
Published at the Deep RL Workshop, NeurIPS 2022

NEURAL ALL-PAIRS SHORTEST PATH
FOR REINFORCEMENT LEARNING

Cristina Pinneri
Max Planck Institute for Intelligent Systems
Tüebingen, Germany
Max Planck ETH Center for Learning Systems
cpinneri@tue.mpg.de

Georg Martius
Max Planck Institute for Intelligent Systems
Tüebingen, Germany

Andreas Krause
ETH Zürich
Switzerland

ABSTRACT

Having an informative and dense reward function is an important requirement to
efficiently solve goal-reaching tasks. While the natural reward for such tasks is a
binary signal indicating success or failure, providing only a binary reward makes
learning very challenging given the sparsity of the feedback. Hence, introducing
dense rewards helps to provide smooth gradients. However, these functions are
not readily available, and constructing them is difficult, as it often requires a lot of
time and domain-specific knowledge, and can unintentionally create spurious local
minima. We propose a method that learns neural all-pairs shortest paths, used as a
distance function to learn a policy for goal-reaching tasks, requiring zero domain-
specific knowledge. In particular, our approach includes both a self-supervised
signal from the temporal distance between state pairs of an episode, and a metric-
based regularizer that leverages the triangle inequality for an additional connectivity
information between state triples. This dynamical distance can be either used as a
cost function, or reshaped as a reward, and, differently from previous work, is fully
self-supervised, compatible with off-policy learning and robust to local minima.

1 INTRODUCTION

Teaching an AI agent to autonomously and efficiently reach goals is still an open problem in the
reinforcement learning (RL) community. One of the bottlenecks is correctly specifying a learning
signal: an intuitive choice would be a binary reward indicating whether the goal is reached or not,
but this kind of signal does not provide enough feedback to the learner, as it would require extensive
exploration before receiving any information. As an alternative, hand-crafted reward shaping is often
employed on top of the “true" sparse reward - such as the Euclidean distance to the goal (Ng et al.,
1999a; Mahmood et al., 2018) - but that might lead to reward hacking, a widely observed phenomenon
in which the agent optimizes for the local optima introduced by the shaped reward instead of the real
sparse objective, generating unintended behaviors (Pan et al., 2022).

Instead of imposing brittle heuristic shaping, recent research shows that learning dynamical distances
is a valid alternative (Hartikainen et al., 2019). The purpose of these functions is to learn all-pairs
shortest path distances (APSP). One of the first works in this direction was presented in the 90s by
Kaelbling (1993) and utilizes a Q-learning agent to construct a goal-conditioned action-value function
d(s, a, g), drawing de facto the first connection between RL and the APSP problem, based on the
Floyd-Warshall algorithm (Floyd, 1962a).

However, Kaelbling (1993) demonstrate the method in a low dimensional tabular setting, where all
the goals were known in advance. Recent works (Hartikainen et al., 2019; Jurgenson et al., 2020)
propose extensions including function approximation, but are constrained to on-policy learning. We
propose a method that learns a dynamical distance function with function approximation, off-policy,
without any reinforcement signal, employing only a self-supervised signal from the actual number

1

Published at the Deep RL Workshop, NeurIPS 2022

of time steps separating state pairs, and a second loss inspired by the triangle inequality, as in the
all-pairs shortest path algorithm.

1.1 SHORTEST PATHS AND RL

The problem of learning dynamical distances is closely related to the one of learning value functions
in RL. The Q-learning algorithm itself can be seen as a generalization of a single-source shortest
path problem (SSSP) for directed graphs, in the context of decision making. The negative Q-function
�Q⇡(s,⇡(s)) represents the shortest path distance under the policy ⇡. The dynamic programming
(DP) equation underlying Q-learning is the Bellman update (Bellman, 1966), while the one for
single-source shortest path is provided by the Dijkstra’s algorithm (Dijkstra, 1959) or by other
variations like the Bellman-Ford algorithm (Bellman, 1958), depending on the input graph class.
However, the nature of these recursive equations can still be traced to the Bellman’s optimality
principle (Sniedovich, 2006).

Goal-conditioned Q-functions (Schaul et al., 2015) generalize distance learning for a multi-goal
setting, as they are defined over pairs of states and desired goals. This is similar to the all-pairs
shortest path problem (APSP), which computes the shortest path between any two vertices in a graph.
However, the DP equations behind these problems are different. Goal-conditioned Q-learning is
typically based on the temporal difference update, where the only bootstrapped value is the estimate
of the Q-function. Dedicated algorithms for the solution of the APSP problem are built on different
DP principles.

The Floyd-Warshall algorithm (Floyd, 1962b) for APSP, for example, finds shortest paths by it-
eratively enforcing the triangle inequality between state triples: the shortest path between state
si and sk is cast in terms of relaxations, such that the distances are initialized by overestimation,
and are updated as d(si, sk) := minj [d(si, sj) + d(sj , sk)]. O(N3) relaxations are needed for
the algorithm to converge, where N is the number of vertices in the graph. Kaelbling (1993) pro-
pose a RL connection to the Floyd-Warshall algorithm that also includes actions, formalized as
d(si, ai, sk) := minj [d(si, ai, sj) + mina0 d(sj , a0, sk)]. Differently from a temporal difference
update, this equation makes use of available estimates of d(si, ai, sj) as well. Several other works
(Kaelbling, 1993; Dhiman et al., 2018; Jurgenson et al., 2020) adapt the Floyd-Warshall algorithm to
RL, with results mainly in the tabular setting or for on-policy learning. These methods rely on having
accessibility to the ground truth cost between state pairs. Our approach lifts this impractical assump-
tion and learns distances in a self-supervised fashion. Moreover, since we are in a reinforcement
learning setting, we can let the agent decide which paths to increase depending on their reachability,
in a bottom-up approach, rather than initializing all the distances to infinity as in the Floyd-Warshall
algorithm.

To summarize, this paper proposes a way to learn dynamical distances and goal-conditioned policies
off-policy, and in a fully self-supervised way, employing:

• a novel off-policy correction term for distances learned via temporal regression, and a
corrective bootstrapping loss inspired by the Floyd-Warshall algorithm on graphs, adapted
to RL.

• a general method to learn dynamical distance functions from scratch, that can be used as part
of a goal-conditioned RL algorithm, or as a cost for model-based RL, and that, differently
from previous work, successfully deals with local minima (created e.g. by obstacles) without
explicitly encoding any type of information in the distance function.

2 RELATED WORK

Dealing with environments with sparse reinforcement signals complicates long-term credit assign-
ment, as it introduces higher variance in Monte Carlo (MC) learning and higher bias in Temporal
Difference (TD) updates (Arjona-Medina et al., 2019). Many techniques are focused on accelerating
learning by “densifying" the reward signal with auxiliary functions while not affecting the optimal
policy of the underlying sparse problem (Grzes & Kudenko, 2008; Randløv & Alstrøm, 1998; Ng
et al., 1999b). Alternatively, other kinds of auxiliary reward functions can be used to facilitate explo-
ration according to different strategies as curiosity (Schmidhuber, 1991), prediction error (Pathak

2

Published at the Deep RL Workshop, NeurIPS 2022

et al., 2017), information gain (Houthooft et al., 2016), or predicting state reachability (Savinov et al.,
2018). On the other side there are methods like Hindsight Experience Replay (HER) (Andrychowicz
et al., 2017) that do not try to solve the exploration problem, but introduce auxiliary rewards based on
the distance to the achieved goal rather than to the desired one. As done in HER, we also employ
goal-conditioned value functions (Schaul et al., 2015).

Our approach, however, is based on dynamical distances, which are functions expressing the distance
between state pairs based on some notion of functional similarity. In the literature, dynamical
distances have been learned via direct regression using temporal regression Hartikainen et al. (2019),
in the form of goal-conditioned policies Ghosh et al. (2019), via Q-learning by relabeling goals
Eysenbach et al. (2019); Florensa et al. (2019), or goal-directed Q-learning with negative transition
mining Tian et al. (2020). We extend the on-policy temporal regression presented in Hartikainen
et al. (2019) to be suited for off-policy learning, while simultaneously learning a goal-conditioned
policy that uses the learned dynamical distance as a negative reward. Differently from other methods
(Eysenbach et al., 2019; Savinov et al., 2018), we do not explicitly perform graph search. We instead
make use of a term that expresses whether two states were ever part of the same trajectory. At training
time, we only check if the ‘edge’ (s, a, s0) has ever been visited or not. In practice, we use locality
sensitive hashing (Tang et al., 2017), which allows for generalization based on angular distance
similarity between states.

3 BACKGROUND

We consider the problem of an agent attempting to solve a goal-reaching task. The goal reaching
Markov Decision Process (MDP) (Schaul et al., 2015; Andrychowicz et al., 2017) is defined by the
tuple (S,A,G, r, �, ⇢0, ⇢g), where the state, action and goal spaces are indicated by S,A,G 2 R. In
our case, the goal space G can be an arbitrary subset of the state space.The initial state s0 is sampled
from the distribution ⇢0, while the goal is sampled from ⇢g . Our aim is to learn a stochastic policy ⇡ :

S ⇥G ! ⇤(A) that maximizes the expected discounted return E⌧⇠⇢⇡,sg⇠⇢g

⇥PT�1
t=0 �

t
r(st, at, sg)

⇤
.

3.1 HINDSIGHT EXPERIENCE REPLAY

Let us now consider the particular case in which the reward function is sparse, i.e. the indicator
function r(st, at, g) = �I{st 6= g}. This assumption complicates the credit assignment problem
and becomes a bottleneck for sample efficiency. To overcome this issue, Andrychowicz et al. (2017)
introduce Hindsight Experience Replay (HER). The main idea of HER is to relabel past failed
trajectories with the indicator function mentioned above, where the goal g is the one that was actually
achieved, rather than the desired one.

Although success signals are generally more frequent while using HER, they remain binary, and thus
hold little information. In this work we build upon the relabeling framework introduced in HER, but
we propose to compute rewards from a more informative learned dynamical distance. Our distance,
however, is not tied to the goal sampling procedure presented in HER, and can be used with any
relabeling scheme or goal-conditioned RL algorithm as a shaped reward.

3.2 DYNAMICAL DISTANCES

We learn a distance function that predicts the expected number of timesteps along the shortest path
between two states. This is learned via a self-supervision signal given by the empirical distance
between states of a rollout, as done in Hartikainen et al. (2019), which we extend to an off-policy
setting. In the original paper, the distance d

⇡
✓ is associated with a policy ⇡, which gives rise to the

training loss:

L
⇡
d (✓) =

1

2
E ⌧⇠⇢⇡
i⇠[0,T]
j⇠[i,T]

⇥
(d⇡✓ (si, sj)� (j � i))2

⇤
, (temporal regression)

where the empirical distance between the states (j � i) is relative to the policy ⇡. The complete
dynamical distance learning (DDL) algorithm uses d⇡✓ (s, sg) as a negative reward to optimize the
policy ⇡ and it is guaranteed to converge to the optimal policy ⇡

⇤. However, it requires on-policy

3

Published at the Deep RL Workshop, NeurIPS 2022

data collection, which bottlenecks the efficiency of the pipeline. Moreover, it also requires a small
amount of goal proposals to be used during on-policy training, selected by a human operator from the
last visited goals. In practice, the user is shown a batch of achieved goals and has to select the "best"
one, which will be used to train the policy ⇡.

4 METHOD

4.1 OFF-POLICY TEMPORAL REGRESSION

To overcome the on-policy bottleneck, and achieve better sample efficiency with off-policy data, we
propose to condition the dynamical distance on the action value and learn the function d✓(si, ai, sj)
from a replay buffer by minimizing the following loss:

Ld(✓) = E ⌧⇠⇢⇡
i⇠[0,T]
j⇠[i,T]

⇣
d✓(si, ai, sj)�min

⇥
(j � i), d✓old(si, ai, sj) + U[d✓old(si, ai, sj)]

⇤⌘2
�
, (1)

where ✓old are previous distance estimates from a frozen network, updated at a slower frequency for
stability reasons, and U[·] can indicate any measure of uncertainty associated to the network given
the input (si, ai, sj).

Like this, we can train d✓ from suboptimal off-policy trajectories, as the supervision signal is the
minimum value between the upper bound of the true distance, given by the empirical distance (j � i),
and a frozen estimate of the dynamical distance.

Intuitively, thanks to the generalization capabilities of powerful approximators such as neural net-
works, d✓old may provide reasonable lower distance estimates, which can be used as a target in the
loss, rather than some temporal overestimate (j � i) coming from suboptimal trajectories at the
beginning of training. We explain in further detail our choice of uncertainty measure in section 4.2.

4.2 UNCERTAINTY WITH COUNTS

We introduce an uncertainty term in eq. 1 so that the min operator discards distance estimates
with high uncertainty, and it starts to consider proposals from the distance network otherwise. Our
formulation of the uncertainty term is inspired by a recent work on pessimistic initialisation of
Q-functions by Rashid et al. (2020) with count models. We adopt the same model based on locality-
sensitive hashing (LSH) (Tang et al., 2017), but we are not bound to any particular counting scheme.
We define the count model as N(si, ai) and use it to pessimistically initialise the distance in the
following way:

U[d✓(si, ai, sj)]
def
=

C

(1 +N(si, ai))M
for the temporal loss (2)

where M,C > 0 are hyperparameters. This penalty term polynomially decays with the number
of counts, so that the distance gets updated with the off-policy estimate d✓(si, ai, sj) only if that
state-action combination has been seen enough times. This pessimistic term is also used to avoid the
trivial zero solution of eq. 1.

4.3 LOCAL CONNECTIVITY AND TRIANGULAR LOSS

Figure 1: 2D point-mass ex-
ample. The goal has never
been visited. Only the interme-
diate state is present in the re-
play buffer. The length of the
arrows indicates the distance
value between state pairs.

When the goal is not part of the replay buffer and we are in the pres-
ence of obstacles, the learned distance underestimates the shortest
path to the goal. Let us consider the example in fig. 1. In this case,
the initial states distribution ⇢0 samples the starting points from the
lower left room. On the other hand, the goals are always sampled
from the upper right room. Unless the agent sees a sufficient amount
of paths that lead to the goal, it will not be able to learn the correct
shortest path distance.

Contrary to the Floyd-Warshall algorithm, where all the distances
are initialized with infinity and then “relaxed" with the triangle

4

Published at the Deep RL Workshop, NeurIPS 2022

(a) Fetch Reach
(with and without Wall)

(b) Fetch Pick and Place
(with and without Wall)

(c) Point Maze (d) D’Claw

Figure 2: MuJoCo Environments

inequality, we consider an alternative approach and start with underestimates caused by the off-policy
temporal regression, which we artificially increase whenever we sample another point in the buffer
that is connected to the goal. In order to express this connectivity information, we employ the
count based term already introduced in the previous section to estimate uncertainty. The count term
N(si, ai, sg) then indicates how many times in total the goal sg was reached from state si after taking
the first action ai.

For instance, let us consider the case in which the goal sg was never reached from state si, but there
is a path in the buffer D from an intermediate state sj to the goal state sg (fig. 1). In this case, we
increase the value of d✓(si, ai, sg) as:

d
?
✓(si, ai, sg) = d✓(si, ai, sj) + d✓(sj , aj , sg) (3)

The distance d?✓(si, ai, sg) is then a penalized hypotenuse, that will converge to the true shortest path
distance and thus mitigate local minima.

5 ALGORITHM SUMMARY

The final formulation for the loss comprises the sum of these two terms (from eq. 1 and 3):

Ltemporal(✓) = E
⌧⇠D

i⇠[0,T]
j⇠[i,T]

(d✓(si, ai, sj)�min[(j � i), d✓old(si, ai, sj) + U[d✓old])

2
�

(4a)

Ltriangular(✓) = E
sg⇠Dlast

(si,ai)⇠µ(sg)
(sj ,aj)⇠µ(sg)

✓
d✓(si, ai, sg)� (d✓old(si, ai, sj) + d✓old(sj , aj , sg))

◆2�
(4b)

where µ(sg) = {(s, a)|(s, a) 2 Dlast ^N(s, a, sg) = 0} and µ(sg) = D \ µ(sg)

where Dlast is the replay buffer containing the most recently collected rollouts. Notice that in the
triangular loss we can either increase or decrease the value of the hypotenuse. In one case the
hypotenuse is penalized, in the other one it is regularized (relaxed, as in Floyd-Warshall) because a
better path was found. Moreover, in this loss, sg always indicates the desired goal of the trajectory
which si is sampled from. Thus, we are only correcting the paths that should have led to the goal. We
underline that this procedure does not search for the (sj , aj) tuple minimizing the triangle inequality,
it purely samples (sj , aj) from the points actually present in the replay buffer D.

6 EXPERIMENTS

Our method is tested on four environments illustrated in fig. 2:

2D navigation A point mass in two dimensions has to navigate a playground with internal walls to
reach a goal. In the setting we present, using the Euclidean goal-distance as a heuristic cost would
fail the task because of the presence of local optima created by the walls.
3D reaching task A 7DoF robot arm has to reach a goal. In the FETCH REACH WITH WALL
variation, the robot arm is initialized in one half of the table while the goal is placed on the other half,
on the ground, with a wall separating the table in two halves.

5

Published at the Deep RL Workshop, NeurIPS 2022

Algorithm 1: Proposed Neural-APSP algorithm.
Input :D: empty replay buffer; Dlast: replay buffer of most recently collected rollouts; ✓:

distance network parameter; ✓old: distance target network parameter; I: training
iterations

Output :goal-conditioned policy ⇡, distance network d✓

1 for i = 0 to I�1 // loop over training iterations
2 do
3 Dlast COLLECT DATA WITH POLICY ⇡

4 UPDATE COUNT MODELS with data from Dlast

5 Train TemporalLoss:
6 sample episode from buffer D
7 sample two indices i and j, with j > i

8 fit distance network with input (si, ai, sj) and label min[j � i, d✓old + U] // eq. 4a

9 UPDATE TARGET NETWORK
10 Train TriangularLoss:
11 sample si from trajectory ⌧ in Dlast and set sg to desired goal state of ⌧
12 sample sj from full replay buffer D
13 if N(si, ai, sg) == 0 and N(sj , aj , sg) > 0 then // path present from sj but not si
14 compute new hypotenuse d

?(si, ai, sg) using the sampled sj // eq. 3
15 else
16 do nothing
17 fit distance network with input (si, ai, sg) and label d?(si, ai, sg) // eq. 4b

18 Train Policy ⇡:
19 sample episodes from the replay buffer D
20 relabel with HER and reward given by negative distance
21 train ⇡ with SAC on relabeled data
22 D D [Dlast

23 ...

3D manipulation task A 7DoF robot arm has to fetch, pick and place a box to a target location.
The goal can be sampled either above or on the table with 50% probability. In the FETCH PICK AND
PLACE WITH WALL, the box is always placed on one half of the table, and the goal in the other, so
the the only solution is lifting it.
Claw Manipulation (Ahn et al., 2020) A 9-DOF “claw”-like robot is required to turn a valve to
various positions. The state space includes the positions of each joint of each claw (3 joints on 3
claws) and embeds the current angle of the valve in Cartesian coordinate (✓ ! (sin ✓, cos ✓)). The
robot is controlled via joint angle control. The goal space consists only of the claw angle, which is
sampled uniformly from the unit circle.

For all the baselines and ablations we use HER (Andrychowicz et al., 2017) while learning a policy
with Soft Actor Critic Haarnoja et al. (2018), while for the FETCH PICK AND PLACE environment
we use HER combined with DDPG (Lillicrap et al., 2016) due to better empirical performance. All
the methods make use of the future strategy presented in Andrychowicz et al. (2017), each of them
with the best k selected by grid search. The parameters used in the experiments are reported in the
appendix. We consider 4 kinds of reward coupled with HER:

Sparse+HER (baseline) Standard binary reward with hindsight relabeling of the buffer with the
default SAC hyperparameters.
DDL+HER (baseline) We use the original HER relabeling scheme, and rewards given by the
negative temporal loss (on-policy). This method is slightly different from (Hartikainen et al., 2019)
as it does not make use of the original "user preferences" to propose goals.
Off-policy DDL+HER (ablation) We augment DDL+HER by introducing the off-policy temporal
regression loss term of sec. 4.1.
Ours+HER Our complete method, including the off-policy temporal regression loss (eq. 4a) and
the bootstrapped triangular loss (eq. 4b), as described in algorithm 2.

6

Published at the Deep RL Workshop, NeurIPS 2022

FETCH REACH FETCH REACH WITH WALL CLAW TURN

POINT MAZE FETCH PICK AND PLACE FETCH PICK AND PLACE WITH WALL

Ours+HER Off-policy DDL+HER DDL+HER Sparse+HER

Figure 3: Performance degradation of Sparse+HER. When more exploration is needed or the
environment presents non-trivial reachability properties, HER struggles to find a solution. Our
method is either comparable to the best baseline/ablation, or better. The quantity presented in the
plots is the rolling mean of the maximum reward or the success rate at evaluation time, averaged over
10 seeds. For the FETCH PICK AND PLACE task we augment the goal space to include the end effector
position as well. The dotted darker line is the original HER performance without augmentation.

DDL Ours

Figure 4: Heatmap of the Q function estimate (negative sign) for the POINT MAZE environment,
learned by using DDL+HER (left) and Ours+HER (right).

(a) Negative Distance to Goal (b) Triangular Loss Effect

Figure 5: Fetch Pick and Place task. Our method is able to reach the goal at a faster rate as it avoids
the local minima of placing the end effector in between the target in the air and the box on the
ground. The dashed black line indicates the minimum negative distance required to solve the task.
The dotted dark green line is the original HER performance (Andrychowicz et al., 2017) without goal
augmentation.

7

Published at the Deep RL Workshop, NeurIPS 2022

Sparse+HER DDL+HER Off-Policy DDL+HER Ours+HER

Figure 6: State coverage of POINT MAZE obtained with each method. Sparse+HER is only able
to explore the lower room and parts of the adjacent one. All the methods are provided with either
✏ = 0.1 or ✏ = 0.3 exploration, depending on which performs better.

6.1 LOCAL OPTIMA

The results in fig. 3 show how our method is robust even when we consider environments with
obstacles or goals that are hard to reach. The off-policy temporal loss can find shortcuts as suggested
by the function approximator, and introducing the triangular loss further improves performance In
particular, the FETCH PICK AND PLACE task is an eloquent example. In this case we opt to augment
the goal space to also consider the end effector position: the goal is to have both box and gripper at
the target state. This simple addition already improves the sample efficiency of Sparse+HER by an
order of magnitude. However, we can also notice how Sparse+HER quickly reaches a 50% success
rate, equivalent to reaching all the goals placed on the table, but cannot generalize so easily to the
goals in the air. In fact, given the augmented goal state, it often reaches a suboptimal solution by
placing the end effector in between the current box position and its target position. While our method
takes more time to catch up, it eventually overtakes both baselines. In fig. 5 we show the effect of the
triangular loss for the FETCH PICK AND PLACE task. In particular, we computed the rates at which
the distances to the goal get increased (merging rate) or regularized (relaxations rate).

In the FETCH PICK AND PLACE WITH WALL task, it is even more clear that the triangular loss
consistently helps avoiding local minima. The robot arm is able to lift the box and bring it to the
other side in most cases, without the need to specify an auxiliary reward to avoid the wall. More
details in Appendix B.1.

6.2 SAMPLE EFFICIENCY

Being off-policy, our method can make better use of the transitions present in the replay buffer. In
fig. 6 we see how, even if all methods are trained with a fixed exploration noise and a max-entropy
policy, only our approach is able to consistently explore the goal distribution (top right room). In the
specific example of the POINT MAZE, Off-Policy DDL+HER fails to solve the task on its own as it
underestimates the distance to the goal. In fig. 4 we represent the Q-function learned by SAC for
DDL+HER, and for Ours+HER. The maximum value of the Q-function (its negative value, in the
plot) is not centered around the goal for DDL+HER. We presume this might be due to estimation
errors induced by the (off-policy) exploration noise.

We also achieve better sample efficiency for the FETCH PICK AND PLACE task. As shown in fig. 5
(a), we manage to get a maximum reward above the threshold after circa 11k rollouts, employing
45% less samples than DDL+HER, and achieving the same performance of Sparse+HER with less
than half of the rollouts. In the variant WITH WALL, the efficiency gain is 5x higher.

7 CONCLUSIONS
Learning distances or reward functions in a self-supervised fashion is a generally difficult problem,
as it relies on bootstrapped estimates, which can produce strongly biased and high-variance solutions.
Solving it, leads to increased sample efficiency during learning which is highly relevant for reinforce-
ment learning applied to real robotic tasks. In addition, learning the distance function does not require
any domain knowledge nor expert demonstrations and is thus of general interest for goal-conditioned
tasks. The proposed neural APSP algorithm shows promising empirical results which indicate that
learning these distances, and the corresponding goal-conditioned policies, is not only possible, but
also robust to local optima and sample efficient.

8

Published at the Deep RL Workshop, NeurIPS 2022

8 ACKNOWLEDGEMENTS

The authors thank Marco Bagatella, Cansu Sancaktar and Anselm Paulus for their useful feedback.
This work is funded by the Max Planck ETH Center for Learning Systems and by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy
- EXC number 2064/1 - Project number 390727645.

REFERENCES

Michael Ahn, Henry Zhu, Kristian Hartikainen, Hugo Ponte, Abhishek Gupta, Sergey Levine, and
Vikash Kumar. Robel: Robotics benchmarks for learning with low-cost robots. In Conference on
robot learning, pp. 1300–1313. PMLR, 2020.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder,
Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience
replay. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran As-
sociates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/

453fadbd8a1a3af50a9df4df899537b5-Paper.pdf.

Jose A Arjona-Medina, Michael Gillhofer, Michael Widrich, Thomas Unterthiner, Johannes Brand-
stetter, and Sepp Hochreiter. Rudder: Return decomposition for delayed rewards. Advances in
Neural Information Processing Systems, 32, 2019.

Richard Bellman. On a routing problem. Quarterly of applied mathematics, 16(1):87–90, 1958.

Richard Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.

Moses Charikar. Similarity estimation techniques from rounding algorithms. In STOC ’02, 2002.

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. Locality-sensitive hashing
scheme based on p-stable distributions. In SCG ’04, 2004.

Vikas Dhiman, Shurjo Banerjee, Jeffrey Mark Siskind, and Jason J. Corso. Floyd-warshall rein-
forcement learning learning from past experiences to reach new goals. ArXiv, abs/1809.09318,
2018.

Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1:
269–271, 1959.

Benjamin Eysenbach, Ruslan Salakhutdinov, and Sergey Levine. Search on the replay buffer:
Bridging planning and reinforcement learning. arXiv preprint arXiv:1906.05253, 2019.

Carlos Florensa, Jonas Degrave, Nicolas Heess, Jost Tobias Springenberg, and Martin Riedmiller. Self-
supervised learning of image embedding for continuous control. arXiv preprint arXiv:1901.00943,
2019.

Robert W. Floyd. Algorithm 97: Shortest path. Communications of the ACM, 5:345, 1962a.

Robert W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5(6):345, jun 1962b. ISSN 0001-0782.
doi: 10.1145/367766.368168. URL https://doi.org/10.1145/367766.368168.

Dibya Ghosh, Abhishek Gupta, and Sergey Levine. Learning actionable representations with goal
conditioned policies. In 7th International Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.

net/forum?id=Hye9lnCct7.

Marek Grzes and Daniel Kudenko. Plan-based reward shaping for reinforcement learning. In 2008
4th International IEEE Conference Intelligent Systems, volume 2, pp. 10–22. IEEE, 2008.

Tuomas Haarnoja, Aurick Zhou, P. Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In ICML, 2018.

9

https://proceedings.neurips.cc/paper/2017/file/453fadbd8a1a3af50a9df4df899537b5-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/453fadbd8a1a3af50a9df4df899537b5-Paper.pdf
https://doi.org/10.1145/367766.368168
https://openreview.net/forum?id=Hye9lnCct7
https://openreview.net/forum?id=Hye9lnCct7

Published at the Deep RL Workshop, NeurIPS 2022

Kristian Hartikainen, Xinyang Geng, Tuomas Haarnoja, and Sergey Levine. Dynamical distance
learning for semi-supervised and unsupervised skill discovery. arXiv preprint arXiv:1907.08225,
2019.

Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. Vime:
Variational information maximizing exploration. Advances in neural information processing
systems, 29, 2016.

Tom Jurgenson, Or Avner, Edward Groshev, and Aviv Tamar. Sub-goal trees a framework for
goal-based reinforcement learning. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the
37th International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 5020–5030. PMLR, 13–18 Jul 2020. URL https://proceedings.

mlr.press/v119/jurgenson20a.html.

Leslie Pack Kaelbling. Learning to achieve goals. In IJCAI, 1993.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In ICLR,
2016. URL http://arxiv.org/abs/1509.02971.

Ashique Rupam Mahmood, Dmytro Korenkevych, Brent Komer, and James Bergstra. Setting up a
reinforcement learning task with a real-world robot. 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 4635–4640, 2018.

A. Ng, Daishi Harada, and Stuart J. Russell. Policy invariance under reward transformations: Theory
and application to reward shaping. In ICML, 1999a.

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In Icml, volume 99, pp. 278–287, 1999b.

Alexander Pan, Kush Bhatia, and Jacob Steinhardt. The effects of reward misspecification: Mapping
and mitigating misaligned models. In International Conference on Learning Representations, 2022.
URL https://openreview.net/forum?id=JYtwGwIL7ye.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pp. 2778–2787.
PMLR, 2017.

Jette Randløv and Preben Alstrøm. Learning to drive a bicycle using reinforcement learning and
shaping. In ICML, volume 98, pp. 463–471. Citeseer, 1998.

Tabish Rashid, Bei Peng, Wendelin Boehmer, and Shimon Whiteson. Optimistic exploration even
with a pessimistic initialisation. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=r1xGP6VYwH.

Nikolay Savinov, Alexey Dosovitskiy, and Vladlen Koltun. Semi-parametric topological memory
for navigation. In International Conference on Learning Representations, 2018. URL https:

//openreview.net/forum?id=SygwwGbRW.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approximators.
In Francis Bach and David Blei (eds.), Proceedings of the 32nd International Conference on
Machine Learning, volume 37 of Proceedings of Machine Learning Research, pp. 1312–1320,
Lille, France, 07–09 Jul 2015. PMLR. URL https://proceedings.mlr.press/v37/

schaul15.html.

Jürgen Schmidhuber. A possibility for implementing curiosity and boredom in model-building neural
controllers. In Proc. of the international conference on simulation of adaptive behavior: From
animals to animats, pp. 222–227, 1991.

Moshe Sniedovich. Dijkstra’s algorithm revisited: the dynamic programming connexion. Control
and Cybernetics, 35:599–620, 2006.

10

https://proceedings.mlr.press/v119/jurgenson20a.html
https://proceedings.mlr.press/v119/jurgenson20a.html
http://arxiv.org/abs/1509.02971
https://openreview.net/forum?id=JYtwGwIL7ye
https://openreview.net/forum?id=r1xGP6VYwH
https://openreview.net/forum?id=SygwwGbRW
https://openreview.net/forum?id=SygwwGbRW
https://proceedings.mlr.press/v37/schaul15.html
https://proceedings.mlr.press/v37/schaul15.html

Published at the Deep RL Workshop, NeurIPS 2022

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen, Yan Duan, John Schul-
man, Filip De Turck, and Pieter Abbeel. #exploration: A study of count-based explo-
ration for deep reinforcement learning. In Isabelle Guyon, Ulrike von Luxburg, Samy Ben-
gio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (eds.),
Advances in Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
2753–2762, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/

3a20f62a0af1aa152670bab3c602feed-Abstract.html.

Stephen Tian, Suraj Nair, Frederik Ebert, Sudeep Dasari, Benjamin Eysenbach, Chelsea Finn, and
Sergey Levine. Model-based visual planning with self-supervised functional distances. arXiv
preprint arXiv:2012.15373, 2020.

11

https://proceedings.neurips.cc/paper/2017/hash/3a20f62a0af1aa152670bab3c602feed-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3a20f62a0af1aa152670bab3c602feed-Abstract.html

	Introduction
	Shortest Paths and RL

	Related Work
	Background
	Hindsight Experience Replay
	Dynamical Distances

	Method
	Off-policy Temporal Regression
	Uncertainty with Counts
	Local Connectivity and Triangular Loss

	Algorithm Summary
	Experiments
	Local Optima
	Sample Efficiency

	Conclusions
	Acknowledgements
	Count Models
	Granularity
	Sensitivity analysis

	Fetch Pick and Place
	Additional Local Minimum: Fetch Pick and Place With Wall

	Implementation Details
	Hyperparameters
	Distance Learning

