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ABSTRACT

Simulation of spatiotemporal systems governed by partial differential equations is
widely applied in fields such as biology, chemistry, aerospace dynamics, and me-
teorology. Traditional numerical methods incur high computational costs due to
the requirement of small time steps for accurate predictions. While machine learn-
ing has reduced these costs, long-term predictions remain challenged by error ac-
cumulation, particularly in scenarios with insufficient data or varying time scales,
where stability and accuracy are compromised. Existing methods often neglect the
effective utilization of multi-scale data, leading to suboptimal robustness in pre-
dictions. To address these issues, we propose a novel multi-scale learning frame-
work, namely, the Physics-Informed Multi-Scale Recurrent Learning (PIMRL),
to effectively leverage multi-scale data for spatiotemporal dynamics prediction.
The PIMRL framework comprises two modules: the micro-scale module em-
beds physical knowledge into neural networks via pretraining, and the macro-scale
module adopts a data-driven approach to learn the temporal evolution of physics
in the latent space. Experimental results demonstrate that the PIMRL framework
consistently achieves state-of-the-art performance across five benchmark datasets
ranging from one to three dimensions, showing average improvements of over
9% in both RMSE and MAE evaluation metrics, with maximum enhancements
reaching up to 80%.

1 INTRODUCTION

In the field of natural sciences, physical systems governed by partial differential equations (PDEs)
have found widespread applications across disciplines including biology, chemistry, meteorology,
etc. (Anderson & Wendt, 1995; Blazek, 2015; Moukalled et al., 2016; Karniadakis & Sherwin,
2005; Zienkiewicz et al., 2005). Although numerical methods have been regarded as reliable tools
for modeling these systems, the use of Direct Numerical Simulation (DNS) faces significant hurdles
due to inherent limitations. DNS necessitates high spatial resolution and fine time stepping, resulting
in considerable computational demands and prolonged processing times. A case in point is the
simulation of aerodynamic flows around aircraft, which typically requires the generation of millions
of grid points, thereby imposing prohibitive computational requirements (Ahmad, 2013; Goc et al.,
2021). Moreover, these numerical simulation methods require complete physical prior knowledge,
such as PDE formula, parameters, and initial/boundary conditions (Ferziger et al., 2019).

The ongoing development of artificial intelligence (AI) has propelled research into data-driven sim-
ulation methods, showcasing significant potential (Lu et al., 2021; Li et al., 2020; Stachenfeld et al.,
2021). These methods, which do not require prior physics knowledge, offer user-friendly solutions.
They also overcome traditional constraints on resolution and small time stepping, ensuring accurate
solutions. Nevertheless, when faced with sparse data and multi-scale temporal challenges, these
methods often struggle to optimally utilize data. They may either discard micro-scale data in favor
of macro-scale data or vice versa, leading to compromised accuracy.

Multi-scale Burst sampling is a technique capturing multiple samples at a high rate over a short pe-
riod of time to record rapidly changing events or transient phenomena, e.g., fast dynamics, followed
by a low sampling rate to capture slow dynamics (see Figure 1). Compared to traditional continuous
sampling methods, it provides high-resolution data at critical moments while maintaining resource
efficiency. But conventional uniform-scale models struggle to fully utilize such data. The latent
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ODE approach (Rubanova et al., 2019) may work for multi-scale sampled data, but remains unclear
whether it can address PDE problems. There is an urgent need for a new method to handle such a
type of data for spatiotemporal systems.

𝑡:

𝜏:

Coarse-scale: Slow System

Fine-scale Fast System

0

TimeΔ𝑡
⋯ ⋯

⋯
Δ𝜏

Fine-scale:
Δ𝜏 = 𝜁𝑡Δ𝑡

Figure 1: Multi-scale sampling, where
∆τ denotes the micro-scale time inter-
val for fast dynamics, ∆t the macro-
scale time interval for slow dynamics,
and ζt the scale separation variable (typ-
ically ζt < 1 or ζt ≪ 1).

Data-driven methods face significant limitations when ad-
dressing challenges related to insufficient data and multi-
ple time scales mentioned above. To overcome these ob-
stacles, current approaches integrate physical knowledge
into the model learning process. Specifically, physics-
informed neural networks (PINNs) (Raissi et al., 2019a;
2020; 2019b) design initial and boundary conditions as
penalty terms in the loss function, thereby leveraging
physical laws in a “soft” way. However, this soft em-
bedding approach can sometimes lead to unsatisfactory
results. To some extent, the embedding methods used in
PINNs are unable to ensure that the model fully adheres
to the embedded physical conditions.

Directly embedding physical equations into the model ar-
chitecture, as seen in the physics-encoded recurrent con-
volutional neural network (PeRCNN) (Rao et al., 2023),
ensures strict adherence to the underlying physical laws. This approach addresses the issue of
soft constraints in PINNs and enhances the model’s interpretability and generalization capabilities.
However, this approach requires continuous micro-scale data, which imposes stringent demands on
the dataset and can introduce instability in long-term predictions. Alternatively, methods such as
the learned interpolation (LI) model (Kochkov et al., 2021) and multiscale simulation frameworks
(Vlachas et al., 2022) integrate numerical techniques with neural networks. These hybrid approaches
enhance simulation efficiency while maintaining acceptable accuracy, although they still have some
of the limitations inherent in traditional numerical methods.

Moreover, we observe that the error increases along with the prediction horizon, a phenomenon
that is widespread. Although existing efforts are predominantly placed on enhancing the model’s
predictive capability, long-term prediction of spatiotemporal dynamics still suffers from error accu-
mulation. Hence, properly controlling the accumulation of errors is becomes crucial. Based on this
core idea, we are motivated to leverage comprehensive multi-scale data through a novel Physics-
Informed Multi-Scale Recurrent Learning (PIMRL) framework to tackle the problems mentioned
above. This framework consists of macro-scale and micro-scale modules. The micro-scale mod-
ule, pretrained to learn the underlying physical laws, enhances the accuracy of simulations. The
macro-scale module reduces the accumulation of errors by minimizing the number of rollout itera-
tions for the micro-scale module, thereby enhancing long-term predictive performance. The main
contributions of this paper are summarized as follows:

• We proposed a new PIMRL framework that effectively leverages information from multi-
scale data for long-term spatiotemporal dynamics prediction. The concept of reducing the
accumulation of errors is achieved through the integration of the macro-scale and micro-
scale modules.

• We designed a novel message passing mechanism between micro- and macro-scale mod-
ules, which effectively transmits physical information, enhances the micro-module’s cor-
rection capability, and reduces the number of micro-scale rollout iterations through the
macro-scale module.

• The PIMRL model achieved optimal performance in effectively predicting the duration of
multiple different cases from fluid dynamics to physical systems, demonstrating its scala-
bility and laying a solid foundation for more generalizable models in the future.

2 RELATED WORK

Simulation tasks often aim to solve partial differential equations (PDEs) accurately and efficiently.
Previous researchers have developed numerical methods achieving high precision with many nodes
and short time steps. To speed up simulations, deep learning techniques have evolved from apply-
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ing conventional algorithms to designing new models that integrate physical knowledge, including
hybrid methods and models embedding physical principles.

Computational fluid dynamics. Computational Fluid Dynamics (CFD) is a branch of fluid me-
chanics that uses numerical methods and algorithms to analyze and solve problems involving fluid
flow (Anderson & Wendt, 1995; Blazek, 2015; Moukalled et al., 2016; Karniadakis & Sherwin,
2005; Zienkiewicz et al., 2005). When faced with complex problems, unacceptable time and com-
putational costs are the primary obstacles limiting the application of CFD. Moreover, when the
corresponding physical equations contain unknown parameters or even unknown terms, numerical
methods are unable to perform accurate simulations. The aforementioned methods have inspired us
to leverage physical knowledge. However, to overcome the aforementioned issues, we have decided
to introduce deep learning methods into our PIMRL framework.

Deep learning methods. With the advancement of AI, the application of AI in physical system sim-
ulation tasks has become more diverse and profound. For example, classical convolutional neural
network models (Stachenfeld et al., 2021; Bar-Sinai et al., 2019) and ResNet (Lu et al., 2018), U-Net
(Gupta & Brandstetter, 2023) what originally used for image segmentation, graph neural networks
(Sanchez-Gonzalez et al., 2020; Pfaff et al., 2020), and transformer-based models (Wu et al., 2024;
Hang et al., 2024; Janny et al., 2023; Li et al., 2024) are now being employed. Neural operators used
for learning mappings between function spaces have also seen significant development in physical
simulation tasks, such as DeepONet (Lu et al., 2021), MWT (Gupta et al., 2021), FNO (Li et al.,
2020; Tran et al., 2021; Rahman et al., 2022; Wen et al., 2022), etc. In addition, there are several
methods specifically designed for spatiotemporal prediction tasks, such as ConvLSTM (Shi et al.,
2015), PredRNN (Wang et al., 2022), and TrajGRU (Shi et al., 2017). The traditional deep learning
methods mentioned above all require sufficient data for training; insufficient data can lead to poor
model performance and severe overfitting issues. Moreover, error accumulation is another inevitable
problem that limits the application of traditional deep learning methods. These limitations restrict
the effectiveness and reliability of such models, especially in scenarios requiring long-term predic-
tions or when data is scarce. The challenges outlined above have led us to propose a framework that
effectively controls error accumulation and adeptly processes multi-scale data.

Physics-informed deep learning methods. To incorporate physical information into models, re-
searchers have devised various methods. One category includes physics-inspired methods like Phy-
CRNet (Ren et al., 2022), PINN (Raissi et al., 2019a), and PhySR (Ren et al., 2023). Another
category involves physical embedding methods, where explicit physics knowledge is embedded into
the model to fully leverage physical principles, like EquNN (Wang et al., 2020) and PDE-Net (Long
et al., 2018; 2019). PeRCNN (Rao et al., 2023; 2022) offers a “hard” encoding mechanism to
learn the dynamics of physical systems from limited data. This approach leverages prior physics
knowledge for predictions, thereby equipping strong predictive capabilities and robust generaliza-
tion across different initial conditions. However, all the aforementioned methods suffer from error
accumulation, making it difficult to obtain stable and accurate results in long-term prediction tasks.
PeRCNN effectively utilizes physical information in a way that can be leveraged within PIMRL.

Hybrid learning methods. In recent years, an emerging research direction has been to integrate
deep learning methods with traditional numerical methods. By combining classical solvers with
deep neural networks, hybrid approaches designed on this principle can achieve acceptable accu-
racy while operating faster than pure numerical methods. Examples include the Learned Interpola-
tion (LI) model (Kochkov et al., 2021) and numerical discretization learning (Zhuang et al., 2021).
However, in these hybrid methods, the numerical method component is not involved in the training
process, and such approaches also require substantial amounts of data. The pioneering work multi-
scale simulations of complex systems (Vlachas et al., 2022) employs a multi-scale framework for
predictions, effectively reducing the required time and computational cost while maintaining good
accuracy. However, this method still requires ample data for training. The idea behind hybrid learn-
ing methods is very promising, so we have introduced our own message-passing mechanism within
our PIMRL framework.

3 METHODOLOGY

We propose the PIMRL framework, as illustrated in Figure 2, for spatiotemporal dynamics predic-
tion with a small amount of multi-scale training data
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Micro-module Loop

Macro-module Loop

Figure 2: The overall framework architecture, which integrates physics-informed constraints with
deep learning.The initial state of the system is denoted by u0. The state predicted by the micro-
module after k iterations, where each iteration occurs at intervals of δt, is represented by umicro

kδt .
The predicted value of the physical state from PIMRL is denoted by û.

3.1 PARTIAL DIFFERENTIAL EQUATIONS SIMULATION TASK

Simulation tasks are intimately connected with PDEs, which are essential for describing and simu-
lating physical models, and the time-dependent PDEs are defined as:

ut = F(t, x,u,∇u,u · ∇u,∇2u, · · ·;µ), (1)

where u(x, t) denotes the spatiotemporal solution field, ut the first-order time derivative, F(·) a
linear/nonlinear function, ∇ the Nabla operator, ∇2 the Laplace operator, and µ the PDE parameter.

In addition, we define the initial and boundary conditions (ICs, BCs) for this equation, namely:
I[u](x, t = 0) = 0 and B[u](x, t) = 0 where I and B indicate IC and BC operators.

3.2 OVERVIEW

As outlined in the introduction, we have designed the PIMRL framework to mitigate error accu-
mulation while ensuring that it can effectively capture the intrinsic changes in the physical system,
rather than disregarding the physical information over large time intervals. Additionally, PIMRL is
capable of efficiently utilizing multi-scale data. Below, we will provide a detailed exposition of the
PIMRL framework’s architecture, the corresponding training methodologies, the macro and micro
modules, as well as the boundary padding method that incorporates boundary conditions.

3.3 FORECASTING ARCHITECTURE

As shown in Figure 2, the PIMRL framework comprises two key components: the micro-scale
module and the macro-scale module. The message-passing mechanism is an interaction between
the micro-module and the macro-module. The information transmitted includes physical knowledge
learned by the micro-module and corrections applied to the macro-module. Additionally, the macro-
module also passes information to future iterations of the micro-module.

PIMRL is designed to achieve long-term prediction of spatiotemporal dynamics. PIMRL operates
in a recursive manner, involving cycles at the micro-module level, the macro-module level, and the
overall framework level. Only the output from the macro-module contributes to the final output of
the PIMRL framework and is used to compute the loss for training the entire framework, whereas
the output from the micro-module serves as intermediate variables within the framework. And the
message-passing mechanism is described as follows:
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Figure 3: PIMRL includes two main modules: (a) the micro-module, designed to capture local fea-
tures and small-scale dynamics; and (b) the macro-module, which captures long-term dependencies
and global patterns using residual connections.

• Firstly, the micro-module loop is a simple autoregressive process with time step δt, where
the output at the previous time step serves as the input for the next time step. Secondly, the
macro-module loop performs self-cycles.

• When the micro-module is involved in the prediction, for every k steps of micro-module
with δt like Equation 3, the final output of micro-module is passed to the macro-module,
and at this point, the output from the macro-module serves as the output of the entire
PIMRL model shown as Equation 4. When the micro-module is not involved in the predic-
tion, the macro-module loop is a simple autoregressive process with time step ∆t.

• Finally, there is a PIMRL loop that operates in conjunction with the macro-module loop.
After every N − 1 cycles of the macro-module loops, the micro-module stops participating
in the prediction, and the macro-module performs N steps of autoregressive prediction on
its own. This completes a total of 2N cycles. Each output from the macro-module during
these 2N cycles serves as the output of PIMRL as depicted in Equation 2.

We utilize two equations to represent the relationship between the micro-scale module and the
macro-scale module, denoted as Fmicro and Fmacro respectively, as illustrated in Figure 2. The
details of this process can be represented using the aforementioned symbols as follows:

PIMRL Loop: ût+2N∆t = Fmacro(...Fmacro︸ ︷︷ ︸
×N

(ût+Nkδt)), (2)

Macro-module Loop: umicro
kδt = Fmicro(...Fmicro︸ ︷︷ ︸

×k

(ut)), (3)

Macro-module Loop: ût+2kδt = Fmacro(u
micro
kδt ), (4)

where the variable u denotes the physical state. The relationship between the micro-time step δt and
the macro-time step ∆t is given by ∆t = kδt, where k is an adjustable parameter determined by the
time stepping of different scales in the real data.

3.4 TRAINING STRATEGIES

Since the PIMRL model consists of micro- and macro-scale modules, adopting brute-force end-to-
end training yields unsatisfactory results (see the ablation study). Firstly, we establish a pre-training
phase where only the micro-module is trained. The purpose of this pre-training phase is to enable the
micro-module to effectively learn the dynamics of the physical system and the underlying physical
laws, free from the influence of the macro-module. In the next phase, referred to as the overall
training phase, all modules within the PIMRL framework are engaged in training together. During
this phase, the micro-module benefits from the parameters pre-trained in the pre-training phase,
serving to supervise and correct the macro-module. The output from the macro-module serves as
the final output of the entire PIMRL framework and is used to compute the loss. The details are
shown in Appendix C.1.

3.5 MICRO-SCALE MODULE

The micro-scale module is designed to learn underlying physical laws that govern the spatiotemporal
dynamics from micro-scale data with small time stepping, where we adopt the PeRCNN model (Rao

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

et al., 2023) with the architecture of Π-block shown in Figure 3(a). In a forward Euler scheme:
u(k+1)δt = F̂(ukδt) · δt + ukδt, where δt denotes that the module predicting in micro-scale time
stepping. We can then approximate the F by F̂ described as follows:

F̂(ukδt) =

Nc∑
c=1

Wc ·

[
l=1∏
Nl

(Kc,l ⋆ ûkδt + bl)

]
. (5)

where Nc denotes the channel count, and Nl the total number of parallel convolutional layers. The
symbol ⋆ denotes the convolutional operation. For each layer l and channel c, Kc,l designates the
specific filter weight, while bl stands for the bias term of that layer l. In the context of a 1 × 1
convolutional layer, Wc denotes the weight assigned to the cth channel, with the bias term being
omitted here for the sake of simplicity and brevity.

When a certain term in the governing PDE remains known (e.g., the diffusion term ∆u), its dis-
cretization can be directly embedded in PeRCNN (called the physics-based Conv layer as shown
in Figure 3(a)). The convolutional kernel in such a layer can be set according to the corresponding
finite difference (FD) stencil. In essence, the physics-based Conv connection is constructed to in-
corporate known physical principles, whereas the Π-block is aimed at capturing the complementary
unknown dynamics. The details of the physics-based FD Conv are provided in Appendix B.

3.6 MACRO-SCALE MODULE

The design of the macro-scale module, as a pivotal component of the PIMRL framework, is metic-
ulously crafted to effectively manage and analyze macro-scale data. This type of data often poses
unique challenges due to the substantial time spans it encompasses, which in turn lead to significant
variations in the underlying physical states captured within the data points. These variations might
be highly nonlinear and dynamic, making it difficult for traditional, physically motivated modeling
methods to accurately capture all the nuances and complexities involved. As depicted in Figure 3,
our macro-scale module utilizes ConvLSTM block with a residual connection. The structure of each
block, illustrated in Figure 3(b), consists of a pair of encoders and decoders, along with a ConvL-
STM cell shown in Appendix Figure S3. The input to this block undergoes mapping by the encoder,
where the feature map serves as the characteristic of the latent space. Following this, the ConvL-
STM cell simulates the dynamics, and the output is mapped back to the physical space through the
decoder. Finally, the output, as a residual, is added to the feature from the previous time step to
generate the prediction for the next time step. More details are provided in Appendix C.1.

3.7 BOUNDARY CONDITION PADDING

Padding NodesInternal Nodes

Figure 4: Periodic BC padding.

Inspired by PeRCNN (Rao et al., 2023), we introduce BC
hard encoding in both micro-scale and macro-scale modules.
This encoding method ensures that the feature maps comply
with the given BCs during the convolution process while also
serving the purpose of padding, which involves filling the
feature maps before convolution operations. Specifically, in
this paper, our case adheres to periodic BCs, and the appli-
cation of the corresponding padding is illustrated in Figure 4.
This encoding scheme ingeniously incorporates BCs into the
padding, thereby enhancing the accuracy of the prediction.

4 EXPERIMENTS

To validate the effectiveness and versatility of our proposed PIMRL framework, we conducted ex-
tensive experiments on a diverse set of fluid dynamics and reaction-diffusion systems equations.
Specifically, we tested our model on the following cases: the 1D Korteweg-de Vries (KdV) equation,
the 2D Burgers equation, and three reaction-diffusion (RD) equations. These equations represent a
range of physical phenomena with varying degrees of complexity and nonlinearity. Our results show
that PIMRL consistently outperforms existing methods in terms of accuracy and robustness across
these challenging cases.
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Figure 5: An overview of the comparison between our PIMRL framework and baseline models is
provided, including error propagation curves (left), error boxplots (middle), and final prediction plots
(right). Figures (a) through (e) respectively showcase the qualitative results for the KdV, Burgers,
2D GS, FN, and 3D GS cases.

Datasets. We conducted experiments on five datasets, including: Korteweg-de Vries (KdV), 2D
Burgers, FitzHugh-Nagumo (FN), 2D Gray-Scott (2D GS), and 3D Gray-Scott (3D GS). The IC for
the Kdv equation is created by summing multiple sine waves with random amplitudes, phases, and
frequencies, resulting in a complex waveform. ICs for the Burgers’ equation are generated randomly
according to a Gaussian distribution. The FN equation is initialized with random Gaussian noise for
a warm-up period, after which time sequences are extracted to form the dataset. The GS equation
starts the reaction from random initial positions and then diffuses. In these cases, except for the
Kdv case, which was solved using the Finite Volume Method (FVM), the rest were solved using
the Finite Difference Method (FDM). Additionally, We have two sets of data with different time
scales originating from the same ICs. The micro-scale data Umicro = {u0,uδt,u2δt · · · ·} ∈ Rmicro is
characterized by short and scattered continuous time intervals, while the macro-scale data Umacro =
{u0,u∆t,u2∆t ····uTend} ∈ Rmacro exhibits persistent continuity until the end. The validation and test
sets are established based on different ICs but with the same parameters, making it more challenging
than extrapolation under the same ICs. The dataset configuration is presented in Appendix G.

Model training. The primary objective is to first pretrain the micro-scale module using the micro-
scale data to learn the underlying physics. Subsequently, the pretrained micro-scale module is
integrated into the overall framework, and the entire model is trained using macro-scale data to
capture the spatial evolution patterns over long time stepping. Both the pretraining and training
processes can be formulated as auto-regressive rollout problems. The loss function is defined as
L(θ) = 1

BN

∑B
i=1

∑N
j=1(yi,j − ŷi,j)

2, where the B and N denote the number of batches and the
batch size. The θ indicates all the trainable parameters and (yi,j − ŷi,j) means the difference be-
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tween the rollout-prediction ŷi,j of j-th sample in the i-th batch and the corresponding labeled data
yi,j . More training details are shown in Appendix E.

Baseline models. To validate the effectiveness of the proposed PIMRL framework, we introduced
several baseline models. Firstly, we considered the widely recognized high-performing data-driven
model FNO (Li et al., 2020), which has been trained on datasets with two different time inter-
vals, denoted as FNO (trained on fine-scale data with small time steps) and FNO-coarse (trained on
coarse-scale data with large time steps). In particular, we examined the impact of cumulative error
on long-term predictions. Our results show that the influence of error accumulation is significant.
Detailed analysis is provided in Section 4.1. Secondly, we included the PeRCNN model (Rao et al.,
2023), which embeds physical knowledge in a hard way and demonstrates excellent performance on
multiple datasets. Due to constraints on the time stepping of the model, PeRCNN is trained only on
datasets with small time stepping. Lastly, we incorporated ConvLSTM (Shi et al., 2015), a classic
sequential prediction model trained on datasets with large time stepping, serving as the macro-scale
module within our framework in a residual way. The details are shown in the Appendix E.

Evaluation Metrics. To comprehensively evaluate the performance of our model, we adopted sev-
eral metrics: Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and High Correction
Time (HCT). These metrics provide a multi-faceted assessment of the model’s accuracy and reliabil-
ity. RMSE is calculated on the macro-scale data to facilitate comparisons between models operating
at different granularities. MAE provides a measure of the average absolute difference between the
predicted and actual values,less sensitive to outliers compared to RMSE. HCT evaluates the time
it takes for the model to correct its predictions to a high level of accuracy, which is particularly
important for long-term prediction. Detailed formulas for these metrics are provided in Appendix F.

4.1 MAIN RESULTS
Table 1: Quantitative results of our model and baselines.

Case Model RMSE ↓ MAE ↓ HCT (s) ↑

KdV

ConvLSTM 5.8507 7.6036 9.6
FNO 0.4891 0.3300 0.45

FNO-coarse 0.5461 0.4167 7.8
PeRCNN 0.0942 0.0941 30

PIMRL(Ours) 0.0457 0.0607 46.2
Promotion (↑) 51.5% 35.5% 54.0%

Burgers

ConvLSTM 0.4020 0.3232 0.176
FNO 0.1561 0.1301 0.104

FNO-coarse 0.1094 0.0879 0.064
PeRCNN 0.0075 0.0058 3.216

PIMRL(Ours) 0.0068 0.0049 3.216
Promotion (↑) 9.3% 15.6% 0%∗

FN

ConvLSTM 0.5077 0.4925 1.86
FNO 937 2393980 1.65

FNO-coarse 0.1878 0.1643 4.98
PeRCNN 0.1591 0.1139 6.99

PIMRL(Ours) 0.1349 0.0990 7.74
Promotion (↑) 15.2% 13.1% 10.7%

2DGS

ConvLSTM 15.7559 13.7966 195
FNO NaN NaN 810

FNO-coarse 0.0884 0.0629 1335
PeRCNN 0.0455 0.0268 1379.5

PIMRL(Ours) 0.0133 0.0072 1965∗

Promotion (↑) 70.8% 73.1% 42.5%

3DGS

ConvLSTM 0.2081 0.2009 562.5
FNO 0.2798 0.1950 112.5

FNO-coarse 0.1042 0.0611 360
PeRCNN 0.0532 0.0977 510

PIMRL(Ours) 0.0381 0.0190 731.25
Promotion (↑) 28.4% 80.6% 43.4%

Figure 5 illustrates the performance re-
sults of our framework in comparison
with various baseline models across
different cases, including error propa-
gation, showcasing box plots of differ-
ent quantities and their prediction out-
comes. Additionally, Table 1 presents
relevant quantitative metrics as an ex-
pression of the results, where ∗ in Ta-
ble 1 indicates that the inference pro-
cess has reached the end of the test data.

KdV Equation. The KdV equation de-
scribes the evolution of nonlinear wave
phenomena. In this study, due to the
absence of one-dimensional instances
in the PeRCNN model, we designed
our own physical embedding module
and corresponding model, following
the principles of PeRCNN as detailed
in Appendix B. We observed signifi-
cant discrepancies between the predic-
tions of the PeRCNN model and the
ground truth, as shown in the blue box
of Figure 5(a). Meanwhile, the other
baseline models performed poorly at
the start, likely due to the complexity
of the KdV equation. In contrast, our
proposed model demonstrated substan-
tial advantages over the baseline mod-
els in terms of predictive accuracy. It maintained a consistent basic shape with the ground truth
values, even in long-term forecasts. As shown in Table 1, the PIMRL framework achieved 30% to
50% improvements in the evaluation metrics, highlighting a significant advancement in the field.
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2D Burgers Equation. On the right side of Figure 5(b), we observe that besides our framework,
only PeRCNN achieved satisfactory results after training on the micro-scale, while the remaining
baseline models failed to capture the physical changes effectively. Additionally, in the areas marked
by the blue box in Figure 5(b), we can see errors in PeRCNN’s predictions for long-term forecasts,
whereas our PIMRL framework demonstrates superior performance, as also visually depicted in
Figure 5(b). In the error propagation shown in Figure 5(b), we notice that although initially our
framework exhibits higher RMSE compared to the PeRCNN model due to the macro-scale module,
the accumulated errors lead to inaccurate predictions by PeRCNN over time. While PeRCNN and
PIMRL exhibit the same performance on the HCT metric, this similarity arises from insignificant
changes in the later stages. The cumulative error of PeRCNN does not reflect in this particular met-
ric. As shown in Table 1, there are significant improvements in both RMSE and MAE. Additionally,
the noticeable divergence of PeRCNN can be observed in the snapshot of the final step.

2D FitzHugh-Nagumo Equation. In the Figure 5(c), we can observe that the purely data-driven
method mentioned earlier fails to fully exhibit its original performance on this relatively small
dataset. FNO and FNO-coarse represent the effectiveness of the FNO method when trained on
datasets of different granularities, respectively. It is worth noting that the performance of FNO-
coarse surpasses that of the FNO model trained on micro-scale data. This result effectively validates
our hypothesis that error accumulation can significantly impact the model’s performance in long-
term multi-step predictions. Quantitatively, our model has improved by at least 10% compared to
the currently best-performing model. Furthermore, in the Table 1 we observe that the variation
curves of RMSE and other metrics for our model and the PeRCNN model exhibit a striking similar-
ity, yet our model outperforms PeRCNN. This not only indicates that PeRCNN effectively leverages
its supervised refinement capabilities but also demonstrates its ability to mitigate the influence of
cumulative errors through the evolution of larger time stepping.

2D Gray-Scott Equation. As shown in the left part of Figure 5(d), only PIMRL effectively carried
out long-term predictions, showcasing a clear demonstration of the cumulative errors of PeRCNN
in this case. The model exhibited significant deviations from ground truth values over extended pe-
riods, highlighting its limitations in capturing long-term variations. Among the other models, FNO-
Coarse exhibited the best performance. It is evident that FNO performed poorly in the absence of
physically informed embeddings, particularly with small time stepping. In this case, Table 1 further
validates the superior performance of PIMRL with both RMSE and MAE showing an improvement
of over 70%, and the HCT similarity of PIMRL still at 0.99 at the final prediction step. This under-
scores the effectiveness of the PIMRL framework in enhancing predictive accuracy and maintaining
consistency in the predictions throughout the forecasting process. Such robust performance metrics
highlight the potential of PIMRL in addressing complex data-driven challenges.

3D Gray-Scott Equation. As shown on the right side of Figure 5(e), the predictions under our
framework closely align with the ground truth. Through box plots and error evolution graphs, it
is evident that PeRCNN, as the best-performing model among the baselines in our study, outper-
formed the other models lacking physical knowledge embeddings, especially when compared to
FNO trained on the same dataset. In quantitative analysis of Table 1, the improvements are also
significant, not only in the overall evaluation metrics of RMSE and MAE in 28.4% and 80.6% but
also in the substantial growth of the HCT in 43.4%.

4.2 ABLATION STUDY
Table 2: Results for ablation study.

Model RMSE

PIMRL w/o Connect 0.1975
FNO-MRL 0.7854
PIMRL w/o Pretraining 0.2599
PIMRL w/o Physics-based FD Conv 0.1738
PeRCNN w/o Physics-based FD Conv NaN

To evaluate the impact of components of PIMRL
and demonstrate the effectiveness of our frame-
work structure, we have designed five novel mod-
els and provided their RMSE results in the FN
case. (1) The ablation study with the “PIMRL
w/o Connect”, where the connections between
the micro-module and the macro-module are re-
moved, is designed to demonstrate the effectiveness of the PIMRL framework’s structural design.
This experiment, which leaves only the serial structure of the two modules, shows that the con-
nections within the PIMRL framework are essential for its performance. (2) The “FNO-MRL”
replaces the micro-scale module containing physical information, PeRCNN, with the data-driven
model FNO, aiming to validate the efficacy of the physical embedding in the micro-scale module

9
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within our framework. (3) “PIMRL w/o Pretraining” provides a perspective on the training method
by eliminating the pretraining step for the micro module. In this ablation study, the absence of
pretraining leads to inferior performance compared to the PIMRL. This demonstrates that directly
introducing large time intervals for training can deprive the micro module of the opportunity to learn
fine-grained changes, similar to why PeRCNN cannot be directly used with large time intervals. (4)
“PIMRL w/o Physics-based FD Conv” indicates the removal of the Physics-based FD Convolution.
This ablation study emphasizes the effectiveness of the Physics-based FD Conv by showing the
performance degradation when it is omitted. (5) “PeRCNN w/o Physics-based FD Conv” is a ver-
sion of PeRCNN without the Physics-based Finite Difference (FD) Convolution. While this version
can initially make relatively accurate predictions, the errors accumulate over subsequent iterations,
eventually becoming unacceptably large.

The five ablation studies conducted not only validate the effectiveness of the interaction design by
removing the connection mechanisms but also highlight the contribution of our proposed connection
approach. Additionally, by substituting the micro-modules with non-physics-embedded data-driven
models, the experiments confirm the efficacy of the physics-embedding within our PIMRL frame-
work. Subsequent pre-training ablation experiments and the removal of the Physics-based FD Conv
further substantiate the effectiveness of the corresponding methods and modules.

4.3 INFERENCE TIME
In

fe
re

nc
e 

tim
e 

co
st

 (s
)

KdV Burgers 2DGS FN 3DGS
Equations

Figure 6: Computational time for comparison

In the aforementioned cases, PIMRL not only
achieves state-of-the-art performance in long-
term predictions but also significantly reduces
the computational time cost. Compared to
traditional methods such as Direct Numerical
Simulation (DNS), our framework is substan-
tially faster, demonstrating a significant im-
provement in computational efficiency (given
the same computing facility, aka, CPU). Addi-
tionally, PIMRL not only delivers superior pre-
dictive accuracy, but also outperforms PeRCNN in terms of computational efficiency. The numerical
methods used for DNS are consistent with the parameter settings during data generation. The differ-
ence lies in the required prediction time length, which needs to be the same as that of PIMRL and
PeRCNN for a fair comparison.

5 CONCLUSIONS

This paper introduces a new multi-scale temporal model named Physics-Informed Multi-Scale Re-
current Learning (PIMRL) for prediction of spatiotemporal dynamics. Adhering to the idea of con-
trolling cumulative error by reducing iterations, PIMRL integrates modules across different scales
within its framework to realize this concept, and it can efficiently leverage multi-scale data, which
facilitates learning physical laws with limited resources. From fluid dynamics to reaction-diffusion
systems, PIMRL demonstrates superior performance in handling multi-scale data, providing accu-
rate long rollout predictions. Our future work will optimize the macro-scale model for time-series
tasks to improve computational efficiency and predictive accuracy. We also plan to integrate super-
resolution techniques to enhance the model’s adaptability to various spatiotemporal scales, broad-
ening its application to more complex physical systems.
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Joel H Ferziger, Milovan Perić, and Robert L Street. Computational methods for fluid dynamics.
springer, 2019.

Konrad A Goc, Oriol Lehmkuhl, George Ilhwan Park, Sanjeeb T Bose, and Parviz Moin. Large
eddy simulation of aircraft at affordable cost: a milestone in computational fluid dynamics. Flow,
1:E14, 2021.

Gaurav Gupta, Xiongye Xiao, and Paul Bogdan. Multiwavelet-based operator learning for differen-
tial equations. Advances in neural information processing systems, 34:24048–24062, 2021.

Jayesh K Gupta and Johannes Brandstetter. Towards multi-spatiotemporal-scale generalized pde
modeling. Transactions on Machine Learning Research, 2023.

Zhou Hang, Yuezhou Ma, Haixu Wu, Haowen Wang, and Mingsheng Long. Unisolver: Pde-
conditional transformers are universal pde solvers. arXiv preprint arXiv:2405.17527, 2024.
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APPENDIX

A IMPACT STATEMENT

The paper endeavors to devise a adaptable framework that expedites simulations and predictive
analyses of physical systems by utilizing multi-scale temporal data. This framework harmoniously
integrates data-driven methodologies with physics-informed principles, striking a delicate balance
between empirical insights and theoretical underpinnings in its application. The framework can
be widely applied in various research fields including material science, turbulent flow prediction,
chemical engineering, and so forth.Our research is exclusively conducted for the pursuit of scientific
objectives and does not entail any potential ethical concerns or risks.

B DESIGN OF THE PHYSICAL FILTER

In the one-dimensional problem KdV, the original paper of PeRCNN did not provide the correspond-
ing model design. Following their concept, we present the corresponding physical filter.

fxxx =
−fi−2 + 2fi−1 + 0fi − 2fi+1 + fi+2

2h3
(S1)

As shown in the Figure S1, we designed a Physical-Filter to represent ∂3u
∂x3 in the KdV equation. This

1 2 3 4 5 6 7 8 1 27 8

0

Physical-Filter

Sliding

 Boundary Padding

Feature Map

Physical Filter

Figure S1: Filter for KdV

approach leverages the inherent physical properties of the system to accurately model the third-order
spatial derivative, thereby enhancing the accuracy and efficiency of the numerical solution. Among
the parameters, h indicates the ∆x in the cases. The Boundary Padding is an approach to adapt
to periodic boundary conditions by replacing the original zero padding with a periodic boundary
padding.

C IMPLEMENTATION DETAILS

C.1 OVERVIEW

The overview of the PIMRL framework, which includes a pretraining stage using micro-scale data
for physics-informed Learning and the utilization of a micro-module, informed by learned physics
knowledge, to correct the macro-module during training on macro-scale data.

In the main body of this paper, we have elaborated on the architectures at the micro and macro
scales. Within the macro-scale module, there are components including an encoder, a decoder, and a
Residual Long Short-Term Memory (ResidualLSTM). The following section will provide a detailed
exposition of their configuration specifics.

C.2 ENCODER AND DECODER

In our framework, the autoencoder is employed not for the purpose of minimizing reconstruction
loss. Instead, the encoder is utilized to extract features, while the decoder serves to project the
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Physics-informed multi-scale recurrent learning framework

Micro-scale

data

Macro-scale data

Micro-scale module

Pretrain
MS

Macro-scale module

MS MS MS

Training the whole framework

Parameter sharing

Micro-scale moduleMS

Multi-Scale Data

Micro-scale Learning Macro-scale Learning

Physics-informed Learning

Figure S2: Overview of the PIMRL framework, which includes a pretraining stage using micro-
scale data for physics-informed Learning and the utilization of a micro-module, informed by learned
physics knowledge, to correct the macro-module during training on macro-scale data.

output of ConvLSTM into the physical space as residuals. The primary goal of the autoencoder in
this context is to map an input to a low-dimensional latent space, and subsequently decode it to the
original dimension at the output, facilitating the feature extraction and residual projection processes
in the framework.

C.3 RESIDUALLSTM

The structure of ResidualLSTM has been clearly illustrated in the main text. Here, we will elucidate
the architecture of the ConvLSTMcell as the Figure S3.

Figure S3: ConvLSTMCell
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ci = σ(Wxi(xt) + Whi(ht−1))

cf = σ(Wxf (xt) + Whf (ht−1))

cc = cf · c+ ci · tanh(Wxc(xt) + Whc(ht−1))

Ct = σ(Wxo(xt) + Who(ht−1))

ht = co · tanh(cc)

(S2)

The set of equations S2 presented above outlines the operations of a ConvLSTM cell. The equa-
tions involve computations of various gates and states within the cell, including input gate ci, forget
gate cf , cell state cc, output Ct, and the updated hidden state ht. These equations govern the flow
of information and transformations within the ConvLSTM cell, enabling the model to process spa-
tiotemporal data efficiently by considering spatial dimensions in the calculations. The parameters
Wxi, Whi, Wxf , Whf , Wxo, and Who, depicted in Figure S3, manage information from inputs
(xt) and history (ht−1,Ct−1) in a convolutional manner.

D BASELINE MODELS

In order to compare and evaluate the performance of our proposed method, we have trained multiple
state-of-the-art (SOTA) baseline models as well as classical models, and compared them with our
model. The introductions to each baseline model are presented below, while the training details are
outlined in subsequent sections E.

Fourier Neural Operator (FNO). FNOLi et al. (2020) is a method that combines Fourier trans-
forms with neural networks. This approach comprises two main components. The first component
involves performing Fourier transforms on the system state quantities, learning certain information
in the frequency domain, and then applying an inverse transform. The second component utilizes
convolutions to process the system state quantities, complementing the information not captured
during the frequency domain learning. The combination of these two components serves as the final
result. We make two FNO models sharing the same architecture, which training in micro and macro
scale datasets respectively and inferring in micro and macro time intervals. In the same model, we
conducted training separately for two types of data, resulting in FNO and FNO-coarse.

ConvLSTM. ConvLSTM (Shi et al., 2015) is a specialized neural network architecture that com-
bines convolutional and LSTM layers to effectively model spatial and temporal dependencies in
sequential data.

PeRCNN. PeRCNN (Rao et al., 2023) represents a physics-informed learning methodology, em-
bedding physical laws directly into the neural network architecture. It incorporates multiple parallel
convolutional neural networks (CNNs), leveraging the simulation of polynomial equations through
feature map multiplication. By doing so, PeRCNN augments the model’s extrapolation and gener-
alization capabilities.

E TRAINING DETAILS

All experiments were conducted on a single 80GB Nvidia A100 GPU, using an Intel(R) Xeon(R)
Platinum 8380 CPU (2.30GHz, 64 cores). We only give some of the changed parameters here, and
the other hyperparameters remain the same as the original text.

PIMRL. The architecture of the PIMRL model, illustrated in Figure 3, utilizes the Adam optimizer
with a learning rate of 5 × 10−3. The model have different parameters in different cases. More
details were given by Table S2.

Additionally, we implement the StepLR scheduler to adjust the learning rate by a factor of 0.98
every 200 epochs. The pretraining details is same to the baseline model PeRCNN.

FNO and FNO-coarse. The network structure of FNO remains largely in line with the original
study, with the primary adjustment being the adoption of an autoregressive training method for this
model. We employ the Adam optimizer with a learning rate of 1× 10−3. More details are shown in
the Table S8 and Table S9.
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ConvLSTM. For ConvLSTM, we implement the ConvLSTM architecture like the macro-scale mod-
ule of PIMRL. The StepLR scheduler is utilized with a step size of 200 and a gamma value of 0.98.
The optimizer of choice is Adam, featuring a learning rate set at 1× 10−3. More details are shown
in the Table S10.

PeRCNN. For PeRCNN, the training is different from the original paper since the micro-scale data
only get a few pairs of continuous data. It is impossible to train PeRCNN in 400 to 800 steps at the
same time. The details were shown in Table S5. We employ the Adam optimizer with learning rate
of 1× 10−3 and the StepLR scheduler to adjust the learning rate by a factor of 0.98 per 200 epochs.

F EVALUATION METRICS

In this paper, we have adopted some classical evaluation metrics such as RMSE, MAE and HCT.
Root Mean Square Error (RMSE) quantifies the average error magnitude between estimated and
actual values, serving as a gauge of the model’s precision. Conversely, Mean Absolute Error (MAE)
assesses the average absolute disparity between anticipated and observed values, denoting the true
scale of discrepancies.

The definitions of these metrics are as follows:

RMSE (Root Mean Square Error):

√√√√ 1

n

n∑
i=1

(yi − ŷi)2

MAE (Mean Absolute Error):
1

n

n∑
i=1

|yi − ŷi|

HCT (High Correction Time):
N∑
i=1

∆t · 1(PCC(yi, ỹi) > 0.8)

(S3)

In the above equationsS3, n represents the number of trajectories, yi represents the true value, and ŷi
represents the predicted value of the model. The PCC is the Pearson correlation coefficient, which
is a statistical metric used to measure the linear correlation between two variables.

G DATASET INFORMATIONS

The IC for the Kdv equation is created by summing multiple sine waves with random amplitudes,
phases, and frequencies, resulting in a complex waveform. Initial conditions for the Burgers’ equa-
tion are generated randomly according to a Gaussian distribution. The FN equation is initialized
with random Gaussian noise for a warm-up period, after which time sequences are extracted to form
the dataset. The GS equation starts the reaction from random initial positions then diffuses.

Table S1: Summary of experimental settings for different cases.(The 3D GS case is downsampled
from 963 to 483 during training)

Case Numerical Methods Spatial Grid Time Grid Training Trajectories Test Trajectories

Kdv FVM 256 0.01s 5 2
Burgers FDM 1282 0.001 13 3
FN FDM 1282 0.5 5 3
2DGS FDM 1282 0.002 2 3
3DGS FDM 963 0.25 3 2

Korteweg-de Vries Equation. The Korteweg-de Vries system, which elucidates the evolution of
waves in nonlinear wave phenomena, can be described by the equation:

∂u

∂t
= −u

∂u

∂x
− ∂3u

∂x3
(S4)
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We got the 8 sets of data: 5 for training, 1 for validation, and 2 for testing. The data sets had spatial
domain size x ∈ [0, 64], where ∆t is 15 times δt and δt = 0.01s.

2D Burgers Equation. The 2D Burgers’ equation is commonly employed as a benchmark model for
comparing and evaluating different computational algorithms, and describes the complex interaction
between nonlinear convection and diffusion processes in the way like:

∂u

∂t
= −uux − vuy + ν(uxx + uyy), (S5)

∂v

∂t
= −uvx − vvy + ν(vxx + vyy). (S6)

The ut and vt is the fluid velocities and ν denotes the viscosity coefficient. In this case, we choose
ν = 0.005 and the spatial domain size x ∈ [0, 1], where ∆t is 8 times δt and δt = 0.001s.

2D FitzHugh-Nagumo Equation.The FitzHugh-Nagumo system can be described by the equation:

∂u

∂t
= µu∆u+ u− u3 − v + α, (S7)

∂v

∂t
= µv∆v + (u− v)β. (S8)

The coefficients α = 0.01 and β = 0.25, governing the reaction process, take distinct values, while
the diffusion coefficients are µu = 1 and µv = 100. In terms of time, ∆t = 15δt and δt = 0.002s.

2D and 3D Gray-Scott Equation. The Gray-Scott equations describe the temporal and spatial
variations of chemical concentrations in reaction-diffusion systems, which can be described by the
equation:

∂u

∂t
= Du∇2u− uv2 + F (1− u), (S9)

∂v

∂t
= Dv∇2v + uv2 − (F + k)v. (S10)

Here, in the two-dimensional case, Du and Dv represent the diffusion coefficients of the two sub-
stances, with specific values of Du = 2.0 × 10−5 and Dv = 5.0 × 10−6. F = 0.04 denotes the
growth rate of the substance, while k = 0.06 signifies its decay rate. In the 2D Gray-Scott case,
we got 5 trajectories for training, 1 trajectory for validation and 3 trajectories for testing, where
∆t = 15δt and δt = 0.5s. In the three-dimensional case, we have the parameters: DA = 0.2,
DB = 0.1, F = 0.025, and k = 0.055. We got 3 trajectories for training, 1 trajectory for validation
and 2 trajectories for testing, where ∆t = 15δt and δt = 0.25s.

Table S2: Training Details of PIMRL.
Case Batchsize Num of epochs
KdV 512(all) 5000
Burgers 8 5000
2DGS 4 5000
FN 32 8000
3DGS 16 8000

H SUPPLEMENT RESULTS
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Table S3: The Result of U-NO, F-FNO, MWT and FNO in the FN Case.
Metrics U-NO F-FNO MWT FNO
RMSE 0.3675 0.2280 0.3494 0.1878
MAE 0.1465 0.1350 0.2228 0.1634

Table S4: Results with Error Bar under RMSE metric on all Cases.
Model PIMRL PeRCNN
Kdv 0.0457± 0.0053 0.0942± 0.0082
Burgers 0.0068± 0.0006 0.0075± 0.0008
2DGS 0.0133± 2.4× 10−12 0.0455± 1.9× 10−11

FN 0.1349± 0.0040 0.1591± 0.0061
3DGS 0.0381± 0.0015 0.0532± 0.0027

Table S5: Training Details of PeRCNN.
Case Batchsize Num of epochs Steps
KdV 512(all) 1000 45
Burgers 32 1000 16
2DGS 32 1000 45
FN 36 1000 45
3DGS 32 1000 45

Table S6: Comparison of RMSE and MAE for different cases.
Case RMSE MAE

FN 0.2803 0.2482
2DGS NaN NaN

Table S7: Running Time, Parameter Size, and GPU Memory for PIMRL, U-NO, MWT, FNO, and
ConvLSTM

Model Running Time Parameter Size GPU Memory
PIMRL 9 s 3.33 M 1728 M
U-NO 7 s 15.29 M 2320 M
MWT 12 s 0.09 M 1732 M
FNO 2 s 8.39 M 1580 M
ConvLSTM 5 s 3.32 M 1708 M

Table S8: Training Details of FNO.
Case Batchsize Num of epochs Steps
KdV 512(all) 1000 45
Burgers 32 2000 16
2DGS 32 2000 45
FN 36 2000 45
3DGS 32 2000 45
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Table S9: Training Details of FNO-coarse.
Case Batchsize Num of epochs
KdV 512(all) 5000
Burgers 32 5000
2DGS 32 5000
FN 32 8000
3DGS 16 8000

Table S10: Training Details of ConvLSTM.
Case Batchsize Num of epochs
KdV 512(all) 5000
Burgers 8 5000
2DGS 4 5000
FN 32 8000
3DGS 16 8000
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