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Abstract

Random projection is a straightforward yet effective dimension reduction technique, widely
used in various classification tasks. Following the projection process, quantization is of-
ten applied to further simplify the projected data. Typically, quantized projections are
required to approximately preserve the pairwise distance between original data points, to
avoid significant performance degradation in classification tasks. To date, this distance
preservation property has been investigated for the commonly-used Gaussian matrix. In
the paper, we further explore this property for the hardware-friendly {0, 1}-binary matrix,
specifically when the projections undergo element-wise quantization into two types of low
bit-width codes: {0, 1}-binary codes and {0,±1}-ternary codes. It is found that the distance
preservation property tends to be better maintained, when the binary projection matrix ex-
hibits sparse structures. This property is corroborated by experiments on both classification
and clustering tasks, where extremely sparse binary matrices, with only one nonzero entry
per column, demonstrate better or comparable performance compared to other more dense
binary matrices and Gaussian matrices. This presents an opportunity to significantly re-
duce the computational and storage complexity of the quantized random projection model,
without compromising and potentially even improving its classification performance.

1 Introduction

Random projection is an unsupervised dimension reduction technique (Johnson & Lindenstrauss, 1984) that
simply projects a data vector x ∈ Rn from high dimension to low dimension via a linear measurement

x′ = Rx, (1)

where R ∈ Rm×n is a random matrix, m ≪ n. For the random matrices with Gaussian distributions (Das-
gupta & Gupta, 1999), sparse {0,±1}-distributions (Achlioptas, 2003) and {0, 1}-distributions (Dasgupta
et al., 2017; Li & Zhang, 2022), it has been proved that the distance between any two original data points
x can be approximately preserved with high probability by their projections. The pairwise distance preser-
vation property implies the approximate preservation of data structure, which enables random projection to
be widely used in practical classification problems, while not causing drastic performance degradation.

In large-scale classification, it is common to further impose an element-wise quantization operation f(x′) on
the random projection x′ of original data x, such as the popular {0, 1}-binary or {0,±1}-ternary quantization,
in order to further reduce the data complexity. This operation results in a quantized random projection
model, which can be found in many applications and models, such as large-scale retrieval (Charikar, 2002)
and deep network quantization (Wan et al., 2018; Qin et al., 2020). For such a quantization model, the major
concern remains the pairwise distance preservation property. More precisely, provided two data points u,
v ∈ Rn and their projections u′, v′ ∈ Rm, it is necessary to find a random matrix R ∈ Rm×n such that the
relation of ∥f(u′) − f(v′)∥ = ∥u − v∥, or equivalently f(u′)⊤f(v′) = u⊤v for normalized data, holds with
high probability. This distance preservation property f(u′)⊤f(v′) = u⊤v has been analyzed for Gaussian
matrices (Charikar, 2002; Li et al., 2014), but not for the sparse {0,±1}-ternary or {0, 1}-binary matrices.
Nevertheless, sparse matrices are preferred in practice because of their simpler structures. To maximally
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simplify the structure of sparse matrices, it is of high interest to estimate their sparsest distribution, namely
the minimal number of nonzero entries under the aforementioned distance preservation condition. This
proposes a discrete optimization problem, which seems hard to be addressed with the probability analysis
method used for Gaussian matrices. In the paper, we show that the problem could be tackled, if the data
to be projected have sparse distributions.

The data of sparse distributions are common in signal processing and machine learning. For instance, it is
known that the natural data of interest, like images and sounds, usually contain coherent structures and
redundant information over spatial or time domains (Ruderman, 1994; Simoncelli, 1999; Weiss & Freeman,
2007; Kotz et al., 2012; Iyer & Burge, 2019), and thus allow to be sparsified via globally or locally linear
transforms, such as the discrete cosine transform (DCT) (Rao & Yip, 2014; Eude et al., 1994), the discrete
wavelet transform (DWT) (Mallat, 2009), the deep convolutional neural networks (CNN) (Krizhevsky et al.,
2012), and so on. In general, the sparse transforms will provide more discriminative features for classifi-
cation, especially when zeroing out the small-magnitude feature elements caused by high-frequency noise
(Zarka et al., 2020). Furthermore, the feature discrimination could be improved further, as the remaining
large feature elements are quantized to the values of ±1 or 1 through appropriate ternary or binary quan-
tization (Lu et al., 2023). This suggests that employing low bit-width binary and ternary quantization on
sparse features is advantageous for classification in terms of both complexity and accuracy. Then for the
quantized random projection of sparse features, instead of the conventional distance preservation condition
of f(u′)⊤f(v′) = u⊤v, we propose the condition of f(u′)⊤f(v′) = f⊤(u)f(v), i.e. preserving the distance
between the quantization codes of sparse features, in order to allow the quantized projections to capture
more discriminative features from the original data.

With the quantized sparse features as input, the random projection model is somewhat similar to the com-
pressed sensing model (Donoho, 2006). Inspired by the analysis of the sparse {0, 1}-binary matrix-based
compressed sensing (Mendoza-Smith & Tanner, 2017; Lu et al., 2018), in the paper we investigate the pro-
posed distance preservation property f(u′)⊤f(v′) = f⊤(u)f(v) for the sparse binary matrix-based random
projection. By varying the matrix sparsity, we find that the property tends to be better satisfied by the
very sparse matrices which contain only one nonzero entry per column, than other more dense counter-
parts. Accordingly, theses extremely sparse matrices also achieve better performance in both supervised and
unsupervised learning tasks, specifically classification and clustering. This is good news in terms of both
complexity and accuracy. Overall, the major contributions of the paper can be summarized as follows.

• For the binary matrix-based random projection, we for the first time study the impact of matrix
sparsity on the performance of ternary (and binary) quantized projections in the conventional clas-
sification and clustering tasks. It is found that the extremely sparse binary matrices that contain
only one nonzero entry per column tend to perform better than other more dense matrices, when
the original data to be projected are the sparse features we commonly study, such as the DWT and
CNN features generated with the known datasets YaleB (Georghiades et al., 2001; Lee et al., 2005),
CIFAR10 (Krizhevsky & Hinton, 2009) and ImageNet (Deng et al., 2009).

• To estimate the optimal matrix sparsity, we investigate how accurately the ternary (and binary)
quantized projection can preserve the pairwise distance between the ternary (and binary) quantiza-
tion of original data, rather than directly between the original data as conventionally studied. The
proposed distance preservation offers two advantages: firstly, it enables the quantized projection
to obtain more discriminative features from the original data, as the data are the sparse features
described above (Lu et al., 2023); and secondly, it is suited for the analysis of the binary matrix
based quantized random projection, which seems hard to analyze using the conventional distance
preservation condition.

The rest of the paper is organized as follows. In the next section, we review the literature related to the
quantized random projection model. In Section 3, we introduce the basic knowledge about the model and
describe the proposed distance preservation property. Among the binary matrices with different sparsity,
the one that better holds the proposed property is estimated in Section 4. The performance advantage of
such matrix in classification and clustering is verified in Section 5. Section 6 concludes the work.
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2 Related work

The quantized random projection model has been studied in two research areas: local similarity hashing
(LSH) (Charikar, 2002; Boufounos & Rane, 2013; Valsesia & Magli, 2016) and compressed sensing (Jacques
et al., 2013). The former aims to adopt quantized projections to build hash tables for information retrieval,
and the latter aims to reconstruct original data from quantized projections. Different from our work, both
of them, broadly speaking, require the quantized projection f(x′) to preserve the pairwise distance (or sim-
ilarity) between original data x, rather than between their quantization versions f(x). Furthermore, their
studies are mainly focused on Gaussian matrices. For the classification on quantized projections, a systematic
evaluation has been presented in (Li et al., 2014), which demonstrates that compared to unquantized projec-
tions, a slight performance reduction inclines to be caused by 2-bit quantization, and the reduction becomes
noticeable for 1-bit quantization. Recently, empirical evidence has shown that binary and ternary quanti-
zation methods can improve classification accuracy, particularly when dealing with commonly-used sparse
features (Lu et al., 2023). Furthermore, when sparse features undergo random projections and classification
is conducted on the quantized projections, random projections based on extremely sparse {0,±1}-matrices
tend to achieve better classification performance than those based on Gaussian matrices. This remarkable
performance motivates us to deeply investigate the impact of sparse matrices on the classification of quantized
projections through theoretical analysis.

For random projections based on sparse matrices, like {0,±1}-ternary matrices and {0, 1}-binary matrices,
existing research mainly explores the distance preservation property for the linear model (1), without quan-
tization considered. Specifically, the ℓ2 distance preservation property of ternary matrices has been studied
in (Li et al., 2006), which demonstrates that the property can be well satisfied when the matrix has the
proportion of nonzero entries greater than 1/

√
n. In (Dasgupta et al., 2017), the ℓ2 distance preservation is

analyzed for binary matrices, and empirically the matrices tend to reach a stable performance for nearest
neighbors search when containing more than about 10% nonzero entries. In contrast, out study demon-
strates that for the quantized projections of sparse features, binary matrices can generally achieve the best
classification performance when containing only one nonzero entry per column.

3 Problem Formulation

In the paper, we study the random projection model (1) which has the original data x ∈ Rn sparsely
distributed and has the random matrix R ∈ {0, 1}m×n binary distributed. To improve the classification
on the quantization of projected data, we present a novel distance preservation property that maintains
the pairwise distance between the quantization of original data, rather than between the original data
themselves, and then investigate the probability that the property holds for the binary matrix with varying
matrix sparsity. In this section we provide the basic knowledge about the study, including the distribution of
binary matrices R, the distribution of original data x, the quantization functions f(·), as well as the distance
preservation model.

3.1 Binary matrix

For a random binary matrix R ∈ {0, 1}m×n, we assume it contains d (< m) nonzero entries per column,
or say having column degree d. This parameter measures the matrix sparsity, whose impact on distance
preservation will be the core of our research. We denote Ri,j ∈ R as the entry at the i-th row and j-th
column, R∗,j ∈ Rm the j-th column vector, Ri,∗ ∈ R1×n the i-th row vector, Ri,ϕ ∈ R1×|ϕ| the intersection of
the i-th row and the columns indexed by ϕ ⊂ [n], [n] := {1, 2, ..., n}, and R∗,ϕ ∈ Rm×|ϕ| the set of the columns
indexed by ϕ. Moreover, inspired by the analysis of the binary matrix-based compressed sensing (Donoho,
2006), in Definition 1 we model the adjacency relation between the binary matrix’s rows and columns, which
corresponds to the mapping relation between the coordinates of original data x and projected data x′. The
relation will be explored in the following distance preservation analysis.
Definition 1 (Adjacency relation between the binary matrix’s rows and columns). Consider the binary
matrix R ∈ {0, 1}m×n with its columns and rows indexed by the variables j and i, respectively. For the
matrix’s j-th column, define its adjacent row set as N (j) = {i : Ri,j ̸= 0, i ∈ [m]}; and subsequently, for a
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subset of the columns J ⊂ [n], define its adjacent row set as N (J) = {
⋃
j N(j), j ∈ [J ]}. Similarly, for the

matrix’s i-th row, define its adjacent column set as N (i) = {j : Ri,j ̸= 0, j ∈ [n]}. Notice that the matrix’s
columns and rows correspond respectively to the element coordinates of the original data x and projected
data x′, and so the adjacency relation defined above can be used to describe the mapping relation between
the coordinates of the two kinds of data.

3.2 Original data

The analysis of the quantized random projection is related to the distribution of the original data x =
(x1, x2, · · · , xn)⊤ ∈ Rn. In the paper, we propose to study the data with approximately sparse or exactly
sparse distributions, as specified in Definitions 2 and 3.
Definition 2 (Approximately sparse data). A data vector x ∈ Rn is called approximately sparse, if its
element-magnitude-ordered version x∗ = (x∗

1, x
∗
2, · · · , x∗

n) follows an exponential decay relation: |x∗
i+1|/|x∗

i | ≤
e−β , where β is an arbitrary positive constant; and the larger the value of β, the faster the decaying speed.
Definition 3 (Exactly sparse data). A data vector x ∈ Rn is called k sparse, or having sparsity k, if it
contains exactly k (≪ n) nonzero entries, or say having the support size |supp(x)| = k, supp(x) = {i : xi ̸=
0, i ∈ [n]}.

The approximately sparse data are common in various classification tasks, such as the features extracted
with DCT, DWT, CNN and so on. It is known that these features have approximately sparse distributions,
and can be modeled with exponential decay functions (Weiss & Freeman, 2007; Kotz et al., 2012). Moreover,
they can be further transformed to exactly sparse structures by zeroing out the elements of small magnitude.
Compared to approximately sparse structures, exactly sparse structures have three advantages. First, it can
help reduce the computation complexity of the downstream random projection operation. Second, as studied
in (Lu et al., 2023), it tends to improve feature discrimination, favorable for classification. Third, as detailed
latter, it is more easy to analyze, and allows us to simply set the projection’s quantization threshold to be a
constant value, zero. Therefore, in the final experiments we will pay more attention to the performance of
exactly sparse features.

3.3 Quantization function

We adopt two simple yet popular quantization operations, the ternary and binary quantization. The ternary
quantization is formulated as

fτ (xi) =


+ 1, xi > τ

− 1, xi < −τ
0, others

(2)

where the threshold parameter τ ≥ 0 will be empirically determined to control the sparsity of the quantization
fτ (x) of the vector x ∈ Rn. Here we take fτ (·) as an element-wise function and write the vector’s quantization
fτ (x) = (fτ (x1), fτ (x2), · · · , fτ (xn))⊤. In a similar manner, the {0, 1}-binary quantization can be formulated
using only one threshold parameter τ . For brevity, in the following we will focus our analysis on ternary
quantization, and the analysis can be readily extended to binary quantization.

3.4 Distance preservation

Consider the random projection model (1), which has two original data u, v ∈ Rn and corresponding
projections u′, v′ ∈ Rm. We aim to determine the distribution of binary matrix R that ensures the following
distance preservation property

fτ3(u′)⊤fτ4(v′) = α · f⊤
τ1

(u)fτ2(v) (3)
holding with high probability, where α is a positive constant, and the threshold parameters τi of the quan-
tization functions f(·) will be determined by analysis. Notice that for the convenience of analysis, the
parameter α is introduced to define a relative distance preservation, whose value varying does not affect the
classification of projected data; and the exact distance preservation, namely the case of α = 1, can be easily
obtained by scaling the element values of random matrix.
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Different from the traditional quantized random projection model that requires preserving the distance
between two original data u and v, our proposed distance preservation model (3) maintains the distance
between the two original data’s quantization codes, fτ1(u) and fτ2(v). This proposal is inspired by the
recent finding (Lu et al., 2023) that the quantization of sparse features (i.e. our original data) can produce
more discriminative features for classification. Then compared to the conventional distance preservation, the
proposal (3) will help the projection to acquire more discriminative features from the original data. Also,
the proposal can facilitate analysis, since the quantization operation on original data simplifies the data
distribution.

4 Distance preservation analysis

For the projection matrix R ∈ {0, 1}m×n with varying column degree d, in this section we estimate the
optimal column degree d that ensures the proposed distance preservation property (3) holding with high
probability. For ease of analysis, we first describe the desired matrix structure that ensures the property (3)
holding with two given data x ∈ Rn, and then derive the probability that the desired matrix structure holds
with two arbitrary data x ∈ Rn. The analysis results are presented in Theorems 1-3, with comprehensive
proofs outlined in Appendices A.1-A.3. For brevity, we mainly analyze the ternary quantized projections
fτ (x′), and the analysis can be straightforwardly extended to the binary case.

4.1 Distance preservation for two given data

Given two original data points u, v ∈ Rn with deterministic structures, we evaluate the distance preservation
condition separately in Theorems 1 and 2 for two typical data distributions: exactly sparse and approximately
sparse, as specified in Definitions 3 and 2. On the whole, both theorems demonstrate that the proposed
distance preservation (3) will be achieved, if the submatrix R∗,ϕ of the binary matrix R, indexed by the
support union ϕ of the two quantization codes fτ1(u) and fτ2(v) corresponding to the two original data
points, has orthogonal columns. The details are discussed in their respective remarks.
Theorem 1 (Exactly sparse data). Consider the random projection model (1), which has two projected
data u′, v′ ∈ Rm generated from two exactly sparse data u, v ∈ Rn with sparsity k1, k2, provided a random
matrix R ∈ {0, 1}m×n with column degree d (< m). Let ϕ = supp(u) ∪ supp(v), then |ϕ| ≤ k1 + k2. If
R⊤

∗,ϕR∗,ϕ = dI|ϕ|, where I|ϕ| denotes the identity matrix of size |ϕ|, we have

f0(u′)⊤f0(v′) = d · f0(u)⊤f0(v), (4)

where f0(·) is the ternary quantization function (2) with parameter τ = 0.

Remark of Theorem 1. For the theorem, there are three issues worth stating. (i) It is easy to see that the
orthogonal R∗,ϕ required by the theorem could be obtained, if the size of the support union of two original
data is less than the matrix’s row size, that is |ϕ| ≤ m. This condition can be easily achieved by zeroing out
the small-magnitude elements of sparse features, and as stated before, this sparsifying operation can improve
feature discrimination, beneficial to classification (Lu et al., 2023). (ii) The four ternary functions of (4) all
simply fix their threshold parameter to be τ = 0 for both the original data and projected data, avoiding the
burden of parameter tuning. (iii) The derivation of (4) depends on the distribution of the nonzero entries
of binary matrix, but not on their specific values. Therefore, the result (4) is also available for the random
{0,±1}-ternary matrix. In the paper, we will focus on binary matrices for its simpler structure. (iv) The
ternary or binary quantization of exactly sparse data remains exactly sparse, and the quantization can be
used for easier projection, without altering the final projection result (4). In other words, Theorem 1 holds
for the random projection model which has both the original data and projected data quantized to be ternary
or binary codes.
Theorem 2 (Approximately sparse data). Consider the random projection model (1), which has two
projected data u′, v′ ∈ Rm generated from two approximately sparse data u, v ∈ Rn, provided a ran-
dom matrix R ∈ {0, 1}m×n with column degree d. For u and v, assigning two ternary functions fτ (·)
with τ = τ1 = |u∗

k1
|+|u∗

k1+1|
2 and τ = τ2 = |v∗

k2
|+|v∗

k2+1|
2 , respectively, such that supp(fτ1(u)) = k1 and

5



Under review as submission to TMLR

supp(fτ2(v)) = k2, where u∗
k1

denotes the k1-th largest element of u in magnitude and v∗
k2

is defined sim-
ilarly. Let ϕ = supp (fτ1(u)) ∪ supp(fτ2(v)), then |ϕ| ≤ k1 + k2. If R⊤

∗,ϕR∗,ϕ = dI|ϕ| and u, v have their
decaying parameter β ≥ ln(2 +

√
3), we can derive that

fτ1(u′)⊤fτ2(v′) = d · fτ1(u)⊤fτ2(v). (5)

Remark of Theorem 2. (i) The analysis and result for approximately sparse data are similar to those we
have obtained for exactly sparse data in Theorem 1. One of major differences is the choice of the threshold
parameter τ for ternary functions. As discussed in Section 3.4, we need to select a proper τ to produce
a data sparsity k that can improve feature discrimination when transforming u to fτ (u), thus leading to
better classification performance. As shown in (Lu et al., 2023), the desired sparsity k can be empirically
determined. Without loss of generality, we assume two different sparsity values k1, k2 (corresponding to τ1
and τ2) for the two original data points u, v, in order to obtain the desired quantization performance. In
practical applications, for simplicity, we suggest to select a same sparsity k for the two data, since they are
generally obtained from the same scene and share similar distributions. (ii) Moreover, it is worth noting that
besides the orthogonal constraint on the submatrix R∗,ϕ, the derivation of (5) also imposes a constraint on
the distribution of the original sparse data: the data should have its decaying parameter β ≥ ln(2 +

√
3),

and roughly speaking, the data needs to decay sufficiently fast. Notice that the lower bound for β is a
sufficient but not necessary condition, and empirically our optimal matrix estimation is not sensitive to the
lower bound of β and tends to achieve the desired classification performance even for the sparse features
with smaller β.

4.2 Distance preservation for two arbitrary data

To generalize the distance preservation property (3) from two fixed data to arbitrary data, we should extend
the condition of orthogonal R∗,ϕ from a fixed column set ϕ = supp (fτ1(u)) ∪ supp(fτ2(v)) to an arbitrary
set ϕ ⊂ [n], |ϕ| = k1 + k2 < m. For a randomly generated binary matrix R ∈ {0, 1}m×n, however, it is hard
to ensure its each submatrix R∗,ϕ to have orthogonal columns. In Theorem 3, we analyze the probability of
having orthogonal R∗,ϕ under the varying column degree d.

Theorem 3. Given a random matrix R ∈ {0, 1}m×n with column degree d. Consider its submatrix R∗,ϕ
with ϕ ⊂ [n]. Denote Pr{R⊤

∗,ϕR∗,ϕ = dI|ϕ|} as the probability of R⊤
∗,ϕR∗,ϕ = dI|ϕ| holding for any ϕ ⊂ [n],

with |ϕ| ≥ 2 and d|ϕ| ≤ m. Provided m and ϕ, we have the probability

Pr{R⊤
∗,ϕR∗,ϕ = dI|ϕ|} = [(m− d)!]|ϕ|

(m!)(|ϕ|−1)(m− |ϕ|d)! (6)

≤
∏|ϕ|−1
ℓ=1 (m− ℓ)
m|ϕ|−1 (7)

which has the value of (6) monotonically decreasing with the column degree d, and has the equality of (7)
achieved by d = 1.

Remark of Theorem 3. (i) The theorem demonstrates that the probability (6) of having orthogonal R∗,ϕ
will increase with the decreasing of column degree d. It suggests that the distance preservation property
(3) should be satisfied with higher probability by the binary matrix with smaller column degree d. Then
it is reasonable to conjecture that when applied to the common classification or clustering tasks, quantized
projections can achieve the best performance with very sparse binary matrices, i.e. the ones with column
degree as small as d = 1, as verified in our experiments. (ii) Moreover, it is worth noting that besides the
column degree d, the probability (6) is also related to the size of ϕ. For the probability derived with d = 1
in (7), it is easy to see that the smaller the |ϕ|, the higher the probability. This means that the more sparse
features x (with smaller sparsity k) should result in the better distance preservation property (3), and this
relation is similar to the condition of compressed sensing (Donoho, 2006).
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Figure 1: Distance variation rate for the ternary-quantized (TQ) (and non-quantized) projections of the generated data, with
four different feature sparsity ratios k/n = 0.01%, 0.1%, 1% and 10%, using two projection matrices: the Gaussian matrix
(GM) and the binary matrix (BM) with varying column degree BM-d ∈ [1, 10], under two projection ratios m/n = 10% and
50%. Note the smaller the distance variation rate, the better the distance preservation.

4.3 Extension to binary quantization

In Theorems 1 and 2, we only investigate the ternary quantization (2) for the distance preservation condition
(3). From the proofs of the two theorems, it can be seen that their results can be directly extended to the
case of binary quantization, with the same threshold values τi. Then by Theorem 3, we can predict that
the binary quantization of projected data will achieve its best classification performance when using very
sparse binary matrices. This is verified in our experiments. In the paper, we pay more attention to ternary
quantization than to binary quantization, as the latter generally performs worse due to discarding more
feature elements (Lu et al., 2023).

4.4 Numerical analysis

In this part, we aim to validate the main result of Theorem 3, namely the proposed distance preservation
property (3) should be held with higher probability by binary matrices with smaller column degrees d, when
the sparsity ratio k/n of the quantization fτi

(·) of original data is sufficiently small, as required in Theorems
1 and 2. For this purpose, we directly investigate the distance varying by numerical simulations. By the
distance preservation property (3), we define the distance variation rate of the pairwise distance between
the quantized projected data, relative to the distance between the quantized original data using the formula

1
N

N∑
i=1

∣∣∥fτ3(u(i)′) − fτ4(v(i)′)∥2 − ∥fτ1(u(i)) − fτ2(v(i))∥2
∣∣

∥fτ1(u(i)) − fτ2(v(i))∥2
(8)

where u(i), v(i) ∈ Rn are a pair of original data points, 1 ≤ i ≤ N , and u(i)′, v(i)′ ∈ Rm are their projections
over a random matrix R ∈ {0, 1}m×n with column degree d. Note that all the quantized data fτi(·) in (8)
are pre-normalized using ℓ2 norm, in order to eliminate the magnitude discrepancy between before and after
random projections. It is evident that the smaller the distance variation rate (8), the better the distance
preservation property.

To flexibly control the sparsity ratio k/n of the quantization fτi(·) of original data, we simply set τ = 0 and
randomly generate the original data u(i), v(i) by controlling the number k of nonzero entries. By Theorems
1 and 2, the specific values of the nonzero entries will not affect the distance preservation property. For
ease of simulation, we set u(i), v(i) ∈ {0,±1}n for the study of ternary quantization. Moreover, we set
the number of data pairs N = 10000, the original data dimension n = 10000, the data sparsity ratio
k/n ∈ {0.01%, 0.1%, 1%, 10%}, the binary matrices’ column degree d ∈ [1, 10], and the projection ratio
m/n ∈ {10%, 50%}.
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The simulation results are provided in Figure 1. For comparison, the results for the popular Gaussian matrix-
based random projection are also provided. Figure 1 illustrates that as expected in Theorem 3, the distance
variation rate of random binary matrices inclines to increase with the column degree d. This indicates a
decline in distance preservation capability. This trend is particularly evident, when the sparsity ratio k/n of
original data is relatively small, such as k/n < 1%. This is consistent with our theoretical analysis. As the
sparsity ratio k/n increases, binary matrices tend to exhibit similar distance preservation performance across
different column degrees d. Compared to Gaussian matrices, binary matrices can often achieve lower distance
variation rates, indicating better distance preservation performance, especially for small values of k/n. As
k/n increases, two kinds of matrices tend to exhibit comparable distance preservation performance. These
trends are also observed in the case of binary quantization, where both the original and projected data are
quantized to {0, 1}-binary values, as detailed in Appendix A.4.1, Figure 7. Notably, the above performance
trends regarding distance preservation are corroborated in subsequent experiments on classification and
clustering, providing further validation of our theoretical insights.

5 Experiments

5.1 Setting

In this section, we investigate the performance of the ternary and binary-quantized projections of sparse
data in both supervised and unsupervised learning tasks, specifically classification and clustering. Random
projections are implemented using random binary matrices with different column degrees. Our goal is to
find the column degree that leads to the best classification or clustering performance. For comparison,
the performance is also tested for the popular Gaussian matrix-based random projections and for the non-
quantized projections. Considering both the ternary and binary-quantized projections commonly exhibit
similar performance trends with the varying of the column degree of binary matrices, we will mainly discuss
the results of ternary projections and defer the results of binary projections to Appendix A.4.

5.1.1 Classification and clustering algorithms

To directly reflect the impact of the distance between projected data on classification and clustering, we
employ linear similarity metrics-based algorithms for both tasks. Specifically, classification is implemented
with two typical linear classifiers, the K-nearest neighbor (KNN) classifier with cosine distance (Peterson,
2009) and the support vector machines (SVM) with linear kernel (Cortes & Vapnik, 1995). Both classifiers
have performance fully dependent on the distance between data, without involving additional operations
to further improve data discrimination. Empirically, the two classifiers tend to show similar performance
trends as the column degree of binary matrices varies. For brevity, we will focus on the results of KNN
and present the results of SVM (Cortes & Vapnik, 1995) in Appendix A.4. Clustering is realized with the
k-means algorithm with cosine distance (MacQueen et al., 1967). To evaluate clustering accuracy, we follow
the strategy adopted in (Xu et al., 2004). Given a set of labeled data, we first remove their labels to run the
clustering algorithm, then label each resulting cluster with the majority class according to the original data
labels, and calculate the proportion of the data samples correctly classified by each cluster.

5.1.2 Data

The sparse data to be projected are generated from the datasets YaleB (Georghiades et al., 2001; Lee
et al., 2005), CIFAR10 (Krizhevsky & Hinton, 2009) and Mini-ImageNet (Vinyals et al., 2016), respectively
via the feature transforms DWT (Mallat, 2009), AlexNet Conv5 (Krizhevsky et al., 2012) and VGG16
Conv5_3 (Simonyan & Zisserman, 2014). To provide relatively good classification performance, we assign
more advanced feature transforms to more complex datasets. The datasets are briefly introduced as follows.
YaleB contains the face images of 38 persons, with about 64 samples per person. From the dataset, we
randomly select 9/10 samples for training and the rest for testing. CIFAR10 consists of 10 classes of color
images, with 6000 samples per class. Mini-ImageNet is a subset of ImageNet (Deng et al., 2009), which
consists of 100 classes of color images, each class having 600 samples. For the latter two datasets, we use
their default training and testing samples, with the ratio of 5/1. For the three datasets, we normalize the
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feature vectors with zero mean and unit variance, and reduce the vector dimensions several times to the order
of thousands for easier simulation. The dimension reduction may decrease the classification or clustering
accuracy but not influence our comparative study. To verify Theorems 1 and 2, we evaluate two kinds of
sparse data that have approximately and exactly sparse distributions, respectively, as specified in Definitions
2 and 3. The approximately sparse ones are the original sparse features generated with DWT and CNN,
and the exactly sparse ones are obtained by further sparsifying the features with given sparsity ratios of
k/n = 1%, 5%, 10% and 20%. Compared to the original, approximately sparse features, as mentioned
earlier, the resulting exactly sparse features are usually more favorable for classification (Lu et al., 2023).
For the random projection model (1), we test two different projection ratios: m/n = 10% and 50%.

5.2 Classification results

The classification results are provided in Figures 2-5 and Figure 6, respectively for the exactly sparse features
and the approximately sparse features. In each figure, the first and second rows correspond respectively to
the random projection cases of projection ratios m/n = 10% and 50%, and the four subfigures in each row
correspond to the exactly sparse features with sparsity ratio k/n = 1%, 5%, 10% and 20%. Considering the
fact that exactly sparse features outperform approximately sparse features, and ternary quantization outper-
forms binary quantization (Lu et al., 2023), for brevity, we mainly analyze the classification on the ternary
quantized projections of exactly sparse features, as illustrated in Figures 2-4. The analysis is conducted from
the following several aspects.

5.2.1 Binary matrices with different column degrees

By the remark of Theorem 3, the proposed distance preservation property (3) tends to be held with higher
probability, when the binary matrix has a smaller column degree d. Then, the classification accuracy of
quantized projections is expected to decrease with the increased column degree d. This performance trend is
basically verified by the results illustrated in Figures 2-4, see the x-marked, solid lines for the classification
of the ternary quantized projections of the exactly sparse features with different sparsity ratios k/n = 1%,
5%, 10% and 20%. It can be seen that the performance declining speed differs with different data types,
and it seems that the more easy the data for classification, such as the DWT features of YaleB shown in
Figure 2, the more obvious the performance advantage of d = 1 over other larger d. An exception worth
mentioning is the case of k/n = 1%, as shown in Figures 2 and 3, where d = 1 performs slightly worse than
d = 2. This deviation should be attributed to the gap between theory and practice: the classification of
quantized projections relates not only to the distance preservation property studied here, but also to other
factors out of our scope, such as feature discrimination. Despite the imperfect, our theoretical estimation
is generally supported by the results of Figures 2-4: the column degree d = 1 tends to provide better or at
least comparable performance to other larger d, in the classification of the ternary-quantized projections of
exactly sparse features.

5.2.2 Quantized vs. non-quantized projections

By (Lu et al., 2023), quantized projections can provide better classification performance than non-quantized
projections, if both the original data and random matrix have sufficiently sparse distributions, and the
quantization threshold τ for projected data is properly selected. This performance property is also proved
in our experiments. Comparing the classification results provided in Figures 2-4 for the ternary-quantized
projections (x-marked, solid lines) and non-quantized projections (x-marked, dashed lines), it can be seen
that the former tends to achieve better performance than the latter, when the column degree d of binary
matrix and the sparsity ratio k/n of original data (i.e. the exactly sparse features) both become smaller, such
as the case of d=1 and k/n = 1%. Note that by Theorem 1 we here simply set the quantization threshold
as τ = 0, and the better performance for quantized projections should be obtained if the threshold is more
carefully selected as in (Lu et al., 2023). Overall, the above results indicate that the sparse binary matrix
with d = 1 can obtain better classification performance on quantized projections than on non-quantized
projections. This result is highly attractive both in terms of complexity and accuracy.
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(a) k/n = 1%, m/n = 10% (b) k/n = 5%, m/n = 10% (c) k/n = 10%, m/n = 10% (d) k/n = 20%, m/n = 10%
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(e) k/n = 1%, m/n = 50% (f) k/n = 5%, m/n = 50% (g) k/n = 10%, m/n = 50% (h) k/n = 20%, m/n = 50%

Figure 2: Classification accuracy for the ternary-quantized (TQ) (and non-quantized) projections of the exactly sparse features
of YaleB (DWT), with three different feature sparsity ratios k/n = 1%, 5%, 10% and 20%, using two projection matrices: the
Gaussian matrix (GM) and the binary matrix (BM) with varying column degree BM-d ∈ [1, 10], under two projection ratios
m/n = 10% and 50%.
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(e) k/n = 1%, m/n = 50% (f) k/n = 5%, m/n = 50% (g) k/n = 10%, m/n = 50% (h) k/n = 20%, m/n = 50%

Figure 3: Classification accuracy for the ternary-quantized (TQ) (and non-quantized) projections of the exactly sparse features
of CIFAR10 (AlexNet), with three different feature sparsity ratios k/n = 1%, 5%, 10% and 20%, using two projection matrices:
the Gaussian matrix (GM) and the binary matrix (BM) with varying column degree BM-d ∈ [1, 10], under two projection ratios
m/n = 10% and 50%.

5.2.3 Binary matrices vs. Gaussian matrices

Figures 2-4 demonstrate that binary matrices (x-marked solid lines) tend to outperform Gaussian matrices
(circle-marked solid lines), as the column degree d of binary matrix and the sparsity ratio k/n of original
data both become smaller, such as the case of d=1 and k/n = 1%. The superior performance of binary
matrices should be attributed to its advantage in distance preservation, as demonstrated in Section 4.4. In
this case, we are encouraged to replace Gaussian matrices with sparse binary matrices, for improvements
both in complexity and accuracy.

5.2.4 Binary quantized projections

By the discussion in Section 4.3, the theoretical properties of binary matrices we derive with ternary quan-
tized projections in Theorems 1-3 should also hold with binary quantized projections. In other words, the
performance trends derived in Figures 2-4 for ternary projections, should be also achievable for binary pro-
jections. To verify this, we examine the classification on binary projections in Figure 5, see Appendix A.4.2
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(e) k/n = 1%, m/n = 50% (f) k/n = 5%, m/n = 50% (g) k/n = 10%, m/n = 50% (h) k/n = 20%, m/n = 50%

Figure 4: Classification accuracy for the ternary-quantized (TQ) (and non-quantized) projections of the exactly sparse features
of Mini-ImageNet (VGG16), with three different feature sparsity ratios k/n = 1%, 5%, 10% and 20%, using two projection
matrices: the Gaussian matrix (GM) and the binary matrix (BM) with varying column degree BM-d ∈ [1, 10], under two
projection ratios m/n = 10% and 50%.
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Figure 5: Classification accuracy for the binary-quantized (BQ) (and non-quantized) projections of the exactly sparse features
of YaleB (DWT), with three different feature sparsity ratios k/n = 1%, 5%, 10% and 20%, using two projection matrices: the
Gaussian matrix and the binary matrix with varying column degree BM-d ∈ [1, 10], under two projection ratios m/n = 10%
and 50%.

for more results. Figure 5 shows that similarly as the classification of ternary projections, in the classification
of binary projections the binary matrix with column degree d = 1 exhibits better or at least comparable
performance than other more dense counterparts. Moreover, it is worth mentioning that binary quantization
performs worse than ternary quantization, as found in (Lu et al., 2023), due to discarding more feature
elements.

5.2.5 Approximately sparse features

In Figure 6, we provide the classification results on the ternary quantized projections of the original features,
which have approximately sparse structures. As theoretically expected, binary matrices with d = 1 achieve
better or at least comparable performance to other denser matrices. Empirically, these approximately sparse
features do not precisely meet the decay speed β required in Theorem 2. This implies that our theoretical
findings exhibit robust universal applicability, being relatively insensitive to the sparsity conditions imposed
on the original data. With the increasing of k/n, as illustrated in Figures 2-6, the performance advantage of
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(d) YaleB, m/n = 50% (e) CIFAR10, m/n = 50% (f) Mini-ImageNet, m/n = 50%

Figure 6: Classification accuracy for the ternary-quantized (TQ) (and non-quantized) projections of the original, approximately
sparse features: YaleB (DWT), CIFAR10 (AlexNet), Mini-ImageNet (VGG16), using two projection matrices: the Gaussian
matrix (GM) and the binary matrix (BM) with varying column degree BM-d ∈ [1, 10], under two projection ratios m/n = 10%
and 50%.

binary matrices over Gaussian matrices will become less evident in the classification of quantized projections.
This performance trend is consistent with the distance preservation property illustrated in Figure 1. Finally,
recall that the original, approximately sparse features tend to achieve higher classification accuracy, if being
further simplified to exactly sparse structures (Lu et al., 2023). Then for both better classification and easier
computation, we are motivated to transform theses features to exactly sparse structures before conducting
random projections on them.

5.3 Clustering results

For limited space, we provide the clustering results on the ternary and binary quantized projections in
Appendix A.4.3, specifically depicted in Figures 11-13 and Figures 14-16, respectively. Similarly as in
classification, the extremely sparse binary matrix with column degree d = 1 exhibits several similar properties
in clustering: 1) it can achieve superior or comparable performance to other denser binary matrices with
larger d values, as well as Gaussian matrices; 2) its performance on quantized projections is often better than
on non-quantized projections. 3) these performance advantages can endure even when the feature sparsity
ratio k/n increases from 1% to 20%, gradually deviating from the theoretical condition on feature sparsity.

6 Conclusion

For the binary matrix-based random projection, where the projections are further quantized to binary or
ternary values, we have investigated how the sparsity of binary matrices influences the ability of the quantized
projections to preserve pairwise distances between the quantized original data. Our analysis indicates that
binary matrices with sparser structures tend to better maintain pairwise distances, particularly when the
original data intended for projections exhibit sufficiently sparse structures. This performance trend has been
corroborated in classification and clustering experiments conducted on quantized projections of common
data features, such as the DWT of YaleB and the CNN of CIFAR10 and ImageNet, all of which exhibit
approximately sparse structures. In these experiments, extremely sparse binary matrices with only one
nonzero entry per column generally provide better or comparable classification performance compared to
denser binary matrices and Gaussian matrices. The extremely sparse matrix structure significantly reduces
the complexity of the quantized random projection models, such as the large-scale retrieval model (Charikar,
2002). Furthermore, our research offers insights into the sparse structures inherent in other advanced models
that incorporate quantized projection architectures, like deep quantization networks (Wan et al., 2018; Qin
et al., 2020), as well as biological neuron models (Dasgupta et al., 2017).
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A Appendices

A.1 Proof of Theorem 1

Proof. For the two exactly sparse data points u, v ∈ Rn, suppose their support intersection ψ = supp(u) ∩
supp(v). Then we can write

f0(u)⊤f0(v) =
∑
j∈ψ

f0(uj)f0(vj). (9)

Recall that f0(·) is an element-wise function. Similarly, for the two projected points u′, v′ ∈ Rm, we define
their support union and intersection as ϕ′ = supp(u′) ∪ supp(v′) and ψ′ = supp(u′) ∩ supp(v′), and then can
write

f0(u′)⊤f0(v′) =
∑
i∈ψ′

f0(u′
i)f0(v′

i). (10)

In the sequel, we aim to prove that (10) can be linearly transformed to (9). The analysis of (10) requires
us to first determine the support intersection ψ′ between projected data. To achieve this, we examine the
value of each element f0(u′

i) of f0(u′), which for ease of analysis is divided into two groups on the basis of
i ∈ N (supp(u)) or not. Notice that the analysis will require us to frequently explore the adjacency relation
between the random matrix’s columns and rows, or say the mapping relation between the original data and
projected data, as specified in Definition 1. For the case of i /∈ N (supp(u)), by Definition 1 we have Ri,j = 0,
∀j ∈ supp(u), and then can write

f0(u′
i) = f0

 ∑
j∈[n]\supp(u)

Ri,juj


= 0

(11)

since uj = 0, ∀j ∈ [n] \ supp(u); otherwise, we can derive

f0(u′
i)

1= f0

 ∑
j∈supp(u)

Ri,juj


2= f0

 ∑
j∈supp(u)∩N (i)

Ri,juj


3= f0

(
uj=supp(u)∩N (i)

)
4
̸= 0

(12)

for the case of i ∈ N (supp(u)). The derivation of (12) is detailed as follows: (i) The first equation results from
the definition of supp(u), which holds ui ̸= 0 for i ∈ supp(u), and otherwise, ui ̸= 0. (ii) The second equation
is deduced by Definition 1, that is j ∈ N (i), if Ri,j ̸= 0. (iii) By the structure of R ∈ {0, 1}m×n with column
degree d and with R⊤

∗,ϕR∗,ϕ = dI|ϕ|, ϕ = supp(u) ∪ supp(v), it is easy to see that the columns of R∗,ϕ are
orthogonal to each other, and equivalently, N (j1)∩N (j2) = ∅, ∀j1 ̸= j2 and j1, j2 ∈ ϕ (or ∈ supp(u) ⊂ ϕ); the
orthogonality property suggests that there exists only one column index j ∈ N (i) ∩ supp(u) (and satisfying
Ri,j = 1), ∀i ∈ N (supp(u)), and this yields the third equation. (iv) The fourth equation is easily derived by
uj ̸= 0, j ∈ supp(u).

Combing the results of (11) and (12), it follows that supp(u′)=N (supp(u)), which indicates that the support
of the projected data u′ is the adjacent set of the support of the original data u. Similarly, the same result can
also be derived for the other pair of data v, v′, that is supp(v′)=N (supp(v)). Then the support intersection
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ψ′ of the two projected data u′, v′ can be expressed as

ψ′ 1= supp(u′) ∩ supp(v′)
2= N (supp(u)) ∩ N (supp(v))
3= N (supp(u) ∩ supp(v))
4= N (ψ)

(13)

which has the third equation derived by the orthogonality of R∗,ϕ, implying N (j1) ∩ N (j2) = ∅, ∀j1,
j2 ∈ ϕ = supp(u) ∪ supp(v). The result indicates that the support intersection ψ′ of projected data u′, v′ is
identical to the adjacent set of the support intersection ψ of original data u, v.

Given ψ′ = N (ψ) in (13), we can further formulate (10) as

f0(u′)⊤f0(v′) 1=
∑
i∈ψ′

f0(u′
i)f0(v′

i)

2=
∑
j∈ψ

∑
i∈N (j)

f0(u′
i)f0(v′

i)

3=
∑
j∈ψ

∑
i∈N (j)

f0(uj)f0(vj)

4= d ·
∑
j∈ψ

f0(uj)f0(vj)

5= d · f0(u)⊤f0(v)

(14)

for which the derivation is detailed as follows. (i) The second equation is derived by the result of (13), that
is ψ′ = N (ψ) =

⋃
j∈ψ N (j), with N (j1) ∩ N (j2) = ∅, ∀j1 ̸= j2 and j1, j2 ∈ ϕ. (ii) The third equation results

from the uniqueness of j ∈ N (i) ∩ supp(u), provided i ∈ N (j), j ∈ ψ ⊂ supp(u); and the details can be
found in the analysis of the third equation of (12). (iii) The fourth equation is derived by N (j) = d. The
proof is complete.

A.2 Proof of Theorem 2

Proof. The proof is similar to that of Theorem 1. First, we divide the element coordinates of the original
data vectors u, v into two groups in terms of their element quantization fτ1(ui), fτ2(vi) equal to zero
or not, in order to define the support union ϕ = supp(fτ1(u)) ∪ supp(fτ2(v)) and the intersection ψ =
supp(fτ1(u)) ∩ supp(fτ2(v)). In the similar way, we also define the support union ϕ′ and intersection ψ′ for
the projected data u′, v′. Then we need to identify the relation between ψ′ and ψ. To achieve this, as in
(11) and (12), we propose to determine the value of fτ1(u′

i) in terms of i ∈ N (supp(fτ1(u))) or not. For the
case of i /∈ N (supp(fτ1(u))), we have

fτ1(u′
i) = f0

 ∑
j∈[n]\supp(fτ1 (u))

Ri,juj


= 0

(15)

since by the summation formula for geometric series, it can be deduced that τ1 = |u∗
k1

|+|u∗
k1+1|

2 is greater
than the absolute vale of the function input, under the condition of |u∗

i+1|/|u∗
i | ≤ e−β and β ≥ ln(2 +

√
3);
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and for the other case of i /∈ N (supp(fτ1(u))), we can derive

fτ1(u′
i)

1= fτ1

 ∑
j∈supp(fτ1 (u))

Ri,juj +
∑

j∈[n]\supp(fτ1 (ui))

Ri,juj


2= fτ1

uj=supp(fτ1 (u)))∩N (i) +
∑

j∈[n]\supp(fτ1 (ui))

Ri,juj


3= fτ1

(
uj=supp(fτ1 (u)))∩N (i)

)
4
̸= 0

(16)

which has the third equation resulting from the relation of
∣∣∣uj=supp(fτ1 (u)))∩N (i)

∣∣∣ >∣∣∣∑j∈[n]\supp(fτ1 (ui)) Ri,juj

∣∣∣ + τ1, while the relation can be derived using the same method as for
(15). The above two results (15) and (16) are the major characteristics of the proof of Theorem 2, and the
subsequent proof will proceed similarly as in Theorem 1, omitted here for brevity.

A.3 Proof of Theorem 3

Proof. The condition of R⊤
∗,ϕR∗,ϕ = dI|ϕ| means that R⊤

∗,j1
R∗,j2 = 0 for ∀ j1, j2 ∈ ϕ, j1 ̸= j2. In other words,

the nonzero entries of any two columns of R∗,ϕ have no coordinates overlapping. By the distribution of the
nonzero entries, we can express the probability as

Pr{R⊤
∗,ϕR∗,ϕ = dI|ϕ|} =

CdmC
d
m−d · · ·Cdm−(|ϕ|−1)d

(Cdm)|ϕ|

= [(m− d)!]|ϕ|

(m!)|ϕ|−1(m− |ϕ|d)!

Given m and ϕ, define g(d;m,ϕ) = Pr{R⊤
∗,ϕR∗,ϕ = dI|ϕ|}. Then it can be derived that

g(d;m,ϕ)
g(d+ 1;m,ϕ) =

[(m−d)!]|ϕ|

(m!)|ϕ|−1(m−|ϕ|d)!
[(m−d+1)!]|ϕ|

(m!)|ϕ|−1[(m−|ϕ|(d+1)]!

= (m− d)|ϕ|∏|ϕ|−1
ℓ=0 (m− |ϕ|d− ℓ)

> 1,

(17)

since m−d
m−|ϕ|d−ℓ > 1, 0 ≤ ℓ ≤ |ϕ| − 1. This indicates that g(d;m,ϕ) is a monotonically decreasing function,

with its maximum value achieved by

g(d;m,ϕ)|d=1 = (m− 1)!
m|ϕ|−1(m− |ϕ|)!

=
∏|ϕ|−1
ℓ=1 (m− ℓ)
m|ϕ|−1 .

(18)

The proof is complete.
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A.4 Other experimental results

A.4.1 Distance preservation

In Figure 7, we calculate the distance variation rate by (8) for binary quantized projections. The results are
consistent with our theoretical prediction: the distance variation rate of binary matrices tends to increase
with the column degree d, particularly when the sparsity ratio k/n of the original data is sufficiently small.
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Figure 7: Distance variation rate for the binary-quantized (BQ) (and non-quantized) projections of the generated data, with
three different feature sparsity ratios k/n = 0.01%, 0.1%, 1% and 10%, using two projection matrices: the Gaussian matrix
(GM) and the binary matrix (BM) with varying column degree BM-d ∈ [1, 10], under two projection ratios m/n = 10% and
50%. Note the smaller the distance variation rate, the better the distance preservation.

A.4.2 Classification

In Figure 8, we conduct the SVM classification on the ternary-quantized projections of YaleB (DWT),
and conduct the KNN classification on the binary-quantized projections of CIFAR10 (AlexNet) and Mini-
ImageNet (VGG16), respectively, in Figures 9 and 10. The classification results in Figures 8-10 demonstrate
a performance trend that aligns with our theoretical prediction: the extremely sparse binary matrix with
column degree d = 1 can achieve superior or at least comparable performance to other denser matrices with
larger d values.

A.4.3 Clustering

In Figures 11-13 and Figures 14-16, we respectively examine the k-means clustering performance on the
ternary and binary-quantized projections of YaleB (DWT), CIFAR10 (AlexNet) and Mini-ImageNet
(VGG16). The results are consistent with our theoretical prediction: the extremely sparse binary ma-
trix with column degree d = 1 can achieve superior or at least comparable performance to other denser
matrices with larger d values.
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Figure 8: SVM classification accuracy for the ternary-quantized (TQ) (and non-quantized) projections of the exactly sparse
features of YaleB (DWT), with three different feature sparsity ratios k/n = 1%, 5%, 10% and 20%, using two projection
matrices: the Gaussian matrix (GM) and the binary matrix (BM) with varying column degree BM-d ∈ [1, 10], under two
projection ratios m/n = 10% and 50%.
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Figure 9: Classification accuracy for the binary-quantized (BQ) (and non-quantized) projections of the exactly sparse features
of CIFAR10 (AlexNet), with three different feature sparsity ratios k/n = 1%, 5%, 10% and 20%, using two projection matrices:
the Gaussian matrix (GM) and the binary matrix (BM) with varying column degree BM-d ∈ [1, 10], under two projection ratios
m/n = 10% and 50%.
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Figure 10: Classification accuracy for the binary-quantized (BQ) (and non-quantized) projections of the exactly sparse features
of Mini-ImageNet (VGG16), with three different feature sparsity ratios k/n = 1%, 5%, 10% and 20%, using two projection
matrices: the Gaussian matrix (GM) and the binary matrix (BM) with varying column degree BM-d ∈ [1, 10], under two
projection ratios m/n = 10% and 50%.
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Figure 11: Clustering accuracy for the ternary-quantized (TQ) (and non-quantized) projections of the exactly sparse features
of YaleB (DWT), with three different feature sparsity ratios k/n = 1%, 5%, 10% and 20%, using two projection matrices: the
Gaussian matrix and the binary matrix with varying column degree BM-d ∈ [1, 10], under two projection ratios m/n = 10%
and 50%.
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(a) k/n = 1%, m/n = 10% (b) k/n = 5%, m/n = 10% (c) k/n = 10%, m/n = 10% (d) k/n = 20%, m/n = 10%
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(e) k/n = 1%, m/n = 50% (f) k/n = 5%, m/n = 50% (g) k/n = 10%, m/n = 50% (h) k/n = 20%, m/n = 50%

Figure 12: Clustering accuracy for the ternary-quantized (TQ) (and non-quantized) projections of the exactly sparse features
of CIFAR10 (AlexNet), with three different feature sparsity ratios k/n = 1%, 5%, 10% and 20%, using two projection matrices:
the Gaussian matrix and the binary matrix with varying column degree BM-d ∈ [1, 10], under two projection ratios m/n = 10%
and 50%.
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(a) k/n = 1%, m/n = 10% (b) k/n = 5%, m/n = 10% (c) k/n = 10%, m/n = 10% (d) k/n = 20%, m/n = 10%

1 2 3 4 5 6 7 8 9 10

BM-d

0

0.05

0.1

0.15

0.2

0.25

A
cc

u
ra

cy

1 2 3 4 5 6 7 8 9 10

BM-d

0

0.05

0.1

0.15

0.2

0.25

A
cc

u
ra

cy

1 2 3 4 5 6 7 8 9 10

BM-d

0

0.05

0.1

0.15

0.2

0.25

A
cc

u
ra

cy

1 2 3 4 5 6 7 8 9 10

BM-d

0

0.05

0.1

0.15

0.2

0.25

A
cc

u
ra

cy

(e) k/n = 1%, m/n = 50% (f) k/n = 5%, m/n = 50% (g) k/n = 10%, m/n = 50% (h) k/n = 20%, m/n = 50%

Figure 13: Clustering accuracy for the ternary-quantized (TQ) (and non-quantized) projections of the exactly sparse features
of Mini-ImageNet (VGG16), with three different feature sparsity ratios k/n = 1%, 5%, 10% and 20%, using two projection
matrices: the Gaussian matrix and the binary matrix with varying column degree BM-d ∈ [1, 10], under two projection ratios
m/n = 10% and 50%.
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(a) k/n = 1%, m/n = 10% (b) k/n = 5%, m/n = 10% (c) k/n = 10%, m/n = 10% (d) k/n = 20%, m/n = 10%
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(e) k/n = 1%, m/n = 50% (f) k/n = 5%, m/n = 50% (g) k/n = 10%, m/n = 50% (h) k/n = 20%, m/n = 50%

Figure 14: Clustering accuracy for the binary-quantized (BQ) (and non-quantized) projections of the exactly sparse features
of YaleB (DWT), with three different feature sparsity ratios k/n = 1%, 5%, 10% and 20%, using two projection matrices: the
Gaussian matrix and the binary matrix with varying column degree BM-d ∈ [1, 10], under two projection ratios m/n = 10%
and 50%.
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(a) k/n = 1%, m/n = 10% (b) k/n = 5%, m/n = 10% (c) k/n = 10%, m/n = 10% (d) k/n = 20%, m/n = 10%
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(e) k/n = 1%, m/n = 50% (f) k/n = 5%, m/n = 50% (g) k/n = 10%, m/n = 50% (h) k/n = 20%, m/n = 50%

Figure 15: Clustering accuracy for the binary-quantized (BQ) (and non-quantized) projections of the exactly sparse features of
CIFAR10 (AlexNet), with three different feature sparsity ratios k/n = 1%, 5%, 10% and 20%, using two projection matrices:
the Gaussian matrix and the binary matrix with varying column degree BM-d ∈ [1, 10], under two projection ratios m/n = 10%
and 50%.
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(a) k/n = 1%, m/n = 10% (b) k/n = 5%, m/n = 10% (c) k/n = 10%, m/n = 10% (d) k/n = 20%, m/n = 10%
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(e) k/n = 1%, m/n = 50% (f) k/n = 5%, m/n = 50% (g) k/n = 10%, m/n = 50% (h) k/n = 20%, m/n = 50%

Figure 16: Clustering accuracy for the binary-quantized (BQ) (and non-quantized) projections of the exactly sparse features
of Mini-ImageNet (VGG16), with three different feature sparsity ratios k/n = 1%, 5%, 10% and 20%, using two projection
matrices: the Gaussian matrix and the binary matrix with varying column degree BM-d ∈ [1, 10], under two projection ratios
m/n = 10% and 50%.
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