
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

OVERCOMING SLOW DECISION FREQUENCIES IN
CONTINUOUS CONTROL: MODEL-BASED SEQUENCE
REINFORCEMENT LEARNING FOR MODEL-FREE
CONTROL

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning (RL) is rapidly reaching and surpassing human-level con-
trol capabilities. However, state-of-the-art RL algorithms often require timesteps
and reaction times significantly faster than human capabilities, which is imprac-
tical in real-world settings and typically necessitates specialized hardware. We
introduce Sequence Reinforcement Learning (SRL), an RL algorithm designed to
produce a sequence of actions for a given input state, enabling effective control
at lower decision frequencies. SRL addresses the challenges of learning action
sequences by employing both a model and an actor-critic architecture operating
at different temporal scales. We propose a ”temporal recall” mechanism, where
the critic uses the model to estimate intermediate states between primitive actions,
providing a learning signal for each individual action within the sequence. Once
training is complete, the actor can generate action sequences independently of the
model, achieving model-free control at a slower frequency. We evaluate SRL on
a suite of continuous control tasks, demonstrating that it achieves performance
comparable to state-of-the-art algorithms while significantly reducing actor sam-
ple complexity. To better assess performance across varying decision frequencies,
we introduce the Frequency-Averaged Score (FAS) metric. Our results show that
SRL significantly outperforms traditional RL algorithms in terms of FAS, mak-
ing it particularly suitable for applications requiring variable decision frequencies.
Additionally, we compare SRL with model-based online planning, showing that
SRL achieves comparable FAS while leveraging the same model during training
that online planners use for planning.

1 INTRODUCTION

Biological and artificial agents must learn behaviors that maximize rewards to thrive in complex
environments. Reinforcement learning (RL), a class of algorithms inspired by animal behavior,
facilitates this learning process (Sutton & Barto, 2018). The connection between neuroscience and
RL is profound. The Temporal Difference (TD) error, a key concept in RL, effectively models the
firing patterns of dopamine neurons in the midbrain (Schultz et al., 1997; Schultz, 2015; Cohen
et al., 2012). Additionally, a longstanding goal of RL algorithms is to match and surpass human
performance in control tasks (OpenAI et al., 2019; Schrittwieser et al., 2020; Kaufmann et al., 2023b;
Wurman et al., 2022a; Vinyals et al., 2019; Mnih et al., 2015).

However, most of these successes are achieved by leveraging large amounts of data in simulated
environments and operating at speeds orders of magnitude faster than biological neurons. For exam-
ple, the default timestep for the Humanoid task in the MuJoCo environment (Todorov et al., 2012) in
OpenAI Gym (Towers et al., 2023) is 15 milliseconds. In contrast, human reaction times range from
150 milliseconds (Jain et al., 2015) to several seconds for complex tasks (Limpert, 2011). Table 1
shows the significant gap between AI and humans in terms of timestep and reaction times. When RL
agents are constrained to human-like decision frequencies, even state-of-the-art algorithms struggle
to perform in simple environments (Dulac-Arnold et al. (2020), Figure 5 in Appendix).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Environment / Task Timestep / Reaction Time
Inverted Pendulum 40ms
Walker 2d 8ms
Hopper 8ms
Ant 50ms
Half Cheetah 50ms
Dota 2 1v1 (Berner et al., 2019) 67ms
Dota 2 5v5 (Berner et al., 2019) 80ms
GT Sophy (Wurman et al., 2022b) 23-30ms
Drone Racing (Kaufmann et al., 2023a) 10ms
Humans ≥150ms

Table 1: Timestep / reaction times for various benchmark environments and popular works that pit
humans vs. AI.

The primary reason for this difficulty is the implicit assumption in RL that the environment and
the agent operate at a constant timestep. Consequently, in embodied agents that implement RL
algorithms, all components: sensors, compute units, and actuators—are synchronized to the same
frequency at the algorithmic level. Typically, this frequency is limited by the speed of computation
in artificial agents (Katz et al., 2019). As a result, robots often require fast onboard computing
hardware (CPU or GPU) to achieve higher control frequencies (Margolis et al., 2024; Li et al., 2022;
Haarnoja et al., 2023).

To allow the RL agent to observe and react to changes in the environment quickly, RL algorithms
are forced to set a high frequency. Even in completely predictable environments, when the agent
learns to walk or move, a small timestep is required to account for the actuation frequency required
for the task, but it is not necessary to observe the environment as often or compute new actions as
frequently. RL algorithms suffer from catastrophic failure due to missing inputs (also referred to as
observational dropout). This behavior level gap between RL and humans can be bridged by bridging
the gap in the underlying process.

Towards that end, we propose Sequence Reinforcement Learning (SRL), a model for action sequence
learning based on the role of the basal ganglia (BG) and the prefrontal cortex (PFC). Our model
learns open-loop control utilizing a low decision frequency. Additionally, the algorithm utilizes a
simultaneously learned model of the environment during its training but can act without it for fast
and cheap inference. We demonstrate the algorithm achieves competitive performance on difficult
continuous control tasks while utilizing a fraction of observations and calls to the policy. To the
best of our knowledge, SRL is the first to achieve this feat. To further quantify this result and set
a benchmark for control at slow frequencies, we introduce the Frequency Averaged Score (FAS)
and demonstrate that SRL achieves significantly higher FAS than Soft-actor-critic (SAC) (Haarnoja
et al., 2018) and Generative-Planning-Method (GPM) (Zhang et al.). Additionally, we demonstrate
that on complex environments (with high state and action dimensions), SRL also beats model-based
online planning on FAS. Finally, in the appendix, we discuss the available evidence in neuroscience
that has inspired our algorithm and also present promising initial result in the proposed future work
of generative replay in latent space.

2 NECESSITY OF SEQUENCE LEARNING: FREQUENCY, DELAY AND
RESPONSE TIME

To perform any control task, the agent requires the following three components: Sensor, Proces-
sor/Computer, Actuator. In the traditional RL framework, all three components act at the same
frequency due to the common timestep. However, this is not the case in biological agents that have
different sensors of varying frequencies that are often faster than the compute frequency or the speed
at which the brain can process the information (Borghuis et al., 2019). Additionally, in order to af-
ford fast and precise control, the actuator frequency is also much faster than the compute frequency
(see Figure 9 in Appendix).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Low-compute hardware faces two primary challenges for real-time control: delay and throughput.
The high inference times associated with low-compute devices result in a delay between receiving
observations and performing corresponding actions in the environment. Additionally, they lead to
low decision frequencies in sequential decision-making tasks.

While many prior works have focused on addressing delay by designing delay-aware algorithms
(Chen et al., 2020; 2021; Derman et al., 2021), mitigating delay alone does not resolve the perfor-
mance issues caused by low decision frequency. Adapting RL algorithms to operate effectively in
low-frequency compute settings remains an open challenge (Dulac-Arnold et al., 2020).

The Sequence Reinforcement Learning (SRL) algorithm offers a promising solution to these low-
decision frequency scenarios. To address the complete set of challenges posed by low-compute
environments, SRL can be integrated with delay-aware algorithms to simultaneously manage delays
while achieving higher action frequencies. Moreover, SRL inherently addresses delays by producing
sequences of actions that can bridge the gap caused by processing latency. For example, if output
arrives with a delay of n timesteps, the first n actions of the new sequence can be ignored, as
they were already executed as part of the previous sequence. This mechanism ensures smooth and
continuous action execution despite processing delays.

Why low-frequency compute?

Recent advancements in reinforcement learning (RL) algorithms, combined with high-speed com-
puting, have led to two common approaches for addressing the speed-accuracy trade-off:

1. Faster hardware: The use of GPUs has become standard for enabling rapid inference
in autonomous agents (Long et al., 2024; Csomay-Shanklin et al., 2024; Lazcano, 2024).
However, GPUs are often impractical in many real-world applications due to their high
cost, energy demands, and large physical size. As a result, recent research has also focused
on developing specialized embedded deep learning accelerators to address these challenges
(Akkad et al., 2023).

2. Software optimization: Techniques such as quantization (Jafarpourmarzouni et al., 2024),
multi-exit networks (Rahmath P et al., 2022), and model compression (Neill, 2020) are
commonly employed to reduce inference times without requiring additional hardware.

In essence, these approaches focus on either accelerating hardware or optimizing software. In this
work, we propose an alternative paradigm: enhancing accuracy at low operating frequencies in-
stead of striving for high frequencies. By advancing research in this direction, we aim to relax the
dependency on high-performance hardware, enabling RL algorithms to operate effectively on low-
compute devices while also making ultra-high-frequency control (Minghao et al., 2024) feasible on
current hardware platforms.

3 RELATED WORK

3.1 MODEL-BASED REINFORCEMENT LEARNING

Model-Based Reinforcement Learning (MBRL) algorithms leverage a model of the environment,
which can be either learned or known, to enhance RL performance (Moerland et al., 2023). Broadly,
MBRL algorithms have been utilized to:

1. Improve Data Efficiency: By augmenting real-world data with model-generated data,
MBRL can significantly enhance data efficiency (Yarats et al., 2021; Janner et al., 2019;
Wang et al., 2021).

2. Enhance Exploration: MBRL aids in exploration by using models to identify potential or
unexplored states (Pathak et al., 2017; Stadie et al., 2015; Savinov et al., 2018).

3. Boost Performance: Better learned representations from MBRL can lead to improved
asymptotic performance (Silver et al., 2017; Levine & Koltun, 2013).

4. Transfer Learning: MBRL supports transfer learning, enabling knowledge transfer across
different tasks or environments (Zhang et al., 2018; Sasso et al., 2022).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

5. Online Planning: Models can be used for online planning with a single-step policy
(Fickinger et al., 2021). However, this approach increases model complexity, as each on-
line planning step necessitates an additional call to the model. This makes it unsuitable for
applications with limited computational budgets and strict requirements for fast inference.

Compared to online planning, our algorithm maintains a model complexity of zero after training,
eliminating the need for any model calls post-training for generating a sequence of actions. This
significantly reduces the computational and energy requirements, making it more suitable for prac-
tical applications in constrained environments. Additionally, model-based online planning is less
biologically plausible than SRL. Wiestler & Diedrichsen (2013) demonstrated that the activations in
the motor cortex reduce after skill learning, suggesting that the brain gets more efficient at perform-
ing the task after learning. In contrast, model-based online planning does not reduce in the compute
and model complexity, but rather might increase in complexity as we perform longer sequences.
SRL, on the other hand, has a model complexity of zero after training and thus is biologically plau-
sible based on this observed phenomenon.

3.2 MODEL PREDICTIVE CONTROL

Similar to model-based reinforcement learning, Model Predictive Control (MPC) utilizes a model of
the system to predict and optimize future behavior. In the context of modern robotics, MPC has been
effectively applied to trajectory planning and real-time control for both ground and aerial vehicles.
MPC has been applied to problems like autonomous driving (Gray et al., 2013) and bipedal control
(Galliker et al., 2022). Similar to online planning, MPC often requires access to model of the system
after training.

Additionally, similar to current RL, MPC requires very fast operational timesteps for practical ap-
plication. For example, Galliker et al. (2022) implemented walker at 10 ms, Farshidian et al. (2017)
implemented a four legged robot at 4 ms and Di Carlo et al. (2018) implemented the MIT Cheetah
3 at 33.33 ms.

3.3 MACRO-ACTIONS, ACTION REPETITION, AND FRAME-SKIPPING

Reinforcement Learning (RL) algorithms that utilize macro-actions demonstrate many benefits, in-
cluding improved exploration and faster learning (McGovern et al., 1997). However, identifying
effective macro-actions is a challenging problem due to the curse of dimensionality, which arises
from large action spaces. To address this issue, some approaches have employed genetic algorithms
(Chang et al., 2022) or relied on expert demonstrations to extract macro-actions (Kim et al., 2020).
However, these methods are not scalable and lack biological plausibility. In contrast, our approach
learns macro-actions using the principles of RL, thus requiring little overhead while combining the
flexibility of primitive actions with the efficiency of macro-actions.

To overcome the curse of dimensionality while gaining the benefits of macro-actions, many ap-
proaches utilize frame-skipping and action repetition, where macro-actions are restricted to a single
primitive action that is repeated. Frame-skipping and action repetition serve as a form of partial
open-loop control, where the agent selects a sequence of actions to be executed without considering
the intermediate states. Consequently, the number of actions is linear in the number of time steps
(Kalyanakrishnan et al., 2021; Srinivas et al., 2017; Biedenkapp et al., 2021; Sharma et al., 2017;
Yu et al., 2021).

For instance, FiGaR (Sharma et al., 2017) shifts the problem of macro-action learning to predicting
the number of steps that the outputted action can be repeated. TempoRL (Biedenkapp et al., 2021)
improved upon FiGaR by conditioning the number of repetitions on the selected actions. However,
none of these algorithms can scale to continuous control tasks with multiple action dimensions, as
action repetition forces all actuators and joints to be synchronized in their repetitions, leading to
poor performance for longer action sequences.

To address long-horizon temporally correlated exploration, Zhang et al. introduced the Generative
Planning Method (GPM), which employs a recurrent actor network similar to the architecture used
in SRL to generate sequences of actions from a single state. We provide an emprical comparison to
GPM in Section 5.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

4 SEQUENCE REINFORCEMENT LEARNING

Figure 1: The Sequence Reinforcement Learning (SRL) model. The SRL takes inspiration from
the function of the basal ganglia (BG) (Top/Orange) and the prefrontal cortex (PFC) (Bottom/Blue).
We train an actor with a gated recurrent unit that can produce sequences of arbitrary lengths given a
single state. This is achieved by utilizing a critic and a model that acts at a finer temporal resolution
during training/replay to provide an error signal to each primitive action of the action sequence.

We introduce a novel reinforcement learning model capable of learning sequences of actions (macro-
actions) by replaying memories at a finer temporal resolution than the action generation, utilizing
a model of the environment during training. We provide the neural basis for our algorithm in the
Appendix (A.8)

COMPONENTS

The Sequence Reinforcement Learning (SRL) algorithm learns to plan ”in-the-mind” using a model
during training, allowing the learned action-sequences to be executed without the need for model-
based online planning. This is achieved using an actor-critic setting where the actor and critic op-
erate at different frequencies, representing the observation/computation and actuation frequencies,
respectively. Essentially, the critic is only used during training/replay and can operate at any tempo-
ral resolution, while the actor is constrained to the temporal resolution of the slowest component in
the sensing-compute-actuation loop. Denoting the actor’s timestep as t′ and the critic’s timestep as
t, our algorithm includes three components:

Model : st+1 = mϕ(st, at)

Critic : qt = qψ(st, at)
Actor : mt′:t′+J−1 = at′ , at′+t, at′+2t.. ∼ πω(st′)

(1)

We denote individual actions in the action sequence generated by actor using the notation πω(st′)t

We denote individual actions in the action sequence mt′:t′+J−1 = at′ , at′+t, at′+2t.. generated by
actor using the notation πω(st′)t to represent the action at′+t

1. Model: Learns the dynamics of the environment, predicting the next state st+1 given the
current state st and primitive action at.

2. Critic: Takes the same input as the model but predicts the Q-value of the state-action pair.

3. Actor: Produces a sequence of actions given an observation at time t′. Observations from
the environment can occur at any timestep t or t′, where we assume t′ > t. Specifically, in
our algorithm, t′ = Jt where J > 1; J ∈ Z.

Each component of our algorithm is trained in parallel, demonstrating competitive learning speeds.

We follow the Soft-Actor-Critic (SAC) algorithm (Haarnoja et al., 2018) for learning the actor-critic.
Exploration and uncertainty are critical factors heavily influenced by timestep size and planning
horizon. Many model-free algorithms like DDPG (Lillicrap et al., 2015) and TD3 (Fujimoto et al.,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

2018) explore by adding random noise to each action during training. However, planning a sequence
of actions over a longer timestep can result in additive noise, leading to poor performance during
training and exploration if the noise parameter is not tuned properly. The SAC algorithm addresses
this by automatically maximizing the entropy while also maximizing the expected return, allowing
our algorithm to automatically tune its exploration based on the selected sequence length parameter
(J).

LEARNING THE MODEL

The model is trained to minimize the Mean Squared Error of the predicted states. For a tra-
jectory τ = (st, at, st+1) drawn from the replay buffer D, the predicted state is taken from
s̃t+1 ∼ mϕ(st, at). The loss function is:

Lϕ = Eτ∼D(s̃t+1 − st+1)
2 (2)

For this work, the model is a feed-forward neural network with two hidden layers. In addition to the
current model mϕ, we also maintain a target model mϕ− that is the exponential moving average of
the current model.

LEARNING THE CRITIC

The critic is trained to predict the Q-value of a given state-action pair q̃t = qψ(st, at) using the
target value from the modified Bellman equation:

q̂t = rt + γEat+1∼πω(st+1)0 [qψ−(st+1, at+1)− α log πω(at+1|st+1)] (3)
Here, qψ− is the target critic, which is the exponential moving average of the critic and α is the
temperature parameter that controls the relative importance of the entropy term. Following the SAC
algorithm, we train two critics and use the minimum of the two qψ− values to train the current
critics. The loss function is:

Lψ = Eτ∼D[(q̃tk − q̂t)2]∀k ∈ 1, 2 (4)
Both critics are feed-forward neural networks with two hidden layers. It should be noted that while
the actor utilizes the model during training, the critic does not train on any data generated by the
model, thus the critic training is model-free and grounded on the real environment states.

LEARNING THE POLICY

The SRL policy utilizes two hidden layers followed by a Gated-Recurrent-Unit (GRU) (Cho et al.,
2014) that takes as input the previous action in the action sequence, followed by two linear layers
that output the mean and standard deviation of the Gaussian distribution of the action. This design
allows the policy to produce action sequences of arbitrary length given a single state and the last
action.

A naive approach to training a sequence of actions would be to augment the action space to include
all possible actions of the sequence length. However, this quickly leads to the curse of dimensional-
ity, as each sequence is considered a unique action, dramatically increasing the policy’s complexity.
Additionally, such an approach ignores the temporal information of the action sequence and faces
the difficult problem of credit assignment, with only a single scalar reward for the entire action
sequence.

To address these problems, we use different temporal scales for the actor and critic. The critic assigns
value to each primitive action of the action sequence, bypassing the credit assignment problem
caused by the single scalar reward. However, using collected state-action transitions to train the
action sequence is impractical, as changing the first action in the sequence would render all future
states inaccurate. Thus, the model populates intermediate states, which the critic then uses to assign
value to each primitive action in the sequence.

Therefore, given a trajectory τ = (at−1, st, at, st+1), we first produce the J-step action sequence
using the policy: m̃t:t+J−1 ∼ πω(st). We then iteratively apply the target model to get the interme-
diate states s̃t+1:t+J−1. Finally, we use the critic to calculate the loss for the actor as follows:

Lω = Eτ∼D

[
α log πω(ãt|st)− qψ(st, ãt) +

J−1∑
j=1

α log πω(ãt+j |s̃t+j)− qψ(s̃t+j , ãt+j)
]

(5)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

5 EXPERIMENTS

OVERVIEW

We evaluate our SRL approach on 11 continuous control tasks, comparing it against SAC (Haarnoja
et al., 2018) and GPM (Zhang et al.). We utilize the OpenAI gym (Brockman et al., 2016) imple-
mentation of the MuJoCo environments (Todorov et al., 2012).

EXPERIMENTAL SETUP

We train SRL with four different action sequence lengths (ASL), J = 2, 4, 8, 16, referred to as
SRL-J . During training, SRL is evaluated based on its J value, processing states only after every
J actions. All hyperparameters are identical between SRL and SAC, except for the actor update
frequency: SRL updates the actor every 4 steps, while SAC updates every step. Thus, SAC has
four more actor update steps compared to SRL. Additionally, SRL learns a model in parallel with
the actor and critic. Additionally, we also train SAC at different step-sizes that correspond to SRL,
forming SAC-J where J = 1, 2, 4, 8, 16. Note that we do not provide SRL-1 since for sequences of
length 1, SRL is the same algorithm as SAC.

We present the learning curves of SRL and SAC across 11 continuous control tasks in the appendix.
We find that on all environments except Swimmer, SAC-1 demonstrates optimal performance and
often significantly outperforms the longer timesteps. Thus, the default environments is picked to
maximize performance under the standard RL setting where the observation, decision and the action
frequency are the same. It should be noted that the learning curves presented for SRL-J and SAC-J
take in states every J steps.

FREQUENCY-AVERAGED SCORE

Transitioning from simulation to real-world implementation (Sim2Real) in control systems is chal-
lenging because deployment introduces computational stochasticity, leading to variable sensor sam-
pling rates (throughput) and inconsistent end-to-end delays from sensing to actuation (Sandha et al.,
2021). This gap is not captured by the mean reward or return that is the norm in current RL literature.
To address this, we introduce Frequency-Averaged Score (FAS) that is the normalized area under the
curve (AUC) of the performance vs. decision frequency plot. We provide plots for all environments
in the Appendix. We note that this experimental setup is similar to the challenge 7 introduced in by
Dulac-Arnold et al. (2020) and SRL addresses the challenge of low throughput that is introduced in
that work. The FAS captures the overall performance of the policy at different decision frequencies,
timesteps or macro-action lengths. A High FAS indicates that the policy performance generalizes
across decision frequencies, observation frequencies and timestep sizes.

Environment SAC-1 SAC-2 SAC-4 SAC-8 SAC-16
Pendulum 0.44 ± 0.03 0.42 ± 0.03 0.50 ± 0.03 0.49 ± 0.04 0.33 ± 0.05
Lunar Lander 0.20 ± 0.02 0.23 ± 0.02 0.33 ± 0.02 0.45 ± 0.03 0.56 ± 0.09
Hopper 0.07 ± 0.01 0.09 ± 0.01 0.14 ± 0.03 0.14 ± 0.04 0.26 ± 0.08
Walker2d 0.07 ± 0.01 0.08 ± 0.03 0.14 ± 0.04 0.23 ± 0.07 0.15 ± 0.04
Ant -0.05 ± 0.04 0.11 ± 0.01 0.16 ± 0.02 0.16 ± 0.01 0.13 ± 0.01
HalfCheetah 0.01 ± 0.01 0.04 ± 0.01 0.03 ± 0.00 0.02 ± 0.01 0.01 ± 0.01
Humanoid 0.06 ± 0.01 0.06 ± 0.01 0.08 ± 0.03 0.17 ± 0.02 0.18 ± 0.04
InvertedPendulum 0.05 ± 0.02 0.07 ± 0.00 0.14 ± 0.00 0.31 ± 0.02 0.34 ± 0.20
InvertedDPendulum 0.02 ± 0.00 0.07 ± 0.00 0.09 ± 0.01 0.01 ± 0.00 0.01 ± 0.00
Reacher 0.65 ± 0.07 0.78 ± 0.01 0.84 ± 0.03 0.86 ± 0.02 0.87 ± 0.02
Swimmer 0.08 ± 0.02 0.28 ± 0.04 0.46 ± 0.03 0.53 ± 0.03 0.54 ± 0.06

Table 2: Mean Frequency-Averaged Score (FAS) and standard deviation for different environments
for SAC-J configurations (J = 1, 2, 4, 8, 16. J is the action sequence length during training). Each
value is averaged over 5 trials (rounded to two decimals, highest value highlighted).

Tables 2 and 3 present the Frequency Averaged Score (FAS) for SAC and SRL across vary-
ing action sequence lengths. Overall, SRL-16 demonstrates strong and consistent performance

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Environment SRL-2 SRL-4 SRL-8 SRL-16
Pendulum 0.49 ± 0.04 0.68 ± 0.02 0.78 ± 0.04 0.88 ± 0.02
Lunar Lander 0.14 ± 0.06 0.52 ± 0.03 0.73 ± 0.04 0.84 ± 0.03
Hopper 0.10 ± 0.02 0.23 ± 0.03 0.42 ± 0.04 0.57 ± 0.02
Walker2d 0.12 ± 0.03 0.25 ± 0.06 0.28 ± 0.06 0.24 ± 0.11
Ant 0.04 ± 0.01 0.29 ± 0.09 0.45 ± 0.14 0.54 ± 0.13
HalfCheetah 0.06 ± 0.01 0.13 ± 0.02 0.22 ± 0.01 0.28 ± 0.01
Humanoid 0.07 ± 0.00 0.18 ± 0.02 0.37 ± 0.04 0.46 ± 0.04
InvPendulum 0.09 ± 0.03 0.16 ± 0.03 0.27 ± 0.02 0.44 ± 0.04
InvDPendulum 0.07 ± 0.00 0.13 ± 0.02 0.03 ± 0.02 0.02 ± 0.00
Reacher 0.90 ± 0.01 0.93 ± 0.00 0.95 ± 0.00 0.96 ± 0.00
Swimmer 0.32 ± 0.05 0.38 ± 0.17 0.31 ± 0.02 0.42 ± 0.15

Table 3: Mean Frequency-Averaged Score (FAS) and standard deviation for different environments
for SRL-J configurations (J = 2, 4, 8, 16. J is the action sequence length during training). Each
value is averaged over 5 trials (rounded to two decimals, highest value highlighted).

across most environments and a wide range of frequencies. However, in the Walker2d-v2 and
InvertedDoublePendulum-v2 environments, SRL faces challenges when learning longer action se-
quences. We hypothesize that these difficulties stem from higher modeling errors in these envi-
ronments. Future work aimed at improving environmental models could potentially address these
issues.

An exception to this trend is the Swimmer environment, where SAC benefits from improved explo-
ration due to extended actions. SRL, which does not use action repetition, does not perform as well
in this specific case. However, this limitation could be addressed by incorporating action repetition
or action correlation during exploration—an enhancement that lies beyond the scope of the current
work. In order to further validate the utility of FAS, we test all the policies (SAC and SRL-J) in
a stochastic timestep environment. The timestep (time until next input) is randomly chosen from a
uniform distribution of integers in [1,16] after each decision. This is a more realistic setting as it
tests the performance of the policy when the frequency is not constant. Each policy is evaluated over
10 episodes with stochastic timesteps.

In all tested environments, except for the Inverted Double Pendulum, there is a strong Pearson
correlation coefficient (greater than or equal to 0.82) between FAS and performance in stochastic
conditions. This high correlation confirms the effectiveness of FAS as a metric for measuring a
policy’s generalized performance across various timesteps and frequencies. The Inverted Double
Pendulum, however, presents a unique challenge due to its requirement for high precision at low
decision frequencies, leading to significantly lower FAS scores for all algorithms and thus it an
outlier. Comprehensive plots for all nine environments are included in the appendix (Fig. 7).

COMPARISON TO GENERATIVE PLANNING METHOD

The Generative Planning Method (GPM) (Zhang et al.) introduced a recurrent actor, similar to SRL,
to generate a sequence of actions aimed at improving exploration. However, GPM was designed for
a different context and, in its original work, was evaluated under the standard RL setting. Notably,
GPM optimizes all actions in its generated plan to maximize the Q-value, suggesting that it could
potentially achieve a higher FAS score than SAC. To test this hypothesis, we compare SRL and
GPM across four environments.

In the original study, GPM was primarily trained with a plan length of 3 for most environments—a
concept comparable to the J parameter used in our work. While shorter plan lengths may limit
generalization to longer sequences, GPM has been shown to be robust to variations in plan length.
To ensure a fair comparison, we use plan lengths that correspond to the best-performing J values
for SRL in each environment.

Figure 2 shows the learning curves and FAS evaluation plots for GPM compared to SAC and SRL.
While GPM generates a plan by optimizing a sequence of actions, it achieves optimal performance
only at sequence lengths of one. As a result, its FAS score is even lower than that of SAC-J .

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Figure 2: Comparison of SAC and SRL to GPM. Top: Learning curves. Bottom: Performance of
the trained policies at different action sequence lengths. The action sequences for SRL and GPM
are generated using the recurrent actor while SAC utilizes action repetition. GPM achieves FAS of
0.41, 0.04, 0.04, 0.04 on the environments from left to right respectively.

Notably, on the InvertedDoublePendulum-v2 environment, both SAC and SRL exhibit high perfor-
mance at action sequence lengths (ASL) of 4, which aligns with their training at J = 4. However,
their performance decreases at shorter ASLs. In contrast, GPM shows a similar FAS profile to
SAC-1, indicating that its performance does not generalize well to longer action sequences.

We hypothesize that this limitation arises because GPM lacks mechanisms to address challenges
associated with training on sequences of actions. For instance, altering the first action in a sequence
can disrupt the optimality of subsequent actions, affecting the value function of deeper states and
potentially causing deeper actions to diverge. SRL, on the other hand, mitigates this issue by incor-
porating a model and the ”temporal recall” mechanism, which help maintain consistency across the
action sequence.

COMPARISON TO MODEL-BASED ONLINE PLANNING

Model-based online planning is another approach that allows the RL agent to reduce its observa-
tional frequency. However, it often requires a highly accurate model of the environment and incurs
increased model complexity due to the use of the model during control.

Since SRL incorporates a model of the environment that is learned in parallel, we compare the
performance of the SRL actor utilizing the actor-generated action sequences against model-based
online planning, where the actor produces only a single action between each simulated state.

Environment SRL Online Planning State Space Action Space
Lunar Lander 0.84 ± 0.03 0.79 ± 0.08 8 2
Hopper 0.57 ± 0.02 0.59 ± 0.19 11 3
Walker2d 0.28 ± 0.06 0.20 ± 0.05 17 6
Ant 0.54 ± 0.13 0.34 ± 0.08 27 8
HalfCheetah 0.28 ± 0.01 0.19 ± 0.02 17 6
Humanoid 0.46 ± 0.04 0.18 ± 0.03 376 17
InvPendulum 0.44 ± 0.04 0.63 ± 0.10 4 1
InvDPendulum 0.13 ± 0.02 0.10 ± 0.07 11 1
Reacher 0.96 ± 0.00 0.95 ± 0.00 11 2
Swimmer 0.42 ± 0.15 0.43 ± 0.14 8 2

Table 4: Comparison of the FAS of SRL and corresponding model-based online planning policies
across different environments.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Table 4 compares the FAS score SRL to online planning using the same model in online plan-
ning versus the action sequences generated by the SRL policy. We see that SRL can learn action
sequences and is competitive to model-based online planning. Notably, SRL performs better in en-
vironments with larger action and state space dimensions. Such environments are harder to model.
Thus, SRL can leverage inaccurate models to learn accurate action sequences, further reducing the
required computational complexity during training. We hypothesize that this superior performance
is due to the fact that the actor learns a J-step action sequence concurrently, while online planning
only produces one action at a time. Consequently, SRL is able to learn and produce long, coher-
ent action sequences, whereas single-step predictions tend to drift, similar to the ”hallucination”
phenomenon observed in transformer-based language models.

6 DISCUSSION FUTURE WORK

SRL bridges the gap between RL and real-world applications by enabling robust control at low de-
cision frequencies. Its ability to learn long action sequences expands the potential for deploying RL
in resource-constrained environments, such as robotics and autonomous systems. Additionally, it
shows promise for applications where obtaining observations is costly, such as in medical diagnos-
tics and treatment planning. Future work will explore hierarchical policies and biologically inspired
attention mechanisms

The current RL framework encourages synchrony between the environment and the components of
the agent. However, the brain utilizes components that act at different frequencies and yet is capable
of robust and accurate control. SRL provides an approach to reconcile this difference between neu-
roscience and RL, while remaining competitive on current RL benchmarks. SRL offers substantial
benefits over traditional RL algorithms, particularly in the context of autonomous agents in con-
strained settings. By enabling operation at slower observational frequencies and providing a gradual
decay in performance with reduced input frequency, SRL addresses critical issues related to sen-
sor failure and occlusion, and energy consumption. Additionally, SRL generates long sequences of
actions from a single state, which can enhance the explainability of the policy and provide opportu-
nities to override the policy early in case of safety concerns. SRL also learns a latent representation
of the action sequence, which could be used in the future to interface with large language models
for multimodal explainability and even hierarchical reinforcement learning and transfer learning.

FUTURE WORK

Future work will incorporate bio-inspired features like attention mechanisms and knowledge trans-
fer. Additionally, SRL can benefit from existing Model-Based RL approaches as it naturally learns a
model of the world. In the Appendix, we demonstrate preliminary results of generative replay in the
latent space. We believe that this is a promising direction to significantly improve upon the results
in the paper.

In noiseless deterministic environments, a capable agent should achieve near-infinite horizon control
for tasks like walking and hopping from a single state with minimal error corrections. Current
approaches rely on external information at every state, which increases energy consumption and
vulnerability to adversarial or missing inputs. Truly autonomous agents will need to implement
multiple policies simultaneously, and simple tasks like walking can be performed with minimal
input states if learned properly.

7 CONCLUSION

In this paper, we introduced Sequence Reinforcement Learning (SRL): a model based action se-
quence learning algorithm for model free control. We demonstrated the improvement of SRL over
existing framework by testing it over various control frequencies. Furthermore, we introduce the
Frequency-Averaged-Score (FAS) metric to measure the robustness of a policy across different fre-
quencies. Our work is the first to achieve competitive results on continuous control environments
at low control frequencies and serves as a benchmark for future work in this direction. Finally, we
demonstrated directions for future works including comparison to model-based planning, generative
replay and connections to neuroscience.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

Ghattas Akkad, Ali Mansour, and Elie Inaty. Embedded deep learning accelerators: A survey on
recent advances. IEEE Transactions on Artificial Intelligence, 2023.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large
scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

Gregory S Berns and Terrence J Sejnowski. How the basal ganglia make decisions. In Neurobiology
of decision-making, pp. 101–113. Springer, 1996.

Gregory S Berns and Terrence J Sejnowski. A computational model of how the basal ganglia produce
sequences. Journal of cognitive neuroscience, 10(1):108–121, 1998.

André Biedenkapp, Raghu Rajan, Frank Hutter, and Marius Lindauer. Temporl: Learning when to
act. In International Conference on Machine Learning, pp. 914–924. PMLR, 2021.

Bart G Borghuis, Duje Tadin, Martin JM Lankheet, Joseph S Lappin, and Wim A van de Grind.
Temporal limits of visual motion processing: psychophysics and neurophysiology. Vision, 3(1):
5, 2019.

LA Boyd, JD Edwards, CS Siengsukon, ED Vidoni, BD Wessel, and MA Linsdell. Motor sequence
chunking is impaired by basal ganglia stroke. Neurobiology of learning and memory, 92(1):
35–44, 2009.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Yi-Hsiang Chang, Kuan-Yu Chang, Henry Kuo, and Chun-Yi Lee. Reusability and transferability
of macro actions for reinforcement learning. ACM Transactions on Evolutionary Learning and
Optimization, 2(1):1–16, 2022.

Baiming Chen, Mengdi Xu, Zuxin Liu, Liang Li, and Ding Zhao. Delay-aware multi-
agent reinforcement learning for cooperative and competitive environments. arXiv preprint
arXiv:2005.05441, 2020.

Baiming Chen, Mengdi Xu, Liang Li, and Ding Zhao. Delay-aware model-based reinforcement
learning for continuous control. Neurocomputing, 450:119–128, 2021.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

Jeremiah Y. Cohen, Sebastian Haesler, Linh Vong, Bradford B. Lowell, and Naoshige Uchida.
Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Na-
ture 2012 482:7383, 482:85–88, 1 2012. ISSN 1476-4687. doi: 10.1038/nature10754. URL
https://www.nature.com/articles/nature10754.

Noel Csomay-Shanklin, William D Compton, and Aaron D Ames. Dynamically feasible path plan-
ning in cluttered environments via reachable bezier polytopes. arXiv preprint arXiv:2411.13507,
2024.

Esther Derman, Gal Dalal, and Shie Mannor. Acting in delayed environments with non-stationary
markov policies. arXiv preprint arXiv:2101.11992, 2021.

Jared Di Carlo, Patrick M Wensing, Benjamin Katz, Gerardo Bledt, and Sangbae Kim. Dynamic
locomotion in the mit cheetah 3 through convex model-predictive control. In 2018 IEEE/RSJ
international conference on intelligent robots and systems (IROS), pp. 1–9. IEEE, 2018.

Allison J Doupe, David J Perkel, Anton Reiner, and Edward A Stern. Birdbrains could teach basal
ganglia research a new song. Trends in neurosciences, 28(7):353–363, 2005.

11

https://www.nature.com/articles/nature10754

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Gabriel Dulac-Arnold, Nir Levine, Daniel J Mankowitz, Jerry Li, Cosmin Paduraru, Sven Gowal,
and Todd Hester. An empirical investigation of the challenges of real-world reinforcement learn-
ing. arXiv preprint arXiv:2003.11881, 2020.

Farbod Farshidian, Michael Neunert, Alexander W Winkler, Gonzalo Rey, and Jonas Buchli. An
efficient optimal planning and control framework for quadrupedal locomotion. In 2017 IEEE
International Conference on Robotics and Automation (ICRA), pp. 93–100. IEEE, 2017.

Natalia Favila, Kevin Gurney, and Paul G Overton. Role of the basal ganglia in innate and learned
behavioural sequences. Reviews in the Neurosciences, 35(1):35–55, 2024.

Arnaud Fickinger, Hengyuan Hu, Brandon Amos, Stuart Russell, and Noam Brown. Scalable online
planning via reinforcement learning fine-tuning. Advances in Neural Information Processing
Systems, 34:16951–16963, 2021.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Manuel Y Galliker, Noel Csomay-Shanklin, Ruben Grandia, Andrew J Taylor, Farbod Farshidian,
Marco Hutter, and Aaron D Ames. Planar bipedal locomotion with nonlinear model predictive
control: Online gait generation using whole-body dynamics. In 2022 IEEE-RAS 21st Interna-
tional Conference on Humanoid Robots (Humanoids), pp. 622–629. IEEE, 2022.

Eric Garr. Contributions of the basal ganglia to action sequence learning and performance. Neuro-
science & Biobehavioral Reviews, 107:279–295, 2019.

Christoph F Geissler, Christian Frings, and Birte Moeller. Illuminating the prefrontal neural corre-
lates of action sequence disassembling in response–response binding. Scientific Reports, 11(1):
22856, 2021.

Andrew Gray, Yiqi Gao, J Karl Hedrick, and Francesco Borrelli. Robust predictive control for
semi-autonomous vehicles with an uncertain driver model. In 2013 IEEE intelligent vehicles
symposium (IV), pp. 208–213. IEEE, 2013.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and appli-
cations. arXiv preprint arXiv:1812.05905, 2018.

Tuomas Haarnoja, Ben Moran, Guy Lever, Sandy H Huang, Dhruva Tirumala, Jan Humplik, Markus
Wulfmeier, Saran Tunyasuvunakool, Noah Y Siegel, Roland Hafner, et al. Learning agile soccer
skills for a bipedal robot with deep reinforcement learning. arXiv preprint arXiv:2304.13653,
2023.

Maarten A Immink, Monique Pointon, David L Wright, and Frank E Marino. Prefrontal cortex
activation during motor sequence learning under interleaved and repetitive practice: a two-channel
near-infrared spectroscopy study. Frontiers in Human Neuroscience, 15:644968, 2021.

Reza Jafarpourmarzouni, Yichen Luo, Sidi Lu, Zheng Dong, et al. Towards real-time and efficient
perception workflows in software-defined vehicles. IEEE Internet of Things Journal, 2024.

Aditya Jain, Ramta Bansal, Avnish Kumar, and KD Singh. A comparative study of visual and
auditory reaction times on the basis of gender and physical activity levels of medical first year
students. International journal of applied and basic medical research, 5(2):124–127, 2015.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-
based policy optimization. Advances in neural information processing systems, 32, 2019.

Xin Jin and Rui M Costa. Start/stop signals emerge in nigrostriatal circuits during sequence learning.
Nature, 466(7305):457–462, 2010.

Xin Jin and Rui M Costa. Shaping action sequences in basal ganglia circuits. Current opinion in
neurobiology, 33:188–196, 2015.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Xin Jin, Fatuel Tecuapetla, and Rui M Costa. Basal ganglia subcircuits distinctively encode the
parsing and concatenation of action sequences. Nature neuroscience, 17(3):423–430, 2014.

Shivaram Kalyanakrishnan, Siddharth Aravindan, Vishwajeet Bagdawat, Varun Bhatt, Harshith
Goka, Archit Gupta, Kalpesh Krishna, and Vihari Piratla. An analysis of frame-skipping in rein-
forcement learning. ArXiv, abs/2102.03718, 2021.

Benjamin Katz, Jared DI Carlo, and Sangbae Kim. Mini cheetah: A platform for pushing the limits
of dynamic quadruped control. Proceedings - IEEE International Conference on Robotics and
Automation, 2019-May:6295–6301, 5 2019. ISSN 10504729. doi: 10.1109/ICRA.2019.8793865.

Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Müller, Vladlen Koltun, and
Davide Scaramuzza. Champion-level drone racing using deep reinforcement learning. Nature,
620(7976):982–987, 2023a.

Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Müller, Vladlen Koltun, and
Davide Scaramuzza. Champion-level drone racing using deep reinforcement learning. Nature
2023 620:7976, 620:982–987, 8 2023b. ISSN 1476-4687. doi: 10.1038/s41586-023-06419-4.
URL https://www.nature.com/articles/s41586-023-06419-4.

Heecheol Kim, Masanori Yamada, Kosuke Miyoshi, Tomoharu Iwata, and Hiroshi Yamakawa. Re-
inforcement learning in latent action sequence space. In 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 5497–5503. IEEE, 2020.

Vanel Lazcano. Depth map completion using a specific graph metric and balanced infinity lapla-
cian for autonomous vehicles. In Iberoamerican Congress on Pattern Recognition, pp. 187–197.
Springer, 2024.

Sergey Levine and Vladlen Koltun. Guided policy search. In International conference on machine
learning, pp. 1–9. PMLR, 2013.

Qikai Li, Guiyu Dong, Ripeng Qin, Jiawei Chen, Kun Xu, and Xilun Ding. Quadruped rein-
forcement learning without explicit state estimation. In 2022 IEEE International Conference
on Robotics and Biomimetics (ROBIO), pp. 1989–1994. IEEE, 2022.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Rudolf Limpert. Brake design and safety. SAE international, 2011.

Junfeng Long, Junli Ren, Moji Shi, Zirui Wang, Tao Huang, Ping Luo, and Jiangmiao Pang. Learn-
ing humanoid locomotion with perceptive internal model. arXiv preprint arXiv:2411.14386,
2024.

Paola Malerba, Katya Tsimring, and Maxim Bazhenov. Learning-induced sequence reactivation
during sharp-wave ripples: a computational study. In Advances in the Mathematical Sciences:
AWM Research Symposium, Los Angeles, CA, April 2017, pp. 173–204. Springer, 2018.

Gabriel B. Margolis, Ge Yang, Kartik Paigwar, Tao Chen, and Pulkit Agrawal. Rapid lo-
comotion via reinforcement learning. International Journal of Robotics Research, 43:572–
587, 4 2024. ISSN 17413176. doi: 10.1177/02783649231224053/ASSET/IMAGES/LARGE/
10.1177 02783649231224053-FIG10.JPEG. URL https://journals.sagepub.com/
doi/full/10.1177/02783649231224053.

Miriam Matamales, Zala Skrbis, Matthew R Bailey, Peter D Balsam, Bernard W Balleine, Jürgen
Götz, and Jesus Bertran-Gonzalez. A corticostriatal deficit promotes temporal distortion of auto-
matic action in ageing. ELife, 6:e29908, 2017.

Amy McGovern, Richard S. Sutton, and Andrew H. Fagg. Roles of macro-actions in accelerating
reinforcement learning. 1997.

13

https://www.nature.com/articles/s41586-023-06419-4
https://journals.sagepub.com/doi/full/10.1177/02783649231224053
https://journals.sagepub.com/doi/full/10.1177/02783649231224053

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Zhang Minghao, Song Bifeng, Yang Xiaojun, and Wang Liang. A plug-and-play fully on-the-job
real-time reinforcement learning algorithm for a direct-drive tandem-wing experiment platforms
under multiple random operating conditions. arXiv preprint arXiv:2410.15554, 2024.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature 2015 518:7540, 518:529–533, 2 2015. ISSN 1476-4687. doi: 10.1038/nature14236. URL
https://www.nature.com/articles/nature14236.

Thomas M Moerland, Joost Broekens, Aske Plaat, Catholijn M Jonker, et al. Model-based rein-
forcement learning: A survey. Foundations and Trends® in Machine Learning, 16(1):1–118,
2023.

James O’ Neill. An overview of neural network compression. arXiv preprint arXiv:2006.03669,
2020.

OpenAI, Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Debiak,
Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, Rafal Józefowicz,
Scott Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov, Henrique P. d. O. Pinto, Jonathan
Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever, Jie
Tang, Filip Wolski, and Susan Zhang. Dota 2 with large scale deep reinforcement learning. 12
2019. URL https://arxiv.org/abs/1912.06680v1.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pp. 2778–2787.
PMLR, 2017.

James G Phillips, Ed Chiu, John L Bradshaw, and Robert Iansek. Impaired movement sequencing
in patients with huntington’s disease: a kinematic analysis. Neuropsychologia, 33(3):365–369,
1995.

Haseena Rahmath P, Vishal Srivastava, Kuldeep Chaurasia, Roberto G Pacheco, and Rodrigo S
Couto. Early-exit deep neural network-a comprehensive survey. ACM Computing Surveys, 2022.

Daniel B Rubin, Tommy Hosman, Jessica N Kelemen, Anastasia Kapitonava, Francis R Willett,
Brian F Coughlin, Eric Halgren, Eyal Y Kimchi, Ziv M Williams, John D Simeral, et al. Learned
motor patterns are replayed in human motor cortex during sleep. Journal of Neuroscience, 42
(25):5007–5020, 2022.

Sandeep Singh Sandha, Luis Garcia, Bharathan Balaji, Fatima Anwar, and Mani Srivastava.
Sim2real transfer for deep reinforcement learning with stochastic state transition delays. In Con-
ference on Robot Learning, pp. 1066–1083. PMLR, 2021.

Remo Sasso, Matthia Sabatelli, and Marco A Wiering. Multi-source transfer learning for deep
model-based reinforcement learning. arXiv preprint arXiv:2205.14410, 2022.

Nikolay Savinov, Anton Raichuk, Raphaël Marinier, Damien Vincent, Marc Pollefeys, Timo-
thy Lillicrap, and Sylvain Gelly. Episodic curiosity through reachability. arXiv preprint
arXiv:1810.02274, 2018.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy Lillicrap, and
David Silver. Mastering atari, go, chess and shogi by planning with a learned model. Nature 2020
588:7839, 588:604–609, 12 2020. ISSN 1476-4687. doi: 10.1038/s41586-020-03051-4. URL
https://www.nature.com/articles/s41586-020-03051-4.

W. Schultz, P. Dayan, and P. R. Montague. A neural substrate of prediction and reward. Science,
275:1593–1599, 1997. ISSN 00368075. doi: 10.1126/SCIENCE.275.5306.1593/ASSET/
6CC77AD2-EA4B-4861-A4ED-A076123F94E0/ASSETS/GRAPHIC/SE1174905004.JPEG.
URL https://www.science.org/doi/10.1126/science.275.5306.1593.

14

https://www.nature.com/articles/nature14236
https://arxiv.org/abs/1912.06680v1
https://www.nature.com/articles/s41586-020-03051-4
https://www.science.org/doi/10.1126/science.275.5306.1593

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Wolfram Schultz. Neuronal reward and decision signals: From theories to data. Physiological
Reviews, 95:853–951, 7 2015. ISSN 15221210. doi: 10.1152/PHYSREV.00023.2014/ASSET/
IMAGES/LARGE/Z9J0031527320049.JPEG. URL https://journals.physiology.
org/doi/10.1152/physrev.00023.2014.

Danesh Shahnazian, Mehdi Senoussi, Ruth M Krebs, Tom Verguts, and Clay B Holroyd. Neural
representations of task context and temporal order during action sequence execution. Topics in
Cognitive Science, 14(2):223–240, 2022.

Sahil Sharma, A. Srinivas, and Balaraman Ravindran. Learning to repeat: Fine grained action
repetition for deep reinforcement learning. ArXiv, abs/1702.06054, 2017.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. nature, 550(7676):354–359, 2017.

A. Srinivas, Sahil Sharma, and Balaraman Ravindran. Dynamic action repetition for deep reinforce-
ment learning. In AAAI, 2017.

Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing exploration in reinforcement
learning with deep predictive models. arXiv preprint arXiv:1507.00814, 2015.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012. doi: 10.1109/IROS.2012.6386109.

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, An-
drea Pierré, Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G. Younis. Gymna-
sium, March 2023. URL https://zenodo.org/record/8127025.

Gido M Van de Ven, Hava T Siegelmann, and Andreas S Tolias. Brain-inspired replay for continual
learning with artificial neural networks. Nature communications, 11(1):4069, 2020.

Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan
Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John P. Aga-
piou, Max Jaderberg, Alexander S. Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard,
David Budden, Yury Sulsky, James Molloy, Tom L. Paine, Caglar Gulcehre, Ziyu Wang, To-
bias Pfaff, Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney, Oliver
Smith, Tom Schaul, Timothy Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris Apps, and
David Silver. Grandmaster level in starcraft ii using multi-agent reinforcement learning. Nature
2019 575:7782, 575:350–354, 10 2019. ISSN 1476-4687. doi: 10.1038/s41586-019-1724-z.
URL https://www.nature.com/articles/s41586-019-1724-z.

Jianhao Wang, Wenzhe Li, Haozhe Jiang, Guangxiang Zhu, Siyuan Li, and Chongjie Zhang. Offline
reinforcement learning with reverse model-based imagination. Advances in Neural Information
Processing Systems, 34:29420–29432, 2021.

Tobias Wiestler and Jörn Diedrichsen. Skill learning strengthens cortical representations of motor
sequences. Elife, 2:e00801, 2013.

Peter R. Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik Subramanian,
Thomas J. Walsh, Roberto Capobianco, Alisa Devlic, Franziska Eckert, Florian Fuchs, Leilani
Gilpin, Piyush Khandelwal, Varun Kompella, Hao Chih Lin, Patrick MacAlpine, Declan Oller,
Takuma Seno, Craig Sherstan, Michael D. Thomure, Houmehr Aghabozorgi, Leon Barrett,
Rory Douglas, Dion Whitehead, Peter Dürr, Peter Stone, Michael Spranger, and Hiroaki Ki-
tano. Outracing champion gran turismo drivers with deep reinforcement learning. Nature 2022
602:7896, 602:223–228, 2 2022a. ISSN 1476-4687. doi: 10.1038/s41586-021-04357-7. URL
https://www.nature.com/articles/s41586-021-04357-7.

15

https://journals.physiology.org/doi/10.1152/physrev.00023.2014
https://journals.physiology.org/doi/10.1152/physrev.00023.2014
https://zenodo.org/record/8127025
https://www.nature.com/articles/s41586-019-1724-z
https://www.nature.com/articles/s41586-021-04357-7

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Peter R Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik Subramanian,
Thomas J Walsh, Roberto Capobianco, Alisa Devlic, Franziska Eckert, Florian Fuchs, et al. Out-
racing champion gran turismo drivers with deep reinforcement learning. Nature, 602(7896):223–
228, 2022b.

Nicholas F Wymbs and Scott T Grafton. The human motor system supports sequence-specific
representations over multiple training-dependent timescales. Cerebral cortex, 25(11):4213–4225,
2015.

Denis Yarats and Ilya Kostrikov. Soft actor-critic (sac) implementation in pytorch. https://
github.com/denisyarats/pytorch_sac, 2020.

Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fergus. Improv-
ing sample efficiency in model-free reinforcement learning from images. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35, pp. 10674–10681, 2021.

Haonan Yu, Wei Xu, and Haichao Zhang. Taac: Temporally abstract actor-critic for continuous
control. Advances in Neural Information Processing Systems, 34:29021–29033, 2021.

Amy Zhang, Harsh Satija, and Joelle Pineau. Decoupling dynamics and reward for transfer learning.
arXiv preprint arXiv:1804.10689, 2018.

Haichao Zhang, Wei Xu, and Haonan Yu. Generative planning for temporally coordinated explo-
ration in reinforcement learning. In International Conference on Learning Representations.

Yi Zhao, Wenshuai Zhao, Rinu Boney, Juho Kannala, and Joni Pajarinen. Simplified temporal con-
sistency reinforcement learning. In International Conference on Machine Learning, pp. 42227–
42246. PMLR, 2023.

Mark C Zielinski, Wenbo Tang, and Shantanu P Jadhav. The role of replay and theta sequences in
mediating hippocampal-prefrontal interactions for memory and cognition. Hippocampus, 30(1):
60–72, 2020.

16

https://github.com/denisyarats/pytorch_sac
https://github.com/denisyarats/pytorch_sac

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

A APPENDIX

A.1 SRL ALGORITHM

Algorithm 1: Sequence Reinforcement Learning
Input: ϕ, ψ1, ψ2, ω. Initial parameters

1 ϕ̄← ϕ, ψ̄1 ← ψ1, ψ̄2 ← ψ2 ; // Initialize target network weights
2 D ← ∅ ; // Initialize an empty replay pool
3 for each iteration do
4 {at, at+1, . . . , at+J−1} ∼ πω({at, at+1, . . . , at+J−1}|st) ; // Sample action

sequence from the policy
5 for each action at in the sequence do
6 st+1 ∼ p(st+1|st, at) ; // Sample transition from the environment
7 D ← D ∪ {(st, at, r(st, at), st+1)} ; // Store transition in the replay

pool
8 end
9 for each gradient step do

10 ϕ← ϕ− λm∇ϕLϕ ; // Update the model parameters
11 for i ∈ {1, 2} do
12 ψi ← ψi − λQ∇ψiLψi ; // Update the Q-function parameters
13 end
14 {at, at+1, . . . , at+J−1} ∼ πω({at, at+1, . . . , at+J−1}|st) ; // Sample action

sequence from the policy
15 if iteration mod actor update frequency == 0 then
16 for j ∈ {1, . . . , J} do
17 sj+1 ∼ mϕ̄(sj+1|sj , aj) ; // Sample transition from the

target model
18 end
19 ϕ← ω − λπ∇ωLω ; // Update policy weights
20 end
21 α← α− λ∇α̂L(α) ; // Adjust temperature
22 for i ∈ {1, 2} do
23 ψ̄i ← τψi + (1− τ)ψ̄i ; // Update target network weights
24 end
25 ϕ̄← τϕ+ (1− τ)ϕ̄ ; // Update target model weights
26 end
27 end

Output: ϕ, ψ1, ψ2, ω; // Optimized parameters

HYPERPARAMETERS

The table below lists the hyperparameters that are common between every environment used for all
our experiments for the SAC and SRL algorithms:

A.2 IMPLEMENTATION DETAILS

Due to its added complexity during training, SRL requires longer wall clock time for training when
compared to SAC. We performed a minimal hyperparameter search over the actor update frequency
parameter on the Hopper environment (tested values: 1, 2, 4, 8, 16). All the other hyperparamters
were picked to be equal to the SAC implementation. We also did not perform a hyerparameter search
over the size of GRU for the actor. It was picked to have the same size as the hidden layers of the feed
forward network of the actor in SAC. The neural network for the model was also picked to have the
same architecture as the actor from SAC, thus it has two hidden layers with 256 neurons. Similarly
the encoder for the latent SRL implementation was also picked to have the same architecture. For
the latent SRL implementation we also add an additional replay buffer to store transitions of length
5, to implement the temporal consistency training for the model. This was done for simplicity of the
implementation, and it can be removed since it is redundant to save memory.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Hyperparameter Value description
Hidden Layer Size 256 Size of the hidden layers in the feed forward

networks of Actor, Critic, Model and Encoder
networks

Updates per step 1 Number of learning updates per one step in the
environment

Target Update Interval 1 Inverval between each target update
γ 0.99 Discount Factor
τ 0.005 Update rate for the target networks (Critic and

Model)
Learning Rate 0.0003 Learning rate for all neural networks
Replay Buffer Size 106 Size of the replay buffer
Batch Size 256 Batch size for learning
Start Time-steps 10000 Initial number of steps where random policy is

followed

Table 5: List of Common hyperparameters

Environment max Timestep Eval frequency
LunarLanderContinuous-v2 500000 2500
Hopper-v2 1000000 5000
Walker2d-v2 1000000 5000
Ant-v2 5000000 5000
HalfCheetah-v2 5000000 5000
Humanoid-v2 10000000 5000

Table 6: List of environment-specific hyperparameters

All experiments were performed on a GPU cluster the Nvidia 1080ti GPUs. Each run was performed
using a single GPU, utilizing 8 CPU cores of Intel(R) Xeon(R) Silver 4116 (24 core) and 16GB of
memory.

We utilize the pytorch implementation of SAC (https://github.com/denisyarats/
pytorch_sac) (Yarats & Kostrikov, 2020). Our code is attached in the supplementary material.

A.3 PRACTICAL CONSIDERATIONS ON LOW-COMPUTE HARDWARE

In this work, we utilize a GRU for action generation. However, we did not test the performance
of other recurrent architectures or transformers. Depending on the hardware constraints and the
application, a more complicated or simple architecture could be utilized. Furthermore, we also
leave the exploration of actor complexity to generalization to larger action sequences to future work.

Autonomous agents often have observation processing before it is fed into the RL algorithm. It
should be noted that observation processing often forms a significant portion of the latency while the
recurrent portion of the actor for SRL governs the actuation frequency. Furthermore, as mentioned
before, SRL can also inherently handle delays by acting in a predictive manner where the sequence
of actions performed in anticipation of the next state that is being processed. Furthermore, in such
cases, where there is an overlap between two consecutive action sequences, additional MSE loss can
be utilize to align two action sequences. We also leave this exploration to future work.

18

https://github.com/denisyarats/pytorch_sac
https://github.com/denisyarats/pytorch_sac

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

A.4 LEARNING CURVES

Figure 3: Learning curves for extended action Soft-Actor Critic (SAC-J) (Haarnoja et al., 2018)
over continuous control tasks. The default timestep J = 1 is the optimal for all environments except
the swimmer and lunar lander. Larger timesteps support better exploration but also result in worse
performance. These results demonstrate that on all environments except swimmer and lunar-lander,
the default timestep is picked to optimize for the sweet-spot between better exploration and better
performance.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Figure 4: Learning curves of SRL-J (Haarnoja et al., 2018) over continuous control tasks. During
evaluation, SRL receives input after J primitive actions. All curves are averaged over 5 trials, with
shaded regions representing standard deviation.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

A.5 PLOTS FOR FREQUENCY AVERAGED SCORES

Figure 6 shows the plots for FAS. The ASL of 1 in the figure represents the performance of each
policy in the standard reinforcement learning setting. We can see that SRL is competitive with SAC
on ASL of 1 on all environments tested. Larger H results in better robustness at longer ASLs but it
often comes at the cost of lower performance at shorter ASLs.

Additionally, as the FAS reflects, SRL is also significantly more robust across different frequencies
than standard RL (SAC).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Figure 5: Performance of SAC-J at different Action Sequence Lengths (ASL). SAC repeats the
same action for the duration. All policies were tested on ASL of 1, 2, 4, 8 ... 30. All markers are
averaged over 5 trials, with the error bars representing standard error.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Figure 6: Performance of SRL-J at different Action Sequence Lengths (ASL). All policies were
tested on ASL of 1, 2, 4, 8 ... 30. All markers are averaged over 5 trials, with the error bars
representing standard error.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

A.6 PLOTS FOR FAS VS. STOCHASTIC TIMESTEP PERFORMANCE

In Figure 7, we present the plots for FAS vs performance for all environments. For all environments
except InvertedDoublePendulum-v2, we see a high correlation. InvertedDoublePendulum-v2 is a
difficult problem at slow frequency and demonstrates poor performance of less than 200, thus it
does not correlate to FAS.

Figure 7: Performance vs. FAS of different policies (SAC, SRL-2, SRL-4, SRL-8, SRL-16). For
each algorithm, we test 5 policies over 10 episodes.

A.7 GENERATIVE REPLAY IN LATENT SPACE

Previous studies have shown that generative replay benefits greatly from latent representations
(Van de Ven et al., 2020). Recently, Simplified Temporal Consistency Reinforcement Learning
(TCRL) (Zhao et al., 2023) demonstrated that learning a latent state-space improves not only model-
based planning but also model-free RL algorithms. Building on this insight, we introduced an en-
coder to encode the observations in our algorithm.

Following the TCRL implementation, we use two encoders: an online encoder eθ and a target en-
coder eθ− , which is the exponential moving average of the online encoder:

Encoder : et = eθ(st) (6)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Figure 8: Left: Learning curve of SRL with latent state-space on the Walker2d-v2 environment.
Right: Performance of latent SRL-16 on different ASL, compared to SAC and TempoRL. Utilizing
a latent representation for state space is especially beneficial for the Walker2d environment so that
it outperforms SAC even when training upto sequence lengths of J = 16.

Thus, the model predicts the next state in the latent space. Additionally, we introduce multi-step
model prediction for temporal consistency. Following the TCRL work, we use a cosine loss for
model prediction. The model itself predicts only a single step forward, but we enforce temporal
consistency by rolling out the model H-steps forward to predict ẽt+1:t+1+H .

Specifically, for an H-step trajectory τ = (zt, at, zt+1)t:t+H drawn from the replay buffer D, we
use the online encoder to get the first latent state et = eθ(ot). Then conditioning on the sequence of
actions at:t+H , the model is applied iteratively to predict the latent states ẽt+1 = mϕ(ẽt, at). Finally,
we use the target encoder to calculate the target latent states êt+1:t+H+1 = eθ−(ot+1:t+1+H). The
Loss function is defined as:

Lθ,ϕ = Eτ∼D

[H∑
h=0

−γh
(

ẽt+h
||ẽt+h||2

)T(
êt+h
||êt+h||2

)]
(7)

We set H = 5 for our experiments. Both the encoder and the model are feed-forward neural net-
works with two hidden layers.

We provide preliminary results for the Walker environment. Utilizing the latent space for generative
replay significantly improved performance, making it competitive even at 16 steps (128ms) (Figure
8).

We also provide the TempoRL (Biedenkapp et al., 2021) algorithm as a benchmark as it is an al-
gorithm that successfully reduces the number of decisions per episodes. TempoRL is designed to
dynamically pick the best frameskip (for performance), therefore we report the avg. action sequence
length for TempoRL.

A.8 NEURAL BASIS FOR SEQUENCE LEARNING

Unlike artificial RL agents, learning in the brain does not stop once an optimal solution has been
found. During initial task learning, brain activity increases as expected, reflecting neural recruit-
ment. However, after training and repetition, activity decreases as the brain develops more effi-
cient representations of the action sequence, commonly referred to as muscle memory (Wiestler &
Diedrichsen, 2013). This phenomenon is further supported by findings that sequence-specific activ-
ity in motor regions evolves based on the amount of training, demonstrating skill-specific efficiency
and specialization over time (Wymbs & Grafton, 2015).

The neural basis for action sequence learning involves a sophisticated interconnection of different
brain regions, each making a distinct contribution:

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

1. Basal ganglia (BG): Action chunking is a cognitive process by which individual actions are
grouped into larger, more manageable units or ”chunks,” facilitating more efficient storage,
retrieval, and execution with reduced cognitive load (Favila et al., 2024). Importantly,
this mechanism allows the brain to perform extremely fast and precise sequences of actions
that would be impossible if produced individually. The BG plays a crucial role in chunking,
encoding entire behavioral action sequences as a single action (Jin et al., 2014; Favila et al.,
2024; Jin & Costa, 2015; Berns & Sejnowski, 1996; 1998; Garr, 2019). Dysfunction in the
BG is associated with deficits in action sequences and chunking in both animals (Doupe
et al., 2005; Jin & Costa, 2010; Matamales et al., 2017) and humans (Phillips et al., 1995;
Boyd et al., 2009; Favila et al., 2024). However, the neural basis for the compression of
individual actions into sequences remains poorly understood.

2. Prefrontal cortex (PFC): The PFC is critical for the active unbinding and dismantling of
action sequences to ensure behavioral flexibility and adaptability (Geissler et al., 2021).
This suggests that action sequences are not merely learned through repetition; the PFC
modifies these sequences based on context and task requirements. Recent research indicates
that the PFC supports memory elaboration (Immink et al., 2021) and maintains temporal
context information (Shahnazian et al., 2022) in action sequences. The prefrontal cortex
receives inputs from the hippocampus.

3. Hippocampus (HC) replays neuronal activations of tasks during subsequent sleep at
speeds six to seven times faster. This memory replay may explain the compression of slow
actions into fast chunks. The replayed trajectories from the HC are consolidated into long-
term cortical memories (Zielinski et al., 2020; Malerba et al., 2018). This phenomenon
extends to the motor cortex, which replays motor patterns at accelerated speeds during
sleep (Rubin et al., 2022).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

A.9 CLARIFICATION FIGURE

Observation Computation
(,)

Actuation

Standard RL

Observation Computation
(, 1, 2, 3, . . .)

Actuation
1, 2, 3, . . .

Sequence Learner

1

Frequency: 2 ¿ 1

11

2 21

Actuation Frequency

Observation Frequency
Computation Frequency

Figure 9: Illustration of the control process in an RL agent, comprising three key components:
observation, computation, and actuation. In a standard RL framework, these components typically
operate at the same frequency, with each observation leading to a single action after a computation
pass. However, the sequence learner can achieve faster actuation by generating multiple primitive
actions per observation. It’s important to note that during training, the observation frequency must be
at least equal to the actuation frequency and, after training, must match the computation frequency.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

A.10 LEARNING CURVES BY J

Figure 10: Learning curve of SRL-2 and SAC-2.

Figure 11: Learning curve of SRL-4 and SAC-4.

Figure 12: Learning curve of SRL-8 and SAC-8.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Figure 13: Learning curve of SRL-16 and SAC-16.

A.11 RANDOMIZED FRAME-SKIPPING

As shown, SAC trained on a constant timestep cannot adapt to different timesteps. For a fairer
comparison, we also present results on randomized frame-skipping implemented on SAC during
training.

Figure 14: Performance of SAC and randomized SAC (SAC-R).

Figure 14 compares the performance of randomized SAC (SAC-R) to SAC at J = 16. Surprisingly,
we find that randomized frame-skipping during training improves the performance at shorter action
sequence lengths (ASL) for simple environments like pendulum and lunar lander. However, for
Hopper, SAC-R performs worse than SAC. This is most probably due to the stochasticity introduced
due to the randomized frame-skipping. Even with randomized frame-skipping, SAC fails to achieve
performance similar to SRL on simple environments, thus further reinforcing the results presented
in this paper.

A.12 RESULTS ON TEMPORL

To further provide provide context for the contribution of this work in comparison to previous work,
we provide further comparison to TempoRL (Biedenkapp et al., 2021) and also discuss performance
compared to recent work on observational dropout.

TempoRL cannot be adapted to the FAS setting since after each action is picked, it further picks the
duration for the amount of time the action will be performed. Yet, since it promotes action repetiton,
it results in lower decision frequency and longer action sequence lengths than standard algorithms
like TD3 and SAC.

Table 7 demonstrates the results of training TempoRL algorithm on some of the benchmarks pre-
sented in this paper. We did a quick hyperparameter search over the max sequence length parameter
and pick the highest number over 3 that did not result in a significant drop in performance. We

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Environment Avg. Reward Avg. Sequence Length Max sequence Length
Pendulum -149.38 ±31.26 71.74ms 6
Hopper 2607.86 ±342.23 22.4ms 9
Walker2d 4581.69 ±561.95 25.54ms 7
Ant 3507.85 ±579.95 62.66ms 3
HalfCheetah 6627.73 ±2500.77 56.20ms 3
Inv Pendulum 984.21 ±47.37 73.92ms 10
InvD Pendulum 9352.61 ±2.2 58.76ms 5

Table 7: Results of running TempoRL on Mujoco Tasks. All results are averaged over 10 seeds.

find that while TempoRL achieve optimal performance on environments with single dimensions like
pendulums, it demonstrates significant drop in performance on environments with multiple dimen-
sions like Ant and HalfCheetah. Furthermore, on all environments, it maintains a relatively short
action sequence length and even though it is given the option of picking long action sequences, it
rarely does so. This result further demonstrates the contribution of SRL at maintaining performance
at really long sequence lengths in environments with high action dimensions.

30

	Introduction
	Necessity of Sequence Learning: Frequency, Delay and Response Time
	Related Work
	Model-Based Reinforcement Learning
	Model Predictive Control
	Macro-Actions, Action Repetition, and Frame-skipping

	Sequence Reinforcement Learning
	Experiments
	Discussion Future Work
	Conclusion
	Appendix
	SRL Algorithm
	Implementation Details
	Practical Considerations on Low-Compute Hardware
	Learning Curves
	Plots for Frequency Averaged Scores
	Plots for FAS vs. Stochastic Timestep Performance
	Generative Replay in Latent Space
	Neural Basis for Sequence Learning
	Clarification Figure
	Learning Curves by J
	Randomized frame-skipping
	Results on TempoRL

