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Abstract
Decision support systems are being developed to assist clinicians in complex decision-making
processes by leveraging information from clinical knowledge and electronic health records
(EHRs). One typical application is disease risk prediction, which can be challenging due to
the complexity of modelling longitudinal EHR data, including unstructured medical notes.
To address this challenge, we propose a deep state-space model (DSSM) that simulates the
patient’s state transition process and formally integrates latent states with risk observations.
A typical DSSM consists of three parts: a prior module that generates the distribution of the
current latent state based on previous states; a posterior module that approximates the latent
states using up-to-datemedical notes; and a likelihoodmodule that predicts disease risks using
latent states. To efficiently and effectively encode raw medical notes, our posterior module
uses an attentive encoder to better extract information from unstructured high-dimensional
medical notes. Additionally, we couple a predictive clustering algorithm into our DSSM to
learn clinically useful representations of patients’ latent states. The latent states are clustered
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into multiple groups, and the weighted average of the cluster centres is used for prediction.
We demonstrate the effectiveness of our deep clustering-based state-space model using two
real-world EHR datasets, showing that it not only generates better risk prediction results than
other baseline methods but also clusters similar patient health states into groups.

Keywords Disease risk prediction · Deep state-space model · Predictive clustering ·
Modelling longitudinal medical notes · Text mining

1 Introduction

In the domain of personalized healthcare, understanding patients’ latent health states and
making clinical decisions heavily rely on utilizing the information contained in electronic
health records (EHRs). Patients’ health latent states can be implied by data of different types,
including unstructured medical notes, laboratory testing results, clinical events, and other
monitoring signals. To achieve personalized healthcare, it is crucial to identify each patient’s
health latent states from a large volume of data, which requires intensive domain knowledge
and labour resources. AI-based models can greatly assist the clinical decision process by
modelling patient EHR data. In this paper, we focus on a novel approach to modelling
longitudinal unstructured medical notes, which are collected from multiple hospital visits
and used to predict disease risk over time.

To trace the trajectory of patients’ latent states, numerous studies have attempted to model
latent variables. Both traditional machine learning techniques, such as L2-regularized logis-
tic regression (Tang et al., 2020) and longitudinal K-means (Mullin et al., 2021), as well as
deep learning methods, have been used to analyze longitudinal EHR data. Among the deep
learning methods, recurrent neural networks (RNNs) have demonstrated their effectiveness
in extracting longitudinal information from EHRs (Choi et al., 2016; Esteban et al., 2016;
Lipton et al., 2015; Choi et al., 2016; Ma et al., 2017). However, RNNs have the limitation of
being black-box models, making it difficult to have a probabilistic interpret the latent states
of patients (Krishnan et al., 2017). To address this issue, several studies (Choi et al., 2016;
Ma et al., 2017, 2020; Luo et al., 2020) have investigated the use of time-aware attention
mechanisms for analyzing longitudinal EHRs. On the other hand, some researchers (Alaa &
van der Schaar, 2019; Oezyurt et al., 2021; Alaa & van der Schaar, 2019) have integrated
neural networks with the Hidden Markov Model (HMM) and State-Space Model (SSM) to
parameterize state transitions and observations. Compared to RNNs and time-aware attention
mechanisms,HMMandSSMwith neural networks have the capacity to track changes in latent
states through dynamic modelling. They are able to generate predictions and future obser-
vations from latent states through a generative model. In this paper, following the approach
presented in prior works (Rangapuram et al., 2018; Li et al., 2021; Oezyurt et al., 2021),
we couple the concept of state-space models with deep neural networks to introduce a novel
framework known as the deep state-space model. This framework is designed specifically for
modelling longitudinal patient data, and it incorporates the framework of variational autoen-
coders (VAEs) (Kingma & Welling, 2013) for learning the state transition and observation
processes. Unlike most existing works, our model is one of the first attempts to apply deep
state-space models to handle longitudinal unstructured medical notes.

In personalized healthcare, it is crucial to construct a decision-makingmodelwhose results
are interpretable. Therefore, we alsomake efforts to provide interpretations of the latent states
generated by our disease prediction model. The attention mechanism is frequently used to
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generate interpretable results, allowing the model to focus on specific parts of the input data
when making predictions (Vaswani et al., 2017). RETAIN (Choi et al., 2016) and DIPOLE
(Ma et al., 2017) utilized the self-attention mechanism to identify important input features
from EHRs. Additionally, auxiliary medical knowledge can be integrated with EHR data
using the cross-attention mechanism for disease risk prediction (Mullenbach et al., 2018;
Niu et al., 2021a, b). There have also been attempts to couple HMM and SSM with attention
mechanisms on latent states of patients in order to capture long-term disease dynamics and
different disease states in the health trajectory (Oezyurt et al., 2021; Alaa & van der Schaar,
2019). However, merely understanding which important local features is insufficient for
predicting disease progression and disease risk. Instead, we need a deeper understanding of
the patient’s hidden states and the process of change in these states. Predictive clustering is a
technique for providing cluster-level interpretations for latent states. It groups data samples
into clusters in an unsupervised manner. Recently, the use of neural networks for learning
latent representations from raw data has gained popularity in predictive clustering tasks (Lee
& Van Der Schaar, 2020; Tzirakis et al., 2019; Ghosh et al., 2016). For example, ACTPC
(Lee & Van Der Schaar, 2020) and CAMELOT (Aguiar et al., 2022) adopted the approach
of learning discrete representations of patient health conditions to accurately describe the
future outcome distribution.

In this paper, we will apply the predictive clustering algorithm to group patients’ latent
states learnt from longitudinal unstructured medical notes. Specifically, each input medical
note will be encoded as a continuous representation, and a similarity-based approach (Zhang
et al., 2021) will be used to determine the probability of assigning the continuous representa-
tion to different clusters. The cluster assignment probability will be used as weights to obtain
a weighted representation of cluster centre embeddings, which will then be used for disease
risk prediction. Each latent state can be understood by interpreting the characteristics of its
associated clusters. The latent states are updated by the deep state-state model. As illustrated
in Fig. 1, our Deep State-space model with the Predictive Clustering for the Risk prediction
of diseases, namedDSPCR, consists of threemodules: the prior module to learn the transition
of patients’ latent states for generating the prior of current latent states based on the previous
one, the posterior module to approximate the posterior distribution of latent states, and the
likelihood module to generate predictions with the exploitation of the predictive clustering
algorithm for the disease risk prediction. Our main contributions can be summarized as:

• We develop a deep state-space model for disease risk prediction using longitudinal medi-
cal notes,where patient risks are treated as observations generated froma deep state-space
transition process. Our deep state-space model, particularly designed for medical notes
of the unstructured text data type, retains the characteristics of probabilistic models and
exploits the representation power of deep neural networks.

• To understand the patients’ latent states learned from the large volume of unstructured
rawmedical notes, we proposed a deep state-space-based predictive clustering algorithm.

• To demonstrate the performance of the proposed model, we use two publicly available
EHR datasets for both quantitative and qualitative evaluations.
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Fig. 1 The conceptual illustration of our DSPCR model for disease risk prediction

2 Related work

2.1 Disease risk prediction with deep learningmethods

In recent years, there has been an increasing interest in the utilization of deep learningmethods
for predicting disease risk. By harnessing the robust feature extraction capabilities inherent in
deep neural networks such as Convolutional Neural Networks (CNNs) (Razavian & Sontag,
2015; Che et al., 2017), RNNs (Xu et al., 2018; Ma et al., 2017; Choi et al., 2016), and
BERT (Alsentzer et al., 2019), alongside the advantages offered by parallel processing with
GPU/TPU, deep learning methods exhibit substantial potential for enhancing the accuracy
and efficiency of risk prediction. These techniques can be classified into two categories
based on the type of EHR data: continuous numeric data and unstructured medical notes.
For continuous numeric data, several deep learning models have been developed, including
RETAIN (Choi et al., 2016), DIPOLE (Ma et al., 2017), RAIM (Xu et al., 2018), andConCare
(Ma et al., 2020), which used RNNs to extract features from laboratory test results or clinical
codes. GRAM (Choi et al., 2017) and KAME (Ma et al., 2018), on the other hand, used a
knowledge graph to learn embeddings that improve accuracy and interpretation with both
sufficient and insufficient EHR data. For unstructured medical notes, models such as CAML
(Mullenbach et al., 2018), LEAM (Wang et al., 2018), and LERP (Niu et al., 2021b) utilized
the cross-attention mechanism between medical notes and additional clinical information to
extract valuable medical phrases for prediction. MNN (Qiao et al., 2019) tried the attention
mechanism to guide feature extraction frommedical notes using latent information contained
in medical codes.

2.2 Modelling longitudinal EHR data

Longitudinal EHR data stores patient health information collected during multiple hospital
visits. To model the longitudinal information of EHR data, RNNs, HMM, and AttDMM
(Oezyurt et al., 2021) are often used to describe the variations of latent states over several
hospital visits of a patient, the structure of which is shown in Fig. 2a, b, and c, respectively.

For example, GAMENET (Shang et al., 2019), an RNN-based model with an attention
mechanism was developed for disease diagnosis and drug recommendation with consecu-
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Fig. 2 Typical neural network-based sequential models for modelling longitudinal data. a Recurrent Neural
Networks (RNNs). b Deep Hidden Markov Model (HMM). c Attentive Deep Markov Model (AttDMM). ♦
denotes a deterministic representation, © denotes probabilistic states, � denotes the neural networks, and �
denotes the observations and outcomes

tive hospital visits. CausalHMM (Li et al., 2021) proposed a causal hidden Markov model
that learns separate latent representations through supervised tasks such as medical image
reconstruction and risk prediction. AttDMM, such as the one proposed in Oezyurt et al.
(2021), had been utilized to model longitudinal EHR data, including by tracing patients’
latent states and predicting disease risk from laboratory test results. In addition, ACTPC
(Lee & Van Der Schaar, 2020) used a deep predictive clustering of time-series data samples
to understand disease progression.

2.3 Predictive clustering-based predictionmodels

In the previous works for disease risk prediction, the attention mechanism was frequently
applied to identify important information and provide interpretation. For example, RETAIN
(Choi et al., 2016) and DIPOLE (Ma et al., 2017) used the time-aware attention mechanism
to identify the important hospital visits for patients; CAML (Mullenbach et al., 2018) and
LDAM (Niu et al., 2021a) adopted the label-dependent attention mechanism to improve
the prediction and interpretation. However, there have been relatively few attempts to use
unsupervised clustering methods to provide interpretability to predict disease risk, especially
for longitudinal medical notes. This is because traditional unsupervised clustering models,
such as K-means, hierarchical clustering, and other unsupervised attempts (Zhang et al.,
2019; Giannoula et al., 2018), are commonly struggling to meet our prediction requirements.
Recently, there have been some attempts to apply an unsupervised clustering model, Predic-
tive Clustering, on structured numeric EHRs to help make predictions over time. Predictive
clustering is an unsupervised method but can be used as a visualization to show the latent
states of patients by grouping data samples under the guidance of supervised classes. For
example, in Lee and VanDer Schaar (2020), a predictive clusteringmodel called ACTPCwas
proposed as a way to group patients’ latent states into different clusters based on the embed-
ding of their cluster centre, which is guided by a supervised task. In Aguiar et al. (2022),
the CAMELOT was developed, which is based on ACTPC but replaces the undifferentiated
selector network and is capable of end-to-end training. In this paper, we focus on integrating
the predictive clustering algorithm into our disease risk prediction model using unstructured
medical notes.
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Fig. 3 The flowchart of DSPCR for disease risk prediction

3 Method

Figure 3 illustrates the workflow of the disease prediction process. The process involves
several key steps which are: collecting unstructured medical notes, pre-processing medical
notes by removing non-alphabetic characters and stop-words, encoding data to get the latent
states, generating the cluster distribution of latent states, and making disease risk prediction.
This workflow allows for the efficient and effective prediction of clinical disease risks using
unstructured medical notes from EHRs. The following part of this section will focus on
introducing our DSPCR model for disease risk prediction using longitudinal medical notes.

3.1 The overview of our model

Suppose eachpatientn is characterizedby a sequenceof observations: xn = {xn1, . . . , xnt , . . . ,
xnTn }, where each element xnt represents the medical notes containing Nn

t words col-
lected at the t-th hospital visit, and Tn denotes the total number of visits. Let yn =
{ yn1, . . . , ynt , . . . , ynTn } indicate the presence of different disease risks observed during multi-
ple visits, where each vector ynt contains 1 and 0 values. In the task of predicting the disease
risks of patient n, xn will be used to get the predicted value of yn . All notations to be used
in the following subsections are listed in Table 1.

Our DSPCRmodel adopts the sequential Bayesian updating approach using the up-to-date
prior from the state transitionmodel and the likelihood determined by the latest observation to
update the current latent state, by computing its posterior distribution according to the Bayes’
rule. In our work, we adopt this approach to infer the patient’s latent state znt at each hospital
visit t . Figure 4 gives an overviewof ourmodel: a priormodule generates the prior distribution
of latent state znt from previous latent states; the posterior module approximates the posterior
distribution of znt by encoding the information contained in xnt ; and the likelihood module
adopts the predictive clustering algorithm to generate the observation ynt .

To infer the parameters and latent states of DSPCR, our optimization objective consists
of two components: the evidence lower bound on the log data likelihood (ELBO) (Krishnan
et al., 2017), and the clustering loss. The ELBO term measures the divergence between the
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Table 1 Notations and descriptions

Notation Description

Nn
t The number of words in medical notes of patients n at visit t

D The embedding size of medical notes

K The number of latent health state groups

t The index of hospital visit

α The degree of freedom of the Student’s t-distribution

xnt ∈ R
Nn
t The medical notes of patient n at each visit t

ynt The indicator of disease risks for patient n at each visit t

ŷnt The predicted indicator of disease risks for patient n at each visit t

znt ∈ R
D The latent state of patient n at each visit t

Znt−1 ∈ R
(t−1)×D The latent states of all past visits for patient n

μn
t
(q) ∈ R

D The mean of the posterior distribution of znt

σ n
t
(q) ∈ R

D The standard deviation of the posterior distribution of znt

μn
t
(p) ∈ R

D The mean of the prior distribution of znt

σ n
t
(p) ∈ R

D The standard deviation of the prior distribution of znt

En
t ∈ R

D×Nn
t The embedding of medical notes for patient n at visit t

Gn
t ∈ R

Nn
t ×Nn

t The scaled-dot similarity matrix to represent the similarity

between tokens from En
t

gnt ∈ R
Nn
t The score vector generated from Gn

t via max-pooling and

softmax activation

ent ∈ R
D The self-attention weighted medical embedding derived from

En
t and gnt

vnt ∈ R
D The aggregated representation of medical notes containing

information from both the current and previous visits

ẑnt ∈ R
D The sampled latent state derived from a Gaussian distribution

with mean equal to μn
t
(q) and standard deviation equal to σ n

t
(q)

ε ∼ N (0, I) The random noise

c1:K ∈ R
K×D The embeddings of K cluster centers

ont ∈ R
K The similar score calculated by measuring the similarity between

ẑnt and ck based on the Student’s t-distribution

snt ∈ R
K The normalized similar score from ont

unt ∈ R
K×D The weighted average of cluster center embeddings using

snt as the weights

wnk
t The auxiliary probability used to obtain the cluster

assignment probability
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Table 1 continued

Notation Description

fk The soft cluster frequency with the batch size of N

lnt The K L divergence between the auxiliary probability and the soft

cluster frequency

f∗() The fully connected networks

g() The forget gate layer

CBERT The Clinical-BERT medical notes encoder

BiGRU The Bidirectional GRU

LCluster The clustering-oriented loss

LELBO The evidence lower bound (ELBO) related loss

prior and posterior distributions of latent states and also examines the expected likelihood
of generating observations. Here, we adopt a Gaussian variational approximation approach
such that the distribution of latent states follows the Gaussian distribution, where the mean
and standard deviation are approximated by xnt . The clustering loss is to constrain the latent
space such that latent states znt for all n and t can fall into different clusters.

3.2 Attentive encoder for the posterior approximation

In this subsection, we focus on describing the posterior module of our DSPCR model as
shown in Fig. 5. The variational approximation of the posterior is qφ(znt | Zn

t−1, x
n
t ), where

μn
t
(q) and σ n

t
(q) denote the mean and standard deviation of the posterior respectively, and

Zn
t−1 = [zn1, .., znt−1] contains the latent states of all past visits. Specifically, the posterior

is parameterized by the attentive encoder network and fully connected networks using Zn
t−1

and xt .
For the embedding step, Clinical-BERT (Alsentzer et al., 2019) and the self-attention mech-
anism is used to embed medical notes xnt into latent representations. Clinical-BERT is a
language understanding model which has been trained on a large clinical corpus with the
aim of facilitating various downstream disease-prediction tasks (Johnson et al., 2016). The
embedded data is denoted as En

t ∈ R
D×Nn

t , where D is the embedding size. For the inte-
grating step, we adapt the self-attention mechanism to assist in capturing the information
contained in consecutive words. Firstly, a scaled-dot similarity matrix Gn

t ∈ R
Nn
t ×Nn

t is used
to represent the similarity between each token from En

t as follows:

Gn
t = ( f1(En

t ))
T f2(En

t )√
D

, (1)

where f1 and f2 are two fully connected networks, and (.)T is the matrix transpose operator.
A max-pooling layer together with the Sof tMax activation is then adopted to generate an
attentive embedding vector of medical notes ent ∈ R

D :

gnt = Sof tMax(Max Pool(Gn
t )) (2)

and
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Fig. 4 The overview of the proposed DSPCR model. It contains three components: the prior module, the
posterior module, and the likelihood module. Key variables are described as follows: xnt is medical notes of
patient n at time t ; znt−1 is the latent state; Znt−1 = [zn1 , .., znt−1] contains latent states of all past visits; μn

t
and σ n

t denote the mean and standard deviation of latent states, where the subscript (p) and (q) indicate the
prior and the posterior; ẑnt is the sampled vector of latent states; c1:K contains the embeddings of K cluster
centers; ont and its normalized version snt indicates the similarity between ẑnt and ck for all k ∈ {1, . . . , K };
unt is the weighted average of c1:K , where the weight is given by snt ; and ŷnt is the predicted risk vector

ent =
Nn
t∑

i=1

gnt,i f3(E
n
t,i ) (3)

where f3 is a fully connected network, gnt ∈ R
Nn
t is the self-attention score vector, En

t,i
is the i-th column of En

t , g
n
t,i is the i-th element of gnt . With ent containing the weighted

information from xnt , the next step is to combine ent with Zn
t−1 to generate vnt as:

vnt = f4(g(ent ⊕ BiGRU (Zn
t−1))), (4)

where f4 is a fully connected network, g is the forget gate adopted from the long short-term
memory (LSTM) (Hochreiter & Schmidhuber, 1997), BiGRU is the bidirectional Gated
Recurrent Unit (GRU) network (Chung et al., 2014), and ⊕ is the concatenation operator.
The weighted representation vnt is then fed into two fully connected networks f5 and f6 for
generating μn

t
(q) and σ n

t
(q), respectively. In practice, we can get a sampled state vector from:

ẑnt = μn
t
(q) + ε · σ n

t
(q)

, (5)
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Fig. 5 The posterior module for
approximating the posterior of
the latent state. The self-attention
mechanism is adopted to
re-weight the information from
medical notes

where ε ∈ N (0, I) is the random noise.

3.3 State transition network for the prior generation

In the framework of sequential Bayesian inference, the state transition network is used to
generate the prior distribution of the current latent state from the previous one. Here, we
represent the prior distribution for patient n at time t as:

pθ (znt | znt−1) ∼ N (μn
t
(p)

, σ n
t
(p)

), (6)

where the mean and standard deviation of the prior μn
t
(p) and σ n

t
(p) are parameterized by

a GRU network (Chung et al., 2014) and two fully-connected layers f7 and f8. Here, f7 is
used to generate the mean vector while f8 is used to derive the standard deviation vector of
the latent states as follows:

μn
t
(p) = f7(GRU (znt−1)), (7)

σ n
t
(p) = f8(GRU (znt−1)). (8)

3.4 Predictive clustering for the likelihood estimation

In our likelihood module, we integrate predictive clustering into our deep state-space model.
All latent states are clustered into K groups, whose center embeddings are denoted as c1:K =
[c1, . . . , ck, . . . , cK ]. Each sampled latent state ẑnt is approximated as a weighted average of
c1:K , where the weight snt is determined by the similarity between the latent states to each
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cluster embedding. The weighted average of centre embeddings unt is used to predict disease
risks.
The first step is to detect clusters of latent states and also derive embeddings of cluster centres.
Following the approach developed in Van derMaaten and Hinton (2008); Zhang et al. (2021),
the probability of assigning ẑnt to the k-th cluster is calculated by measuring the similarity
between ẑnt and ck based on the Student’s t-distribution as follows:

onkt = (1+ || ẑnt − ck ||22 /α)− α+1
2

∑K
k′=1

(1+ || ẑnt − ck′ ||22 /α)− α+1
2

, (9)

where α is the degree of freedom of the Student’s t-distribution, and ẑnt is the latent repre-
sentation of xnt generated by the posterior module using Eq. (5). A Sof tMax layer is then
used to normalize ont = [on1t ; . . . ; onKt ] as:

snt = Sof tMax(ont ), (10)

With snt , we can obtain the weighted average of cluster centre embedding as:

unt = (c1:K )T snt , (11)

where c1:K ∈ R
K×D . To learn c1:k , we utilize an auxiliary probability wnk

t as discussed in
Xie et al. (2016):

wnk
t = (onkt )2/ fk∑

k′ (onkt )2/ fk′
, (12)

where fk = ∑N
n=1o

nk
t is the soft cluster frequency with the batch size of N . To make the

cluster assignment probability close to the auxiliary probability, we will minimize the K L
divergence between them, which is defined as:

lnt =
K∑

k=1

wnk
t log

wnk
t

onkt
, (13)

The clustering-oriented loss averaged across N samples is:

LCluster =
∑N

n=1(
∑T n

t=1 l
n
t /T n)

N
. (14)

In the likelihood module, a fully connected network f9 is used to get the predictive values of
risks:

ŷnt = f9(unt ). (15)

The log-likelihood of observing each element of ynt with the given latent state z
n
t can be then

defined as:
logpθ (y

n
t, j | znt ) = ynt, j log(ŷ

n
t, j ) + (1 − ynt, j ) log(1 − ŷnt, j ). (16)
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With the adoption of the Bayesian variational inference, the evidence lower bound (ELBO)
related loss is defined as:

LELBO = 1

N

N∑

n=1

(−Eqφ(zn1 |xn1)[logpθ ( yn1 | zn1)]

+ K L(qφ(zn1 | xn1) || pθ (zn1))

−
T n∑

t=2

[Eqφ(znt |Zn
t−1,x

n
t )

[logpθ ( ynt | znt )]

+
T n∑

t=2

K L(qφ(znt | Zn
t−1, x

n
t ) || pθ (znt | znt−1))])

(17)

where K L(.) measures the Kullback–Leibler divergence between two distributions. pθ ( ynt |
znt ) is the likelihood of observing ynt given the latent state z

n
t . When t > 1, qφ(znt | Zn

t−1, x
n
t ),

and pθ (znt | znt−1) are the posterior and the prior of znt , respectively. For z
n
1, its prior and

posterior are represented as pθ (z1) and qφ(zn1 | xn1) respectively. φ and θ represent the
parameters of neural networks for the distribution approximation.

The training procedure to optimize DSPCR by minimizing the losses defined in Eqs. (14)
and (17) is shown in Algorithm 1.

Algorithm 1 The DSPCR model
1: Input Given the patient data xnt for t ∈ {1, . . . , Tn} and n ∈ {1, . . . , N }, where xnt refers to the medical

notes.
2: while not converge do
3: for Each batch do
4: for Each patient n do
5: for Each time t do
6: Calculate the mean and standard deviation of the prior latent state
7: using (7) and (8), respectively.
8: Embed xnt to get En

t using Clinical-BERT.
9: Calculate the attention vector gnt and generate the attention
10: -weighted vector ent using (1), (2), and (3).
11: Generate vnt via the forget gate layer and a fully connected
12: network using (4).
13: Sample the latent states vector ẑt from its posterior distribution
14: based on (5).
15: Calculate the similarity score snt using (9) and (10).
16: Calculate the weighted average of the cluster center embeddings
17: unt using snt via (11).
18: Get the prediction results ŷnt using unt based on (15).
19: end for
20: end for
21: Update parameters by minimizing the loss defined in (14) and (17) over
22: all visits for patients in each batch.
23: end for
24: end while
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4 Experiments

4.1 Experimental dataset

Ourmodel and the comparative baselineswere trained and evaluated on twopublicly available
datasets, which are MIMIC-III1 and N2C2-20142 datasets as summarized in Table 2.

4.1.1 The MIMIC-III dataset

MIMIC-III (Medical Information Mart for Intensive Care III) (Johnson et al., 2016) is a
large, publicly accessible dataset that comprises de-identified health data for patients hospi-
talized at the Beth Israel Deaconess Medical Center’s intensive care unit (ICU) in Boston,
Massachusetts. It contains 53,423 EHRs collected from 38,597 patients. The average length
of stay in ICUs of patients in MIMIC-III is 4.9 days. We choose upper-level categories of
disease risks as defined in Harutyunyan et al. (2019) (acute disease risk, mixed disease risk,
and chronic disease risk) to evaluate the performance of the proposedmodel in the task of risk
prediction. The data processing tool in Harutyunyan et al. (2019) is used to extract EHR data
and risk indicators from the MIMIC-III data. The stop-words and non-alphabet characters
are removed from the medical notes. To check the effect of using data from multiple visits,
we extract a longitudinal subset of MIMIC-III, which contains 9,759 EHRs from patients
with two or more hospital visits. The average number of visits in the subset data is 2.61. The
same data-splitting strategy as in Harutyunyan et al. (2019) was adopted to get the training
and test datasets at the ratio of 4:1 for performance evaluation.

4.1.2 The N2C2-2014 dataset

N2C2-2014 (Kumar et al., 2015) is a collection of EHRs and associated annotations for
use in natural language processing (NLP) research, which consists of de-identified EHRs
from two different hospitals, which contains 1,304 medical notes from 296 individuals in the
N2C2-2014, with an average of 4.42 visits per patient. We also remove all stop-words and
non-alphabet characters frommedical notes. We select four more disease-related disease risk
factors, i.e., hyperlipidemia, hypertension, coronary artery disease (CAD), and diabetes as
our prediction targets. Performance evaluationmakes use of the 4:1 splitting strategy between
the training and test datasets.

4.2 Baselinemethods

To properly evaluate the proposedmethods, we compare our model DSPCR to different base-
line models from two distinct categories: Class 1 methods are entirely supervised models for
disease risk prediction, whereas Class 2 methods integrate unsupervised predictive clustering
in supervised prediction tasks.
The Class 1 baseline methods are listed as follows:

• SVM andXGBOOST: SupportVectorMachines (SVM) and eXtremeGradientBoosting
(XGBOOST) are two popular machine learning algorithms that are used for classification
tasks. The word2vec is used to encode medical notes.

1 https://physionet.org/content/mimiciii/1.4/.
2 https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/.

123

https://physionet.org/content/mimiciii/1.4/
https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/


Annals of Operations Research

Table 2 The summary of EHR datasets

Dataset MIMIC-III N2C2-2014

# EHRs 53,423 1304

# Patients 38,597 296

Avg. # 2.61 4.42

Hospital

Visits

# longitudinal 9759 1304

EHRs

Medical “The patient was also “This year old woman comes

Notes agreeable to this procedure in with shortness of breath

Examples because of her severely mid abdominal pain and left

limited mobility pain. Hence, hip pain for weeks. Review of

she had a pMIBI prior, systems includes some

demonstrated a small reversible constipation and decreased

her surgery which defect. appetite. She has had some

Certainly, this presented some trauma about days ago.

mortal risk to the patient. She was seen at the Ihle

This was discussed with her Central Clinic earlier today.

and a plan was made to ensure The Emergency Department

that she would be aggressively was overcrowded and she

treated to ensure that her Hct was in the waiting room

did not drop below 30 or…" for almost hours. She

is obese with some..."

• CAML: Convolutional Attention for Multi-Label classification (CAML) (Mullenbach
et al., 2018) is a state-of-the-art disease classification method that provides interpreted
classification results based on convolutional neural networks between medical notes and
label embeddings by using a cross-attention mechanism.

• B+CAML: For a fair comparison, we use Clinical-BERT (Alsentzer et al., 2019) to
replace the encoder layer of CAML.

• B+CAML+ConCare: We incorporate the time-aware attention mechanism from Con-
Care (Ma et al., 2020) into B+CAML to model longitudinal patient hospitalization
information.

• RETAIN: REverse Time AttentIoN model (RETAIN) (Choi et al., 2016) is an RNNs-
based interpretable disease risk prediction model by using a reverse time-aware attention
mechanism.

• B+RETAIN: For a fair comparison, we use Clinical-BERT (Alsentzer et al., 2019) to
replace the encoder layer of RETAIN.

• DIPOLE: An efficient and accurate DIagnosis Prediction mOdEL (DIPOLE) (Ma et al.,
2017) apply a Bi-directional RNNs (Schuster & Paliwal, 1997) with the dual time-aware
attention mechanism to replace the reverse time-aware attention mechanism of simple
RNNs, resulting in a method that can focus on both future and past information.

• B+DIPOLE: For a fair comparison, we use Clinical-BERT (Alsentzer et al., 2019) to
replace the encoder layer of DIPOLE.
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The Class 2 baseline methods are listed as follows:

• Deep K-means: K-means is a well-known unsupervised clustering algorithm. To be able
to handle complex medical notes and predict disease risks, we use a deep neural network
version of K-means with the Clinical-BERT and fully connected layers for medical node
encoding. The K-means model will be trained using all medical note data to discover
clusters and hence get cluster centre embeddings by calculating the mean embedding
vector of all instances in each cluster. The embedding of the centre to which each instance
belongs will then be used for risk prediction.

• CAMELOT: ACTPC (Lee & Van Der Schaar, 2020) and CAMELOT (Aguiar et al.,
2022) are two state-of-the-art predictive clustering algorithms for disease risk prediction,
with CAMELOT demonstrating improved predictive performance and training method-
ologies.BothACTPCandCAMELOTare not capable of processing unstructuredmedical
data. Instead of concentrating on modelling numerical time-series health monitoring sig-
nals, we revised CAMELOT by using Clinical-BERT and the self-attention mechanism
to encode medical nodes instead of an RNN-based encoder.

We trained all models with PyTorch on NVIDIA TESLA V100S GPU. The learning rate is
set to 1e−5 for Clinical-BERT-related models and 1e−3 for others, the embedding size of
medical notes data is 768, the size of the latent state is 384, the drop-out rate is set to 0.3,
and all models are optimized by ADAM. All competing models were trained five times with
a fixed set of five different seeds and the results are presented in terms of average indicator
performance. The source code of our model can be accessed via.3

4.3 The performance of disease risk prediction

4.3.1 Evaluation metrics for disease prediction

We typically employ accuracy, precision, recall, F1 scores, and ROC-AUC score to evaluate
the predictive performance of all comparative models.
Precision: Precision is defined as the ratio of correctly predicted positive samples to all
predicted positive samples:

Precision = T P

T P + FP
(18)

Recall: Recall is defined as the ratio of correctly predicted positive samples to all original
true positive samples:

Recall = T P

T P + FN
(19)

F1 score: The F1 score is the harmonic mean of precision and recall:

F1 = 2 × Precision × Recall

Precision + Recall
(20)

Accuracy: Accuracy represents the ratio of correctly predicted samples to the total number
of samples:

ACC = T P + T N

T P + T N + FP + FN
(21)

where FN , T N , FP , and T P refer to false negatives, true negatives, false positives, and true
positives, respectively.

3 https://github.com/Healthcare-Data-Mining-Laboratory/DSPCR.git.
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ROC-AUC: ROC-AUC score measures the area under the receiver operating characteristic
curve.
To provide a more thorough perspective of the evaluation results’ performance, we compute
micro and macro precision, average, recall, and F1 scores, and display their overall and
individual performance in terms of disease risk.

Micro Precision =
∑

j T Pj∑
j T Pj + ∑

j F Pj
,

Micro Recall =
∑

j T Pj∑
j T Pj + ∑

j FN j
,

Micro F1 = 2 ∗ Micro Precision ∗ Micro Recall

Micro Precision + Micro Recall
,

Macro Precision =
∑

j

Precision j/L,

Macro Recall =
∑

j

Recall j/L,

Macro F1 = 2 ∗ Macro Precision ∗ Macro Recall

Macro Precision + Macro Recall
,

(22)

where j indicates the class index and L is the number of classes.

4.3.2 Comparison with purely supervised baselines

From Table 3, we find that deep neural network-based models, especially for Clinical-BERT-
related models, have superior predictive power than classical machine learning methods such
as SVM and XGBOOST. Although they lead in recall metrics, they do not pay attention to
precisionmetrics.Moreover,we have observed that comparativemodels utilizing longitudinal
data, such as the time-aware attention-based B+CAML+ConCare, as well as RNNs-based
RETAIN and DIPOLE, exhibit notable improvements in terms of micro andmacro F1 scores.
These findings strongly imply that incorporating historical information with a time-aware
attention mechanism and RNNs models from past hospital visits can significantly enhance
disease risk prediction. Among all the baseline models, our DSPCR model consistently
achieves higher F1 scores for both datasets. Furthermore, we conducted a comprehensive
evaluation of the ROC-AUC score performance. Given that B+DIPOLE achieved the highest
micro and macro F1 scores among all baseline models, we proceeded to compare our model
DSPCRwithB+DIPOLE separately for different disease risks on both theMIMIC-III dataset
andN2C2-2014 dataset. From the analysis of Figs. 6 and 7, it is evident that ourmodelDSPCR
consistently achieves superior evaluation performance in terms of the ROC-AUC score on the
two datasets. These findings serve as compelling evidence of the efficacy of our deep state-
space model in accurately modelling longitudinal data for predictive tasks. Additionally, to
eliminate the effect of disease selection on the N2C2-2014 dataset, we performed a similar
evaluation of all comparativemodels for the subset disease risks, as presented in theAppendix.
As shown in Table 6, we can obtain consistent findings as before.

4.3.3 Comparison with clustering-based baselines

From Table 3, the deep K-means model and CAMELOT exhibit similar predictive perfor-
mance on the MIMIC-III dataset and the latter show better performance on the N2C2-2014
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Table 3 The risk prediction results

Models Evaluation Metrics
Micro Macro ACC
Precision Recall F1 Precision Recall F1

MIMIC-III

SVM 0.7735 0.9998 0.8722 0.7735 0.9998 0.8703 0.5111

XGBOOST 0.7736 0.9999 0.8723 0.7736 0.9999 0.8705 0.5106

CAML 0.7849 0.9718 0.8777 0.7809 0.9680 0.8634 0.4939

B+CAML 0.8467 0.9294 0.8860 0.8464 0.9229 0.8796 0.5363

B+CAML+ConCare 0.8445 0.9512 0.8895 0.8385 0.9458 0.8853 0.5471

RETAIN 0.8473 0.9206 0.8824 0.8452 0.9176 0.8799 0.5476

B+RETAIN 0.8336 0.9499 0.8879 0.8326 0.9457 0.8848 0.5556

DIPOLE 0.8401 0.9323 0.8904 0.8384 0.9445 0.8879 0.5397

B+DIPOLE 0.8581 0.9355 0.8948 0.8572 0.9335 0.8929 0.5633

Deep K-means 0.7735 0.9998 0.8624 0.7735 0.9997 0.8601 0.5103

CAMELOT 0.7803 0.9650 0.8618 0.7803 0.9652 0.8600 0.5108

DSPCR 0.8272 0.9797 0.8971 0.8262 0.9768 0.8952 0.5651

N2C2-2014

SVM 0.6068 0.9972 0.7539 0.6063 0.9973 0.7441 0.1869

XGBOOST 0.6062 0.9948 0.7540 0.6070 0.9948 0.7437 0.1826

CAML 0.6846 0.8502 0.7565 0.6525 0.8142 0.7078 0.2348

B+CAML 0.8908 0.9136 0.9007 0.8893 0.9022 0.8949 0.5627

B+CAML+ConCare 0.8376 0.9275 0.8903 0.8543 0.9175 0.8877 0.5122

RETAIN 0.7556 0.8466 0.7949 0.7392 0.8162 0.7716 0.3126

B+RETAIN 0.8859 0.9118 0.8994 0.8902 0.9023 0.8973 0.5347

DIPOLE 0.7669 0.8341 0.7990 0.7546 0.8000 0.7715 0.2957

B+DIPOLE 0.8961 0.9201 0.9036 0.8975 0.9128 0.8977 0.5923

Deep K-means 0.6781 0.8272 0.7452 0.5074 0.7453 0.6003 0.1308

CAMELOT 0.6057 0.9999 0.7544 0.6057 0.9999 0.7439 0.1905

DSPCR 0.9093 0.9330 0.9210 0.9042 0.9260 0.9140 0.6432

The bold values represent the best results of each evaluation metric

dataset with higher F1 scores. Clustering-based baseline models tend to have no significant
improvement in predictive accuracy compared to Class 1 methods due to their limited abil-
ity to handle unstructured data. However, they remain unique in providing insight into the
underlying status of patients at the clustering level. Remarkably, our DSPCR model outper-
forms both deep K-means models and CAMELOT with higher values of all metrics for both
datasets and also supports clustering-level evidence for patents’ latent state. This observation
implies that our model is the state-of-the-art predictive clustering method in the disease risk
prediction task utilizing unstructured medical note data.

4.3.4 Model complexity analysis

Figure 8 illustrates the computation time of our model, DSCPR, alongside several baseline
models. All comparative models were executed with the same batch size and number of
epochs on the Tesla V100S GPU and Xeon Gold 6226 CPU. It is evident from Fig. 8 that

123



Annals of Operations Research

Fig. 6 ROC Curves and AUC score of DSPCR and B+DIPOLE on the MIMIC-III dataset

SVM, XGBOOST, and CAML exhibit the shortest computation times compared to the other
models being compared. However, it is noteworthy that these models demonstrate the poorest
evaluation performance on the MIMIC-III dataset and N2C2-2014 dataset. On the other
hand, the B+CAML+ConCare model shows the highest computation time while maintaining
a relatively satisfactory evaluation performance. In addition, our model, DSPCR, and the
baseline model B+DIPOLE exhibit similar computational performance on the MIMIC-III
dataset and N2C2-2014 data in Fig. 8. However, our model outperforms B+DIPOLE in
terms of evaluation metrics such as micro/macro F1 scores and accuracy.

4.4 The performance of clustering latent health states

Our model can not only predict disease risks but can also group latent states into different
clusters. Here, we would like to demonstrate the performance of clustering patients’ latent
health states in both quantitative and qualitative ways.

4.4.1 Quantitative evaluation

Weadopt standard clustering evaluationmetrics, includingSilhouette score (SIL) (Rousseeuw,
1987), Davies-Bouldin Index (DBI) (Davies & Bouldin, 1979), and Variance Ratio Criterion
(VRC) (Caliński & Harabasz, 1974) to evaluate the performance of clustering results in the
absence of cluster labels.
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Fig. 7 ROC Curves and AUC score of DSPCR and B+DIPOLE on the N2C2-2014 dataset

• Silhouette score (SIL) reflects the consistency of the clustering results by measuring the
degree of dispersion between clusters. The SIL score ranges in [−1,+1]: if the score is
close to 1, it means that the sample has a reasonable clustering result; if it is close to -1,
it is more appropriate if the sample was clustered in its neighbouring cluster; if it is close
to 0, then it indicates that the sample is on the boundary of two clusters (Rousseeuw,
1987).

• Davies-Bouldin Index (DBI) measures the ratio between the intra-cluster dispersion and
inter-cluster separation. A lower DBI value implies better clustering results (Davies &
Bouldin, 1979).

• Variance Ratio Criterion (VRC) measures a ratio of the sum of inter-cluster dispersion
and the sum of intra-cluster dispersion for all clusters. A larger VRC value indicates
better clustering results (Caliński & Harabasz, 1974).

Table 4 shows the performance of clustering on both datasets. We can find that our DSPCR
model outperforms all comparative models with the best SIL, DBI, and VRC values. This
finding suggests that we can produce state-of-the-art clustering results while retaining the
best predictive performance.

4.4.2 Case studies

To visualize the cluster-level evidence provided by our model DSPCR for the latent states
of patients, we show the cluster assignment and chief complaints of six randomly selected
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Fig. 8 Computation time of all comparative models during training

Table 4 The performance of
clustering.↑ represents the bigger
the better and ↓ represents the
smaller the better

Datasets Models Evaluation Metrics
SIL↑ DBI↓ VRC↑

MIMIC-III Deep K-means 0.1758 1.0933 14.001

CAMELOT 0.0585 4.4877 63.698

DSPCR 0.4548 0.4390 118.95

N2C2-2014 Deep K-means 0.0348 2.5918 2.1609

CAMELOT 0.1262 2.2376 26.626

DSPCR 0.8628 0.2684 504.64

The bold values represent the best results of each evaluation metric

patients with three hospital visits from the test dataset in Fig. 9. In this section, we aim to
investigate the effectiveness of the predictive clustering module of our model DSPCR: 1)
whether it can accurately track the latent states of patients across hospital visits 2) whether
patients with similar chief complaints are assigned the same cluster-ID, otherwise assigned
to different cluster-ID. From the cluster assignment indicated by green blocks, the answer to
the first question is obvious: the detected latent health states of patients vary with different
hospital visits. For the second question, we can also obtain the answer from Fig. 9. Patient 1
is assigned to cluster 1 for all three hospital visits; patient 2 is assigned to cluster 3, cluster 4,
and cluster 1 on the 1st, 2nd, and 3rd visit, respectively; patient 3 first stays in cluster 3 and
then remains in cluster 4 for the rest two visits; patients 4 stays in cluster 4 for the first two
visits and then moves to cluster 5; patient 5 experiences a state transition in a similar way
to patient 4, but the first two visits were assigned to cluster 2; patient 6 remains in cluster
3 for all three hospital visits. As a result, we can conclude that patients with the same chief
complaint are assigned the same clustering ID.
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Fig. 9 The cluster assignments of six randomly selected patients for their first three hospital visits

4.5 Ablation study

We conduct ablation studies to investigate the impacts of 1) adopting the state-space mod-
elling approach to incorporate historical information via the prior module and 2) utilizing
predictive clustering in the likelihoodmodule for prediction. DSPCR-B is the ablated version
of DSPCR in which both the state transition network and the predictive clustering modules
are removed. DSPCR-C keeps the predictive clustering network of DSPCR while the state
transition network is discarded. From Table 5, we can find that DSPCR-B and DSPCR-C
have similar risk prediction performances. Considering the interpretability of latent states
brought by DSPCR-C, we would say that DSPCR-C is better than DSPCR-B whose results
lack interpretability. After comparingDSPCRwith its ablated versionDSPCR-C, we can find
that the complete version can obtain higher F1 values, especially for the N2C2-2014 dataset.
This observation reflects the impacts of adopting the state-space modelling approach.

Table 5 The results of ablation study

Models Evaluation Metrics
Micro Macro ACC
Precision Recall F1 Precision Recall F1

MIMIC-III

DSPCR-B 0.8660 0.9233 0.8919 0.8652 0.9187 0.8893 0.5763

DSPCR-C 0.8358 0.9431 0.8826 0.8357 0.9391 0.8833 0.5489

DSPCR 0.8272 0.9797 0.8971 0.8262 0.9768 0.8952 0.5651

N2C2-2104

DSPCR-B 0.8941 0.9103 0.9018 0.8972 0.8993 0.8967 0.6027

DSPCR-C 0.8888 0.9182 0.9028 0.8852 0.9145 0.8971 0.6010

DSPCR 0.9093 0.9330 0.9210 0.9042 0.9260 0.9140 0.6432

The bold values represent the best results of each evaluation metric
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4.6 Sensitivity analysis

In the above experiments, we set the number of clusters to 8 and 16 for MIMIC-III and
N2C2-2014 respectively. The way we set these numbers follows the strategy adopted in
Lee and Van Der Schaar (2020), where the number of clusters is set as 2L and L is the
number of disease risks. Here, we investigate how the number of clusters would affect the
performance. The micro and macro F1 scores for different numbers of clusters during the
training process are shown in Fig. 10. We can see that for the MIMIC-III dataset, all models
have experienced sharp decreases in performance evaluation metrics in the first 20 epochs,
followed by consistent increases in the following epochs. For the N2C2 dataset, the F1 scores
remain largely stable after the first few epochs.

A noteworthy finding from Fig. 10 is that the red line is generally above the other two
lines after 20 epochs, suggesting that 8 and 16 are appropriate choices of the cluster number
for MIMIC-III and N2C2-2014 respectively.
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Fig. 10 The micro and macro F1 scores of disease risk prediction with different numbers of clusters for the
MIMIC-III dataset (a and b) and the N2C2-2014 dataset (c and d). The x-axis indicates the number of epochs
during the model training process, while the y-axis indicates the values of the F1 score
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5 Conclusion

In this paper, a novel deep state-space modelling with the predictive clustering model is
proposed to predict disease risks using longitudinal unstructured medical notes. The deep
state-space model, which both inherits the representation power of deep neural networks and
retains the structured representations of probabilistic models, has been successfully applied
to model longitudinal medical notes generated from multiple hospital visits. To encode raw
medical notes from their original vocabulary space into latent representations, the clinical
language model together with the attention mechanism is utilized. Notably, we adopt the
predictive clustering approach to represent patient latent states from different hospital visits.
Our work would help to move towards interpretable AI for clinical decision-making by
providing cluster-level evidence for the prediction.When applied to real-world EHRdatasets,
our model demonstrated its strong predictive power and ability to group different patient
states. The proposed model will greatly assist clinicians in the disease risk prediction task by
uncovering the information hidden in longitudinal medical notes.
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Appendix A: Subset evaluation on N2C2-2014 dataset

See Table 6.
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Table 6 The risk prediction results on the N2C2 dataset for diseases hypertension and coronary artery disease

Models Evaluation Metrics
Micro Macro ACC
Precision Recall F1 Precision Recall F1

N2C2-2014

SVM 0.5646 0.9999 0.7216 0.5643 0.9999 0.7119 0.3217

XGBOOST 0.5614 0.9922 0.7171 0.5602 0.9898 0.7066 0.3086

CAML 0.8653 0.6473 0.7406 0.7175 0.5555 0.5995 0.4896

B+CAML 0.8945 0.9535 0.9231 0.8856 0.9448 0.9142 0.8348

B+CAML+ConCare 0.9163 0.9341 0.9251 0.9085 0.9232 0.9151 0.8435

RETAIN 0.7635 0.8760 0.8159 0.7664 0.8486 0.8012 0.6043

B+RETAIN 0.8924 0.9402 0.9156 0.8910 0.9280 0.9086 0.8013

DIPOLE 0.7480 0.9053 0.8191 0.7582 0.8821 0.8111 0.5709

B+DIPOLE 0.9153 0.9364 0.9257 0.9133 0.9269 0.9198 0.8361

Deep K-means 0.7050 0.6184 0.7179 0.3525 0.5000 0.4135 0.3150

CAMELOT 0.5810 0.9998 0.7349 0.5809 0.9998 0.7265 0.3333

DSPCR 0.9303 0.9498 0.9400 0.9248 0.9394 0.9319 0.8701

The bold values represent the best results of each evaluation metric
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