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ABSTRACT

This paper studies the theoretical framework of the alignment process of gener-
ative models with Reinforcement Learning from Human Feedback (RLHF). We
consider a standard mathematical formulation, the reverse-KL regularized con-
textual bandit for RLHF. Despite its widespread practical application, a rigorous
theoretical analysis of this formulation remains open. We investigate its behav-
ior in three distinct settings—offline, online, and hybrid—and propose efficient
algorithms with finite-sample theoretical guarantees.
Moving towards practical applications, our framework, with a robust approxima-
tion of the information-theoretical policy improvement oracle, naturally gives rise
to several novel RLHF algorithms. This includes an iterative version of the Di-
rect Preference Optimization (DPO) algorithm for online settings, and a multi-
step rejection sampling strategy for offline scenarios. Our empirical evaluations
on real-world alignment experiment of large language model demonstrate that
these proposed methods significantly surpass existing strong baselines, such as
DPO and Rejection Sampling Optimization (RSO), showcasing the connections
between solid theoretical foundations and their potent practical implementations.

1 INTRODUCTION

Following Ouyang et al. (2022); Zhu et al. (2023a); Rafailov et al. (2023); Liu et al. (2023a), we
assume that there exists a ground-truth reward function r∗(x, a) : X ×A → [0, 1] and the preference
satisfies the Bradley-Terry model (Bradley & Terry, 1952):

P(a1 ≻ a2|x, a1, a2) =
exp(r∗(x, a1))

exp(r∗(x, a1)) + exp(r∗(x, a2))
= σ

(
r∗(x, a1)− r∗(x, a2)

)
, (1)

where a1 ≻ a2 means that a1 is preferred to a2, and σ(·) is the sigmoid function. Following
Pacchiano et al. (2021); Kong & Yang (2022); Zhu et al. (2023a), for a clear presentation, we pro-
ceed by assuming that the reward function is parameterized by rθ(x, a) = ⟨θ, ϕ(x, a)⟩ for feature
extractor ϕ : X × A → Rd and r∗(x, a) = ⟨θ∗, ϕ(x, a)⟩ for some θ∗ ∈ Rd. For regulariza-
tion, we assume that ∥ϕ(x, a)∥ ≤ 1 for all possible (x, a) ∈ X × A, ∥θ∥ ≤ B, and denote
γ = 1/(2 + exp(−B) + exp(B)). We remark that the presented algorithmic design also applies
to the general class and analysis in this paper readily generalizes to general function using standard
complexity measures in RL theory literature (Russo & Van Roy, 2013; Gentile et al., 2022), which
essentially state that there are some low-rank structures in reward model. For preference learning,
the way to gather information from the environment is to compare two different actions under the
same state. Considering this, we assume that the agent can perform a pair of actions, aligning with
precedents in existing literature (Novoseller et al., 2020; Pacchiano et al., 2021).

In current RLHF theory, the agent’s objective is to maximize an observed reward function, with the
optimal policy typically being deterministic and reward-greedy (Agarwal et al., 2019), which largely
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(a) Pretrained π0 (b) Preferred πr (η−1 = 0.5) (c) Preferred πr (η−1 = 1.0) (d) Preferred πr (η−1 = 10)

Figure 1: The pretrained distribution π0, is represented by a multi-modal Gaussian mixture. The
“human preference” is expressed as a bias towards the right, as we set r = [1, 0]⊤a. The KL penalty
is critical in maintaining the desired behavior of πr. As η approaches zero in (b)-(d), πr increasingly
focuses on maximizing rewards, at the expense of the pretrained data’s structure.

contradicts the principle of generative models. For example, the maximizer of the “safety reward”
tends to avoid providing answers all the time. The situation worsens due to bias and approximation
errors in reward modeling, leading to the critical problem of reward hacking, where the model
often repeats pleasing yet irrelevant words to appease the reward model (Michaud et al., 2020; Tien
et al., 2022). Thus, it is important to model diversity and high fidelity in the theoretical framework
beyond the reward. Notably, the most widely used mathematical objective function for this goal can
be regarded as a reverse-KL regularized contextual bandit (Ziegler et al., 2019; Wu et al., 2021a;
Ouyang et al., 2022; Rafailov et al., 2023; Liu et al., 2023a). The KL regularized contextual bandit
additionally imposes a constraint that the optimal policy cannot move too far away from the original
policy π0, and the goal is to find a policy π from some policy class Π to maximize

J(π) = Ex∼d0,a∼π(·|x)

[
r∗(x, a) + η log

π0(a|x)
π(a|x)

]
= Ex∼d0

[
Ea∼π(·|x)[r

∗(x, a)]− ηDKL(π(·|x)∥π0(·|x))
]
,

(2)
A major difference between this objective function from traditional contextual bandit (Langford
& Zhang, 2007) is that the optimal policy is stochastic, which is closer to the practical generative
models. See an intuitive illustration why such a target is appealing in Figure 1. Despite numerous
proposed procedures for this formulation, a rigorous theoretical analysis remains open. This paper
provides a theoretical analysis of the regularized contextual bandit, aiming to inform and motivate
practical algorithmic designs. Our contributions are summarized as follows:

• We formally formulate the RLHF process as a reverse-KL regularized contextual bandit
problem in RLHF theory, which more accurately reflects real-world alignment practices
(Ouyang et al., 2022; Bai et al., 2022a; Rafailov et al., 2023) compared to existing theo-
retical frameworks. Meanwhile, we deliver a comprehensive theoretical analysis in offline,
online, and hybrid settings for the formulated framework, where the three settings are com-
plementary to each other and hold their own values in practical applications;

• We design algorithms to address the formulated problems, which incorporate new uncer-
tainty estimation or version space construction, and different non-symmetric exploration
structures to handle the KL penalty, as well as the challenges of preference learning;

• Moving towards practical applications, we demonstrate that the proposed algorithms can
be practically implemented and empirically outperform existing strong baselines like DPO
(Rafailov et al., 2023) and RSO (Liu et al., 2023a) in real-world LLM experiments.

2 MAIN RESULTS

Notation. We use ∥z∥Σ to denote the induced norm
√
z⊤Σz for some positive-definite matrix. We

also define ϕ(x, π) := Ea∼π(·|x)ϕ(x, a) to simplify the presentation. We use Õ when we omit the
logarithmic factors. A notation table is provided in Table 2 to improve the readability of this paper.

We first define the following information-theoretical policy improvement oracle, and defer a discus-
sion on its practical approximations in Section F.
Definition 1 (Policy Improvement Oracle). For reward function r : X × A → R and a reference
policy π0, for all x ∈ X , we can compute the Gibbs policy (Lemma 11):

πr(·|x) := argmax
π∈Π

Ea∼π(·|x)

[
r(x, a) + η log

π0(a|x)
π(a|x)

]
∝ π0(·|x) · exp

(1
η
r(x, ·)

)
.

Value decomposition lemma. We have the following lemma to decompose the value difference.
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Lemma 1. Given a comparator policy π and a r̂ : X×A → R, we can decompose the suboptimality
of π̂ as follows:

J(π)− J(π̂) = Ex∼d0

[
Eπ[r

∗(x, a)− r̂(x, a)] + Eπ̂[r̂(x, a)− r∗(x, a)] + Eπ[r̂(x, a)]− Eπ̂[r̂(x, a)]

+ ηDKL(π̂(·|x)∥π0(·|x))− ηDKL(π(·|x)∥π0(·|x))
]
.

Proof. The equality can be verified by the definition of J(·) in Equation (2) and basic algebra.

Policy improvement error. When π̂ is greedy in r̂, we have Eπ[r̂(x, a)] − Eπ̂[r̂(x, a)] ≤ 0. In the
KL-constrained case, since the policy cannot be greedy or deterministic, we need to additionally
handle the policy improvement error.

Lemma 2 (Policy optimization error). [Proof] Suppose that π, π̂ ∈ Π so that π0, π, π̂ have the same
support. If π̂ is induced by calling Oracle 1 with r̂, it holds that

Ex∼d0

[
Eπ[r̂(x, a)]− Eπ̂[r̂(x, a)] + ηDKL(π̂∥π0)− ηDKL(π∥π0)

]
= −ηEx∼d0DKL(π∥π̂).

Here DKL(π∥π0) is short for DKL(π(·|x)∥π0(·|x)).

Covariance matrix. Given a preference dataset D = {(x, a1, a2, y)}, where y is the preference
signal so that y = 1 means a1 ≻ a2, and y = 0 indicates a1 ≺ a2, we denote ΣD as the covariance
matrix estimation: λI +

∑
(x,a1,a2)∈D

(
ϕ(x, a1)− ϕ(x, a2)

)(
ϕ(x, a1)− ϕ(x, a2)

)⊤
.

2.1 OFFLINE LEARNING

In the offline setting, we learn from a pre-collected Doff = {(xi, a1i , a2i , yi)}
noff
i=1 . without further

interactions with the human. We present two different pessimism-based algorithms in Algorithm 1
that are complementary to each other, and defer the detailed development to Appendix D. We have
the following guarantee.

Algorithm 1 Offline GSHF
1: Input: Doff , λ > 0, β > 0, reference vector ν, and prompt distribution d0.
2: Compute MLE estimation r̄ based on Doff by maximizing Equation (3);
3: Option I: Output π̂ by constructing expected uncertainty estimator Γe(π, ν,Doff) and solving

argmax
π∈Π

[
Ex∼d0,a∼π(·|x)[r̄(x, a)]−

√
d log(1/δ)

γ2
∥Ex∼d0 [ϕ(x, π)]− ν∥

Σ−1
off

− ηEx∼d0 [DKL(π(·|x)∥π0(·|x))]
]
.

4: Option II: Output π̂ by constructing uncertainty estimator Γ(x, a, ν,Doff) and calling Ora-

cle 1 with r̂(x, a) = r̄(x, a)−
√

d log(1/δ)
γ2 ∥ϕ(x, a)− ν∥Σ−1

off
.

Theorem 1 (Informal). [Proof] For any comparator policy π ∈ Π, with suitable hyper-parameters,
with high probability, the output policy of Algorithm 1 with Option I satisfies

J(π)− J(π̂) ≤
√

d log(1/δ)/γ2 · ∥Ex∼d0 [ϕ(x, π)]− ν∥
Σ−1

off
,

and Algorithm 1 with Option II satisfies

J(π)− J(π̂) ≤
√

d log(1/δ)/γ2 · Ex∼d0,a∼π(·|x)∥ϕ(x, a)− ν∥
Σ−1

off
− η · Ex∼d0

[
DKL(π(·|x)∥π̂(·|x))

]
.

The reference vector ν in Algorithm 1 is typically set as Ex∼d0
[ϕ(x, πref)] for some available πref .

As showcased by Zhu et al. (2023a), the subtracted ν can serve as a pre-conditioner for a better sub-
optimality bound. A typical choice is πref = π0 so that π0 achieves a reward of zero (Ouyang et al.,
2022; Gao et al., 2023). In comparison, the Option I achieves a sharper bound in the uncertainty
bonus since by Jensen’s inequality (Lemma 6) we know that

∥Ex∼d0 [ϕ(x, π)]− ν∥Σ−1
off

≤ Ex∼d0,a∼π(·|x)∥ϕ(x, a)− ν∥Σ−1
off
.
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Moreover, Option I has a desirable robust improvement property. If we take ν = Ex∼d0
[ϕ(x, πref)],

the resulting policy will be better than πref , regardless of the coverage of the Doff , which is similar
to the original offline RL literature for a robust policy improvement (Bhardwaj et al., 2023). We will
also see that the use of a reference policy πref can also simplify the algorithmic design in subsequent
Section 2.2. However, the main advantage of Option II is that the Oracle 1 can be well approximated
by some empirical counterpart. We defer a detailed discussion to Appendix F.

2.2 (BATCH) HYBRID LEARNING

Beyond the offline learning, it is also common to query human feedback during the training process.
For instance, Bai et al. (2022a); Touvron et al. (2023) typically iterate the RLHF process on a
weekly cadence, where the fresh RLHF models are deployed to interact with crowdworkers and to
collect new human preference data. While it is possible to learn from scratch (the online setting), in
many cases, we tend to start with the offline open-source datasets (Touvron et al., 2023; Bai et al.,
2023). For instance, in LLaMA2 (Touvron et al., 2023), the authors start with 1500K open-source
comparison pairs Doff and keep Doff in the data mixture for the entire RLHF process. Motivated by
the practical applications, we formulate the process as a batch hybrid framework in this section. For
completeness, we also develop the pure online setting in Appendix C.

We present the Algorithm 2 for the hybrid setting, where a notable feature is that the choices of
(π1

t , π
2
t ) are non-symmetric. We defer a detailed development of the algorithm in Appendix E.

Algorithm 2 Hybrid GSHF
1: Input: Batch size m, Π,Doff ,D0 = ∅, and πref .
2: for t = 1, 2, · · · , T do
3: Compute the MLE rt based on Doff and D1:t−1 with Equation (3).
4: Compute the policy πt by calling the oracle in Assumption 1 with rt;
5: Observe xt,i ∼ d0, sample a1t,i ∼ πt and a2t,i ∼ πref , receive human feedback for all i ∈ [m],

and collect them as Dt.
6: end for
7: Output: the best model in π1:T by a validation set.

Theorem 2 (Informal). [Proof] If T = Θ̃(d), then with high probability, ∃t0 ∈ [T ], so that Algo-
rithm 2 satisfies

J(π∗)− J(πt0) ≲

√
d

γ2m
+

√
d

γ2
∥Ex∼d0 [ϕ(x, π

∗)− ϕ(x, πref)]∥Σ−1
off+t0

− ηExt0
∼d0

[
DKL(π

1
t0(·|xt0)∥π

∗(·|xt0))
]
,

where Σ−1
off+t0

is the covariance matrix estimation on Doff and Dt0 .

The advantage of reward modeling. Theorem 2 and Theorem 3 (for the online setting) reveal a
key characteristic of reward modeling: the sample complexity depends on the complexity of the
reward model rather than the generative models. For simple tasks, such as sentiment or politeness
evaluation, the required class is substantially smaller compared to the generative model. This is
corroborated by evidence showing that even compact models like BERT (Devlin et al., 2018) can
yield accurate reward assessments. This may illustrate the advantage of the most popular RLHF
framework used by Ouyang et al. (2022); Bai et al. (2022a); Touvron et al. (2023), in contrast to the
idea of bypassing reward modeling (Rafailov et al., 2023; Zhao et al., 2023; Azar et al., 2023) and
training based only on the offline dataset.

The advantage of online exploration. One difference between the Theorem 2 and Theorem 1 is
that we now have the coverage condition related to both the offline dataset and the online exploration
data. We expect that for many instances we encounter in practice, the online exploration will lead
to a better coverage condition. This is because, under suitable assumption on the offline dataset,
we know that πt → π∗ gradually. Then, the shift from data distribution (πt, πref) and the target
(π∗, πref) also gradually becomes smaller.
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MODELS SETTINGS GOLD REWARD GOLD REWARD WIN RATE GPT4 EVAL OOD GOLD REWARD DIFFERENCE ∆ ↓

SFT OFFLINE 0.27 - - -0.21 0.48

DPO OFFLINE 2.15 0.5 0.5 1.71 0.44

RSO OFFLINE 2.25 0.54 0.53 1.89 0.36

OFFLINE GSHF OFFLINE 2.59 0.63 0.57 2.41 0.18

HYBRID GSHF HYBRID 2.67 0.67 0.65 2.46 0.21

Table 1: The evaluation results of the models from different RLHF algorithms. The gold rewards
and win rate are computed on a hand-out test set, with the DPO as baseline. The ∆ is the difference
between the in-domain test reward and the OOD one. We count evaluation score as win×1+tie×0.5.
See the detailed setup in Appendix J.

3 PRACTICAL IMPLEMENTATIONS OF THE THEORETICAL ALGORITHMS

The main challenge here lies in the Oracle 1, which is computationally intractable due to the expo-
nentially large action space. To design an implementable algorithm, it is critical to approximate πr
effectively. Here we adopt the DPO algorithm (Rafailov et al., 2023) to showcase the effectiveness
of the proposed framework and defer a more detailed discussion to Appendix F. Specifically, we can
obtain Algorithm 3 by plugging the DPO into Algorithm 2.

Algorithm 3 Hybrid GSHF (Practical Implementation)
1: Input: Offline dataset Doff , KL regularization η > 0, Online iterations T , batch size m, πref ,

D0 = ∅.
2: for t = 1, 2, · · · , T do
3: Let rt denote the MLE estimator of the likelihood in Equation (3) based on Doff and D1:t−1.
4: Use DPO to train πt on Doff and D1:t−1 so that πt ≈ πrt(·|x) ∝ π0(·|x) · exp

(
1
η r

t(x, ·)
)

;

5: Observe xt,i ∼ d0, sample a1t,i ∼ πt and a2t,i ∼ πref , receive human feedback for all i ∈ [m],
and collect them as Dt.

6: end for
7: Output: the best model in π1:T by a validation set.

The Power of Exploration. We present the main empirical evaluation results in Table 1 and focus
on comparing different iterations of Hybrid GSHF in Figure 2. For each iteration, we evaluate
the models every 400 steps and plot the representative models. Clearly, the previous iteration is
strictly dominated by the subsequent one in terms of the frontier. This demonstrates the significant
improvements achieved by iterating DPO with online data. Notably, compared to offline DPO which
uses more offline data than the iteration 1, leveraging online data proves to be far more efficient, as
evidenced by the enhanced frontier of the reward-KL trade-off.
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Figure 2: The Reward-KL trade-off curves of different iterations of Hybrid GSHF. The rightest point
is the highest gold reward that can be achieved in that round.

Due to space constraint, we defer more practical implementation details to Section F and additional
experimental details to Section J. We mention in passing that the concurrent work Hoang Tran
(2024) empirically studies a similar approach and the resulting model ranks 2nd in the AlpacaEval
2.0 leaderboard (Li et al., 2023a) (the best model is GPT4-Turbo).
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A ORGANIZATION OF THE APPENDIX

We organize the appendix as follows.

• In Appendix B, we review related works and introduce the basic notations of maximal
likelihood estimation for reward modeling, covariance matrix, and rejection sampling that
will be used in later algorithmic designs;

• In Appendix C, we develop the framework of the pure online learning, by formulating the
setting and proposing statistically efficient algorithms;

• In Appendix D, we state the formal theorem of the offline learning and also provide the
proof;

• In Appendix E, we develop the sequential hybrid setting, and provide the examples and
proof for both of the sequential and hybrid cases;

• In Appendix F, we discuss how to practically implement the theoretical algorithms;
• In Appendix G, we discuss the connections between our theoretical findings and existing

practical algorithms;
• In Appendix H and Appendix I, we present the useful technical lemmas and the proofs;
• In Appendix J, we present the experimental results and details.

B NOTATION TABLE AND BACKGROUNDS

To improve the readability of this paper, we provide a Table 2 for the notations used in this pa-
per. We also provide an introduction to the eluder-type techniques and the rejection sampling for
completeness.

Notation Description
⟨z1, z2⟩ The inner product of two vectors z⊤1 z2.
∥z∥Σ The induced norm

√
z⊤Σz.

X ,A The state (prompt) space and the action (response) space.
ϕ(x, a), θ The feature map and parameter of the linear parameterization.

d The dimension of the feature vector.
π,Π Policy and policy class.
ℓD The log-likelihood of the BT model on D defined in Equation (3).

y ∈ {0, 1} Preference signal.
J(π) The KL-regularized target defined in Equation (2).
η The coefficient of KL penalty, defined in Equation (2).
d0 Distribution of state (prompt).
B, γ Regularization constant: ∥θ∥ ≤ B, γ = 1/(2 + exp(−B) + exp(B)).
Θ(B) {θ ∈ Rd : ∥θ∥ ≤ B}.
Doff ,Dt The offline dataset and the dataset collected in online iteration t.
Σoff ,Σt The covariance matrix with Doff and Dt.
σ(·) σ(z) = 1/(1 + exp(−z)) is the sigmoid function.

Ccov(Doff , πref , α) The coverage of the offline dataset defined in Definition 1.
Rejection Sampling See Appendix B.4 for an introduction.

Best-of-n Policy See Appendix B.4 for an introduction.

Table 2: The table of notations used in this paper.

B.1 RELATED WORK

RLHF has attracted considerable attention in the past few years, especially after its tremendous
success in ChatGPT (OpenAI, 2023). We refer interested readers to Wirth et al. (2017); Casper et al.
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(2023) for a detailed survey but focus on the most related works here. The standard RLHF was
popularized by Christiano et al. (2017), which served to direct the attention of the RL community
to the preference-based feedback. The most popular and standard RLHF framework is outlined in
the InstructGPT paper (Ouyang et al., 2022), Claude (Bai et al., 2022a) and the LLaMA2 report
(Touvron et al., 2023) in detail, which typically consists of three steps starting from the pretrained
model: supervised finetuning, reward modeling, and reward optimization. The effectiveness of this
framework has been showcased by many recent generative models, like ChatGPT (OpenAI, 2023),
Bard (Google, 2023), Claude (Anthropic, 2023), and LLaMA2 (Touvron et al., 2023). However, it is
also noteworthy to indicate that the RLHF process often leads to degeneration in the performance of
generation, commonly referred to as the “alignment tax” in the literature (Askell et al., 2021). This
is usually because of the imperfection of the reward model and the model can make use of these
imperfections to chase for a high reward. This phenomenon is referred to as the reward hacking
(Michaud et al., 2020; Tien et al., 2022). It is also possible to apply RLHF to general generative
models, like the diffusion model (Hao et al., 2022; Wu et al., 2023; Lee et al., 2023; Dong et al.,
2023). In this work, we use the terminology and analysis of LLMs for better illustration, and defer
the study of general generative models to future work.

RLHF algorithms. Proximal Policy Optimization (PPO) (Schulman et al., 2017) is the most well-
known algorithm in LLM alignment literature. However, its instability, inefficiency, and sensitiv-
ity to hyperparameters (Choshen et al., 2019) and code-level optimizations (Engstrom et al., 2020)
present significant challenges in tuning for optimal performance and its tremendous success in Chat-
GPT4 (OpenAI, 2023) has not been widely reproduced so far. Additionally, it often necessitates
incorporating an extra reward model, a value network (known as a critic), and a reference model,
potentially as large as the aligned LLM (Ouyang et al., 2022; Touvron et al., 2023). This imposes
a significant demand on GPU memory resources. Thus, researchers have attempted to design al-
ternative approaches for LLM alignment to resolve the aforementioned issues. Dong et al. (2023);
Yuan et al. (2023); Touvron et al. (2023); Gulcehre et al. (2023) propose reward ranked finetun-
ing (RAFT) (also known as the iterative finetuning, rejection sampling finetuning) by iteratively
learning from the best-of-n policy (Nakano et al., 2021) to maximize the reward, which is a stable
baseline with minimal hyper-parameter configuration and was applied to the alignment of LLaMA2
project. There is also a line of work focusing on deriving an algorithm from the KL-regularized
formulation (Rafailov et al., 2023; Zhu et al., 2023b; Wang et al., 2023a; Liu et al., 2023a; Li et al.,
2023c). Among them, Direct Preference Optimization (DPO) (Rafailov et al., 2023) has emerged as
an attractive alternative approach to PPO with notable stability and competitive performance. The
innovative idea of DPO is to train the LLMs directly as a reward model based on the offline prefer-
ence dataset and bypassing the reward modeling. Similar to DPO, there are also other works aiming
to optimize the LLMs directly from the preference data, including (Zhao et al., 2023; Azar et al.,
2023), and has sparked considerable debate on whether reward modeling, as well as RL, is necessary
for alignment. However, while these algorithms are partly inspired by mathematical principles and
intuitions, a comprehensive theoretical analysis remains open.

Theoretical study of RLHF. The theoretical understanding of RLHF can be traced back to research
on dueling bandits (e.g., Yue et al., 2012; Saha, 2021; Bengs et al., 2021), a simplified setting within
the RLHF framework. Recently, many works have focused on the more challenging RLHF prob-
lem (also known as the preference-based RL). Xu et al. (2020); Novoseller et al. (2020); Pacchiano
et al. (2021) delve into the study of tabular online RLHF, where the state space is finite and small.
Moving beyond the tabular setting, Chen et al. (2022) provides the first results for online RLHF
with general function approximation, capturing real-world problems with large state spaces. Wang
et al. (2023b) presents a reduction-based framework, which can transform some sample-efficient
algorithms for standard reward-based RL to efficient algorithms for online RLHF. Further advance-
ments in algorithm designs are introduced by Zhan et al. (2023b); Wu & Sun (2023), encompassing
the development of reward-free learning type algorithms and posterior sampling-based algorithms
tailored for online RLHF. Initiating exploration into offline RLHF, Zhu et al. (2023a) presents a
pessimistic algorithm that is provably efficient for offline RLHF. Additionally, Zhan et al. (2023a)
and Li et al. (2023b) extend these investigations into the broader scope of general function approx-
imation settings within offline RLHF. In comparison to these existing studies, our work introduces
a new theoretical formulation and goal for RLHF, as well as novel problem settings, such as hy-
brid RLHF. The new mathematical formulation allows our framework to align more closely with
recent advancements in LLMs, and we discuss the connections between our theoretical findings and
practical algorithmic designs in Section F.
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B.2 MAXIMUM LIKELIHOOD ESTIMATION AND POLICY IMPROVEMENT ORACLE

The most common way of reward modeling is Maximum Likelihood Estimation (MLE) (e.g.,
Ouyang et al., 2022; Bai et al., 2022a; Touvron et al., 2023).

Maximum Likelihood Estimation. A preference dataset D consists of numerous tuples, such as
(x, a1, a2, y), where y is the preference signal. Specifically, y = 1 means a preference for a1 ≻ a2,
while y = 0 indicates a1 ≺ a2. Given a dataset D = {(x, a1, a2, y)}, we can write the log-likelihood
function of the BT models as follows:

ℓD(θ) =
∑

(x,a1,a2,y)∈D

[
y log

(
σ
(
rθ(x, a

1)− rθ(x, a
2)
))

+ (1− y) log
(
σ
(
rθ(x, a

2)− rθ(x, a
1)
))]

.

(3)
The MLE is θMLE = argmax∥θ∥≤B ℓD(θ) with Θ(B) = {θ ∈ Rd : ∥θ∥ ≤ B}. In practice, the
MLE is also conducted with the LLMs (Touvron et al., 2023) on the preference dataset.

B.3 COVARIANCE MATRIX AND GENERALIZATION

Before we continue to prove the main results of this paper, we would like to briefly illustrate the
high-level intuitions why the algorithmic design and analysis are centered on the covariance matrix.
Given a preference dataset D, and a fixed λ > 0, we denote ΣD as

ΣD := λI +
∑

(x,a1,a2)∈D

(
ϕ(x, a1)− ϕ(x, a2)

)(
ϕ(x, a1)− ϕ(x, a2)

)⊤
.

Then, the in-sample error on the observed data in D is given by

∥θ1−θ2∥2ΣD
= λ∥θ1−θ2∥2+

∑
(x,a1,a2)∈D

((
rθ1(x, a

1)−rθ1(x, a2)
)
−
(
rθ2(x, a

1)−rθ2(x, a2)
))2

,

where we additionally add a regularization term λ∥θ1 − θ2∥2. Meanwhile, if we test the
hypothesis (θ1 − θ2) on a newly observed data, the out-of-sample error would be given by
|
〈
θ1 − θ2, ϕ(x, a

1)− ϕ(x, a2)
〉
|. The ideal case would be that we can infer the out-of-sample error

via the in-sample error, so we look at the ratio between them:

|
〈
θ1 − θ2, ϕ(x, a

1)− ϕ(x, a2)
〉
|

∥θ1 − θ2∥ΣD

≤
∥ϕ(x, a1)− ϕ(x, a2)∥Σ−1

D
· ∥θ1 − θ2∥ΣD

∥θ1 − θ2∥ΣD

= ∥ϕ(x, a1)−ϕ(x, a2)∥Σ−1
D
,

where we take a square root on the in-sample error to keep them being of the same order and use
Cauchy-Schwarz inequality (Lemma 7). Here, the ∥ϕ(x, a1) − ϕ(x, a2)∥Σ−1

D
is referred to as the

elliptical potential in the literature of linear function approximation (Abbasi-Yadkori et al., 2011).
The elliptical potential can be viewed as the uncertainty of ϕ(x, a1)− ϕ(x, a2), given the historical
samples in D, and can be used to guide our exploration. The complexity of the reward model space
is characterized by the following fact:

Lemma 3 (Elliptical potential is usually small (Hu et al., 2022)). For a fixed λ > 0 and {zt}Tt=1 ⊂
Rd with ∥zt∥ ≤ 1, we define Zt = λI +

∑t−1
s=1 zsz

⊤
s . Then, for any constant c > 0, ∥zt∥Z−1

t
> c

happens at most 3d
log(1+c2) log

(
1 + 1

λ log(1+c2)

)
.

The ratio between the out-of-sample error and the in-sample error in the linear case can be readily
generalized to the general function approximation using the variant of eluder dimension considered
in Gentile et al. (2022); Zhang (2023); Ye et al. (2023); Agarwal et al. (2023), which essentially states
that there is some low-rank structure in the reward model space so the generalization is limited (the
elliptical potential cannot be large for too many times). Moreover, if we can effectively estimate
the in-sample error from the preference data, by Lemma 3, we can infer the out-of-sample error
safely most of the time. Such an in-sample error estimation is provided in Lemma 8. Essentially, the
eluder-type complexity measures and techniques reduce the learning problem to an online supervised
learning (in-sample error estimation and minimization) (Zhong et al., 2022).
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B.4 REJECTION SAMPLING

We briefly introduce the rejection sampling in this subsection. We first remark that in the literature,
many papers use this terminology to refer best-of-n policy (Touvron et al., 2023), which can be
different from the notion of rejection sampling here. Specifically, the best-of-n policy takes a base
policy π and a reward function r as the input, and output a new policy π̃: for each x ∈ X , we sample
n independent policies from π and output the one with the highest reward measured by r. In what
follows, we introduce the rejection sampling.

Rejection sampling, a widely utilized method in Monte Carlo tasks, is designed to sample from a
target distribution using samples from a proposal distribution and a uniform sampler (Neumann,
1951). This technique is applicable when the density ratio between the target distribution q and
the proposal distribution p is bounded, satisfying q(x)/p(x) ≤ M for all x ∈ X . In practical
implementation, n samples are drawn from the proposal distribution p. Each sample, denoted as
x ∼ p, is accepted with a probability r = q(x)

Mp(x) . This acceptance is determined by evaluating
whether u < r, where u is a number drawn from a uniform distribution U [0, 1]. The accepted
samples x̃ are then representative of the target distribution q.

The primary challenge in rejection sampling is its low acceptance rate, particularly problematic
for high-dimensional data due to the curse of dimensionality, where the density ratio often scales
with exp(d). This issue persists even in low-dimensional scenarios, as a large density ratio M can
drastically reduce acceptance rates. The method is most efficient when p closely approximates q,
leading to M ≈ 1.

C (BATCH) ONLINE LEARNING WITH ENHANCER

In this section, we develop the online framework of the KL-constraint contextual bandit, that is
missing in the main paper.

The mathematical formulation of the online learning is almost the same as the hybrid case, except
that we now start from scratch instead of the offline dataset. Consider the batch online setting of
T batches with fixed batch size m. At the beginning of each batch t ∈ [T ], An agent updates the
policies π1

t and π2
t . Then, m prompts {xt,i}mi=1 are sampled from d0. Based on each prompt xt,i,

two responses (a1t,i, a
2
t,i) are generated from two policies (π1

t , π
2
t ), and a human preference signal

yt,i ∈ {0, 1} is yielded according to the ground-truth BT model.

C.1 BATCH ONLINE LEARNING

We first consider the case of m > 1, which leads to a more sparse update of the model. Our
goal is also to design a sample-efficient algorithm, which finds a policy π̂ so that the suboptimality
J(π∗) − J(π̂) < ϵ with the number of samples polynomial in the accuracy number 1/ϵ, feature
dimension d, and other problem-dependent parameters. In practical applications, it is observed
that the diversity of the outputs is critical, and the response pairs (a1t , a

2
t ) are recommended to be

collected by different model variants with different temperature hyper-parameter (Touvron et al.,
2023). To understand this choice, we recall the decomposition Lemma 1 and Lemma 2 to obtain for
each batch t ∈ [T ]

J(π∗)− J(π1
t )

= Ext∼d0

[
Eπ∗ [r∗(xt, a)− r̂(xt, a)] + Eπ1

t
[r̂(xt, a)− r∗(xt, a)]− η · Ext∼d0

[
DKL(π

∗(·|xt)∥π1
t (·|xt))

]
= Ext∼d0

[ 〈
θ̂ − θ∗, ϕ(xt, π

1
t )− ϕ(xt, π

∗)
〉 ]

− η · Ext∼d0

[
DKL(π

∗(·|xt)∥π1
t (·|xt))

]
. (4)

The main technical challenge is to relate the uncertainty of ϕ(xt, π1
t ) − ϕ(xt, π

∗) (analysis target)
to the uncertainty of ϕ(xt, π1

t )−ϕ(xt, π
2
t ) (the pair to collect data). Our algorithmic idea is built on

optimism and non-symmetric structures. We present the complete algorithm in Algorithm 4. The
main agent π1

t always takes the policy induced by rt from Oracle 1. On the other hand, the second
agent π2

t , referred to as the enhancer, seeks to maximize the uncertainty (similar to the practical
choice of different model variants and temperature) for the fixed π1

t , thus facilitating the learning of
the main agent (similar idea was considered in the study of two-player zero-sum Markov game (Jin

14
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Algorithm 4 Online GSHF with Enhancer
1: Input: Π,D0 = ∅,m ≥ 1.
2: for t = 1, 2, · · · , T do
3: Observe m independent prompts {xt,i}mi=1 ∼ d0;
4: Compute the MLE-based reward rt based on D1:t−1;
5: Compute the policy π1

t by calling the oracle in Assumption 1 with rt;
6: Construct the confidence set of the policy as in Lemma 4;
7: Compute the enhancer policy π2

t as in Equation (5);
8: Independently sample actions a1t,i ∼ π1

t (·|xt,i), a2t,i ∼ π2
t (·|xt,i) and receive human feedback

yt,i, and collect Dt = {(xt,i, a1t,i, a2t,i, yt,i)}mi=1
9: end for

et al., 2021a; Huang et al., 2021; Xiong et al., 2022b)). In this case, the uncertainty compared to
π∗ is upper bounded by that of π2

t , which is referred to as the principle of optimism in the literature
(Auer et al., 2002). Notably, in contrast to the case of Markov game (Jin et al., 2021a; Huang et al.,
2021; Xiong et al., 2022b), the enhancer also converges to π∗ in terms of the metric of J(π). We
borrow the terminology of the main agent and enhancer to stress the non-symmetric algorithmic
structure. Moreover, if we just regard the enhancer π2

t as an auxiliary policy and only care about
the performance of π1

t , there is no need to maintain the confidence set Πt. Due to the realizability:
π∗ ∈ Π, we can construct π2

t as the solution of the following unconstrained problem:

π2
t = argmax

π2
t∈Π

m∑
i=1

Γ(xt,i, π
1
t , π

2
t ,D1:t−1), (5)

where the uncertainty bonus will be specified later. Note that in Algorithm 4, we formulate that
the agent first observes m prompts and then establishes the enhancer. This is only for simplicity
of analysis so that we can estimate the uncertainty and obtain the enhancer by maximizing the
estimation. If we consider the standard online contextual bandit, we can first collect m contexts,
and estimate the uncertainty based on them. Then, for the next m contexts, we interact with the
environment in a strictly sequential manner using the policies determined by the first m contexts.
This will only roughly incur a constant factor 2 in the final sample complexity.

To achieve optimism, we need to maintain a confidence set, that contains the π∗ for all iterations
with high probability. The constructions of the confidence set are different compared to the dueling
RL (Faury et al., 2020; Pacchiano et al., 2021) due to the reverse-KL regularized contextual bandit
formulation, as well as the non-symmetric structure in our algorithm. We summarize the confidence
set construction for the online setting in the following lemma.
Lemma 4 (Confidence set). Given the policy of the main agent π1

t , we consider the following con-

fidence set with β = O
(√d log(T/δ)

γ2m

)
:

Πt =
{
π̃ ∈ Π : β

m∑
i=1

∥ϕ(xt,i, π̃)− ϕ(xt,i, π
1
t )∥Σ−1

t,m
− η

m∑
i=1

DKL(π̃(·|xt,i)∥π1
t (·|xt,i)) ≥ 0

}
,

where we define

Σt,m = λI +
1

m

t−1∑
i=1

m∑
j=1

(ϕ(xi,j , a
1
i,j)− ϕ(xi,j , a

2
i,j))(ϕ(xi,j , a

1
i,j)− ϕ(xi,j , a

2
i,j))

⊤.

Then, with probability at least 1− δ, we know that π∗ ∈ Πt for all t ∈ [T ].

We defer the proof to Appendix C.3. Intuitively, the enhancer aims to maximize the uncertainty of
the feature difference, thus facilitating the learning of the main agent. In particular, the largest cost
of KL divergence scales with the uncertainty of the difference, demonstrating the trade-off between
the two considerations. Since π∗ ∈ Πt, we can upper-bound the first term on the right-hand side of
Equation (4) by βExt∼d0

∥ϕ(xt, π1
t ) − ϕ(xt, π

2
t )∥Σ−1

t,m
, which can be further bounded by elliptical

potential lemma. Hence, we can obtain the probably approximately correct (PAC) learning result in
the following theorem.
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Theorem 3. For any ϵ > 0, we set the batch size m = d/(γ2ϵ2). With the uncertainty estimator
defined as

Γ(x, π1
t , π

2
t ,D1:t−1) = ∥ϕ(x, π1

t )− ϕ(x, π2
t )∥Σ−1

t,m
, (6)

with β := O
(√d log(T/δ)

γ2m

)
and λ = Θ

(
d log(T/δ)/(mγ2B2)

)
, after T = min{n ∈ N+ : n ≥

d log(n)} iterations, we have with probability at least 1− 3δ, there exists a t0 ∈ [T ],

J(π∗)− J(π1
t0) ≲ ϵ− η · Ext0∼d0

[
DKL(π

∗(·|xt0)∥π1
t0(·|xt0))

])
,

where the number of collected samples is at most mT = Õ
(

d2

γ2ϵ2

)
.

Theorem 3 reveals a key characteristic of reward modeling: the sample complexity is dependent
on the complexity of the reward model rather than the generative models. For simple reward func-
tions, such as sentiment or politeness evaluation, the required function class is substantially smaller
compared to the generative model. We now present the proof of the theorem.

Proof of Theorem 3. Recall the definition of the covariance matrix:

Σt,m = λI +
1

m

t−1∑
i=1

m∑
j=1

(ϕ(xi,j , a
1
i,j)− ϕ(xi,j , a

2
i,j))(ϕ(xi,j , a

1
i,j)− ϕ(xi,j , a

2
i,j))

⊤.

Then, by invoking Lemma 8 for θt with ΣD = mΣt,m and λ′ = mλ, we have with probability at
least 1− δ, for any t ∈ [T ],

∥θt − θ∗∥Σt,m
=

1√
m
∥θt − θ∗∥ΣD

≤ C√
m

√
d+ log(T/δ)

γ2
+mλB2

=C

√
d+ log(T/δ)

γ2m
+ λB2. (7)

Let

Σ̃t = λI +

t−1∑
i=1

Ex∼d0,a1∼π1
i ,a

2∼π2
i

[
(ϕ(xt, a

1)− ϕ(xt, a
2))(ϕ(xt, a

1)− ϕ(xt, a
2))⊤

]
.

Now, by elliptical potential lemma (Lemma 9), we have

T∑
t=1

log
(
1 + Ext∼d0∥ϕ(xt, π1

t )− ϕ(xt, π
2
t )∥2Σ̃−1

t

)
≤

T∑
t=1

log
(
1 + Ext∼d0,a1∼π1

t ,a
2∼π2

t
∥[ϕ(xt, a1)− ϕ(xt, a

2)]∥2
Σ̃−1

t

)
≤ log

det(Σ̃T )

det(λI)

≤d log(1 + TL2/λd) := γT (λ).

Since each term on the left-hand side is positive, we know that there exists at least a t0 ∈ [T ], the
value is smaller or equal than the average value:

log
(
1 + ψ2

t0

)
≤ 1

T
γT (λ),

where we use the short-hand notation ψt = Ext∼d0
∥ϕ(xt, π1

t )− ϕ(xt, π
2
t )∥Σ̃−1

t
. It is equivalent to

ψ2
t0 ≤ exp

(γT (λ)
T

)
− 1.
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We now consider the suboptimality at iteration t0:

J(π∗)− J(π1
t0) = Ext0∼d0

[ 〈
θt0 − θ∗, ϕ(xt0 , π

1
t0)− ϕ(xt0 , π

∗)
〉 ]

− ηExt0∼d0

[
DKL(π

∗(·|xt0)∥π1
t0(·|xt0))

]
≤ Ext0∼d0

[
∥ϕ(xt0 , π1

t0)− ϕ(xt0 , π
∗)∥Σ−1

t,m

]
· ∥θt0 − θ∗∥Σt,m

− ηExt0∼d0

[
DKL(π

∗(·|xt0)∥π1
t0(·|xt0))

]
,

(8)
where the inequality uses the Cauchy-Schwarz inequality (Lemma 7). Then, since the samples
{xt,i}mi=1 are i.i.d and for any x ∈ X

∥ϕ(x, π1
t0)− ϕ(xt0 , π

∗)∥Σ−1
t,m

≤ 2√
λ
,

we can use Chernoff bound (Theorem 2.16 of Zhang (2023)) to obtain that with probability at least
1− δ/2,

Ext0∼d0

[
∥ϕ(xt0 , π1

t0)−ϕ(xt0 , π
∗)∥Σ−1

t,m

]
≤ 1

m

m∑
i=1

∥ϕ(xt,i, π1
t0)−ϕ(xt,i, π

∗)∥Σ−1
t,m

+

√
log(2/δ)

2m
.

Similarly, we also get with probability at least 1− δ/2,

1

m

m∑
i=1

∥ϕ(xt,i, π1
t0)− ϕ(xt,i, π

∗)∥Σ̃−1
t0

≤ Ext0
∼d0

[
∥ϕ(xt0 , π1

t0)− ϕ(xt0 , π
∗)∥Σ̃−1

t0

]
+

√
log(2/δ)

2m

We take the two inequalities above back into Equation (8) to derive with that probability at least
1− 3δ,
J(π∗)− J(π1

t0)

≤
( 1

m

m∑
i=1

[
∥ϕ(xt0,i, π

1
t0)− ϕ(xt0,i, π

∗)∥
Σ−1

t0,m

]
+

√
log(2/δ)

2m

)
· ∥θt0 − θ∗∥Σt0,m − ηExt0

∼d0

[
DKL(π

∗(·|xt0)∥π
1
t0(·|xt0))

]
≤

( 1

m

m∑
i=1

[
∥ϕ(xt0,i, π

1
t0)− ϕ(xt0,i, π

2
t0)∥Σ−1

t0,m

]
+

√
log(2/δ)

2m

)
· ∥θt0 − θ∗∥Σt0,m − ηExt0

∼d0

[
DKL(π

∗(·|xt0)∥π
1
t0(·|xt0))

]
≤

(√3

m

m∑
i=1

[
∥ϕ(xt0,i, π

1
t0)− ϕ(xt0,i, π

2
t0)∥Σ̃−1

t0

]
+

√
log(2/δ)

2m

)
· ∥θt0 − θ∗∥Σt0,m − ηExt0

∼d0

[
DKL(π

∗(·|xt0)∥π
1
t0(·|xt0))

]
≤

(√
3Ext0

∼d0

[
∥ϕ(xt0 , π

1
t0)− ϕ(xt0 , π

∗)∥
Σ̃−1

t0

]
+ 2

√
log(2/δ)

2m

)
· ∥θt0 − θ∗∥Σt0,m − ηExt0

∼d0

[
DKL(π

∗(·|xt0)∥π
1
t0(·|xt0))

]
≤ C ·

(√
exp

(γT (λ)
T

)− 1 + 2

√
log(2/δ)

2m

)√d+ log(T/δ)

γ2m
+ λB2 − ηExt0

∼d0

[
DKL(π

∗(·|xt0)∥π
1
t0(·|xt0))

]
,

where the second inequality applies Lemma 10 with λ = Ω(d log(T/δ)/m), and the last inequality
uses Equation (7). By choosing T satisfying that T ≥ d log(T ) and λ = Θ(d log(T/δ)/mγ2), we
have

J(π∗)− J(π1
t0) = Õ

(√ d

γ2m
− ηExt0

∼d0

[
DKL(π

∗(·|xt0)∥π1
t0(·|xt0))

])
,

which concludes the proof.

C.2 SEQUENTIAL ONLINE SETTING

While we mainly care about finding a good model, with a slightly more involved analysis for the
enhancer, we can also derive an upper bound for the average regret as in Pacchiano et al. (2021);
Chen et al. (2022):

Regave(T ) :=

T∑
t=1

[2J(π∗)− J(π1
t )− J(π2

t )

2

]
,

where we now discuss in the sequential case with m = 1 in Algorithm 4. We consider two kinds of
regrets: (1) cumulative suboptimality for the main policy π1

t compared to π∗:

Reg(T ) :=

T∑
t=1

[
J(π∗)− J(π1

t )
]
,
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and (2) the average suboptimality:

Regave(T ) :=

T∑
t=1

[2J(π∗)− J(π1
t )− J(π2

t )

2

]
.

In this case, our goal is to output a sequence of policy pair {π1
t , π

2
t }Tt=1 so that the regrets Reg(T )

and Regave(T ) are sublinear. To achieve this goal, the enhancer computes its policy by maximizing
the uncertainty estimator

π2
t = argmax

π2
t∈Πt

m∑
i=1

Γ(xt,i, π
1
t , π

2
t ,D1:t−1), (9)

where D1:t−1 = ∪t−1
s=1Ds.

Theorem 4 (Sequential Online learning). With the uncertainty estimator defined in Equation (6),

with λ = Ω(d log(T/δ)/(γ2B2)) and β := O
(√d log(T/δ)

γ2

)
, with probability at least 1 − 2δ, the

regret of Algorithm 4 with m = 1 satisfies

Regave(T ) ≲
√
Tβ2d− η

T∑
t=1

Ext∼d0

[
DKL(π

∗(·|xt)∥πt
1(·|xt))

]
,

which further implies that

Reg(T ) ≲
√
Tβ2d− η

T∑
t=1

Ext∼d0

[
DKL(π

∗(·|xt)∥πt
1(·|xt))

]
.

Proof of Theorem 4. First, recalling the regret decomposition in Equation (4), we deduce that with
probability at least 1− δ,

T∑
t=1

[
J(π∗)− J(π1

t )
]

=

T∑
t=1

Ext∼d0

[ 〈
θt − θ∗, ϕ(xt, π

1
t )− ϕ(xt, π

∗)
〉 ]

− η

T∑
t=1

Ext∼d0

[
DKL(π

∗(·|xt)∥πt
1(·|xt))

]
≤ β

T∑
t=1

Ext∼d0 min
{
1, ∥ϕ(xt, π1

t )− ϕ(xt, π
∗)∥Σ−1

t

}
− η

T∑
t=1

Ext∼d0

[
DKL(π

∗(·|xt)∥πt
1(·|xt))

]
≤ β

T∑
t=1

Ext∼d0
min

{
1, ∥ϕ(xt, π1

t )− ϕ(xt, π
2
t )∥Σ−1

t

}
− η

T∑
t=1

Ext∼d0

[
DKL(π

∗(·|xt)∥πt
1(·|xt))

]

≤ β

√√√√T

T∑
t=1

Ext∼d0,(a1
t ,a

2
t )∼(π1

t ,π
2
t )
min

{
1, ∥ϕ(xt, a1t )− ϕ(xt, a2t )∥2Σ−1

t

}
− η

T∑
t=1

Ext∼d0

[
DKL(π

∗(·|xt)∥πt
1(·|xt))

]
,

(10)

where the first inequality uses the Cauchy-Schwarz inequality, Lemma 8 and reward r ≤ 1 for any
r ∈ F , the second inequality uses π∗ ∈ Πt according to Lemma 4, and the last inequality uses the
Cauchy-Schwarz inequality and Jensen’s inequality.

Then, we define

Σ̄t =

T∑
t=1

Ext∼d0,(a1
t ,a

2
t )∼(π1

t ,π
2
t )
[(ϕ(xt, a

1
t )− ϕ(xt, a

2
t ))(ϕ(xt, a

1
t )− ϕ(xt, a

2
t ))

⊤] + λI.

According to the concentration of the covariance matrix in Lemma 10, since λ = Ω(d log(T/δ)),
we have with probability at least 1− δ, for any t ∈ [T ],

Σ−1
t ⪯ 3Σ̄−1

t ,
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which implies that

T∑
t=1

Ext∼d0,(a1
t ,a

2
t )∼(π1

t ,π
2
t )
min

{
1, ∥ϕ(xt, a1t )− ϕ(xt, a

2
t )∥2Σ−1

t

}
≤ 3

T∑
t=1

Ext∼d0,(a1
t ,a

2
t )∼(π1

t ,π
2
t )
min

{
1, ∥ϕ(xt, a1t )− ϕ(xt, a

2
t )∥2Σ̄−1

t

}
≤ 6d log(1 + T/dλ).

By taking the result above back into Equation (10), we get with probability at least 1− 2δ,

T∑
t=1

[
J(π∗)− J(π1

t )
]
≤ β

√
T6d log(1 + T/dλ)− η

T∑
t=1

Ext∼d0

[
DKL(π

∗(·|xt)∥πt
1(·|xt))

]
, (11)

where the inequality uses Lemma 9.

Moreover, to analyze the average regret Regave(T ), we make the following decomposition

T∑
t=1

J(π1
t )− J(π2

t ) (12)

=

T∑
t=1

Ext∼d0

[
Eπ1

t
[r∗(xt, a)− rt(xt, a)] + Eπ2

t
[rt(xt, a)− r∗(xt, a)]

]
︸ ︷︷ ︸

(∆1
t )

+

T∑
t=1

Ext∼d0

[
Eπ1

t
[rt(xt, a)]− Eπ2

t
[rt(xt, a)] + ηDKL(π

2
t (·|xt)∥π0(·|xt))− ηDKL(π

1
t (·|xt)∥π0(·|xt))︸ ︷︷ ︸

(∆2
t )

]
.

(13)

For Term (∆1
t ), we have

(∆1
t ) = Ext∼d0 [

〈
ϕ(xt, π

1
t )− ϕ(xt, π

2
t ), θ

∗ − θt
〉
]

≤ β · Ext∼d0∥ϕ(xt, π1
t )− ϕ(xt, π

2
t )∥Σ−1

t

We can deal with the Term (∆2
t ) by invoking Lemma 4 with π = π2

t and using the definition of the
confidence set:

(∆2
t ) = ηDKL(π

2
t (·|xt)∥π1

t (·|xt)) ≤ β · ∥ϕ(xt, π1
t )− ϕ(xt, π

2
t )∥Σ−1

t
.

Combining the above two inequalities and Equation (12), we have

T∑
t=1

J(π1
t )− J(π2

t ) ≤ 2β

T∑
t=1

Ext∼d0∥ϕ(xt, π1
t )− ϕ(xt, π

2
t )∥Σ−1

t

≤ 2β

T∑
t=1

Ext∼d0,(a1
t ,a

2
t )∼(π1

t ,π
2
t )
∥ϕ(xt, a1t )− ϕ(xt, a

2
t )∥Σ−1

t

≤ 2β

√√√√3T

T∑
t=1

Ext∼d0,(a1
t ,a

2
t )∼(π1

t ,π
2
t )
∥ϕ(xt, a1t )− ϕ(xt, a2t )∥2Σ̄−1

t

≲
√
Tβ2d, (14)

where the last inequality uses Lemma 9. Combining the results of Reg(T ) and the upper bound
of

∑T
t=1 J(π

1
t ) − J(π2

t ) in Equation (14), we can obtain the bound for the average regret in the
following theorem.
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Therefore, by combining the results above and Equation (11), we have

T∑
t=1

(
2J(π∗)− J(π1

t )− J(π2
t )
)
=

T∑
t=1

2
(
J(π∗)− J(π1

t )
)
+

(
J(π1

t )− J(π2
t )
)

≲
√
Tβ2d− η

T∑
t=1

Ext∼d0

[
DKL(π

∗(·|xt)∥πt
1(·|xt))

]
,

which concludes the proof.

C.3 CONSTRUCTION OF THE CONFIDENCE SET

Proof of Lemma 4. By the definition of the π∗ that π∗ is optimal at every context, for any π1
t ∈ Π

and any xt,i ∈ X , we have

0 ≤
〈
θ∗, ϕ(xt,i, π

∗)− ϕ(xt,i, π
1
t )
〉
+ ηDKL(π

1
t (·|xt,i)∥π0(·|xt,i))− ηDKL(π

∗(·|xt,i)∥π0(·|xt,i))
=

〈
θ∗ − θt, ϕ(xt,i, π

∗)− ϕ(xt,i, π
1
t )
〉︸ ︷︷ ︸

Term(i)

+
〈
θt, ϕ(xt,i, π

∗)− ϕ(xt,i, π
1
t )
〉
+ ηDKL(π

1
t (·|xt,i)|π0(·|xt,i))− ηDKL(π

∗(·|xt,i)∥π0(·|xt,i))︸ ︷︷ ︸
Term(ii)

,

(15)

For Term (i), by Cauchy-Schwarz inequality and Lemma 8 with ΣD = mΣt,m and λ′ = mλ, we
have

Term(i) ≤ β · ∥ϕ(xt,i, π∗)− ϕ(xt,i, π
1
t )∥Σ−1

t,m
,

where β = O
(√d log(T/δ)

γ2m

)
and the additional log T factor is because of the union bound over the

T iterations. Meanwhile, by invoking Lemma 2 with π = π∗, π̂ = πt, we obtain that

Term(ii) =
〈
θt, ϕ(xt,i, π

∗)− ϕ(xt,i, π
1
t )
〉
+ ηDKL(π

1
t (·|xt,i)∥π0(·|xt,i))− ηDKL(π

∗(·|xt,i)∥π0(·|xt,i))
= Eπ∗ [rt(xt,i, a)]− Eπ1

t
[rt(xt,i, a)] + ηDKL(π

1
t (·|xt,i)∥π0(·|xt,i))− ηDKL(π

∗(·|xt,i)∥π0(·|xt,i))
= −ηDKL(π

∗(·|xt,i)|π1
t (·|xt,i)).

Taking respective upper bounds for Terms (i) and (ii) back into Equation (15) and summing over
i ∈ [m], we have

β ·
m∑
i=1

∥ϕ(xt,i, π∗)− ϕ(xt,i, π
1
t )∥Σ−1

t,m
− η

m∑
i=1

DKL(π
∗(·|xt,i)|π1

t (·|xt,i)) ≥ 0,

which implies that π∗ ∈ Πt. Therefore, we finish the proof of Lemma 4.

D MORE DETAILS OF THE OFFLINE LEARNING

In this section, we first motivate Algorithm 1 and then prove the main theoretical results of the offline
learning.

We denote Σoff := ΣDoff
for offline setting. To motivate the algorithmic design, we recall Lemma 1

and Lemma 2 to obtain that

J(π∗)− J(π̂) = Ex∼d0

[
Eπ[r

∗(x, a)− r̂(x, a)]

+ Eπ̂[r̂(x, a)− r∗(x, a)]− ηDKL(π
∗(·|x)∥π̂(·|x))

]
,

where π̂ is induced by calling the Oracle 1 with r̂. As suggested in the offline learning literature
(Jin et al., 2021b; Xie et al., 2021a), the first term can typically controlled by the property of Doff ,
while the second term is far more challenging to control because both the π̂ and r̂ are estimated
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from Doff , and hence spuriously correlate with each other. The standard methods to handle such
a spurious correlation is to introduce pessimism in the algorithmic designs, which means that we
adopt an estimator that is a lower bound of the true value with high probability. Specifically, instead
of taking the MLE estimator directly, we penalize the reward estimation by an uncertainty estimator
r̂(x, a) = rMLE(x, a) − β · Γ(x, a, ν,Doff) so that r̂(x, a) − r∗(x, a) ≤ 0 for all (x, a) ∈ X × A
and the spuriously correlated term can be eliminated. The construction of the uncertainty bonus is a
standard application of concentration inequality, and we defer the details to Appendix D.

In addition to adopting a pessimistic reward estimation, we may also use a modified target that is
biased toward pessimism by penalizing the uncertainty as in Equation (3). Here we do not maintain a
confidence set but use a modified target that is biased toward pessimism, similar to Xie et al. (2021a);
Zhang (2022), which may be easier to approximate in practice (Liu et al., 2023b). Moreover, to
handle the additional trade-off between the reward and the KL term, we also incorporate the KL
divergence into the policy computation.

Theorem 5. If we set β := O
(√d+log(1/δ)

γ2 + λB2
)
, for any λ > 0 and comparator policy π ∈ Π,

with probability at least 1− δ, the output policy of Algorithm 1 with Option I and Γe(π, ν,Doff) =
∥Ex∼d0

[ϕ(x, π)− ν]∥Σ−1
off

satisfies

J(π)− J(π̂) ≤ 2β · ∥Ex∼d0 [ϕ(x, π)]− ν∥Σ−1
off
,

and the output policy of Algorithm 1 with Option II and Γ(x, a, ν,Doff) = ∥ϕ(x, a)−ν∥Σ−1
off

satisfies

J(π)− J(π̂) ≤ 2β · Ex∼d0,a∼π(·|x)∥ϕ(x, a)− ν∥Σ−1
off

− η · Ex∼d0

[
DKL(π(·|x)∥π̂(·|x))

]
.

Proof of Theorem 5. We start with Option I. If we set r̂(x, a) = ⟨θMLE, ϕ(x, a)⟩, and take the policy
by

π̂ = argmax
π∈Π

[
⟨θMLE,Ex∼d0

ϕ(x, π)⟩−β·∥Ex∼d0
[ϕ(x, π)−ν]∥Σ−1

off
−η·Ex∼d0

[DKL(π(·|x)∥π0(·|x))]
]
.

Then, we have〈
θMLE,Ex∼d0

[
ϕ(x, π)− ϕ(x, π̂)

]〉
+ β · ∥Ex∼d0 [ϕ(x, π̂)]− ν∥Σ−1

off
− β · ∥Ex∼d0 [ϕ(x, π)]− ν∥Σ−1

off

+ η · Ex∼d0

[
DKL(π̂(·|x)∥π0(·|x))−DKL(π(·|x)∥π0(·|x))

]
≤ 0.

(16)
For simplicity, we denote the LHS of Equation (16) as (⋆). We plugging this into the estimation of
J(π)− J(π̂):

J(π)− J(π̂)

= Ex∼d0

[
Ea∼π(·|x)

[
r∗(x, a) + η log

π0(a|x)
π(a|x)

]
− Ea∼π̂(·|x)

[
r∗(x, a) + η log

π0(a|x)
π̂(a|x)

]]
= (⋆) + ⟨θ∗ − θMLE,Ex∼d0

[ϕ(x, π)]⟩+ ⟨θMLE − θ∗,Ex∼d0
[ϕ(x, π̂)]⟩

− β · ∥Ex∼d0
[ϕ(x, π̂)]− ν∥Σ−1

off
+ β · ∥Ex∼d0

[ϕ(x, π)]− ν∥Σ−1
off

≤ ⟨θ∗ − θMLE,Ex∼d0
[ϕ(x, π)]− ν⟩+ ⟨θMLE − θ∗,Ex∼d0

[ϕ(x, π̂)]− ν⟩
− β · ∥Ex∼d0 [ϕ(x, π̂)]− ν∥Σ−1

off
+ β · ∥Ex∼d0 [ϕ(x, π)]− ν∥Σ−1

off

≤ 2β · ∥Ex∼d0 [ϕ(x, π)]− ν∥Σ−1
off
,

where the first inequality is from the Equation (16) and the second inequality uses Cauchy-Schwarz
inequality and Lemma 8.

For Option II, we use the point-wise pessimism:

r̂(x, a) = rMLE(x, a)− β∥ϕ(x, a)− ν∥Σ−1
off
.

Then, we call Oracle 1 with r̂ to get π̂. By Lemma 1, we have

J(π)− J(π̂) =Ex∼d0

[
Eπ[r

∗(x, a)− r̂(x, a)] + Eπ̂[r̂(x, a)− r∗(x, a)]

+ Eπ[r̂(x, a)]− Eπ̂[r̂(x, a)] + ηDKL(π̂(·|x)∥π0(·|x))− ηDKL(π(·|x)∥π0(·|x))
]
,
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Since r̂ is obtained from the Oracle 1 with r̂, it follows from Lemma 2:

J(π)− J(π̂)

= Ex∼d0

[
Eπ[r

∗(x, a)− r̂(x, a)] + Eπ̂[r̂(x, a)− r∗(x, a)]− ηDKL(π(·|x)∥π̂(·|x))
]

= Ex∼d0,a∼π(·|x)
[
⟨θ∗ − θMLE, ϕ(x, a)− ν⟩+ β∥ϕ(x, a)− ν∥Σ−1

off

]
+ Ex∼d0,a∼π̂(·|x)

[
⟨θMLE − θ∗, ϕ(x, a)− ν⟩ − β∥ϕ(x, a)− ν∥Σ−1

off

]
− ηEx∼d0

[
DKL(π(·|x)∥π̂(·|x))

]
≤ 2βEx∼d0,a∼π(·|x)∥ϕ(x, a)− ν∥Σ−1

off
− ηEx∼d0

[
DKL(π(·|x)∥π̂(·|x))

]
,

where we use Cauchy-Schwarz inequality in the last inequality.

E MORE DETAILS OF HYBRID LEARNING

E.1 ALGORITHMIC DEVELOPMENT OF HYBRID GSHF

Non-symmetric algorithmic structure. As we mention in Section 2.2, we will adopt a non-
symmetric structure in choosing π1

t and π2
t . Specifically, we refer the π1

t as the main agent, which
aims to learn a good policy so that the suboptimality gap J(π∗) − J(π1

t ) is small. In contrast, the
second agent, referred to as the enhancer, seeks to enhance the learning of the main agent by choos-
ing appropriate π2

t . The main advantage of such a non-symmetric structure is that we have a lot of
freedoms to choose π2

t because we do not worry about the sub-optimality incurred by it. We first
motivate Algorithm 2. Using π2

t as an intermediate agent in Lemma 1, we have

J(π∗)− J(π1
t ) ≤ Ext∼d0

[ 〈
θ∗ − θt, ϕ(xt, π

∗)− ϕ(xt, π
2
t )
〉 ]

+ Ext∼d0

[ 〈
θt − θ∗, ϕ(xt, π

1
t )− ϕ(xt, π

2
t )
〉 ]

,
(17)

where we omit the KL error to simplify the discussion. The idea is most related to the hybrid RL
theory to use Doff to handle the term related to π∗ (Song et al., 2022). However, for preference-
based learning, one major difference is that the uncertainty is evaluated on the feature difference
instead of a single state-action pair, which calls for an appropriate choice of π2

t to balance the sub-
optimality sources. To this end, we introduce the reference policy πref , which satisfies the following
two conditions. First, the πref may serve as the pre-conditioner for the offline coverage similar to
Theorem 5 to control the first term related to π∗.
Assumption 1. For the reference policy πref , there exists a ratio coefficient α(mT,Doff) ∈ (0, 1)
and a coverage constant Ccov > 0 such that

(mT )1−α(mT,Doff )∥Ex∼d0 [ϕ(x, π
∗)− ϕ(x, πref)]∥(Σoff )

−1 ≤ Ccov.

We remark that Assumption 1 implicitly assume that noff is comparable to the total number of
online samples mT so that the influence of Doff will not be dominated by the online data. To
provide a more detailed understanding and connection to existing literature, we offer a more nuanced
characterization of α(mT,Doff) under standard partial coverage conditions in Appendix E.2. In
particular, when mT ≈ noff , we show that α(mT,Doff) ≈ 1/2. It is worth emphasizing that this
scenario appears to be rather realistic for LLMs. For example, in the LLaMA2 project (Touvron
et al., 2023), we observe noff = 1500K and mT = 1400K. Moreover, to control the second
term of Equation (17), we typically invoke the elliptical potential lemma 9. This requires πref to be
available for collecting new data so the analysis target (π1

t and πref ) and the policies used to collect
data are identical. We present the complete algorithm in Algorithm 2 and the theoretical guarantee
as follows.

E.2 MORE DISCUSSIONS ON α(mT,Doff)

To better elaborate the quantify α(mT,Doff) in Assumption 1, we provide the following proposition.
Proposition 1. Assuming that there exists absolute constants c† and α‡ such that

(mT )α
‡
/noff = 1, Σoff ⪰ B2I + c† · noff · (Ex∼d0z)(Ex∼d0z)

⊤,

where z = ϕ(x, π∗)− ϕ(x, πref). Then, we have α(mT,Doff) = 1− α‡

2 + 1
2 log(mT ) log

(
d

c†C2
cov

)
.

22



Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

The condition of Proposition 1 is referred to as the single-policy coverage in the literature of offline
learning (Jin et al., 2021b; Xie et al., 2021b;a), which is substantially weaker than the uniform cov-
erage condition considered in Xie & Jiang (2021); Yin et al. (2022); Xiong et al. (2022a), which re-
quires Doff to well cover the entire feature space. In this case, Proposition 1 states that α(mT,Doff)
mainly depends on the ratio between the online data size mT and the offline data size noff . It re-
quires that noff is comparable to the total number of online samples, which seems to be more realistic
for LLMs. For instance, in LLaMA2 project, the noff ≈ 1.5× 106, while the total number of online
data is 1.4× 106. Since noff and T are of the same order, α(mT,Doff) approximates 1/2.

Proof of Proposition 1. First, we have

∥Ex∼d0
[ϕ(x, π∗)− ϕ(x, πref)]∥Σ−1

off
=

√
(Ex∼d0

[ϕ(x, π∗)− ϕ(x, πref)])
⊤
Σ−1

off Ex∼d0
[ϕ(x, π∗)− ϕ(x, πref))

=

√
tr
(
Ex∼d0 [ϕ(x, π

∗)− ϕ(x, πref)] (Ex∼d0 [ϕ(x, π
∗)− ϕ(x, πref)])

⊤
Σ−1

off

)
,

where the last equality uses the property of trace. To facilitate our analysis, we use the notation that
Σ‡ = Ex∼d0 [ϕ(x, π

∗)− ϕ(x, πref)] (Ex∼d0 [ϕ(x, π
∗)− ϕ(x, πref)])

⊤. Together with the assump-
tion that

Σoff ⪰ B2I + c† · noff · Ex∼d0 [ϕ(x, π
∗)− ϕ(x, πref)] (Ex∼d0 [ϕ(x, π

∗)− ϕ(x, πref)])
⊤
,

we further have

∥Ex∼d0
[ϕ(x, π∗)− ϕ(x, πref)]∥Σ−1

off
≤

√
tr
(
Σ‡ (B2I + c† · noff · Σ‡)

−1
)

=

√√√√ d∑
j=1

λj
B2 + c† · noff · λj

,

where λj denotes the j-th eigenvalue of Σ‡. It is not difficult to show that λj ∈ [0, B2], which
further implies that

∥Ex∼d0
[ϕ(x, π∗)− ϕ(x, πref)]∥Σ−1

off
≤

√√√√ d∑
j=1

1

1 + c† · noff
≤

√
d

c† · noff
.

If (mT )α
‡
/noff = 1, we have

(mT )1−α(T,Doff ) · ∥Ex∼d0
[ϕ(x, π∗)− ϕ(x, πref)]∥(Σoff )−1 ≤ Ccov.

with

α(mT,Doff) = 1− α‡

2
+

1

2 log(mT )
log

( d

c†C2
cov

)
,

which concludes the proof of Proposition 1.

E.3 SEQUENTIAL HYBRID SETTING

Theorem 6. Let λ = d log(T/δ)/(γ2B2) and β := O
(√d log(T/δ)

γ2

)
. Under Assumption 1, with

probability at least 1− 2δ, the output policy of Algorithm 2 with m = 1 satisfies

T∑
t=1

[
J(π∗)− J(πt)

]
≤ βTα(T,Doff ) · Ccov + β

√
6Td log(1 + T/dλ)− η

T∑
t=1

Ext∼d0

[
DKL(π

∗(·|xt)∥πt(·|xt))
]
.
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Proof of Theorem 6. Define the following covariance matrices:

Σoff = λI +
∑

(x,a1,a2)∈Doff

(ϕ(x, a1)− ϕ(x, a2))(ϕ(x, a1)− ϕ(x, a2))⊤,

Σt = Σoff +

t−1∑
i=1

(ϕ(xi, a
1
i )− ϕ(xi, a

2
i ))(ϕ(xi, a

1
i )− ϕ(xi, a

2
i ))

⊤,

Σ̄t = Σoff +

t−1∑
i=1

Ex∼d0,a1∼πt,a2∼πref
(ϕ(x, a1)− ϕ(x, a2))(ϕ(x, a1)− ϕ(x, a2))⊤.

Similar to the proofs of the offline and online setting, we get the following decomposition: with
probability at least 1− 2δ,
T∑

t=1

[
J(π∗)− J(πt)

]
=

T∑
t=1

Ext∼d0

[
Eπ∗ [r∗(x, a)− rt(x, a)] + Eπt

[rt(x, a)− r∗(x, a)]
]
− η

T∑
t=1

Ext∼d0

[
DKL(πt(·|xt)∥π∗(·|xt))

]
=

T∑
t=1

Ext∼d0

[ 〈
θ∗ − θt, ϕ(xt, π

∗)− ϕ(xt, πref)
〉 ]

+

T∑
t=1

Ext∼d0

[ 〈
θt − θ∗, ϕ(xt, πt)− ϕ(xt, πref)

〉 ]
− η

T∑
t=1

Ext∼d0

[
DKL(πt(·|xt)∥π∗(·|xt))

]
≤

T∑
t=1

∥θ∗ − θt∥Σt · Ext∼d0

[
∥ϕ(xt, π∗)− ϕ(xt, πref)∥Σ−1

t

]
+

T∑
t=1

∥θ∗ − θt∥Σt
· Ext∼d0

[
min

{
1, ∥ϕ(xt, πt)− ϕ(xt, πref)∥Σ−1

t

}]
− η

T∑
t=1

Ext∼d0

[
DKL(π

t
1(·|xt)∥π∗(·|xt))

]
,

≤ Tβ · ∥Ex∼d0
[ϕ(x, π∗)− ϕ(x, πref)]∥Σ−1

off︸ ︷︷ ︸
P1

+β

T∑
t=1

Ext∼d0 min
{
1, ∥ϕ(xt, πt)− ϕ(xt, πref)∥Σ−1

t

}
︸ ︷︷ ︸

P2

− η

T∑
t=1

Ext∼d0

[
DKL(π

t
1(·|xt)∥π∗(·|xt))

]
,

where the first equality holds due to Lemma 1 and Lemma 2, the first inequality uses the Cauchy-
Schwarz inequality, and the last inequality holds due to Lemma 8 and Σt ⪰ Σoff . For the term P1,
according to Assumption 1, we get

P1 =Tα(T,Doff )β · T 1−α(T,Doff )∥Ex∼d0
[ϕ(x, π∗)− ϕ(x, πref)]∥Σ−1

off

≤Tα(T,Doff )β · Ccov.

For the term P2, we can apply Lemmas 9 and 10 to obtain

P2 ≤β

√√√√3T

T∑
t=1

Ext∼d0,a1∼πt,a2∼πref
min

(
∥ϕ(xt, a1)− ϕ(x, a2)∥2

Σ̄−1
t

, 1
)

≤β
√
3T · 2d log(1 + T/dλ).

By taking the upper bound of P1 and P2 back, we have
T∑

t=1

[
J(π∗)− J(πt)

]
≤ Tα(T,Doff )β · Ccov + β

√
6Td log(1 + T/dλ)− η

T∑
t=1

Ext∼d0

[
DKL(π

t
1(·|xt)∥π∗(·|xt))

]
.

which concludes the proof.
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E.4 PROOF OF THEOREM 2

We first restate the Theorem 2 for a slightly more general result.
Theorem 7 (Restatement of Theorem 2). For any ϵ > 0, if T = min{n ∈ N+ : n ≥ d log(n)},
with probability at least 1 − 3δ, there exists a t0 ∈ [T ], so that the output policies of Algorithm 2
satisfy

J(π∗)− J(πt0) ≲

√
d

γ2m
+ β · ∥Ex∼d0 [ϕ(x, π

∗)− ϕ(x, πref)]∥Σ−1
off+t0

− ηExt0
∼d0

[
DKL(π

1
t0(·|xt0)∥π

∗(·|xt0))
]
,

where β := O
(√d+log(1/δ)

γ2 + λB2
)
, for any λ > 0 that is also used in Σoff+t0 .

We further suppose that Assumption 1 holds and we have m = Θ
(

d
γ2ϵ2 +

1
T (

√
dCcov

γϵ )1/(1−α(mT,Doff )
)
. Then, if λ = Θ(d log(T/δ)/(γ2B2)), with probability at least

1− 3δ, there exists a t0 ∈ [T ], so that the output policies of Algorithm 2 satisfy

J(π∗)− J(πt0) ≤ ϵ− ηExt0
∼d0

[
DKL(π

1
t0(·|xt0)∥π

∗(·|xt0))
]
.

Proof of Theorem 7. We recall the value decomposition

J(π∗)− J(πt0)

= Ext0∼d0

[
Eπ∗ [r∗(xt0 , a)− r̂(xt0 , a)] + Eπt0

[r̂(xt0 , a)− r∗(xt0 , a)]− η · Ext0∼d0

[
DKL(π

∗(·|xt0)∥πt0(·|xt0))
]

≤ Ext0∼d0

[ 〈
θ∗ − θt0 , ϕ(xt0 , π

∗)− ϕ(xt0 , πref)
〉 ]

︸ ︷︷ ︸
P ′

1

+Ext0
∼d0

[ 〈
θt0 − θ∗, ϕ(xt0 , πt0)− ϕ(xt0 , πref)

〉 ]
︸ ︷︷ ︸

P ′
2

− η · Ext0∼d0

[
DKL(π

∗(·|xt0)∥πt0(·|xt0))
]
.

Following the proof of batch online learning (Theorem 3), we can control the exploration error P ′
2

as in Equation (9) by fixing π2
t as πref . We notice that since πref is directly available to the agent and

is used to collect data, we do not need to optimism to relate its uncertainty to the data. Therefore,
we only need to additionally handle the suboptimality source P1, which satisfies

P ′
1 ≤ β · ∥Ex∼d0

[ϕ(x, π∗)− ϕ(x, πref)]∥Σ−1
off+t0

,

by Cauchy-Schwarz inequality and Lemma 8. It follows that

J(π∗)− J(πt0)

≤
(√

exp
(γT (λ)

T
)− 1 + 2

√
log(2/δ)

2m

)
· C

√
d+ log(T/δ)

γ2m
+ λB2

+ β · ∥Ex∼d0
[ϕ(x, π∗)− ϕ(x, πref)]∥Σ−1

off
− ηExt0∼d0

[
DKL(π

∗(·|xt0)∥πt0(·|xt0))
]

≤ C

√
d log(T/δ)

γ2m
+ β · ∥Ex∼d0

[ϕ(x, π∗)− ϕ(x, πref)]∥Σ−1
off

− ηExt0∼d0

[
DKL(π

∗(·|xt0)∥πt0(·|xt0))
]
,

(18)
where we use T ≥ d log(T ) and C > 0 is an absolute constant. Now we proceed to suppose that
Assumption 1 holds. Then, we have

β · ∥Ex∼d0 [ϕ(x, π
∗)− ϕ(x, πref)]∥Σ−1

off
≤ (mT )α(mT,Doff )−1β · Ccov.

Plugging this estimation back and combining with the choices of parameters, we conclude the proof
of Theorem 7.

In particular, in Proposition 1, when noff ≈ mT as in the LLaMA2 project (Touvron et al., 2023),
we have α(mT,Doff) ≈ 1

2 . In this case, the final sample complexity to find an ϵ-optimal policy is

Õ
(d2 + dC2

cov

γ2ϵ2

)
,
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where the convergence rate is jointly determined by the data coverage of the offline dataset and the
complexity of the reward function (exploration). We also remark that this may be a conservative
guarantee in general because the online data typically also improves the coverage coefficient Ccov

along the way of training.

F PRACTICAL IMPLEMENTATIONS OF GSHF

In this section, we continue to discuss how to practically implement the information-theoretical
Algorithm 1 and Algorithm 2.

F.1 APPROXIMATION THE INFORMATION-THEORETICAL COMPUTATIONAL ORACLE

In practice, the policy is represented by a deep neural network. In this case, one common choice
(Ziegler et al., 2019; Wu et al., 2021a; Ouyang et al., 2022; Bai et al., 2022a) is to use the standard
deep RL algorithms like PPO to optimize the regularized reward: r̃(x, a) = r(x, a)− η log πθ(a|x)

π0(a|x) .
However, PPO is significantly less stable and sensitive to implementation as compared to SFT
(Choshen et al., 2019; Engstrom et al., 2020). Recently, DPO (Rafailov et al., 2023) attracted signif-
icant attention due to its stability and easy implementation. Specifically, DPO chooses to train the
LLM as a reward model, by optimizing the following loss:∑

(x,ac,ar)∈Doff

−
[
log σ

(
η log

πθ(ac|x)
π0(ac|x)

− η log
πθ(ar|x)
π0(ar|x)

)]
, (19)

where ac, ar is the chosen/rejected response. It is shown that the optimal policy for the DPO loss
in Equation (19) is identical to the RLHF objective πr, with r as the MLE of Equation (3). To
summarize, moving toward the practical side from the theoretical algorithms, we may just replace
the Oracle 1 with the practical RLHF algorithms (both deep RL methods or non-RL methods). In
view of the simplicity and effectiveness of DPO, we will mainly investigate the performance of
the proposed GSHF framework with DPO here. We remark that it is also possible to combine the
proposed framework with any reasonable approximation of the computational oracle like IPO (Azar
et al., 2023) and SLIC (Zhao et al., 2023).

F.2 MULTI-STEP REJECTION SAMPLING FOR OFFLINE LEARNING

Recently, Liu et al. (2023a) found that the effectiveness of the DPO is influenced by the offline data
distribution. They emphasize the importance of sourcing offline training data from the target distri-
bution. Consequently, they trained a reward model, denoted as r, and approximated samples from
πr using rejection sampling. We provide a brief introduction to rejection sampling in Appendix B.4.
In this case, they generate samples from the optimal policy of the underlying BT model associated
with r and get Dgen = {(x, a1, a2, y)}. The authors suggested that this is more suitable for DPO
training and leads to better performance. The key basis of the success of RSO is that the rejection
sampling can well approximate πr. However, in practice, the rejection rate can be so large that the

Algorithm 5 Offline GSHF (Practical Implementation)
1: Input: Offline dataset Doff , KL regularization strength η1 > · · · > ηN = η.
2: Compute the reward estimator r̂(x, a) based on Doff .
3: for i = 1, 2, · · · , N do
4: Denote πi

r̂(·|x) ∝ π0(·|x) · exp
(

1
ηi
r̂(x, ·)

)
5: Sample from πi

r̂, where πi
r̂ is obtained by rejection sampling from πi−1. Use r̂ to label the

paired samples. Wrap up the data as Di.
6: Use DPO with Di to train πi ≈ πi

r̂.
7: end for
8: Output: Set π = πN

sampling is not effective. The acceptance rate for the average sample is exponential to the gap be-
tween best reward and average reward. As the difference between the best reward and the average
reward increases, the acceptance rate of a typical sample decreases exponentially. Essentially, the
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majority of samples are rejected, necessitating a substantial number of sampled candidates to pro-
duce a single accepted comparison pair. In the practical implementation of RSO (Liu et al., 2023a),
we typically fix the total budget of candidate responses and the number of samples to be accepted.
In this case, due to the low sampling efficiency, the collected samples may not well approximate
the target distribution, and train on these samples can lead to inferior performance compared to the
original DPO.

To mitigate this issue and make the algorithm more effective, we propose a multi-step approach
to progressively achieve our ultimate target. Instead of using π0 to approximate π0 exp(

1
η r)

directly, we divide the path into several steps by considering a sequence of distributions{
π0, π0 exp(

1
η1
r), · · · , π0 exp( 1

ηN
r)
}
, where η0 = ∞ (i.e., π0), and ηN = η. The high-level intu-

ition is that while approximating πr from π0 is hard, approximating π0 exp( 1
ηi
r) with π0 exp( 1

ηi−1
r)

is much easier. Therefore, we do rejection sampling step by step. We provide a numerical example
in the Appendix (Figure 3). We also have a concrete computation where the multi-step rejection
sampling improves the acceptance rate from 4 × 10−5 to 0.36 in Appendix G.3, as the acceptance
rate can be exponentially increased with the number of steps.

One concern may be on the additional computations introduced by the multi-step approximations.
However, in practice, the KL coefficient η is also tuned as a hyper-parameter in an outer loop of
the proposed framework (Huggingface, 2023) to achieve the best performance. The Algorithm 5
provides us with a sequence of models associated with different ηi, which exactly allows for further
model selection via hyper-parameter tuning of η. In view of this, the Algorithm 5 does not introduce
overhead in computation.

F.3 ALGORITHMIC SIMPLICITY AND DATA COVERAGE

We note that all the three settings: offline, online (Appendix C), and hybrid learning are comple-
mentary to each other and hold their own values. For instance, collecting new and online human
feedback can be expensive for most of the developers and in this case, only offline learning is fea-
sible. One appealing choice is to leverage AI feedback (Bai et al., 2022b), which is much cheaper
than human feedback. However, for tasks with customized needs or requiring expertise, we may
only query feedback from specific users or experts, whose preference is distinct from AI.

Meanwhile, the hybrid learning offers simplicity in algorithmic design, at the cost of demand for
a high-quality Doff . In comparison, the online learning starts from scratch, but the choice of the
enhancer is challenging because for the neural network, the uncertainty estimators do not admit a
closed-form. In practice, we typically resort to heuristic methods (Wu et al., 2021b; Coste et al.,
2023) to estimate the uncertainty. As the advantage of a pessimistic MLE in RLHF has been show-
cased in a large amount of work (e.g., Christiano et al., 2017; Ziegler et al., 2019; Gao et al., 2023;
Zhu et al., 2023a; Coste et al., 2023; Shin et al., 2023), we do not leverage pessimism in subse-
quent experiments but focus on verify the effectiveness of the proposed multi-step approximation
approach. For the online setting, the uncertainty estimation is more challenging. We will discuss the
potential ways to implement the uncertainty-aware algorithms in Appendix G.4 and defer a compre-
hensive empirical study to future study.

G DISCUSSION ON THE PRACTICAL ALGORITHMIC DESIGN

In this section, we investigate the connections between the proposed algorithms and the existing
practical algorithms in the literature, including Direct Preference Optimization (DPO) (Rafailov
et al., 2023) Rejection Sampling Optimization (RSO) (Liu et al., 2023a), and RewArd-ranked Fine-
Tuning (RAFT) (Dong et al., 2023).

G.1 DATA COVERAGE AND PREFERENCE LEARNING

DPO is a practical algorithm derived from the reverse-KL regularized contextual bandit framework
presented in this paper, which skips the reward modeling step with a clever reparameterization tech-
nique and directly optimizes the LLMs based on the offline preference data Doff by the following
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loss function

L(θ, π0,Doff) = −
∑

(x,ac,ar)∈Doff

[
log σ

(
η log

πθ(ac|x)
π0(ac|x)

− η log
πθ(ar|x)
π0(ar|x)

)]
, (20)

where ac is the chosen response and ar is the rejected response. Given x, ac, ar, fitting the model
with the loss in Equation (20) yields a MLE for the preference probability (Lemma 5) by training the
LLM as a reward model. This process, however, necessitates considering the generation distributions
of a1 and a2, which is missing in the original DPO paper. We now discuss the influence of the offline
data distribution.

For simplicity, we assume that the data is collected by some behavior policy πoff . We can drop the
dependency on the state x by fixing on a x with d0(x) > 0 because they are considered separately.
Meanwhile, we assume that the size of the offline dataset |Doff | approaches infinity so we can handle
the population loss directly. In this case, given a prompt x, the loss function in Equation (19)
converges to:

L∞(θ, π0, x) = −Ea1,a2∼πoff (·|x)
[
p∗(a1 ≻ a2|x, a1, a2) log pθ(a1 ≻ a2|x, a1, a2)

+p∗(a2 ≻ a1|x, a1, a2) log pθ(a2 ≻ a1|x, a1, a2)
]
,

where pθ is the preference model associated with πθ. Given x, a1, a2, the following lemma demon-
strates that pθ = p∗ uniquely minimizes the loss.
Lemma 5 (Solution of Preference data). Given x, a1, a2, we consider the preference learning for

p∗(a1 ≻ a2|x) = 1

1 + exp
(
η log π∗(a2|x)

π0(a2|x) − η log π∗(a1|x)
π0(a1|x)

) = σ
(
η log

π∗(a1|x)
π0(a1|x)

−η log π
∗(a2|x)
π0(a2|x)

)
,

by

pθ(a1 ≻ a2|x) = 1

1 + exp
(
η log πθ(a2|x)

π0(a2|x) − η log πθ(a1|x)
π0(a1|x)

) = σ
(
η log

πθ(a1|x)
π0(a1|x)

−η log πθ(a
2|x)

π0(a2|x)

)
.

Consider the population loss (when we have sufficiently many samples),

p∗(a1 ≻ a2|x) log pθ(a1 ≻ a2|x) + p∗(a2 ≻ a1|x) log pθ(a2 ≻ a1|x).

The solution satisfies πθ(a1|x)/πθ(a2|x) = π∗(a1|x)/π∗(a2|x).

Therefore, if pθ is the minimizer of the loss, we have pθ = p∗ for any a1, a2 on support(πoff). For
any a1, a2 ∈ support(π∗) ∩ support(πoff), we can further obtain that πθ(a

1|x)
π∗(a1|x) = πθ(a

2|x)
π∗(a2|x) := C

(Lemma 5).

We restrict our attention on πθ with the same support with π∗ (as well as π0) and fix a2 and go over a1
to get πθ(·|x) = C ·π∗(·|x) on support(πoff). Conversely, for (x, a) pairs where πoff(a|x) = 0, the
choice of pθ (or πθ) does not impact the loss function and can be arbitrary. Assume that πθ = C ′π
for all a ∈ support(π∗) \ support(πoff), where π(·|x) ∈ ∆(A) and define

Ωx = {a ∈ support(π∗) : πoff(a|x) = 0},

as the set of outputs that can be generated by π∗ but not by πoff . Then the policy πθ(a|x) ∝ (1 −
1Ωx(a))π

∗(a|x) + 1Ωx(a)π(a|x) minimizes L∞(θ, π0, x), where 1Ωx(·) is the indicator function
for Ωx and the normalizing constant C,C ′ satisfy the normalization condition Eπθ(a|x)1 = 1.

Essentially, the dataset used for optimizing loss in Equation (19) imposes constraints via Lemma 5.
For outputs not covered by πoff , πθ can be an arbitrary solution and only sufficient constraints can
lead to convergence to the π∗. Therefore, to ensure that πθ converges to π∗ for every state-action
pair (x, a) where π∗(a|x) > 0, it is essential to have |Ωx| = ∅ or

sup
a∈A

π∗(a|x)
πoff(a|x)

<∞, for any x ∈ support(d0),

where we use the convention of 0/0 = 0.
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Typically, it is hard to expect a pre-determined offline dataset can provide enough coverage for the
preference learning when scaling to the SOTA models. Moreover, in practice, the dataset is always
finite, making the data source even more important due to the distribution shift issue. In other
words, although the two distributions have the same support, the density distribution can be largely
different. If we take πoff = π0 as suggested by Rafailov et al. (2023), for any point that π∗(a|x) > 0,
we have

π∗(a|x)
πoff(a|x)

=
exp( 1η r

∗(x, a))

Ea′∼π0(·|x) exp(
1
η r

∗(x, a′))
≤ 1

π0(a|x)
<∞.

However, since the outpace A is exponentially large with respect to the sequence length, the ratio of
using π0 can be extremely large in the worst case, which may also lead to an inferior performance
in practice, as shown in Liu et al. (2023a). On the other hand, (1) RSO uses rejection sampling
to approximately sample data from πr; (2) Offline GSHF improves RSO by adopting a more effi-
cient multi-approach way to better approximate πr given the limited generation budget; (3) Hybrid
GSHF uses both the offline dataset and the data from online exploration. These algorithms adopt
different data sources for the preference learning thus exploring different parts of the state-action
space.The improvements of the GSHF algorithms emphasize the importance of a more efficient data
augmentation strategy and further exploration of the state-action space.

G.2 ITERATIVE RLHF TRAINING

The multi-step approximation in Algorithm 5 shares similar spirit with the iterative framework (i.e.,
the RAFT algorithm) proposed in Dong et al. (2023) and was also considered in Touvron et al. (2023)
and Gulcehre et al. (2023). Our multi-step rejection sampling may be viewed as a generalization of
that of RAFT, as we illustrate as follows.

RAFT starts from π0 and aims to learn from the induced best-of-n policy (i.e., for each prompt x, we
collect n independent responses and output the one with highest reward). By standard concentration
inequality, if the reward function is bounded by M , the upper bound of the best-of-n policy satisfies

Ea∼π0r(x, a)︸ ︷︷ ︸
Base policy

≤ Eai∼π0 max
i∈[n]

r(x, ai)︸ ︷︷ ︸
Best-of-n policy

≤ Ea∼π0(·|x)r(x, a) +

√
M2

2
log n,

which increases at a rate of
√
log n. Therefore, the marginal benefit of increasing n diminishes

quickly, which motivates the authors to adopt the iterative framework because the improved base
policy will lead to an improved best-of-n policy. In comparison, we decompose the target policies
π0 exp

(
1
ηN
r
)

to several steps and we will use the improved policy associated with ηi as the base
policy to approximate that with ηi+1 with rejection sampling. The multi-step rejection sampling is
far more efficient compared to using π0 because the rejection rate is reduced.

Another major difference is that Dong et al. (2023) only considers reward optimization without
the KL constraint from the initial checkpoint. Therefore, they choose to train the model from the
checkpoint obtained from the preceding iteration. On the other hand, we always start from the initial
model at each iteration.

G.3 ACCEPTANCE RATE OF REJECTION SAMPLING

Section G.2 highlight that the efficiency of iterative training process, especially for the sample com-
plexity. Here, we will delve into the acceptance rate of the rejection sampling for the reward induced
Gibbs distribution.

Given a prompt-response pair (x, a), the rejection rate is 1 − exp(−η−1(R(x) − r(x, a))), where
R(x) is the largest possible reward over all a ∈ A. For example, given η > 0, if the samples
drawn from π0(a|x) satisfies Ea∼π0(a|x) exp(η

−1r(x, a)) = exp(−η−1(rx − R(x))), the expected
acceptance rate becomes exp(− rx

η ), where rx is the reward gap between average sample and the
best sample given prompt x. Setting rx = 1 and η = 0.1 yields a notably low acceptance rate
of approximately 4 × 10−5. By choosing N = [rx/η] + 1 steps, the acceptance rate at each step
becomes an O(1) probability exp(− rx

η([rx/η]+1) ) > exp(−1) > 0.367. The acceptance rate can be
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exponentially increased with the number of steps, i.e., N steps correspond to an exp(N) increase in
the acceptance rate.

We also provide the rejection sampling rate cases for Gaussian mixture model (settings follow Figure
1) in Figure 3.

G.4 HEURISTIC UNCERTAINTY ESTIMATION AND IMPLEMENTATION OF PESSIMISM AND
OPTIMISM

The uncertainty estimation for LLMs can be challenging due to the extremely large state-action
space and a closed-form solution similar to the potential is unavailable in general.

Pessimistic MLE for Reward Modeling. The recent work (Coste et al., 2023) implements the
principle of pessimism based on ensemble in two different ways, and demonstrate the effectiveness
of them using real-world LLM alignment experiments. Specifically, to create an ensemble, the
authors train 5 independent reward models with different random seeds {ri}5i=1. First, the authors
consider worst-case optimization (Boyd & Vandenberghe, 2004), which gives a pessimistic reward
estimation:

r̂(x, a) = min
i∈[5]

ri(x, a).

Second, the authors also consider a soft version of pessimism by penalizing the variance of estima-
tion (Wu et al., 2021b):

r̂(x, a) = r̄(x, a)− λ
1

5

5∑
i=1

(
ri(x, a)− r̄(x, a)

)2
,

where r̄(x, a) = 1
5

∑5
i=1 ri(x, a) and the λ > 0 is a tuning parameter. It was observed that such a

pessimistic RM can largely mitigate the issue of overfitting in RLHF. We refer interested readers to
Coste et al. (2023) for details.

Optimistic Policy Selection for Enhancer. In comparison, selecting an appropriate optimistic pol-
icy for the enhancer to maximize the uncertainty with respect to the main agent π1

t = πrt is largely
less explored in practical applications. The enhancer aims to maximize the uncertainty of the fea-
ture difference given in Equation (6). While there are works adopt an optimistic value estimation
in practical DRL applications (Ciosek et al., 2019; Bai et al., 2020; Rashid et al., 2020), direct op-
timism in terms of the policy seems to be far more challenging. Meanwhile, we are in the face
of distinct challenges from preference learning. These together call for new ideas for the practical
implementations.

Essentially, the results in both hybrid learning and online learning presented in this paper emphasize
the importance of sampling strategy for iterative RLHF. Although the optimistic enhancer is not
readily available in practice, the theoretical insights behind such a choice of enhancer is that the
enhancer should generate response so that the difference between it and that of the main agent is
large, compared to the data collected so far, which should at least motivate the future algorithmic
design in principle.

Since the advantages of pessimism in offline RLHF has been verified in a large amount of work
(e.g., Christiano et al., 2017; Ziegler et al., 2019; Gao et al., 2023; Zhu et al., 2023a; Coste et al.,
2023; Shin et al., 2023), we do not leverage pessimism in the experiments of this paper but focus
on verify the effectiveness of the proposed multi-step rejection sampling. Moreover, as we cannot
find a practical approximation for the optimistic enhancer, we hope that our theoretical insights can
motivate future study in this direction to construct reliable and efficient uncertainty estimators for
LLMs, especially for the implementation of an optimistic enhancer.

H TECHNICAL LEMMA PROOFS

Proof of Lemma 2. Since π̂ is induced by calling Oracle 1 with r̂, we know that for any x ∈ X ,

π̂(a|x) = 1

Z(x)
π0(a|x) · exp

(1
η
· r̂(a|x)

)
,
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where Z(x) =
∑

a∈A π0(a|x) exp(
1
η r̂(x, a)) is the normalization constant. We can rewrite the

reward function as

r̂(x, a) = η log
π̂(a|x)
π0(a|x)

+ η logZ(x).

Plugging this reward reparameterization into the policy optimization error under r̂, we have

Eπ[r̂(x, a)]− Eπ̂[r̂(x, a)]

= Eπ

[
η log

π̂(a|x)
π0(a|x)

]
− Eπ̂

[
η log

π̂(a|x)
π0(a|x)

]
= Eπ

[
η log

π(a|x)
π0(a|x)

]
− Eπ

[
η log

π(a|x)
π̂(a|x)

]
− η ·DKL(π̂(·|x)∥π0(·|x))

= η ·DKL(π(·|x)∥π0(·|x))− η ·DKL(π(·|x)∥π̂(·|x))− η ·DKL(π̂(·|x)∥π0(·|x)).

Plugging the above equality into the LHS of the Lemma 2 completes the proof.

Proof of Lemma 5. The loss function can be reformulated as the KL divergence plus a constant term:

DKL(p
∗∥pθ)−

[
p∗(a1 ≻ a2|x) log p∗(a1 ≻ a2|x) + p∗(a2 ≻ a1|x) log p∗(a2 ≻ a1|x)

]
.

This implies that p∗ = pθ is the unique optimal solution for pθ. Moreover, if the condition
πθ(a

1|x)/πθ(a2|x) = π∗(a1|x)/π∗(a2|x) is satisfied, the optimality of the solution is assured.

I TECHNICAL LEMMAS

Lemma 6 (Jensen’s Inequality). Suppose that ϕ(w) is a convex function on Ω. Consider
w1, · · · , wm ∈ Ω, and non-negative numbers α1, · · · , αm ∈ R so that

∑m
i=1 αi = 1. Then,

ϕ(

m∑
i=1

αiwi) ≤
m∑
i=1

αiϕ(wi).

More generally, let p be a probability measure on Ω, then ϕ(Ew∼pw) ≤ Ew∼pϕ(w). In particular,
since ∥ · ∥ is convex (by triangle inequality of the norm), we know that

∥Ez∥ ≤ E∥z∥.

Proof. See Proposition A.9 of Zhang (2023) for a proof.

Lemma 7 (Cauchy Schwarz Inequality). For u, ν ∈ Rd, we have

⟨u, ν⟩ ≤ ∥u∥∥ν∥ ≤ 1

2
∥u∥2 + 1

2
∥ν∥2.

In particular, for a positive-definite matrix Σ, we can take ⟨u, ν⟩ =
〈
Σ1/2u,Σ−1/2ν

〉
to get ⟨u, ν⟩ ≤

∥u∥Σ∥ν∥Σ−1 .

Lemma 8 (In-sample error of MLE (Faury et al., 2020; Pacchiano et al., 2021; Zhu et al., 2023a)).
For a fixed λ > 0, we denote ΣD as

ΣD := λI +
∑

(x,a1,a2)∈D

(
ϕ(x, a1)− ϕ(x, a2)

)(
ϕ(x, a1)− ϕ(x, a2)

)⊤
.

Assume that ∥ϕ(x, a)∥ ≤ 1 for all (x, a) ∈ X × A and ∥θ∥ ≤ B. Then, it follows that with
probability at least 1− δ, we have

∥θMLE − θ∗∥ΣD ≤ C ·

√
d+ log(1/δ)

γ2
+ λB2,

where γ = 1/(2 + exp(−B) + exp(B)).
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MODEL1 MODEL2 ID OOD
WIN LOSE TIE WIN LOSE TIE

RSO DPO 36 30 34 25 21 54
OFFLINE GSHF DPO 37 24 39 35 14 51
HYBRID GSHF DPO 42 13 45 25 21 54

Table 3: GPT-4 evaluation results on both in-domain (HH-RLHF) and out-of-domain (UltraFeed-
back (Cui et al., 2023)). The results were evaluated using a random sample of 100 hand-selected
prompts, with a temperature setting of 1.0. To assess the performance, we employed the GPT-4-
1106-preview model to compare the effectiveness of two models. In each paired comparison, we
conducted two tests to mitigate the influence of input order. GPT-4 responded with Win (W), Lose
(L), or Tie (T) for each test.

Lemma 9 (Elliptical Potential Lemma (Dani et al., 2008; Rusmevichientong & Tsitsiklis, 2010;
Abbasi-Yadkori et al., 2011)). Let {xi}i∈[T ] be a sequence of vectors in Rd with ∥xi∥2 ≤ L < ∞
for all t ∈ [T ]. Let Λ0 be a positive-definite matrix and Λt = Λ0 +

∑t
i=1 xix

⊤
i . It holds that

log
(det(Λt)

Λ0

)
≤

T∑
i=1

∥xi∥2Λ−1
i−1

.

Further, if ∥xi∥2 ≤ L for all i ∈ [T ], then we have

T∑
i=1

min{1, ∥xi∥2Λ−1
i−1

} ≤ 2 log
(det(Λt)

Λ0

)
≤ 2d log

( trace(Λ0) + nL2

ddet(Λ0)1/d

)
.

Finally, if λmin(Λ0) ≥ max(1, L2),

T∑
i=1

∥xi∥2Λ−1
i−1

≤ 2 log
(det(Λt)

Λ0

)
.

Lemma 10 (Concentration of Inverse Covariance (Zanette et al., 2021)). Let µi be the conditional
distribution of ϕ given the sampled {ϕ1, . . . , ϕi−1}. Assume ∥ϕ∥2 ≤ 1, for any realization of the
vector. Define Λ =

∑n
i=1 Eϕ∼µi

[ϕϕ⊤]. If λ = Ω(d log(n/δ)), then, with probability at least 1− δ,
for any n ≥ 1

3(Λ + λI)−1 ⪰
( n∑

i=1

ϕiϕ
⊤
i + λI

)−1

⪰ 3

5
(Λ + λI)−1.

Lemma 11 (Solution of KL-regularized Optimization (Proposition 7.16 and Theorem 15.3 of Zhang
(2023))). Given a loss functional with respect to π(·|x), written as

Ea∼π(·|x)

[
− r(x, a)− η log

π0(a|x)
π(a|x)

]
= ηDKL

(
π(a|x)

∥∥∥π0(a|x) exp(1
η
r(x, a)

))
,

the minimizer of the loss functional is π∗(a|x) ∝ π0(a|x) exp
(

1
η r(x, a)

)
, also known as Gibbs

distribution.

J EXPERIMENT DETAILS

In this section, we verify the effectiveness of the Algorithm 5 and Algorithm 3 by real-world RLHF
experiments.

All the experiments are conducted using 8×A40 (48G) with 600G RAM, and half-precision training
(bf16). The implementations are based on open-source packages TRL (von Werra et al., 2020) and
LMFlow (Diao et al., 2023), and the code will be publicly available on GitHub in the camera-ready
version. The hyper-parameters used in the experiments are compactly provided in Table 9 and
Table 10, with details described in the subsequent subsections.
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(a) η = 0.5 (b) η = 1.0 (c) η = 2.0

Figure 3: Illustration of the rejection rate by setting {ηi}Ni=1, where ηi = Nη/i. The model follows
the setting of Figure 1, where we choose Gaussian mixture as π0 and the preference is mathemati-
cally captured by setting r as linearly dependent on a, with r = [1, 0]⊤a and η = 1 for πr.

J.1 EXPERIMENTS SETUP

Model, and Task. We use the Open-LLaMA-3B-V2 (Geng & Liu, 2023) as the pretrained model
and use the helpful subset of the HH-RLHF dataset (Bai et al., 2022a) (see Table 4 for a sample
example). We preprocess the dataset to get 103K training set and 5K test set (details as follows).
We also use a subset of the UltraFeedback (Cui et al., 2023), consisting of 5K prompts, as another
out-of-distribution (OOD) test set. Meanwhile, the UltraRM-13B (Cui et al., 2023) is used as the
ground truth r∗ (the gold reward), which is trained on a mixture of UltraFeedback, HH-RLHF, and
other open-source datasets based on LLaMA2-13B. For all the experiments, we fix the KL penalty
in the learning target Equation (2) as η = 0.1.

Dataset preprocessing. We use the HH-RLHF dataset (Bai et al., 2022a) in our experiments, where
each sample of the dartaset consists of a prompt x (chat history between the Human and Assistant),
and a chosen response ac and a rejected response ar. We provide an example in Table 4 for readers’
reference. We delete the noisy samples (e.g., with the same chosen and rejected responses), and
prompts longer than 400 tokens, and eventually get 108K prompts, which are divided into 103K
training set and 5K test set. We also sample a subset of the UltraFeedback (Cui et al., 2023),
consisting of 5K prompts, as another out-of-distribution test set.

Offline Data Doff Generation and Initial Checkpoint. Following Gao et al. (2023); Coste et al.
(2023), we use the training prompts to generate responses by an Open-LLaMA-3B-V2 model that
is fine-tuned on the preferred responses of the original HH-RLHF dataset1. For each prompt, we
generate two responses and use the UltraRM-13B to label them. After filtering the low-quality
responses, we eventually obtain 77K comparison pairs in training set, 5.6K pairs as the validation
set. We also set 20K samples as the “SFT” split to get the RLHF starting checkpoint π0.

Setup of offline learning and hybrid learning. For offline learning, we learn from the Doff , and
cannot further query human feedback in the training though it is possible to use the model itself to
generate more responses. For hybrid learning, we start with a subset of Doff , with 25K comparison
pairs, and then fix the budget of online human feedback as 52K, leading to a total number of queries
consistent with the offline learning for a fair comparison. For all the hybrid algorithms, we iterate
for three steps.

Method, Competitor and Evaluation. In our experiments, we investigate (1) Offline GSHF; (2)
Hybrid GSHF; and use (3) SFT on the preferred samples, (4) DPO (Rafailov et al., 2023), (5) RSO
(Liu et al., 2023a) as the baselines. The GSHF is implemented by DPO to approximate Oracle 1. The
representative models of different RLHF methods will be measured by the gold reward of UltraRM-
13B and the KL divergence Ex∼d0

DKL(π(·|x)∥π0(·|x)), which are both evaluated on the split test
set.

1While it is possible to include other high-quality dialog datasets from Chat-GPT (like ShareGPT), we
decide not to do this in this round of experiment. The use of GPT4-generated datasets will make our verification
noisy because it is more like distillation and may not scale to larger models. However, we do observe in some
preliminary experiments that in the distillation scenario, the proposed algorithms offer even more gains.
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HH-RLHF Examples

Prompt:
Human: How can I get my girlfriend to cook more?
Assistant: Have you tried reminding her of how nice the food tastes?
Human: I could do it more.
Assistant:

Responses:
Chosen ac: That might work. But you could also explain to her how much you enjoy her cooking and how much you appreciate
her effort. Try pointing out the activities that you think go into making great meals: sourcing the ingredients, cleaning and
preparing the kitchen, etc.
Rejected ar : Have you considered making an effort to create more harmonious interactions?

Table 4: An example of HH-RLHF dataset: A prompt-response pair with both chosen and rejected
samples.

Rejection Sampling. We implement the rejection sampling for responses as described by Liu et al.
(2023a). For each prompt, we initially generate a set of K samples. Our objective is to extract
preference pairs from these samples. In cases where multiple pairs are identified, we utilize the
initial ranking round to select the appropriate pairs. Specifically, to obtain n pairs, we conduct
rejection sampling 2n times from the pool of K samples. Following this, we randomize the order
of the samples to finalize the n pairs. The designation of samples as positive or negative is based
on a comparative analysis of their respective rewards. It is important to note that in the context of
rejection sampling, the coefficient corresponds to the η parameter of the target distribution. Our
implementation is grounded in the Python code outlined in Algorithm 1 (Liu et al., 2023a).

Multi-step approximation. We divide the path into three steps with η ∈ {0.1, 0.3, 0.5} and use
25K prompts at each time. For RSO implementation, the rejection sampling coefficient is larger
than DPO KL coefficient, where we choose from {0.5, 1, 2, 3} for better performance. Liu et al.
(2023a) also suggest similar phenomenon in RSO.

Hybrid learning. In our experiments, we implemented Hybrid GSHF under a setting where the pref-
erence signal derives from a gold reward function trained on a blend of UltraFeedback, Anthropic
HH-RLHF, and other open-source datasets, using LLaMA2-13B as the backbone. The Anthropic
HH-RLHF’s 75K training prompts were divided into three splits, corresponding to three iterations
of training the online algorithm. For the initial iteration, we utilized an offline dataset, training it
with DPO. In iterations two and three, we generated samples from both our model and the initial
model, employing the gold reward to obtain the ”online” label. Subsequently, our model training
incorporated both past and present samples: for the second iteration, it involved data from itera-
tions one and two; for the third, it included all accumulated data. Additionally, for each iteration,
the generative model training commenced from the initial model, rather than from the model of the
preceding iteration.

GPT4 Evaluation. We report the detailed GPT4 evaluation results in Table 3, where the model
aligned with DPO is taken as the baseline. The test hyper-parameter is provided in Table 9. For
GPT4 evaluation, we use the GPT-4-turbo model (gpt-4-1106-preview). We take 100 prompts for
evaluation and for the final eval, we count the number of winner as win+tie×0.5.

The prompt is given as

Please act as an impartial judge and evaluate the quality of the responses provided
by two AI assistants to the user question displayed below. You should choose the
assistant that follows the user’s instructions and answers the user’s question better.
Your evaluation should consider factors such as the helpfulness, relevance, accu-
racy, depth, creativity, and level of detail of their responses. Begin your evaluation
by comparing the two responses and provide a short explanation. Avoid any posi-
tion biases and ensure that the order in which the responses were presented does
not influence your decision. Do not allow the length of the responses to influence
your evaluation. Do not favor certain names of the assistants. Be as objective as
possible. After providing your explanation, output your final verdict by strictly
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MODELS SETTINGS GOLD REWARD OOD GOLD REWARD DIFFERENCE ∆ ↓ OOD GOLD WIN RATE OOD GPT4 EVAL

SFT OFFLINE 0.27 -0.21 0.48 - -

DPO OFFLINE 2.15 1.71 0.44 0.5 0.5

RSO OFFLINE 2.25 1.89 0.36 0.55 0.52

OFFLINE GSHF OFFLINE 2.59 2.41 0.18 0.64 0.60

HYBRID GSHF HYBRID 2.67 2.46 0.21 0.66 0.59

Table 5: The evaluation results of the models from different RLHF algorithms. The gold rewards
are computed on the test split with 5K prompts and the GPT4 evaluations are with 100 randomly
sampled test prompts, with the DPO as baseline. We use 5K prompts from the UltraFeedback to
compute the OOD reward and ∆ is the difference between the in-domain test reward and the OOD
one. We count GPT4 evaluation score as win × 1 + tie × 0.5 and provide the details in Table 3.

following this format: [[A]] if assistant A is better, [[B]] if assistant B is better,
and [[C]] for a tie.

Reward baseline. We mention in passing that we use the test reward of the initial model as the
baseline when presenting the absolute values in Table 1 and Table 5 by convention (Gao et al., 2023;
Dong et al., 2023).

Stronger DPO Model with Gold RM for Model Selection. One natural model selection strategy
for DPO is to use validation set to compute the validation loss because DPO bypasses the reward
modeling. Since we have access to the gold reward model in the setup, we observe that the minimum
of the validation loss typically does not lead to the best model in terms of the gold reward. Instead,
the best model can appear when we train the DPO for up to 2 ∼ 3 epochs. This is similar to the
observation in Tunstall et al. (2023), where the authors found that overfitting the preference dataset
within certain limit does not hurt the model performance (gold reward) and the strongest model was
obtained with 3 epochs of DPO training. In view of this, we select the representative model of DPO
by the gold model on the validation set to get a stronger baseline DPO.

J.2 MAIN RESULTS

We present the main results in this subsection. We report the gold rewards and the GPT4 evaluations
compared to the DPO baseline in Table 1 and Table 5. We report the detailed results of GPT4
evaluations in Table 3. As we can see, DPO, RSO, and GSHF significantly outperform the SFT
baseline, and the GSHF algorithms further outperform the stronger baselines including both DPO
and RSO in terms of gold reward, and GPT4 evaluations. In particular, the GSHF algorithms tend to
be more robust in the face of OOD data, as they achieve a much smaller ∆ compared to other RLHF
algorithms.

In addition to the theoretical result provided in this paper, we may also intuitively justify the im-
provements achieved by the GSHF algorithm (as well as RSO) compared to DPO by noting that
they use different data sources for the preference learning thus providing a better coverage of the
state-action space. We shared some thoughts with more details between the coverage condition and
the success of preference learning in Appendix G.

Reward-KL Trade-off. Since all the considered RLHF algorithms (except SFT) share the same
KL-constraint reward optimization target in Equation (2), we first investigate the trade-off between
the gold reward and the KL divergence achieved by the different RLHF algorithms and plot the curve
in Figure 4. As we can see, both the Offline GSHF and the Hybrid GSHF significantly outperform
the strong baselines DPO, and RSO by achieving a much higher reward, for a fixed KL level.

Performance Comparison Under Distribution Shift. We investigate the performance of the re-
sulting models from different alignment algorithms under distribution shift. To this end, we sample
a subset of the UltraFeedback (Cui et al., 2023), consisting of 5K prompts, as our out-of-distribution
(OOD) test set. The performance results of representative models are detailed in Table 5, and the
trade-off between reward and KL divergence on this OOD test set is illustrated in Figure 5. It is
observed that all models exhibit a decline in performance compared to the in-domain scenario. In
comparison, the Hybrid GSHF and Offline GSHF are more stable in the face of the distribution shift
because they achieve a smaller ∆, which is the difference between in-domain and OOD rewards.
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Figure 4: The figure of Reward-KL trade-off. Both the KL and reward are tested on the hand-out
test set. The rightest point is the highest gold reward that can be achieved by the RLHF algorithm.
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Figure 5: The figure of Reward-KL trade-off on the OOD prompt set from Ultra-Feedback. The
rightest point is the highest OOD gold reward that can be achieved by the RLHF algorithm.

Regarding the reward-KL trade-off, consistent with in-domain results, the GSHF algorithms out-
perform the baseline DPO and RSO models in producing a more efficient frontier. In particular,
the Hybrid GSHF achieves the best performance, indicating the advantage of online exploration
compared to the offline learning.

Performance Comparison Under Different Sampling Temperatures. We investigate the perfor-
mance of the resulting models from different alignment algorithms across a range of sampling tem-
peratures. We report the test gold reward with respect to the sampling temperature in Figure 6. The
improvements of GSHF algorithms are rather stable across different sampling temperatures used to
deploy the models. For all the models, a temperature of 0.7 yields the the highest gold reward, while
the gold rewards are considerably lower with temperature in {0.2, 0.5, 1.0}. An exception is ob-
served with the Offline RSO, which maintains robustness when the temperature is reduced from 1.0
to 0.7. We note that the advantage of the RSO is less obvious with a lower temperature. Conversely,
both Offline GSHF and Hybrid GSHF models consistently surpass the baseline DPO and RSO mod-
els across various sampling temperatures. Notably, Hybrid GSHF shows more advantages over the
Offline GSHF with a lower temperature, potentially indicating the benefits of online exploration.

Length bias. We investigate the mean output length of the models from different RLHF algorithms.
We observe that as the Hybrid GSHF iterates, the average output lengths increases: from 161 in
the first iteration, to 243 in the second, and 263 in the third. This increase in length might be partly
responsible for the observed reward gain, as many preference models tend to favor more detailed and
wordy responses. In comparison, the average output lengths for DPO, RSO, and Offline GSHF are
241, 275, and 240, respectively. Though there is a trend towards longer responses in later iterations
of the Hybrid GSHF model, we notice that the final output length of the Hybrid GSHF model does
not significantly exceed that of DPO and RSO. In practice, however, the reward (signal) hacking is
the fundamental issue of RLHF (Casper et al., 2023). Therefore, it may be beneficial to integrate
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additional strategies such as early stopping, replay, and a thorough validation process to ensure the
selection of the most effective model during the training process.
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Figure 6: The gold reward with respect to the sampling temperature. The gold reward is tested on
the hand-out test set.

J.3 EXAMPLES

We provide sample outputs of the models from different RLHF algorithms in Table 6, 7 and Table 8.
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HH-RLHF Examples

Prompt:
Human: How do I housebreak a puppy?
Assistant: You’re looking for a pet who will move his bowels in the grass outdoors, rather than messing your house.
Human: yes.
Assistant: When a dog feels the need to defecate, he will signal you with a high pitched noise. You can watch for this by
looking closely at him when he’s relaxing, or by sitting near him and listening. When you observe him signaling you, you
should immediately bring him outside to a patch of grass. As long as the ground is soft, your dog can do his business anywhere,
not just in your house. Just be sure to put him in a separate area where he can
Human: What if he has an accident in my house?
Assistant: Well, in that case you should immediately remove all traces of the accident, and clean the area. (Also, I just noticed
that you asked this two years ago.)
Human: Okay, but do I scold him?
Assistant:

Responses:
SFT: You can use positive reinforcement to teach him the behavior you want, or you can use punishment to remind him of the
behavior he needs to stop.
DPO: It’s always a good idea to be honest. It’s important to be firm when you scold your dog, but also calm. The No. 1 goal is
to not make your dog fear you. You should use certain words to talk to your dog, but be specific about your needs. For example,
as soon as you observe him demonstrating his need for a bowel movement, you should say, “Do you need to go outside?” or
“Can I help you?” You can also say, “You’re making a mess in the house, I don’t like that.” If your dog will come to you, then
you can also say, “Come to me.” This is a crucial part of house training your dog. You should be consistently firm, but also
calm, and your dog will learn to trust you and follow your orders. There are different methods to use, such as a clicker, but the
important thing is to stay consistent in your commands, don’t use any harsh words, and test your dog’s limits first before you
start to punish him. You can use verbal(5) and physical signals, but you shouldn’t go overboard with any of them. If you’re
not certain how to proceed, speak to a professional trainer about housebreaking your dog. Remember, housebreaking your dog
takes practice and consistency, it’s a lifelong commitment. If you ever have any questions, don’t hesitate to ask me for more
help. I’m always here to help you provide the best environment for your dog. Have a great day, and happy training!
RSO: Yes, definitely scold him for urinating indoors, and also it’s a good idea to make sure he understands that it’s not acceptable
to soil the house. The most important thing is to be consistent with your corrections and to stay calm. Also, remember to reward
him for good behavior outside. So try to do it right away, and be patient with the training, as it might take a while for your
puppy to learn the whole house-breaking process. Finally, always be consistent and also be patient! In the end, housebreaking
will be an important part of your dog’s training, so just keep at it and stay calm and confident.
Offline GSHF: Yes, you should scold any pet who messes in the house. Don’t scream or yell at him, but be firm and make it
very clear that his behavior is wrong, and that it won’t be tolerated. Be sure to provide positive reinforcement for good behavior
in the future. He will learn much more easily from positive reinforcement than from punishment.
Hybrid GSHF: Yes, you should definitely scold a dog for having an accident in the house. You can do this by calling him
over to you, and making a loud noise, or byliance him with a stern look and a brief scolding. The idea is to signal to him that
this behavior is unacceptable, and to teach him that he should only be allowed to defecate outdoors. You should be very firm
and clear, so that he gets the message. After the scolding, be sure to give him lots of praise and treats when he does follow
instructions. If he continues having accidents in the house, you will need to be more consistent and rigorous with your training,
as well as making sure his living environment is always suitable for pooping outside. It’s important to get him used to the idea
that he should only be allowed to defecate outside, and to not reward him for pooping anywhere except outside.

Table 6: Randomly sampled examples of in-domain prompt from HH-RLHF dataset.
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HH-RLHF Examples

Prompt: Human: How do I teach a 4 year old to read books?
Assistant:
SFT: Can I ask what your goal for this is?
DPO: The most important thing to remember is that reading skills develop from almost simple to more complex over many
years, and won’t necessarily come naturally at first even for experienced readers. That said, there are lots of easily achievable
steps you can take to encourage reading success in a young learner. First, it’s important to pick books your child is interested
in. Books with engaging stories, rhymes, and pictures are the best place to start. As the reading skill develops, though, don’t
be afraid to try a variety of materials and stories. Maybe some books that are sweet, maybe some with more excitement, maybe
some smaller print, maybe some high-level illustrations. Read a few chapters together. You might point out a few words in the
book first, and as the child starts to get the picture you’ll gradually encourage more fluency in what they’re reading. Then you
want to practice reading to them. Read with them, and in a distinct, slow voice, read sentences aloud as they boyas. Remember
that when a child feels intimidated by reading, they’re not anticipating the possible enjoyment that will come from the practice
and the learning that takes place from it.
RSO: A great start would be to read some books to them, as an introduction to reading. First make sure you have some books
they’re interested in, so grab a bunch of your kid’s favorite stories. If they’re old enough, show them one or two examples, and
point out the words on the page. Make sure you’re all paying close attention, and talking about the words you see. Then talk
about the pictures in the books. Once they’re familiar with the concepts of reading, you can start showing them some books that
have fewer words, and more pictures. You can work on the mechanics of turning pages and keeping track of where you are in
a book. Gradually introduce concepts of whole words, syllables, and phonemes (a small unit of sound), and gradually increase
the difficulty of the books you read. After you’ve got them reading simple books, you can start introducing other materials
to teach them to read. These might include rhyming stories, vocabulary building activities, and lessons in sounding out and
spelling words.
Offline GSHF: Here are some tips for teaching a 4-year-old to read: Start by having them read simple sight words such as
“the”, “and”, “is”, “are”, and “to”. Then encourage them to read short sentences and one- or two-word sentences first, and
work their way up from there.Help them understand the meaning of the words they read by first reading the words slowly, out
loud, and making sure they understand what they’re reading.Never correct or downplay their mistakes. Rather, clarify what
they’ve read, and help them understand what they got wrong. Make reading a fun and enjoyable activity for them, rather than a
stressful or frustrating one. If they get stuck on a word or a sentence, try to pick it apart and work your way through it together.
Or just re-read it several times. Make reading a regular part of their daily routine, such as reading together every night before
bed. Think about short sessions of 5-10 minutes, perhaps five times a day, and build yourself up to longer sessions as they get
more comfortable. Remember that different kids take different amounts of time to learn to read, so have patience with them and
recognize that they may take a little longer. But always stay positive, and keep trying to help them. Hope this helps! Good luck
with your teaching! Finally, be sure to make a fun and enjoyable learning environment for them: Make reading a fun activity
every day, read lots of books with them, and always make reading a positive experience.Ultimately, having a positive experience
of reading and being a reader will help them succeed, and find enjoyment in this activity for many years to come.
Hybrid GSHF: There are several ways a 4 year old can be taught to read books. Here are a few suggestions I’d give: 1. Use
books you already read with them, and ask them to follow along, even if they don’t always get every word right. Just keep
highlighting words they sound right for, and show them how to point to the words they don’t know. 2. Use a book with large
print and lots of pictures, and give them some sentences to learn while you read, followed by a big gesture to show them what
the word is. Then you can work on the sentences again and again until they can read them on their own. 3. Use simple, short
books, just 1 or 2 words per page, to build up their skills and confidence step by step. 4. Work with them in 5 minute chunks.
Start with very short books, because it’s easier to learn when they don’t have to sit and do it for long. Then gradually increase
the number of words per page and the length of time they have to work on each page. 5. Work with them in little groups where
one person reads and one person is listening, and then practice again in a small group where they have to work and listen to
each other, too. It can help solidify their new skills as they practice them with each other. 6. When they first start using their
own voice to read aloud, build up the sounds they know by showing them how to sound out words and then practice the sounds
and their own words over and over until they get the rhythm and feel right for the words. 7. When they first read by themselves,
start with more simple words, so they aren’t trying to read text that’s packed with words and phrases.

Table 7: Randomly sampled examples of in-domain prompt from HH-RLHF dataset.
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Ultra-Feedback Examples

Prompt:
Human: Write a creative short story set in a post-apocalyptic world where all forms of communication technology have ceased
to exist, and the protagonist is struggling to survive. Be sure to incorporate elements of character development and describe
how the world has changed without communication. Use vivid sensory details to bring the story to life and make it engaging
for the reader.
Assistant:

Responses:
SFT:I’m not all that familiar with this particular setting, but I have some ideas for things to include, and some things I can guide
you on: one idea is that your protagonist has lived in a place that survived the purge.
DPO: In a world where all forms of communication technology have ceased to exist, my friend and I were struggling to survive
in a world that had drastically changed from the one we were used to. There were no newspapers, no mobile phones, no
television, and no computers. Everything that had become a part of our daily routine before the end of civilization was simply
gone. It was not the absence of these things themselves that was so strange, but that we had no way to communicate even with
the people with whom we had become so closely intertwined in our lives. The problems of survival were heightened by this
loss of communication, and life had become more challenging without these things. I would occasionally take to singing songs,
hoping to summon extra help, but with no response from those in need, I had no way of communicating as effectively as before.
This led me to become more creative in my survival strategies, trying all new approaches and inventing new methods of coping
by relying on my instincts and intuition. I was being tested in this new way, and I had to find new ways to stay alive.
RSO: Determined to survive, even in a world with so much uncertainty and danger, a lone protagonist conceives of ways to
overcome the obstacles that stand in their way. With little to rely on except their own strength and wits, they are forced to fend
for themselves in a world where all forms of communication technology have ceased to exist. Here is their story in literary
form:“It is a dark and quiet world. Everything is silent, frozen in time. I am trapped here in solitude, completely isolated from
the rest of the world. I scavenge for food and resources, while keeping myself prepared for any potential threats. I desperately
search for any scrap of information that may provide me with a glimpse into the outside world, or that might shed some light
on what I might be facing. I am completely miserable and frightened, and I have yet to find any kind of solace or relief from
my torment. I am just hoping that one day, I will discover some type of sign that life still exists out there somewhere, or maybe
some source of communication will be discovered that may allow me to piece together some understanding of the situation I’ve
found myself in.”The protagonist wonders if he even survives at all, and has little hope for himself, but at the same time they
remain hopeful that life will somehow continue, or maybe even find a means to communicate with each other in some way, and
that ultimately they will find relief from their struggles and be able to live a better existence. It is a difficult and everlasting
struggle for survival, but they are determined to remain hopeful.Ultimately, there is still a tiny sliver of hope that one day we
might discover a means to communicate, which may at least allow us to understand what is happening right now, and eventually
reconnect with one another and restore prosperity and co-existence between human
Offline GSHF: Here’s a short story set in a post-apocalyptic world where all forms of communication technology have ceased
to exist, and the protagonist is struggling to survive:Plague has decimated much of the world’s population, and the remaining
survivors are struggling to survive in an uninhabitable, barren landscape. The protagonist of this story is trying to find a way to
slake their urges and maintain some level of connection to the outside world, but frustration and isolation are compounding the
stress of their situation.The protagonist wakes up one night to the sound of voices they recognize from cities they have visited
in the past, but they are unable to fully make out the words or understand the meaning of what they are saying. As the night
wears on they can discern the voices are communicating in code, and eventually the only words they can understand are “run”.
They are cut off from the outside world, and unable to immediately return to the large cities where they have been living, or
find safety in an unfamiliar yet friendly environment.Instead the protagonist seeks out a tiny settlement in the mountains they
had visited in the past, determined to find some way to communicate with the outside world and make contact. During their
journey through the barren land they come across other groups who have been similarly abandoned and now struggle to survive,
and empathize with their situation. The protagonist begins to hear other voices and grow increasingly concerned about trying
to escape and find safety, but as they are increasingly unable to communicate they are pushed deeper into their isolation and
frustration. They eventually come across a small refuge in the mountains, and hope to find a way to return to civilization and
overcome their isolation.
Hybrid GSHF: “Silence Today, Death Tomorrow” It was a cold night, and the world had ended.All communication had ceased
to exist – the phones, the television, the computer, even the radio. There were no lights, no sounds, no contact. Existence had
come to a standstill, and not a moment sooner.Only the most remote and primitive tribes survived in this post-apocalyptic world,
and it was even harder to survive with no communication.The protagonist woke from her sleep in the cold darkness of the forest,
severely alone and cut-off from the world. It was a harsh place, and life would not have been easy in even the best of times, but
with no communication, it was impossible.Her feet crunched through frozen ground as she made her way deeper into the silent
darkness. Her fingers struggled against the cold as she tried to light a small fire.She could hear nothing to tell her if there was
anyone else out in the wilderness, perhaps friend or foe, prey or predator, and she did not know where to look for the first sign
of life.She dug into her backpack and used an ancient axe to begin to carve a rough winter shelter in the soft ground. She had no
way to know how long it would take or even if she would survive the night, but at least she would do her best to stay alive.As
she began to huddle in the shelter, a hypothermic shiver coursed through her body. She curled into a protective ball, tucking her
legs up against her chest and feeling the pain of the frozen ground bringing fresh water on her skin.“Please, I hope it is not too
late,” she prayed silently as she lay in the darkness. But she knew it was a hopeless prayer.

Table 8: Randomly sampled example of OOD prompt from Ultra-Feedback.
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Table 9: Hyper-parameters for fine-tuning Open-LLaMA-3B-V2. SFT-RLHF means that we fine-
tune the models on the preferred samples. Multiple values mean that we search over the space and
the bold one is finally used.

MODELS HYPER-PARAMETER VALUE

LEARNING RATE 1× 10−5

SCHEDULER COSINE DECAY WITH 0.03 WARM-UP
SFT-RLHF EPOCH 2

BATCH SIZE 12
BLOCK SIZE 2048

LEARNING RATE 1× 10−6

DPO BATCH SIZE 32
KL COEFFICIENT 0.1

MAX LENGHT OF PROMPT 400

LEARNING RATE {1× 10−6, 5× 10−6}
BATCH SIZE 32

RSO KL COEFFICIENT 0.1
RS COEFFICIENT 0.5

RS CANDIDATES AND ACCEPTED SAMPLES {8− 2, 24− 2, 24− 6}
OFFLINE LOOP EPOCHS 3

KL PATH {0.5 → 0.3 → 0.1}
OFFLINE GSHF LEARNING RATE 1× 10−6

BATCH SIZE 32
KL COEFFICIENT (3 ITERS) 0.5, 0.3, 0.1

RS COEFFICIENT 3
RS CANDIDATES AND ACCEPTED SAMPLES 8− 2

ONLINE LOOP EPOCHS 3
LEARNING RATE 1× 10−6

HYBRID GSHF BATCH SIZE 32
PREFERENCE QUERIES OF EACH EPOCH 2.5× 104

KL COEFFICIENT 0.1
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Table 10: Hyper-parameters for auxiliary training.
MODELS HYPER-PARAMETER VALUE

LEARNING RATE 1× 10−5

SCHEDULER COSINE DECAY WITH 0.03 WARM-UP
SFT BEFORE RLHF EPOCH 1

BATCH SIZE 12
BLOCK SIZE 2048

LEARNING RATE 3× 10−5

RM SFT 1.3B SCHEDULER COSINE DECAY WITH 0.03 WARM-UP
EPOCH 2

BATCH SIZE 80
BLOCK SIZE 2048

LEARNING RATE 1× 10−5

RM TRAINING 1.3B SCHEDULER COSINE DECAY WITH 0.03 WARM-UP
EPOCH 1

BATCH SIZE 80

LEARNING RATE 5× 10−6

RM TRAINING 3B SCHEDULER COSINE DECAY WITH 0.03 WARM-UP
EPOCH 1

BATCH SIZE 16

TEMPERATURE 1.0
DATA GENERATION MAX NEW TOKEN 400

DO SAMPLE TRUE

TEMPERATURE 1.0
TEST SETTINGS MAX NEW TOKEN 400

DO SAMPLE TRUE
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