-trained network.

Recently, Zhang et al. (2024) proposed a set of Near and Far OOD benchmarks, as well as a leaderboard
named OpenOOD to facilitate comparison across methods. The OpenOOD benchmarks found (1) that
post-hoc methods are more scalable to large datasets, (2) there is no method that is best on all datasets,
and (3) methods are sensitive to which model was used for embedding. The best performing OpenOOD
methods for vision transformer (ViT) feature embeddings are the MDS and RMDS. The relative Mahalanobis
distance score was inspired by earlier work by Ren et al. (2019) that addressed the poor performance of
the OOD performance with density estimation methods. Sun et al. (2022) propose to relax some of the
assumptions of Mahalanobis distance methods by using the negative k-th nearest neighbor distances instead.
We will show that the relative Mahalanobis distance score (RMDS) is similar to scores derived from Bayesian
nonparametric mixture models in Section 4.

Bayesian nonparametric methods have previously been proposed for outlier detection and used in several
applications. Shotwell & Slate (2011) proposed to detect outliers within datasets by partitioning data via
a DPMM and identifying clusters containing a small number of samples as outliers. Varadarajan et al.
(2017) developed a method for detecting anomalous activity in video snippets by modeling object motion
with DPMMSs. Another line of work explored Dirichlet prior networks (DPN; Malinin & Gales, 2018; 2019)
that explicitly model distributional uncertainty arising from dataset shift as a Dirichlet distribution over the
categorical class probabilities. More recently, Kim et al. (2024) performed unsupervised anomaly detection
through an ensemble of Gaussian DPMMs fit to random projections of a subset of datapoints. Our work
focuses on connecting DPMMs to post-hoc confidence scores and developing hierarchical Gaussian DPMMs
that share statistical strength across classes in order to estimate their high-dimensional covariance matrices.

3 Background

We start with background on Dirichlet process mixture models (DPMMs) and the special case of a Gaussian
DPMM with tied covariance.

3.1 Dirichlet process mixture models

Dirichlet process mixture models (Lo, 1984) are Bayesian nonparametric models for clustering and density
estimation that allow for a countably infinite number of clusters. There is always some probability that a
new data point could come from a cluster that has never been seen before — i.e., that the new point is an
outlier.

1The implementation for all DPMM models and experiments is available at https://github.com/<redacted>.
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Let D = {2, yn}Y_; denote a set of training data points z,, € RP and labels y,, € [K]. Likewise, let
D = {xn : yn = k} denote the subset of points assigned to cluster k, and let Nj, = |Dj| denote the number
of such points. Now consider a new, unlabeled data point x. Under a DPMM, its corresponding label y has
probability,

Nip(e [ Dy) if k€ [K]

ap(z) ifk=K+1, M

p(y—klw,D)M{

where the hyperparameter o« € R specifies the concentration of the Dirichlet process prior.

The first case captures the probability that the new point belongs to one of the training clusters (that it is
an inlier). That probability depends on two factors: 1) the number of training data points in that cluster
since, intuitively, larger clusters are more likely; 2) the posterior predictive probability, which is obtained by
integrating over the posterior distribution of cluster parameters,

p(z | Dy) = / p(x | 6) p(6x | Dy) 6 ()
x [ote 100 | T stan | 00)] i) a0
Tn €Dy

The second case of eq. (1) captures the probability that the new point is an outlier. It depends on the
concentration « and the prior predictive probability obtained by integrating over the prior distribution of
cluster parameters,

(@)= [ pla | 60 p(60) 46 3)
For many models of interest, the posterior and prior predictive distributions have closed forms.

3.2 Gaussian DPMM with Tied Covariance

For example, consider a Gaussian DPMM in which each cluster is parameterized by a mean and covari-
ance, 0 = (ug,2x). Assume a conjugate prior for the mean, u; ~ N (uo,Xo). For now, assume that
all clusters share the same covariance matrix, which we express through an atomic prior, ¥ ~ Js. The
hyperparameters of the prior are n = (ug, 2o, ).

Under this Gaussian DPMM, the conditional distribution of a new data point’s label is,

NN | 1y, S0 + ) if k € [K]

—k|2D
Ply=kle )(X{cw\f(x,uo,Eo—l—E) it k=K + 1.

where
= 5 (S5 o + NS zy)
_ _1y—1
p=E0tHNET) (5)
and 7, = Nik ZzneDk T, is the mean of the data points assigned to cluster k.

The relative probability of theses cases is an intuitive measure of how likely a point is to be an outlier.
Indeed, the next section shows that the outlier probabilities from this Bayesian nonparametric model are
closely related to another common outlier detection score.

4 Theory: Connecting Relative Mahalanobis Distance and DPMMs

Here we show that a widely used outlier detection method called the relative Mahalanobis distance
score (RMDS; Ren et al., 2021) is closely related to the outlier probabilities obtained using a Gaussian
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DPMM with tied covariances. RMDS outputs a score, C(z), where smaller values indicate that a data point
x is more likely to be an outlier. The RMDS score of a new point z is defined as follows,?

MDy(z) = (z — i) 3g ' (z — fio)
MDy(z) = (z — fu) 'S @ — fur)
RMDy,(x) = MDg(z) — MDy()
C(z) = max RMDy(z), (6)

where MDg(z) and MDy(z) are squared Mahalanobis distances, ﬂo and 3y are the sample mean and covari-
ance of the data, /iy, is the sample mean of cluster k, and 3 = ~ Zn (@0 — fuy, ) (@n — fiy,) T is the sample
within-class covariance.

Ren et al. (2021) motivated this score in terms of log density ratios between a Gaussian distribution for each
cluster and a Gaussian “background” model. Specifically,

Nz | fus, %)

RMDy(x) = 2log —
N(@ | fio, Xo)

d, (7)

where d = log 3| — log |$o| does not depend on  or k. Larger values of RMDy(z) indicate that 2 is more
likely under cluster k& than under the background model.

The procedure for mapping RMDy (z) values to the score C(z) is inherited from the Mahalanobis distance
score (MDS; Lee et al., 2018). If the log density ratio is negative for all k, then the background model is
more likely than all of the existing clusters, and hence z is likely to be an outlier. Propositions 4.1 and 4.2
show that a similar computation is at work in the outlier probabilities for DPMMs.

First, we show that the inlier probabilities under a general DPMM (not necessarily Gaussian) can be
expressed in terms of a quantity analogous to C(z).

Proposition 4.1. The inlier probability of a general DPMM with concentration o can be expressed as follows,
p(y € [K] | ©,D) = o(C(x) — log /) (8)

where o(u) = (14 e~*)~! is the logistic function, N = &>, Ny is the average cluster size, and

K
C(z) = log Z e etlog Ni/N (9)
k=1
Dy
A = log p(s; (|m) k) (10)

Here, i, is the log density ratio of the posterior and prior predictive distributions from eq. (1).

Proof. The inlier probability is one minus the outlier probability. Normalizing the outlier probability in
eq. (1) and rearranging, we can write the inlier probability as,

ap(x)
ap(z) + Y, Nip(a | Dy)

—1
Ne/N p(x | Dk)
“1- (e M LD
—1- (1 + eC(r)—loga/ﬁ)

= o(C(x) — log /W) (11)

where C(z) is defined in eq. (9) and the last line follows from the fact that 1 — o(—u) = o (u). O

pye([K]|zD)=1-

2We flip the sign of RMDy(z) compared to Ren et al. (2021), but account for it in the definition of C(z) so that the resulting
score is unchanged. Our presentation is in keeping with the definition of the MDS score (Lee et al., 2018).
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This proposition says that the log-odds of data point z belonging to an existing cluster is the difference of
a DPMM score, C (x), which is analogous to the relative Mahalanobis score, and a threshold, log ¢/N, which
is tuned by the hyperparameter a.

Next, we show that in certain regimes, the DPMM score from a Gaussian DPMM with tied covariance is al-
most perfectly correlated with the RMDS. Below, we define the relative covariance matrix R = 28 Y 2228 1/2
and note that as its operator norm x = ||R||,, goes to 0, then we intuitively have that 3 is growing larger

with respect to 3.

Proposition 4.2. Consider o?-sub-Gaussian data in RP generated from K clusters with equal size N, where
each cluster k has mean py and common covariance ¥. If the cluster means are drawn from a Gaussian prior
N (fro,X0), then for any €,8 > 0 there exist ko, No such that if k < kg and N > No then with probability at
least 1 — ¢,

IC(X) — L[O(X) —d]| < 6 +1og K

where C(x) is the RMDS, C(z) is the DPMM score from a Gaussian DPMM with tied covariance S and
hyperparameters (fio, X0, %), and d is an additive constant, as defined in eq. (7).

Proof. We give a sketch here and refer the reader to the full proof in Appendix D. For each k, we decompose
the difference, A\, — %[RMDk(x) —d], and show that it is small. The differences can be separated into terms
that get smaller as k decreases,

|log 50 + £| — log |§30||7 (- ﬂo)T[(io +3)7t - S0t (@ — fio),
plus two more terms that decrease as N increases,
log |55 + 51 ~log S|, (&~ )™ (& — ) — (2 — )T (S + )7 (& — ).

We collect these four terms and show that each is small with high probability. Finally, since the DPMM
score is given by a log-sum-exp, which is 1-Lipschitz in the ¢, norm, it follows that if each \j is within § of
1[RMDy(z) — dJ, then C(x) is within § + log K of max, 1[RMDy(z) —d] = L[C(z) —d]. O
This proposition establishes the close correspondence between the relative Mahalanobis distance score and
the log-odds that a point is an inlier under a Gaussian DPMM with tied covariance. Note that the log K
factor in Proposition 4.2 is irreducible due to the difference between the max used in RMDS and the smooth
approximation used in DPMMs. We view this as a feature not a bug of the DPMMs: Since the log K factor
only appears when the scores for different clusters are close to identical, the gap arises when the DPMM
aggregates evidence across multiple equally plausible components rather than arbitrarily selecting a single
cluster with RMDS. In practice, we find that a close correspondence holds in the experiments below and in
Appendix H. This correspondence provides further support for using RMDS for outlier detection, beyond
the original motivation in terms of log likelihood ratios. However, from this perspective, we also recognize
several natural generalizations of RMDS that could improve outlier detection through richer DPMMs. We
present three such generalizations below.

5 Hierarchical Gaussian DPMMs

RMDS has proven to be a highly effective outlier detection method, but it assumes that all clusters share
the same covariance. This assumption helps avoid overfitting the covariance matrices for each class (Ren
et al., 2021), but it is not always warranted. Figure 1 shows a histogram of differences between empirical
covariance matrices 3, and 3y for all pairs of classes (k, k") in the Imagenet-1K dataset, as measured by
the Forstner-Moonen distance (Forstner & Moonen, 2003).

These pairwise distances are systematically larger than what we would expect under a null distribution
where the true covariance matrices are the same for all classes, and the empirical estimates differ solely due
to sampling variability. Complete details of this analysis are provided in Appendix B. This analysis suggests
that the covariance matrices are significantly different across classes and motivates a more flexible approach.
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Figure 1: Forstner-Moonen distance between covariance matrices of the 1000 classes in the Imagenet-1k ViT-B-16
feature space (Data) versus 1000 samples of covariance matrices from the Wishart null distribution, W(N,X/N).
See Appendix B for complete details.

The connection between RMDS and Gaussian DPMMs established above suggests a natural way of relax-
ing the tied-covariance assumption without sacrificing statistical power: Instead of estimating covariance
matrices independently, we could infer them jointly under a hierarchical Bayesian model (Gelman et al.,
1995). With such a model, we can estimate separate covariance matrices for each cluster, while sharing
information via a prior. By tuning the strength of the prior, we can obtain the tied covariance model in
one limit and a fully independent model in the other. Finally, we can estimate these hierarchical prior
parameters using a simple expectation-maximization algorithm that runs in a matter of minutes, even with
large, high-dimensional datasets.

5.1 Full Covariance Model

First, we propose a hierarchical Gaussian DPMM with full covariance matrices and a conjugate prior. The
cluster parameters, 6 = (ug, X), are drawn from a conjugate, normal-inverse Wishart (NIW) prior,

p(0k) =IW (Zk | 0, (o — D — 1)20) x N (1 | pro, 59 ' Ee)s (12)

where IW denotes the inverse Wishart density. Under this parameterization, E[X;] = X¢ for 19 > D + 1.
The hyperparameters of the prior are n = (v, Ko, fo, 20)-

The most important hyperparameters are vy and Y, as they specify the prior on covariance matrices. As
vy — 00, the prior concentrates around its mean and we recover a tied covariance model. For small values of
g, the hierarchical model shares little strength across clusters, and the covariance estimates are effectively
independent.

We propose a simple approach to estimate these hyperparameters in Appendix E. Briefly, we use empirical
Bayes estimates for the prior mean and covariance, setting pg = fip and g = 3. We derive an expectation-
maximization (EM) algorithm to optimize vy and ko. Thanks to the conjugacy of the model, the E-step and
the M-step for kg can be computed in closed form. We leverage a generalized Newton method (Minka, 2000)
to update the concentration hyperparameter, vy, effectively learning the strength of the prior to maximize
the marginal likelihood of the data.

Finally, the prior and posterior predictive distributions are multivariate Student’s t distributions with closed-
form densities. The log density ratios derived from these predictive distributions form the basis of the DPMM
scores, C(z).

5.2 Diagonal Covariance Model

Even with the hierarchical prior, we find that the full covariance model can still overfit to high-dimensional
embeddings. Thus, we also consider a simplified version of the hierarchical Gaussian DPMM with diagonal
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Figure 2: A: Diagonal of empirical covariance matrices, diag(f)k) for five randomly chosen clusters (colored lines)
over dimensions. Compared to the diagonal of the average covariance matrix, diag(f])7 individual clusters tend to
have systematically larger or smaller variances than average. B: The correlation between dimensions of the deviation
from the mean, S — f], of the diagonal components. The strong positive correlations between all but the first few
dimensions indicates that the relationship observed in A is consistent across all clusters.

covariance matrices. Here, the cluser parameters are 6y, = {4, O’,% d}dD:l, and the conjugate prior is,

D
p0x) = [T x 207 a | Y0.a:08,0) X N(pk.a | 104> K5 507 ) (13)
d=1

2

where x~° is the scaled inverse chi-squared density.

In addition to having fewer parameters per cluster, another advantage of this model is that it allows for
different concentration hyperparameters for each dimension, vy 4. We estimate the hyperparameters using a
procedure that closely parallels the full covariance model. Likewise, the prior and posterior predictive den-
sities reduce to products of scalar Student’s t densities, which are even more efficient to compute. Complete
details are in Appendix F.

5.3 Coupled Diagonal Covariance Model

The diagonal covariance model dramatically reduces the number of parameters per cluster, but it also makes
a strong assumption about the per-class covariance matrices. Specifically, it assumes the variances, a,%’ 4> are
conditionally independent across dimensions. Figure 2 suggests that this is not the case: the diagonals of
the empirical covariance matrices, ik, tend to be systematically larger or smaller than those of the average
covariance matrix, 3. This analysis suggests that 0,37 4 are not independent; rather, if U}%, 4 is larger than
average, then 0,37 o 18 likely to be larger as well.

We propose a novel, coupled diagonal covariance model to capture these effects. Specifically, we introduce a
scale factor v, € Ry that scales the variances for class k compared to the average. In this model, the cluster
parameters are 0 = (i, { k., 0% 4} =1 ), and the prior is,

D

p(0) = *(n | o) [ [x-%z,d | Vot 1503 0) X N it | 0,0, g 00) (14)
d=1

where 7, scales the means of o7 , for all dimensions d to capture the correlations seen above.
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Figure 3: Synthetic experiments panel. Example sampled 2D dataset from DPMM with params vy = 4 (A) and
16 (B). Each data set has K = 10 clusters with N, = 20 training data points each (colored dots). We evaluate
performance on classifying outliers (gray dots) drawn from the prior predictive distribution. C: Performance of
DPMM models vs. RMDS when sweeping over vy with N = 20 shows that DPMMs outperform when vy is small
and there is greater variation in the ¥j’s. D: Independent RMDS performance vs. DPMMs as a function of N with
vo = 4. Independent RMDS only performs well when there are adequate numbers of samples per class.

Our procedure for hyperparameter estimation and computing DPMM scores is very similar to those described
above. The only complication is that with the 7, the posterior distribution no longer has a simple closed
form. However, for any fixed value of 4, the coupled model is a straightforward generalization of the diagonal
model above. Since v is a one-dimensional variable, we can use numerical quadrature to integrate over its
possible values. Likewise, we can estimate the hyperparameter g using a generalized Newton method, just
like for the concentration parameter vy. See Appendix G for complete details of this model.

6 Experiments

We experimentally tested these hierarchical Gaussian DPMMSs on real and synthetic datasets. First we
used simulated datasets to build intuition for where hierarchical models improve performance. Then we
compared hierarchical Gaussian DPMMs to other widely-used OOD metrics on the OpenOOD Benchmark,
and we studied performance versus dimensionality of the embeddings.

6.1 Synthetically generated dataset experiments

To understand the regimes in which hierarchical models yield benefits, we simulated D = 2 dimensional data
from full covariance models with varying vy and Ni. When v is small, covariances differ considerably across
clusters, and the assumptions of the tied model (and of RMDS) are not well met. Conversely, as vy — oo,
the prior concentrates on g, and the covariances are effectively tied. Figure 3A and 3B show simulated
datasets from these two regimes. As expected, Figure 3C shows that hierarchical Gaussian DPMMs yielded
considerable improvements when vy was small, and the largest improvements came from the full covariance
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Table 1: Performance of Hierarchical Gaussian DPMM and baseline methods on the OpenOOD benchmark
datasets Yang et al. (2022); Zhang et al. (2024), including 3 ID datasets (Imagenet-1K (Russakovsky et al., 2015) and
CIFAR-10/100 (Krizhevsky et al., 2009)), and Near and Far OOD datasets. Accuracy of the classifiers on predicting
the label y € [K] for in-distribution test data is reported for each benchmark. Other columns report AUROC scores
for OOD detection on OpenOOD benchmark datasets. *We found the tied DPMM performance on Imagenet-1K
improved when the prior parameter ¥ is set to the covariance of the data. For the CIFAR experiments we set g to
the covariance of the cluster means.

CIFAR-10 CIFAR-100 Imagenet-1K

Method Accuracy  Near Far Accuracy  Near Far Accuracy  Near Far

MSP 94.93 88.36  91.80 76.19 80.33  78.88 80.90 75.80 86.30
Temp. Scale 94.93 88.43 91.84 76.19 80.57  79.25 80.90 77.29 88.62
MDS 95.04 85.41  90.15 76.10 58.86  69.29 80.41 78.97 92.57
RMDS 95.04 89.83  92.42 76.10 80.17 8297 80.41 80.03 92.59

Hierarchical Gaussian DPMMs

Tied 95.04 89.83  92.42 76.10 80.17 82.98 80.41* 79.28"  92.70"
Full 94.95 90.63 93.50 76.64 79.22  81.20 76.78 70.66 86.31
Diagonal 94.76 89.14  90.86 76.07 79.22  82.88 76.54 80.60 90.85

Coupled Diag. 94.76 88.30  90.70 76.04 78.05  79.29 76.52 80.98 90.72

model, which matched the data generating process. Notably, the tied model matched the RMDS performance,
as predicted in Section 4.

We then asked if the hierarchical model was strictly necessary or whether a simpler model would suffice. For
example, we considered an “Independent RMDS” based on Mahalanobis distances to the per-class covariance
estimates, f)k, instead of the average covariance 3. Intuitively, we expected the hierarchical models to
perform best when there were few data points per cluster relative to the dimensionality of the embeddings;
i.e., when N /D is small. Indeed, Figure 3D shows that DPMMs offered substantial improvements in this
regime, with diminishing gains as N}, increased.

These analyses suggest that hierarchical Gaussian DPMMs should yield benefits in regimes where covariances
differ across classes and the number of data points per class is relatively small.

6.2 OpenOOD Benchmark

Next, we compared hierarchical Gaussian DPMMs to other widely-used OOD detection methods on the
OpenOOD benchmark datasets Yang et al. (2022); Zhang et al. (2024). The benchmark consists of 3 in-
distribution (ID) datasets, CIFAR-10, CIFAR-100, and Imagenet-1K. For each ID dataset, several OOD
datasets are grouped into Near and Far, where the Near OOD datasets are more similar to ID. For the
Imagenet-1K experiment, we used D = 768 dimensional embeddings from the ViT-B-16 model trained ac-
cording to the DelT method (Touvron et al., 2021), which are available in the Pytorch torchvision (TorchVi-
sion maintainers and contributors, 2016) package. The CIFAR experiments use OpenOOD’s pretrained
ResNet18 (He et al., 2016) features, D = 512. We preprocessed the embeddings as described in Appendix A.
As baselines, we considered both MDS (Lee et al., 2018) and RMDS (Ren et al., 2021). We also compare
to maximum softmax probability (MSP) (Hendrycks & Gimpel, 2017) and temperature scaled MSP with
T = 1000 (Temp. Scale) (Guo et al., 2017) . We trained a single linear layer with gradient descent and
supervised cross-entropy loss for the MSP methods. For all models, we measured the accuracy of classifying
which class an in-distribution test image came from, as well as the AUROC score for outlier detection across
the OpenOOD datasets. For DPMMs, we computed AUROC scores using C(z).

Table 1 shows that hierarchical models do offer improved performance, but the results are nuanced. We found
the complexity and scale of the ID dataset determines which modeling assumptions are most appropriate.
The full covariance model yields the highest performance on Near and Far OOD on the small scale CIFAR-
10 task. Whereas the coupled diagonal model is the best performing model in Near OOD settings for the
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Figure 4: Performance on “near OOD”, “far OOD”, and in-distribution classification as a function of the feature
dimension on the Imagenet-1K task. We projected the 768-dimensional ViT-B-16 features into lower dimensions
using PCA, then projected into the eigenspace of the average within-class covariance. We compared the tied model
(with full covariance) to the hierarchical model with full, diagonal, and coupled diagonal covariance and measured
performance by area under the receiver operator curve (AUROC).

large-scale Imagenet-1K task. The full covariance model performed surprisingly poorly on the Imagenet-1K
task, and we suspected it was due to the high-dimensional embeddings. We provide expanded results tables
for each ID dataset that show performance on each OOD dataset in Appendices I to K.

6.3 Performance vs. Dimensionality

Finally, we asked how these methods compare as we vary the dimensionality of the embeddings. We suspected
that the full covariance model would perform better in lower dimensions for two reasons. First, it has
O(K D?) parameters compared to only O(KD) in the diagonal models and O(D?) in the tied model, so
even with a hierarchical prior, the full model could still overfit. This problem is exacerbated for classes
that have fewer data points than the feature dimension, in which case the prior has a strong effect on the
conditional distribution of the per-class covariance matrix and the posterior predictive distributions. Second,
we suspected that the inverse Wishart prior distribution, which has only a scalar concentration vy, may be
a poor prior for high-dimensional covariance matrices.

To test this hypothesis, we swept the number of principal components retained in preprocessing (see Ap-
pendix A). We found that out-of-distribution detection of the full-covariance hierarchical model plateaued
for D > 128 dimensional embeddings (Figure 4). By contrast, the diagonal and coupled diagonal models
performed considerably better, especially on Near OOD benchmarks. The diagonal covariance model out-
performs the tied model across all dimensions on Near OOD detection, as well as in lower dimensions for
Far OOD. However, in-distribution classification accuracy plateaus around 256 dimensions.

Altogether, these analyses of synthetic and real datasets show that hierarchical Gaussian DPMMs are ad-
vantageous for OOD detection, especially in regimes where: i) covariance matrices differ across clusters;
it) the number of data points per cluster is small compared to the dimension; and iii) detection relies on
fine-grained distinctions between training data and Near OOD test points.

7 Discussion
We developed a theoretical connection between the relative Mahalanobis distance score for outlier detection

and the outlier probability under a Gaussian DPMM with tied covariance. This Bayesian nonparametric
perpsective led us to propose hierarchical Gaussian DPMMs that allow each cluster a different covariance

10
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matrix, while still sharing statistical strength across classes via the prior. We developed efficient EM al-
gorithms to estimate the hyperparameters of the hierarchical models, and we studied their performance on
synthetic data as well as the OpenOOD benchmarks. We found that these models — especially the coupled
diagonal covariance model — yielded improved performance on some benchmarks, especially the Near OOD
benchmarks.

Limitations and Future Work Despite the hierarchical prior, we found that the full covariance Gaussian
DPMMs were prone to overfitting. Further work could explore low-rank plus diagonal covariance matrices,
which would interpolate between the diagonal and full covariance models. More generally, like RMDS and
MDS, we assume that features are Gaussian distributed within each class. The competitive performance on
the OpenOOD Imagenet benchmark using ViT features suggests that this assumption is reasonable (Yang
et al., 2022; Zhang et al., 2024), but there is no guarantee. Future work could consider fine-tuning the
features or learning a nonlinear transformation to address this potential source of model misspecification, as
in prototype networks (Snell et al., 2017).

Bayesian nonparametric approaches naturally extend to other closely related problems, like generalized
category discovery Vaze et al. (2022a) and continual learning Van de Ven et al. (2022). For example, given
a collection of data points, a DPMM may have sufficient evidence to allocate new classes for the out-of-
distribution data. More generally, casting OOD as inference in a generative model brings modeling choices
to the fore. Here, we focused on the challenge of modeling high-dimensional covariance matrices that may
vary across classes, but there are several other ways in which the simple Gaussian DPMM could be improved.
For example, we could attempt to capture the nonstationarity inherent in the OOD setting by allowing the
prior predictive distribution to drift from what was inferred based on the training data. Such a model could
afford greater robustness on OOD detection tasks.

Conclusion In summary, we find that Bayesian nonparametric methods with hierarchical priors are a
promising approach for OOD detection. If the features extracted from foundation models are reasonably
well approximated as realizations of Gaussian DPMMs, the posterior inferences under such models can
provide accurate estimates of outlier probability. This probabilistic perspective not only casts widely used
methods in a new light, it also leads to practical model improvements and enables several lines of future
inquiry.
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A Preprocessing

Before computing OOD scores, we first preprocessed the embeddings using PCA to whiten and sort the
dimensions in order of decreasing variance. We discarded dimensions with near zero variance to ensure the
empirical covariance matrices were full rank. We scaled each dimension by the inverse square root of the
eigenvalues so that the transformed embeddings had identity covariance. Finally, we rotated the embeddings
using the eigenvectors of the average covariance matrix, so that the average within-class covariance matrix
is diagonal.

More precisely, the preprocessing steps are as follows:

1. Let {z;}}Y, denote the mean-centered embeddings.

2. Let 3y = UAUT denote the covariance of the centered embeddings and its eigendecomposition.
Discard any dimensions with eigenvalues less than a threshold of approximately 1077, and then we
project and scale the embeddings by,

X AU a,, (15)

n
1=

so that the empirical covariance of {z}}7, is the identity matrix.

3. Compute the average within-class covariance 3 = %Zf\il(m; — fiy,) (@} — fiy,) ", where fip =
!/

1
Ny Zi:y,;:k Ly

4. Compute the eigendecomposition = VSV with eigenvalues S = diag(c?,...,0%) sorted in in-
creasing order of magnitude so that the first dimension has the smallest within-class covariance. The
embeddings x} have unit variance in all dimensions, but along the dimension of the first eigenvector
in V, the average within-class covariance is smallest.

5. Project the embeddings into this eigenbasis,

2 V'l (16)

After these preprocessing steps, the resulting embeddings {z;}¥; are zero mean (fip = 0), their empirical co-
variance is the identity (39 = I), and the average within-class covariance is diagonal (£ = diag(c?,...,0%)).
The empirical within-class covariance matrix S for class k will not generally be diagonal, but this sequence
of preprocessing steps is intended to make them closer to diagonal on average.

Note that the relative Mahalanobis distance score is invariant to these linear transformations. They simply
render the embeddings more amenable to our hierarchical models with diagonal covariance. We further test
the effect of these preprocessing steps via the ablation experiment described in Appendix I.

B Further Details of Exploratory Analyses

First, we investigated the degree to which the sample covariance matrices differ between the 1000 classes in
the Imagenet-1K dataset. In accordance with the OpenOOD benchmark, we used embeddings from the ViT-
B-16 model trained according to the DelT method (Touvron et al., 2021), which are D = 768 dimensional.
The embeddings are available in the Pytorch torchvision (TorchVision maintainers and contributors, 2016)
package. We preprocessed the embeddings as described in Appendix A. For this analysis, we only kept the
top 128 PCs to speed computation.

To measure the distance between covariance matrices for two clusters, we used the Forstner-Moonen (FM)
metric (Forstner & Moonen, 2003),

n 1

d(B1,%,) = [Z(logAi(21122))2 2, (17)

i=1
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where \;(X7'%,) is the i-th eigenvalue of X735, We computed the FM metric for all pair of empirical
covariance matrices (XA);C7 flk/). We compared the distribution of FM distances under the real data to distances
between covariance matrices sampled from the null model, in which X; truly equals 3 for all k, and the
differences in the estimates 3, arise solely from sampling error. The corresponding null distribution is a
Wishart distribution, 3, ~ W(N, $/N), where N is the average number of data points per class.

C Compute Resources

The OOD experiments were performed on a cluster consisting of compute nodes with 8 NVIDIA RTX A5000
GPUs. The OpenOOD (Yang et al., 2022; Zhang et al., 2024) experiments on the Imagenet-1K dataset (Rus-
sakovsky et al., 2015) utilized weights available from Pytorch’s (Paszke et al., 2019) torchvision (TorchVision
maintainers and contributors, 2016) models. The compute across experiments was reduced by storing sum-
mary statistics of the embeddings for the Gaussian models. The DPMM fitting and prediction was performed
on the CPU except for calculating the posterior and prior predictive distributions for each sample.

D Proof of Proposition 4.2

Using the definitions, we can write \; exactly as a difference of log Gaussian densities:

N | i 54 9)
N(z | fuo, Xo+3)

M = log = [logN(@ | i, S+ %) = TogN(x | fio, o + )] -

Similarly, the RMDS for cluster k can be written as a log-density ratio between a cluster Gaussian and the
“background” Gaussian model:

./\/(CL‘ | ﬂlﬁ i)

RMDy(z) = 2log —
N(z | o, o)

+d,

where d = log |3 — log |%|. For clarity, define the ideal log-ratio using true cluster parameters as

o N |, )
pe(x) = log N | 0, So)

Notice that 2 [RMDy(z)—d] = log % =: p(x) is the same ratio but with empirical estimates (fi, 32)
x 0520

in place of (px, %), and pg(x) uses the true cluster mean and covariance. We wish to bound 2|\, — px|.
We now can use the triangle inequality and decompose this into four separate terms:

2§re — pul < flog S0 + 51 ~ o Sal| | (A)
#lte= o) (S0 + 97 - 551 0 - )|} ®)
+ 1og|z;+i|1ogi|]} (©)
o= )= ) - (o )T+ ) e )] | (D)

To bound A, we first note that

log |80 + 3| — log [So| = log |I + £35S = log |1 + S5 /2855 = log I + R
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using the fact that the determinant behaves multiplicatively with respect to the matrix product. Then given
that the determinant is the product of the eigenvalues we finish our bound on A

D
A< Zlog(l + )\l(-R)) < Dlog(l1+ k) < Dk
i=1
thus this term is less than §; when k < k1 < %. For term B, recall that
(A+B)'=A"1-A"'B(A+B)™!

(which can be verified by right multiplying by A + B) combined with the fact that

R Y70 %) R S oo
=518 + S5y e 2
% 1/22 Aal/z(IJrR)il/z],lEJl/z
=R[1+R|™"

Means that we can say

By the standard fact that for B positive definite, A=1/2BA~1/2 < oI if and only if B < aA. So combining
all of these identities we have

B < 1o (@ = 0) "5 (v = fuo)

Which we then bound with the standard Hanson Wright inequality Vershynin (2018) to get that with

probability 1 — €;
9 1 1
B < ko“(D+ {/Dlog— + 2log —)
€1 €1

-1
Which is less than d9 when x < kg = [az(D +,/Dlog i + 2log i)} 0o

Now to deal with term C, we again note the multiplicativity of the determinant with respect to matrix
products and see that
log |2}, + 2| —log |%] = log|I + X715, |

But recall that ), = (f)a v N 2*1)*1, which immediately gives a useful result when combined with the fact
that 35515 = 535 /2 RS/
log|I + 3715 | =log [T + 27525 + NE~H) 7

=log |l + (NI +3515)7}

—log|I + (NI + 35" 2REY?)

—log [SH7S5 1 (NS5 28 4+ £, REY)

=log [£y/*S5? + S (NT+ R) 185

= log |55/ IT + (NT+ B) 155

=log|l +(NI+R)™ Y
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Now we are functionally done, since we can bound this easily using known bounds of the logarithm (easy to
check by concavity) to say

D
1
1y _
log|I 4+ (NI + R) —i_zllog<1+N+>\i)
1 D
C< DI 1+ =) < —=
= Og<+N)N

So when N > Ny > % then C < 3.
Finally, we turn to D. We note that we can re-write it as
(@ — p, + p, — ) "5 @ =l + = ) — (= )T (ke + ) @ — pap)
which decomposes into three parts. Trying to ease notation, let v = & — u}, and v = pj, — fig. So then D is

just

Tr$—1 _ Sy —1 T$-1 T$—1
v |2 Er+X) vtu (E”) u+2u(?) v
(l) 22 (24

For the first piece, we again use the identity
(A+B)'=A"1-A"'B(A+B)™!
to get that (4) is equal to R .
v ETINL(E + 2
And recall the Loewner-Heinz inequality Lowner (1934); Carlen (2010) tells us that when A + B > A, then
(A+ B)~! < A=!. Then note that we can show with not too much difficulty (using the fact that since A
and B are positive definite then B~'/24B~1/2 < T <= A < B) that this implies
IRED VA G HED »A RS Vs 3/ Vs
But since ¥j < %f} we get that (i) is bounded by

I e
—v' 3
NV v

now here we again use Hanson Wright to say with probability at least 1 — e, as long as N > Ny =
icﬂ (D + +/Dlog é + 2log é) it is bounded. For term (i), we have rapid convergence of p) to fi and
note that 3~' is bounded above by %Hi”op While the difference between the means is bounded by
+ (2||f3||op)\min(flo)) soif N > N3 = é (2||f2||0p)\min(io)), then we have convergence. Finally, we can just
use Cauchy-Schwarz to argue that if NV is set as above, then the bounds for both of the above hold for the
cross term. Combining all terms together, we have that if £ < min{x1, k2} and N > max{Ny, N3, N5}, then
the difference between A\ and pg is less than § = d; + o + d3 + d4 + J5 with probability 1 — € as long as
€1 +e <e.

Finally,

C(x) = log Z exp(Ag(z)).

k
The map (A1, ..., Ag) — log(3, e**) is 1-Lipschitz continuous in the fo-norm in the sense that if [\, —\}| <
§ for all k, then |LogSumExp{A;} — LogSumExp{X,}| < e. Hence if Az(z) is within & of & [RMDy(z) — d]
uniformly in k, then C(z) is within & of LogSumExp, {3 RMDj(z) — d}. Noting that

|LogSumExp{A;} — m}?x{Ck (2)}] < |[LogSumExp{A;} — LogSumExp{Cy(z)}|
+ |LogSumExp{Cy(z)} — max Cr(z)|
<6+ log K

Thus we conclude y
|C(z) — [3C(z)—d]| < d+]1ogK,
with probability at least 1 — e. This completes the proof.
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E EM Algorithm for the Full Covariance Model

Here we describe an expectation-maximization (EM) algorithm for estimating the hyperparameters of the
hierarchical covariance model. Recall that under this model,

Ek ~ IVV(I/O7 (1/0 - D - 1)20)
i ~ N(po, g ' i)

so that the prior hyperparameter ¥y specifies the mean of the per-class covariances, E[X;] = ¥g. This
hyperparameter should not be confused with Yy defined in the main text, which denoted the empirical
estimate of the marginal covariance. Also note that this prior formulation requires vg > D + 1.

First, we set the hyperparameters po and ¥y using empirical Bayes estimates,

1 N

Ho = ,aO = N nz::l-rn (18)
1 N

20 =x= N ;(xn - ﬂyn)(xn - ﬂyn)T (19)

P
where Ky, = N Zn:yn:]@ T -

To set the remaining hyperparameters, kg and 1y, we use EM. The expected log likelihood is separable over
these two hyperparameters,

L(vo, ko) = L(vo) + L(ko)

K
L) = [Z log IW (2 | vo, (Vg — D — 1)20)]
k=1

K
L(ko) = [Z log N(pr | o, kg Ek)}

k=1

where the expectations are taken with respect to the posterior distribution over {puy, Ek}szl.

E.1 Me-step for 1

Expanding the first objective yields,

K
= “llog (L=P=1) + L log || — logTp (%) — LEPE R[log |4 ] — L=P=LTr(SE[S; 1))

K
= Z wD Jog (Le=P=1) + 2 [log S| — Eflog |Sk|] — Tr(ZeE[S; '])] — log T'p(42).

We can maximize this objective using a generalized Newton’s method (Minka, 2000). We need the first and
second derivatives of the objective,

— 5" 2 [l (452=2) + ] + 4 ool - Blog 4l — (SB[ D] - Joo(4)
k=1

M x
Nlle]
3
|
oI
LL/»—A
|
=
<
E
vlS

"
E 1/0
k=1
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The idea is to lower bound the objective with a concave function of the form,

g(vo) = k + alog vy + by

which has derivatives g'(vo) = = + b and ¢”(p) = —. Matching derivatives implies,
0
_ 2 pl
a=—v3L" (1)
b= L) — &

k= E(Vo) - alog vy — bl/o.
For a > 0 and b < 0, the maximizer of the lower bound is obtained at

2 1
o ©L'w)
I/O - b o ﬁl(Vo) + Voﬁ//<yo) (20)

E.2 Me-step for kg

Expanding the second objective,

K
L(ko) =Y Blogro — 52E [(pue — o) ") (1 — o) + .
k=1

The maximum is obtained at,

X -1
Ky = <K1D ZE (e = p10) "S5 (e — uo)]> :

k=1

E.3 Computing the posterior expectations

Under the conjugate prior, those posteriors are normal inverse Wishart distributions,

ties S | {Zn : Y = k} ~ NIW (v, 3, K, 1)
vy, = v + Ny,
K;C = Ko + Ng

1
Me:lj Kopo + Z Tn,

k n:yn==~k

Sh= (0 — D —1)%0 + ropiopg + D T — Kyl
n:yn==~k

To evaluate the objectives above, we need the following expected sufficient statistics of the normal inverse
Wishart distribution,

E[Z '] = i3
Ellog [Ex|] = log |2} — ¢¥p (%) — Dlog2

E[(ux — po) " S5 (s — po)] = "”vlfg + (g, — p10) T[S (i — po)

Since the tied covariance approach in RMDS already works quite well, we recommend initializing the EM

iterations by setting vy ~ Nj and kg = 0. That way, the covariances are strongly coupled across clusters
and the means have an uninformative prior.
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E.4 Marginal Likelihood

This EM algorithm maximizes the marginal likelihood,

Ing({xnvyn}r]yzl) = Zlng ({zn 1 yn = k})

K
= / ({zn 2 yn =k} | g, Bi) P, X)) dpg 2,
K
= / H N(@y | pre, Zi) | NIW (e, B | 10, X0, Ko, o) dpu A3,
=1 n:yn==~k
K

= Zlog Z(Vy, 3, Koy pi,) — log Z(vo, (vo — D — 1)X0, Ko, po) + ¢

k=1
where
log Z(v, 3, k, ) = —%bgfs—i—logf‘D(%) + %logQ — 5 log |3

is the log normalizer of the normal inverse Wishart distribution, and ¢ is constant with respect to the
hyperparameters being optimized (but it is data dependent).

F EM Algorithm for the Diagonal Covariance Model

Here we describe an expectation-maximization (EM) algorithm for estimating the hyperparameters of the
hierarchical diagonal covariance model. Recall that under this model,

Tn,d ‘ Yn =k ~ N(Nk,dv U%,d)
where
U;ad ~ X_Q(Vo,dvaad)

-1 _2
Hi,d ~ N(Mo,d7 K()’do-k:,d)a

Yo,d
VO,d72

for each dimension d = 1, ..., D independently. Under the prior E[U% 4= 0(2)7 4> Which is approximately

0§ 4 for large degrees of freedom g 4.

First, we set the hyperparameters p9,q and 0(2), 4 using empirical Bayes estimates,

1
NOd*MOd:Nand (21)
n=1
1 N
Ohq =04 = N (Tn,a = fiy,.a) @na — fy,.a) (22)
n=1

~ 1
where Hyp,d = Ny Zn:yn:k Tn,d-

To set the remaining hyperparameters, kg4 and vy 4, we use EM. The expected log likelihood is separable
over these two hyperparameters,

E(l/o dy Ko, d) = E(Vo d) + E(Ho d)

L(v,4) lz log x (0.4 | VO,dng,d)]

K
L(ko,a) = lz 10g N(pia | p0,d: 15,407 d)]
k=1

where the expectations are taken with respect to the posterior distribution over {4, ak,d}le.
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F.1 M-step for v 4

Expanding the first objective yields,

Vo.d 2
K (VO,dO_Q )? o 142 ~Y0,d%.4
,d _Yo,d 2
£00a) = 2B flog ) gy — (ko) F e T
2

== log (%) + VOTd log Uad - IOgP(VOT’d) - %HE[IOg UI%,d] - %US,dE[O—IQ?I}
% log (%) + VOTd [loga&d — E[log Uz,d] - U(Q),dE[UE,Z])} —log F(%) +ec

We can maximize this objective using a generalized Newton’s method (Minka, 2000). We need the first and
second derivatives of the objective,

K
L (vo,q) = Z 5 [log (%) +1] + 3 [log 6.4 — Ellogoj 4] — Ug,dE[Uk_,Z])} — 59 (%2)
k=1

K
" _ 1 1,/ (Yo,
L (vo,a) = Z o 1V (55).
The idea is to lower bound the objective with a concave function of the form,

g(V07d) =k+ alog vo,d + bVO)d

which has derivatives ¢'(v0,4) = &~ 4+ b and ¢”(vo,¢) = — ;2. Matching derivatives implies,
e 0,d
a=—v54L" (0.4)
b= ,C’(Vo’d) — ﬁ

k= L(v,q) —alogry g — buy.q.
For a > 0 and b < 0, the maximizer of the lower bound is obtained at

v2 L' (v
P 1 ot (23)
’ b AC/(I/O’d) + V()’d[,”(l/()’d)

F.2 M-step for k¢ 4

Expanding the second objective,

(k,d — Ho,d)?
3

K
£(K30’d) = Z % log Ro,d — KOQ’dE .
k,d

k=1

* —
Ko,d = (

+ c.

The maximum is obtained at,

=

x -1
1 (1tk,d — 10,d)*
) EAEAIUA I
—1 Ok.d
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F.3 Computing the posterior expectations
Under the conjugate prior, those posteriors are normal inverse chi-squared distributions,
2 2
Hk,ds Ok d | {20t yn = k} ~ NIX(VIQ,daUZ,da”;c,daNZ,d)

!
Vi.d = Vo,d + Ny

!
Kk.a = Ko,d + Nk

1
!
Hia = 5 | Folod + E T
k.d n:yn==~k
22 1 2 2 2 / /2
Opd = —7— |10,d00,4 + Ko,dto g + Tp.d — Kk,dMg.d
Vi,a S
Y

To evaluate the objectives above, we need the following expected sufficient statistics of the normal inverse
chi-squared distribution,
-2 -2
Elo k,d] = U;c d

’ 2 /
Ellog of o] = log "o — (%)

(M,a — MQd)Q] _ 1 n (H%;,d — 10,4)”

E w! 0,/2
k,d k,d

2
Ok.d

Since the tied covariance approach in RMDS already works quite well, we recommend initializing the EM
iterations by setting vy 4 ~ Nj, and kg,q ~ 0. That way, the covariances are strongly coupled across clusters
and the means have an uninformative prior.

F.4 Marginal Likelihood

This EM algorithm maximizes the marginal likelihood,

K
log p({wn, yn}nzr) = Y logp({an : yn = k})
k=1

log

p({&n,a : yn =k} | pik,a, o7 g) P(pk,a0h ) dpte,a Ao 4

M=

x>
Il

1

1og/ H N(@n.a | prds o) | NIX (s, 0% g | V0,05 03 45 Ko.d5 10,a) dpti,a Ao g
n:yn==~k

e
Il
—

(log Z(Vllg,daagda H;c,da ﬂ;c,d) — log Z(V07d7ag,da Ho,d,ﬂo,d)) +c

I
Mo 1Ms 1M
M=

B
Il

i~

.
Il
-

1
where
log Z(v,0°, k, ) = —1 log k + log I'(%) — % log ¥2-

is the log normalizer of the normal inverse chi-squared distribution, and ¢ = log(27)~"/2 is constant with

respect to the hyperparameters being optimized.
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F.5 Predictive Distributions

Under this model, the predictive distribution of a data point given its cluster assignment is,

Py ="k Xe v =[] /p(xd | tkds On.q) Pk O g | Xers ver) dptie,a doil g

Il
=F

/ N(’de | Hk,d; O—Iz,d) NIX(tha O—I%,d | Vllc,da U;c%dv ”;c,dv N’;c,d) d:ukyd do—l%,d

Y
Il

1

+1
St(zq | Vk: da,uk d % 1;2(1)

é@

Y
Il

1

where St(z | v, i, 02) denotes the univariate Student’s t distribution with v degrees of freedom, location pu,
and scale o.

Under this model, the prior predictive distribution is,

D
p(ﬂ? ‘ Yy = K+ LXtr;ytr) = H St(‘xd | Y0,d 10,d, no‘d+10'(2J,d)7

Ko,d
d=1

which is approximately Gaussian, N(zq | o 4, 087(1) when vy 4, ko,q > 1.

G EM Algorithm for the Coupled Diagonal Covariance Model

This model introduces a scale factor v € R, that is shared by all dimensions. The model is,

7~ X (@)
Ok,d ~ X_Z(l/o,dﬁwg,d) ford=1,...D
tk,d ~ N(o,d, “07,31‘71%@) ford=1,...D

Since E[v] = 1, under the prior E[a,i J= Voy‘id200 4» Which is approximately 00 g for large vg q.

The hyperparameters of the model are n = (ao, {10,4, O'g’d, Ko,d, t0,d}). We set the hyperparameters g 4 and
0(2)7 4 using empirical Bayes estimates,

N
. 1
Mo,d = MHo,d = N ; Tn,d (24)

N
1
B =% = 7 L ona = (25)

where i, = N%c > nyg, =k Tn and Ny = 37 Ty, = kJ.

To set the remaining hyperparameters, we use EM.

G.1 E-step
Note that the posterior distribution factors as,

P, {ttesas ok o1 | Xi) = p(vie | Xi) o tiesas o aYims | v X)

D
PO | Xi) ] pkar 07 a | s X)-
d=1
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The posterior distribution over 7, doesn’t have a simple closed form, but since it’s only one-dimensional, we
can approximate it on a dense grid of points, {7(”)}5:1. Conditioned on ~; = 7, the distribution of Hh,d
and 0']%7 4 is a normal inverse chi-squared. For each point,

2 _ A _ 2 ’ 2 ’ '
P(Mk,dvak,d | v = ’Y( )an) = NIX(ﬂk,dvak,d | Vk,dvak,p,d»"ﬁk,da#k,d)
!
Vk),d = Z/O,d —+ Nk

/
Kj.d = K0,d + Ny,

1
/
Hga = —7— | Koto,d + E Tn
Ki.d
’ n:yn==~k
2 _ 1 (p) 2 + 2 + 2 2
U;g,p,d—iy, V0,d7Y"7 00,4 T K0,dM0,d Tn,d — Kk,dlk,d
k,d n:yn=~k

Note that this is practically the same as above, but with 7. scaling the prior for O’,i 4 For any value of v,
the posterior probability is,

Ok =P | Xi) o< ply =21 P) p(X | 3 =7P)
D
=plw =) [[ p(Xba | 3 =7")
d=1

D
) H dev"kpd,’%d»/ikd)
=1 Z(v,4,7 )ond,ﬂo,mﬂo,d)

A
= Wkp

where we reused the marginal likelihood calculation from the hierarchical diagaonal DPMM above. Finally,
denote the normalized posterior probabilities as,

G.2 M-Step

To set the hyperparameters, ko 4, 1,4, and ag, we use EM. The expected log likelihood is separable over
these two hyperparameters,

L(vo,4, Ko,d, ) = E(Vo a) + L(ko,a) + L(v)

L(vo,a) ZlOgX (0% | Vo,d,’YkU(QJ,d)]
K

L(koa) =E |> logN(uk.a | 10,4, 59 407 d)}
k=1

L(ao) = E [log Ga(vk | a0, a0)]
where the expectations are taken with respect to the posterior distribution over {vi, {tx.a, ok.a} 5 HE .
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G.3 Me-step for 1 4

Expanding the first objective yields,

K Vo4 g \Zod
(o) roandy
ﬁ(VO,d) = Z]E log : F(uo(,);,d) (Ui,d) e kod
2

k=1
K
= Z Yt Jog (X41) + YL Ellog i) + “3% log op 4 — log I'(%%%) — V”';HE[log oral — %Ug,d]E[fykal;Z]
k=1
K

52 1og (432) + 3¢ [Eflog ] +log o3 4 — Ellog of 4] — of sElveo )| — logT(452) +c.

We can maximize this objective using a generalized Newton’s method (Minka, 2000). We need the first and
second derivatives of the objective,

K
£/(voa) =Y 3 [log (%) +1] + & [Ellogw] + log o3 4 — Ellog 07 4] — o 4Elworc 31)| — $u(*%*)
k=1

K
L (o) = 3 gh — L2,

The idea is to lower bound the objective with a concave function of the form,

g(vo,q) =k +alogvg g+ by g

which has derivatives ¢'(vg,q) = V(;Ld +band g"(19,4) = —-5—. Matching derivatives implies,
’ 0,d
a=—v3 4L" (10,4)
b= E’(V07d) — #’d

k= ;C(Z/Qd) — alog Yo,d — bl/o,d.
For a > 0 and b < 0, the maximizer of the lower bound is obtained at

o 0 Voak" () (26)
0.d b L'(v,aq)+ vo,aL" (v0,q)

G.4 Me-step for kg 4

Expanding the second objective,

S (k.0 — Ho.0)*
L(ko.q) = Z Llog ko4 — "SLE M Te.
k=1 Tk.d
The maximum is obtained at,
% -1
" 1 (Hk,a — po,a)”
ﬁo,d:<KZEl o7 g .
k=1 ;
G.5 M-step for o
Expanding the final objective,
K
L(ag) =Y aplogag —logT(ag) + ook [log ] — a0 [yk] + c.
k=1
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Its derivatives are,
K
L'(ag) = Klogag + K — Ktp(ag) + > E [log ] — E[y]
k=1

K
L"(ag) = — = K¢'(a)
Qo
We can optimize o using the generalized Newton’s method described in the M-step for vy.

G.6 Computing the posterior expectations

To evaluate the objectives above, we need the following expected sufficient statistics of the normal inverse
chi-squared distribution,

k] = Zw;v,pfy(p)
p
Ellogvi] = Y w} , logy™
P
E['ykak_fi] =E,, [E, 2 e (Vo 21 Zwk p’y crkpd

Ellogoj 4] = Ev, [Eo2 1y, [logof 4]] = Z wh p[log W — (%))

(Mkd—/iocl (M%d—MOd)Q
Euk,d;Uzyd"Yk’ l Zwkp ﬁ/ 2

de k,d Ok.p,d

(/~Lk,d - Mo,d)2

E =
k,d

=E

Yk

where v() are the centers of discretized posterior on 7 and wy,p are the corresponding weights.

Since the tied covariance approach in RMDS already works quite well, we recommend initializing the EM
iterations by setting vg 4 = Nj and kg q ~ 0. That way, the covariances are strongly coupled across clusters
and the means have an uninformative prior.

G.7 Computing the predictive distributions
The prior predictive is,
p(z*im0) =

D
/ [H [ (e | NI 10,03 | 0,0 100,908 g, ) 2o) a4 | Gy | g, ).
df

where 19 = ao, {£0,4, ogyd, Ko,d V0,4 } 7, are the model hyperparamters.
The ~ integral can be estimated by numerical integration over a dense grid of points,

P
p(z™;m0) ~ wa lH/ (@7 | pa, 03)NIX (s, 05 | V0,45 K0,d5 Ho,ds Y Uo 0.t 1T Yn Jn 1)dﬂdd0d1

P D
1
:Z 0,p [H St(xy | v0,d, Ho,d, Z;: 1Po 0.d)

where,

 — Ga(v(”) | Oéo,Oéo)A’Y(p)
OP T S Ga(v™) [ ag, ag) Ay(™)
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We renormalize the weights to ensure that the numerical integration satisfies that E,[1] = 1.

In practice, we evaluate the prior log predictive probability using a log-sum-exp,

D
log p(z*;70) ~ logsumexp, [log Wo,p + Zlog St(z7 | v0,d, Ho,d; NO’dH’Y(p)Ug,d)]

Ko,d
d=1

By the same logic, the posterior log predictive is,

D
+1
log p(z* | y* = k, {xn,yn}fyzl; M) logsumexp, llog w}c,p + E log St(z | y27d7u27d7 sz 7(17) /27p d)]
d=1

G.8 Marginal Likelihood

This EM algorithm maximizes the marginal likelihood,

K
log p({#n, yn}h=1) = Zlogp {zn 1 yn = k})

K
= / (zn : yn =k} | {itk,a5 07 a}) PEk.aci a} | ) p(v) dpte,a Ao g dve
k=1
D
=Y lo / H/ 1T p@na | s 07 )p(k.a 0% a | ) dpk.a dof g | ple) dve
3 d=1 niyn=k

/ 12 / /
(Vk,d7 Ok.p,d> Bk,d> Nk,d)
2
Vo,ds TkO > K0,ds H0,d)

p(ve)dyi + ¢

Yo /fj[

k

4(
NZ ogzwopﬁ (de70-kpd7nk'd’ukd) .
k

el (10,0, VP03 4, K0,ds 10,d)

2

= Z logsumexp,, [(), p] + ¢
k

where

D

L p £ Jog wo,p + Z (log Z(I/]/C’d, U;f’p’d, H;c,d7 N;c,d) —log Z(vo,4, Y
d=1

(p)o-(%}gh Ro,d, /~L07d))

and c = NTD log 2.
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H Score Correlation between RMDS and the Tied Covariance Model

We observe that the DPMM model with shared covariance and the RMDS Ren et al. (2021) are highly
correlated, as illustrated in Figure 5. Here, we plot the RMDS vs the Tied Covariance Gaussian DPMM for
all the real datasets (differentiated by color) in the Imagenet-1K OpenOOD task and note the tight agreement
between the two. This empirical result supports the theoretical relationship derived in Proposition 4.2.
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Figure 5: Tied DPMM OOD score, C, correlation to RMDS Ren et al. (2021) score, C, on the Imagenet-1K dataset.
The colors represent different ID or OOD datasets.
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I  Imagenet-1K Experiment

Table 2: OpenOOD performance across different preprocessing methods for expectation maximization trained hier-
archical DPMM models. The preprocessing methods are the raw ViT features (ViT), marginal covariance whitening
followed by a rotation into the average class-covariance eigenspace (W&R), and PCA. Baselines: Mahalanobis dis-
tance score to the closely related Mahalanobis distance score methods, MDS (Lee et al., 2018) and RMDS (Ren et al.,
2021). We also compare to maximum softmax probability (MSP) (Hendrycks & Gimpel, 2017) and temperature
scaled MSP with T'= 1000 (Temp. Scale) (Guo et al., 2017) which is the ODIN (Liang et al., 2018) method without

input preprocessing. A single linear layer was trained with gradient descent and supervised cross-entropy loss for the

MSP and ODIN methods

Near Far
Model Pre Accuracy SSB Hard NINCO Avg. iNaturalist Openlmage-O  Textures  Avg.
MSP ViT 80.94 73.80 82.72 78.26 92.08 88.67 88.39 89.71
W&R 80.90 71.74 79.87 75.80 88.65 85.62 84.64 86.30
PCA 80.91 73.67 82.94 78.31 92.08 88.60 88.34 89.67
Temp. ViT 80.94 75.60 84.36 79.98 94.22 90.82 90.82 91.95
MSP W&R 80.90 73.29 81.28 77.29 91.24 87.82 86.81 88.62
T=1000 PCA 80.91 75.24 84.77 80.00 94.25 90.78 90.75 91.93
MDS ViT 80.22 71.45 86.44 78.94 95.96 92.33 89.37 92.55
W&R 80.41 71.45 86.48 78.97 96.00 92.34 89.38 92.57
PCA 80.41 71.45 86.48 78.97 96.00 92.34 89.38 92.57
RMDS ViT 80.22 72.78 87.18 79.98 96.00 92.23 89.28 92.50
W&R 80.41 72.79 87.28 80.03 96.09 92.29 89.38 92.59
PCA 80.41 72.79 87.28 80.03 96.09 92.29 89.38 92.59
Hierarchical Gaussian DPMMs
Tied ViT 80.40 71.79 86.75 79.27 95.99 92.40 89.71 92.70
W&R 80.41 71.80 86.76 79.28 96.00 92.40 89.72 92.70
PCA 80.40 71.79 86.75 79.27 96.00 92.40 89.70 92.70
Full ViT 76.82 62.64 78.32 70.48 85.76 84.95 88.03 86.24
W&R 76.78 62.84 78.48 70.66 85.88 85.03 88.02 86.31
PCA 76.82 62.64 78.33 70.49 85.76 84.95 88.03 86.25
Diag. ViT 75.96 72.38 85.96 79.17 94.14 90.18 87.20 90.51
W&R 76.54 73.89 87.32 80.60 95.36 90.78 86.42 90.85
PCA 75.76 71.99 85.52 78.75 93.91 90.18 87.39 90.49
Coupled ViT 75.93 72.80 86.15 79.48 94.08 90.20 87.19 90.49
Diag. W&R 76.52 74.47 87.48 80.98 95.51 90.63 86.02 90.72
PCA 75.76 72.40 85.97 79.19 95.02 90.92 88.09 91.34

31



Under review as submission to TMLR

Table 3: Performance of Hierarchical Gaussian DPMM and baseline methods on the OpenOOD benchmark
datasets Yang et al. (2022); Zhang et al. (2024), including both Near (SSB Hard (Vaze et al., 2022b) and NINCO (Bit-
terwolf et al., 2023)) and Far (iNaturalist (Van Horn et al., 2018), Openlmage-O (Wang et al., 2022), and Tex-
tures (Kylberg, 2011)) OOD datasets. The first column reports the accuracy of the classifiers on predicting the
label y € [K] for in-distribution test data. Other columns report AUROC scores for OOD detection on OpenOOD
benchmark datasets.

Near Far
Method Accuracy SSB Hard NINCO  Avg. iNaturalist Openlmage O Textures  Avg.
MSP 80.90 71.74 79.87 75.80 88.65 85.62 84.64 86.30
Temp. Scale 80.90 73.29 81.28 77.29 91.24 87.82 86.81 88.62
MDS 80.41 71.45 86.48 78.97 96.00 92.34 89.38 92.57
RMDS 80.41 72.79 87.28 80.03 96.09 92.29 89.38 92.59
Hierarchical Gaussian DPMMs
Tied 80.41 71.80 86.76 79.28 96.00 92.40 89.72 92.70
Full 76.78 62.84 78.48 70.66 85.88 85.03 88.02 86.31
Diagonal 76.54 73.89 87.32 80.60 95.36 90.78 86.42 90.85
Coupled Diag. 76.52 74.47 87.48 80.98 95.51 90.63 86.02 90.72

32



Under review as submission to TMLR

J CIFAR-10 Experiment

Table 4: OpenOOD CIFAR 10 performance across different preprocessing methods for expectation maximization
trained hierarchical DPMM models. The preprocessing methods are the raw ResNet18 features and marginal covari-
ance whitening followed by a rotation into the average class-covariance eigenspace (W&R). Baselines: Mahalanobis
distance score to the closely related Mahalanobis distance score methods, MDS (Lee et al., 2018) and RMDS (Ren
et al., 2021). We also compare to maximum softmax probability (MSP) (Hendrycks & Gimpel, 2017) and temperature
scaled MSP with T'= 1000 (Temp. Scale) (Guo et al., 2017) which is the ODIN (Liang et al., 2018) method without
input preprocessing. A single linear layer was trained with gradient descent and supervised cross-entropy loss for the
MSP and ODIN methods

Near Far
Model Pre Accuracy  CIFAR 100 Tiny Imagenet Avg. MNIST  Places365 SVHN  Textures Avg.
MSP ResNet18 95.01 87.24 88.92 88.08 92.68 89.42 91.46 89.76 90.83
W&R 94.93 87.38 89.33 88.36 94.21 88.49 93.49 91.00 91.80
Temp. ResNet18 95.01 86.51 88.78 87.65 94.07 89.57 91.88 89.14 91.16
MSP W&R 94.93 87.42 89.43 88.43 94.18 88.59 93.51 91.08 91.84
MDS ResNet18 95.01 83.59 84.97 84.28 90.10 84.90 91.17 92.69 89.72
W&R 95.04 84.63 86.19 85.41 91.45 86.97 90.19 92.00 90.15
RMDS ResNet18 95.01 88.84 90.83 89.83 93.23 91.51 91.96 92.23 92.23
W&R 95.04 88.83 90.83 89.83 93.67 91.57 92.25 92.20 92.42

Hierarchical Gaussian DPMMs

Tied ResNet18 95.02 88.53 90.40 89.47 93.91 90.83 93.51 94.52 93.19
W&R 95.04 88.83 90.83 89.83 93.67 91.57 92.25 92.20 92.42
Full ResNet18 95.00 89.36 91.46 90.41 94.71 91.06 93.36 92.39 92.88
W&R 94.95 89.69 91.57 90.63 94.32 91.95 93.37 94.35 93.50
Diag. ResNet18 94.84 89.07 90.93 90.00 92.63 91.34 91.13 92.11 91.80
W&R 94.76 88.01 90.27 89.14 91.50 91.70 88.07 92.16 90.86
Coupled  ResNetl8 94.84 89.13 90.98 90.06 92.82 91.47 91.31 92.16 91.94
Diag. W&R 94.76 87.17 89.43 88.30 91.11 90.84 88.07 92.78 90.70

Table 5: Performance of Hierarchical Gaussian DPMM and baseline methods on the OpenOOD CIFAR-10 benchmark.

Near Far
Model Accuracy CIFAR 100 Tiny Imagenet  Avg. MNIST Places365 SVHN Textures  Avg.
MSP 94.93 87.38 89.33 88.36 94.21 88.49 93.49 91.00 91.80
Temp. MSP 94.93 87.42 89.43 88.43 94.18 88.59 93.51 91.08 91.84
MDS 95.04 84.63 86.19 85.41 91.45 86.97 90.19 92.00 90.15
RMDS 95.04 88.83 90.83 89.83 93.67 91.57 92.25 92.20 92.42
Hierarchical Gaussian DPMMs
Tied 95.04 88.83 90.83 89.83 93.67 91.57 92.25 92.20 92.42
Full 94.95 89.69 91.57 90.63 94.32 91.95 93.37 94.35 93.50
Diag. 94.76 88.01 90.27 89.14 91.50 91.70 88.07 92.16 90.86
Coupled Diag. 94.76 87.17 89.43 88.30 91.11 90.84 88.07 92.78 90.70
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Table 6: OpenOOD CIFAR 100 performance across different preprocessing methods for expectation maximization
trained hierarchical DPMM models. The preprocessing methods are the raw ResNet18 features and marginal covari-
ance whitening followed by a rotation into the average class-covariance eigenspace (W&R). Baselines: Mahalanobis
distance score to the closely related Mahalanobis distance score methods, MDS (Lee et al., 2018) and RMDS (Ren
et al., 2021). We also compare to maximum softmax probability (MSP) (Hendrycks & Gimpel, 2017) and temperature
scaled MSP with T'= 1000 (Temp. Scale) (Guo et al., 2017) which is the ODIN (Liang et al., 2018) method without
input preprocessing. A single linear layer was trained with gradient descent and supervised cross-entropy loss for the
MSP and ODIN methods

Near Far
Model Pre Accuracy CIFAR 10 Tiny Imagenet Avg. MNIST  Places365 SVHN  Textures Avg.
MSP ResNet18 76.91 78.66 81.98 80.32 75.76 79.16 79.20 77.62 77.94
W&R 76.19 78.48 82.19 80.33 77.01 79.72 80.60 78.18 78.88
Temp. ResNet18 76.91 79.16 82.25 80.71 77.94 78.69 81.10 78.07 78.95
MSP W&R 76.19 78.87 82.27 80.57 77.41 80.06 81.72 77.81 79.25
MDS ResNet18 76.10 55.87 61.84 58.86 67.47 63.18 70.24 76.26 69.29
W&R 76.10 55.87 61.84 58.86 67.47 63.18 70.24 76.26 69.29
RMDS ResNet18 76.10 77.75 82.58 80.17 79.74 83.40 85.10 83.65 82.97
W&R 76.10 77.75 82.58 80.17 79.74 83.40 85.10 83.65 82.97
Hierarchical Gaussian DPMMs
Tied ResNet18 76.11 77.67 82.56 80.11 79.82 83.38 85.17 83.88 83.07
W&R 76.10 77.75 82.59 80.17 79.75 83.41 85.11 83.65 82.98
Full ResNet18 76.79 76.81 82.97 79.89 82.10 79.16 81.22 82.07 81.14
W&R 76.64 76.04 82.40 79.22 82.10 78.82 81.20 82.66 81.20
Diag. ResNet18 75.54 74.31 81.50 77.91 79.12 78.93 82.20 84.02 81.07
W&R 76.07 76.30 82.13 79.22 81.46 81.79 84.98 83.31 82.88
Coupled  ResNetl8 75.54 75.80 82.77 79.28 79.25 80.29 83.29 84.77 81.90
Diag. W&R 76.04 76.18 79.93 78.05 75.97 79.80 80.58 80.81 79.29

Table 7: Performance of the Hierarchical Gaussian DPMM and baseline methods on the OpenOOD CIFAR-100

benchmark.
Near Far
Model Accuracy CIFAR 10  Tiny Imagenet Avg. MNIST  Places365 SVHN  Textures Avg.
MSP 76.19 78.48 82.19 80.33 77.01 79.72 80.60 78.18 78.88
Temp. MSP 76.19 78.87 82.27 80.57 77.41 80.06 81.72 77.81 79.25
MDS 76.10 55.87 61.84 58.86 67.47 63.18 70.24 76.26 69.29
RMDS 76.10 77.75 82.58 80.17 79.74 83.40 85.10 83.65 82.97
Hierarchical Gaussian DPMMs
Tied 76.10 77.75 82.59 80.17 79.75 83.41 85.11 83.65 82.98
Full 76.64 76.04 82.40 79.22 82.10 78.82 81.20 82.66 81.20
Diag. 76.07 76.30 82.13 79.22 81.46 81.79 84.98 83.31 82.88
Coupled Diag. 76.04 76.18 79.93 78.05 75.97 79.80 80.58 80.81 79.29
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