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ABSTRACT

Many animals possess a remarkable capacity to rapidly construct flexible cogni-
tive maps of their environments. These maps are crucial for ethologically relevant
behaviors such as navigation, exploration, and planning. Existing computational
models typically require long sequential trajectories to build accurate maps, but
neuroscience evidence suggests maps can also arise from integrating disjoint ex-
periences governed by consistent spatial rules. We introduce the Episodic Spa-
tial World Model (ESWM), a novel framework that constructs spatial maps from
sparse, disjoint episodic memories. Across environments of varying complexity,
ESWM predicts unobserved transitions from minimal experience, and the geom-
etry of its latent space aligns with that of the environment. Because it operates on
episodic memories that can be independently stored and updated, ESWM is inher-
ently adaptive, enabling rapid adjustment to environmental changes. Furthermore,
we demonstrate that ESWM readily enables near-optimal strategies for explor-
ing novel environments and navigating between arbitrary points, all without the
need for additional training. Our work demonstrates how neuroscience-inspired
principles of episodic memory can advance the development of more flexible and
generalizable world models.

1 INTRODUCTION

When visiting a new city, we quickly piece together scattered memories—an alley passed on a walk,
a glimpse of a landmark from a taxi—into a mental map that lets us navigate, explore, and plan. This
ability to build a coherent model of the world from fragmented experiences, and to use it flexibly
for imagining new routes or outcomes, is a core feature of human intelligence that is fundamental
to planning, problem-solving, and decision-making, all of which are crucial for survival (Bennett,
2023).

How do humans achieve this extraordinary feat? Insights from neuroscience and psychology provide
compelling evidence for the neural mechanisms underpinning this capacity. One pivotal discovery
is the dual role of a key brain area called the medial temporal lobe (MTL) in both spatial represen-
tations and episodic memories. Individual neurons within the MTL exhibit spatial selectivity, firing
in response to specific locations (O’Keefe, |1976; Hafting et al.,|2005), while collectively forming a
population code that represents an animal’s instantaneous position in space (Wilson & McNaughton,
1993)). In parallel, MTL plays a critical role in the formation of episodic memories, enabling the
rapid acquisition of associations between arbitrary stimuli (Howard & Eichenbaum), 2015). Strik-
ingly, lesions to this area result in profound deficits: individuals lose not only their ability to explore
and navigate effectively (Kimble, |1963)) but also their capacity to form episodic memories (Scoville
& Milner, [1957)) and imagine novel scenarios (Hassabis et al., 2007). These converging findings
strongly suggest that the MTL constructs structured relational networks, integrating overlapping
episodic memories into a cohesive framework (Eichenbaum) 2004; McKenzie et al., [2014). This
mechanism may underlie a flexible and adaptive world model, allowing for inferences about spatial
relationships beyond immediate perception.

Despite these insights, most prior computational approaches to world modeling have relied on learn-
ing from continuous sequences of recent observations and actions (Ha & Schmidhuber;, 2018} |Hafner
et al.| 2019; [Whittington et al.,2020; |[Levenstein et al., 2024} Bar et al.,[2025)), fixed hand-designed
circuitry for representing and updating spatial information (Wang et al., | 2023; Chandra et al., 2025
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Kymn et al.,[2024), allocentric observations |[Khan et al.|(2018)), and iterative update procedures that
hinders their ability to quickly adapt to environmental changes(Wang et al.l |2023; (Chandra et al.,
2025} |Stachenfeld et al., [2017). These models are typically trained on large datasets collected from
a given environment, with knowledge encoded in their weights. While effective in certain con-
texts, such approaches face inherent limitations. For instance, agents may encounter different parts
of an environment at widely separated times, visit states along arbitrary and unrelated trajectories
that do not form continuous sequences, or experience environments that undergo structural changes
(Fig.[T). These challenges hinder the ability of sequence-based models to generalize effectively in
environments where observations are disjoint and episodic.

This raises a key question: Can a neural network rapidly construct a coherent spatial map of the
environment using only sparse and disjoint episodic memories? Drawing inspiration from the neu-
roscience of memory and navigation, we introduce the Episodic Spatial World Model (ESWM),
a framework designed to infer spatial structure from independently acquired episodic experiences.
ESWM meta-trains the model to predict unseen transitions from a sparse set of one-step transitions
(referred to as the memory bank) sampled across diverse environments. This is in contrast with
conventional world models in two ways: 1) ESWM does not require sequential observations for
predictions—the memory bank can contain transitions from completely different episodes. This is
crucial in large environments where a single walk spanning all locations might be long and therefore
computationally expensive to process. In comparison, ESWM’s memory bank can be constructed to
contain only the useful transitions. 2) Each transition in the memory bank can be stored and updated
independently. As a result, ESWM can rapidly adapt to environmental changes (e.g, addition of
obstacles) by simply editing a handful of transitions that are related to that change (see Section4.6).

Our main contributions are: 1) We introduce ESWM, a framework that models spatial environments
from sparse, episodic transitions. 2) We show that ESWM’s latent space forms a geometric map
reflecting the environment’s topology, which dynamically adapts to new memories and structural
changes like obstacles. 3) Finally, we demonstrate that this learned model enables near-optimal,
zero-shot exploration and navigation in novel environments without any task-specific training.
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Figure 1: Episodic Spatial World Model. a) Three common scenarios that hinder the ability of
typical world models to generalize effectively. (top) Observation of the full environment may take
many time steps leading to long sequences; (middle) Specific parts of the environment may be
changed dynamically; (bottom) Information about a particular environment may be collected across
separate exposures to the environment and not within a single one. b) Memory bank and query
selection in a square grid environment. ¢) Architecture of ESWM and training procedure. Model
input consists of a bank of transitional memories (corresponding to the black arrows in (b)) and a
single query (q arrow in (b)), with either start-state, action, or end-state randomly masked with equal
chances. The sequence of transitions is processed by a sequence model (e.g, Transformer encoder
block) and the model parameters are updated to output the correct value for the masked component.
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2 RELATED WORKS

2.1 WORLD MODELS

Humans excel at forming abstract representations of spatial and temporal information from ego-
centric observations and action, enabling efficient interaction with complex, dynamic environments.
Inspired by this cognitive ability, prior work in artificial intelligence, particularly in reinforcement
learning (RL) (Sutton, [2018), has explored world models to improve sample efficiency and plan-
ning effectiveness (Hafner et al.l 2023 Schrittwieser et al.| [2020; |[Unterthiner et al.| 2018)). World
models forecast future outcomes based on past and present states (Ha & Schmidhuber, [2018). In
spatial settings, agents have been trained to predict future sensory observations following arbitrary
actions (Stachenfeld et al., 2017; [Whittington et al.| [2020; [Levenstein et al.| 2024) while in vision,
methods such as image reconstruction (Watter et al., |2015}; |Alonso et al., [2024) and video predic-
tion (Kaiser et al.,2019; |Gupta et al., 2022) enable simulation of future frames or latent dynamics.
These approaches have demonstrated success in domains such as video games (Hafner et al.| 2020;
Schrittwieser et al., [2020; |[Kaiser et al., 2019) and robotic control tasks (Gupta et al., [2022} |[Ebert
et al.,[2018)).

More recently, the emergence of transformer architectures (Vaswani et al.| [2017) has opened new
possibilities for improving world models. Recent works such as TWM (Robine et al.| 2023),
STORM (Zhang et al., |2024), and IRIS (Micheli et al., |2022) have leveraged transformers-based
world models to improve performance on sample-limited benchmarks like Atari 100k. However,
unlike our proposed model, these models train extensively on a single environment and absorb the
knowledge about that environment in the model’s weight.

Most notably, the Tolman-Eichenbaum Machine (TEM) (Whittington et al., [2020; 2022) has been
proposed as a model of medial temporal lobe function, meta-trained across diverse environments to
predict unseen transitions from episodic experiences. TEM factorizes sensory and structural infor-
mation. The shared structure is encoded in a recurrent network weights, while environment-specific
observations are stored in Hebbian-slot-memory or self-attention module. Despite these similarities,
important distinctions separate TEM from our proposed ESWM. First, TEM presupposes a common
structural template across environments (e.g, an open 2D grid), whereas ESWM does not. Second,
unlike TEM, ESWM does not embed structural knowledge in its weights but instead infers it dy-
namically from external memories, enabling it to capture distributions of environments with varying
structures (e.g, a set of 2D mazes) where TEM fails (Fig. [2). Finally, while TEM operates over
sequential trajectories, ESWM integrates disjoint experiences, making it more sample-efficient and
better suited to rapid adaptation, such as handling newly introduced obstacles.

2.2 NAVIGATION AGENTS

The concept of cognitive map, an internal allocentric representation of the space, |O’keefe & Nadel
(1978)) has been thought to enable navigation and spatial reasoning. Several studies have demon-
strated that similar spatial representations emerge in neural networks trained on navigation tasks
(Gornet & Thomson, 2024)). For example, Banino et al.|(2018)) and |Cueva & Wei|(2018) showed that
spatial representations arise in recurrent neural networks trained for path integration, while in paral-
lel, neural networks lacking explicit mapping modules have achieved high performance on naviga-
tion tasks in unseen environments (Wijmans et al.l[2019; Reed et al.} 2022} Khandelwal et al., 2022}
Shah et al.| 2023)). Wijmans et al.| (2023) recently showed that spatial representations can emerge in
navigation-agnostic neural network architectures trained for navigation, emphasizing memory’s role
in shaping these spatial representations. This raises a key question: Can spatial maps also emerge
in general-purpose models not explicitly trained for navigation?

3 METHODS

3.1 EPISODIC SPATIAL WORLD MODEL

Formally, our Episodic Spatial World Model (ESWM) is a function f that takes as input a memory
bank M and a partially masked transition ¢, and predicts the complete transition ¢*:

q = f(M,q) (D
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We define an episodic memory as a one-step transition in a spatial environment, represented by the
tuple (ss, a, s.)—denoting the source state, action, and end state, respectively. For each environ-
ment, we construct a memory bank M as an unordered set of such transitions, constructed to be:
Disjoint, transitions do not form a continuous trajectory; Spanning, the transitions collectively form
a connected graph covering all locations; Minimal, removing any transition would disconnect the
graph (Fig. [Ib). However, Minimality is not required for training ESWM but is imposed in the grid
environment to prove that the absolute minimum information is sufficient to construct a functional
spatial map (see Fig. [/| for results on non-minimal memory banks). We algorithmically generate
such memory banks to sparsely cover each environment (Extended Methods [A.3). Importantly, a
single room may yield multiple valid memory banks, enabling our meta-training setup.

We formulate spatial modeling as the ability to infer any missing component of an unseen but plau-
sible transition g—that is, a query transition not present in M (Fig.[Ib). The task is to predict the
masked element (either s, a, or s.) of g, given the other two and the memory bank M (Fig. E}:).

To train ESWM, we adopt a meta-learning approach where on each trial (i.e. sample), we randomly
sample: (1) An environment e (though random assignment of states to locations); (2) A disjoint
memory bank M from e; (3) A plausible query transition ¢ from (e \ M); (4) A masking choice
(randomly masking s;, a, or s.). This process prevents the model from memorizing any specific
environment since the state-location mapping is randomized across trials (i.e, the model cannot
simply memorize that state 5 is at top-left because 5" could be at top-right the next trial), and
our environments (Open Arena, Random Wall; detailed below) contain an intractable amount
of configurations (> 1033, see Extended Methods Fig. .

3.2 MODEL SELECTION AND TRAINING

We considered three neural network architectures for f, 1) Encoder-only transformer with no posi-
tional encoding(Vaswani et al., [2017), ESWM-T, 2) long short-term memory (LSTM) (Hochreiter,
& Schmidhuber, [1997), ESWM-LSTM, and Mamba (Gu & Daol [2024), ESWM-MAMBA. Each
transition component (s, a, s.) is projected separately into a shared high-dimensional space and
averaged to form a single input token.

Each model receives as input the concatenated sequence of randomly-permuted memory bank em-
beddings and query embeddings, treating each embedding (i.e. each transition) as a distinct input
token (Fig.[Ib). The LSTM and Mamba model receives a sequence of tokens that start with M/ and
end with the query token. Three separate linear heads read out the model’s prediction on the three
parts (ss, a, Se )4 from the final layer’s last token. We use cross-entropy loss between predicted and
actual states and actions. Equal weight is assigned to each prediction (ss, a, S¢). Training is done
over 460k iterations with a batch size of 128 and a cosine learning rate schedule.

A spatial world model that assumes complete memory coverage is rather constrained. Instead, it
should reason over partial observations. To achieve this, we create trials where some memories are
deliberately removed. The model is expected to solve queries within observed regions and classify
unsolvable ones (e.g., transitions involving unobserved regions) under an additional “I don’t know”

category (Fig.2p).

3.3 MODEL EVALUATION

We evaluate ESWM under two settings of varying complexity:

1. 2D grid environments: We evaluate ESWM in a family of discrete, hexagonally structured grid
environments (Extended Method{A.Z). Each location in the grid environment is assigned an
integer-valued observation, drawn from a predefined set of states. An environment is uniquely
defined by its mapping from states to spatial locations, allowing us to generate a vast number
of distinct rooms by randomly shuffling this mapping—critical for our meta-learning objective.
The hexagonal layout allows for six possible actions per location, offering richer connectivity
than traditional square grids. We design two types of environments to test generalization: (1)
Open Arena to evaluate generalization to unseen states and; (2) Random Wall to evaluate
generalization to unseen structures.
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* Open Arena: Each room consists of 19 locations and 64 possible state values. These
states are represented compositionally as 6 binary bits (Fig.[2h), enabling us to train and test
ESWM on mutually exclusive sets of states (e.g, train on odd states and test on even states).
For action prediction, the model performs 6-way classification (one for each action). For
source and end state prediction, the task is broken into six independent binary classification
problems—one for each bit. This setup forces it to build representations that support spatial
reasoning even in environments filled with previously unseen but compositionally generated
state observations.

e Random Wall: To test for generalization to unseen structures, this environment features
larger rooms (36 locations) with unique integer states and a randomly shaped wall of ob-
stacles (Fig. Zb). During testing, the model must generalize to novel wall configurations
and state-location mappings. The prediction task is 6-way classification for actions and 36-
way for states. We simplified the observations to integers to focus the task on inferring the
environment’s underlying structures.

2. MiniGrid environments: We used MiniGrid (Chevalier-Boisvert et al., |2023) to create environ-
ment layouts of size 9 x 9 with egocentric multi-dimensional observations and actions (Fig. [8).
Each state consist of an egocentric 5 x 5 view of the environment containing non-unique col-
ored objects. The agent takes one of three egocentric actions: turn left, turn right, go straight.
Each procedurally generated environment is assigned a random color layout and wall pattern.
The model has to self-localize based on partial egocentric views of the environment experienced
from varying head directions, and the memory bank consists of episodic memories that collec-
tively cover the room, with partial overlap across observations to enable memory integration.

4 RESULTS

4.1 MODELING SPATIAL ENVIRONMENTS FROM EPISODIC MEMORIES

We first assessed ESWM on its core ability to predict missing elements of unseen transitions given a
set of memories from an environment and a partially observable query. In both settings, we consider
a closely related sequence-based model TEM-T as a baseline (Whittington et al.,2022). Instead of a
set of disjoint memories, TEM-T receives a spanning trajectory as the memory bank and is queried
to predict an unseen transition at the end of the trajectory. To enable fair comparison, the spanning
trajectory is generated to be minimal (Extended Methods [A3).

Models
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Figure 2: Evaluation accuracy in a) Open Arena and b) Random Wall. In both schematics, blue
arrows are transitions in the memory bank and the g-labeled arrows are examples of query transitions
g = (Ss,a,5s.). In Open Arena, the states are represented as 6-bit binaries and the model is tested in
environments entirely filled with unseen states, while in Random Wall, the states are integers and
the model is tested on its generalizability to unseen wall patterns. In addition, a random subregion
is masked in Random Wall and the query ¢ can be either unsolvable, unseen, or seen, depicted as
g-labeled arrows with different colors. The Random Wall displayed here is a scaled down version
of what the model is trained on (19 v.s 36 locations). ”-T” is short for Transformer.

We found a stark contrast between the model types in Open Arena setting (Fig.[Zh). The ESWM-
T model excelled at learning this task while ESWM-LSTM and ESWM-MAMBA models struggled
to reach above chance on this task for both training and testing. This suggests that the attention
mechanism in Transformer architectures—reminiscent of classic content-addressable memory mod-
els (Kanerva, |1988)—plays a key role in learning generalizable world models from episodic mem-
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Figure 3: Spatial map emerges in ESWM’s latent space. a), b) ISOMAP projections of ESWM-
T-2L’s activations for action prediction. Different columns are the same projection from different
viewing angles. a) Spatial map in the absence of obstacles and b) in the presence of obstacles (a
straight wall). ¢), d) ISOMAP projections of ESWM-T-14L’s activations. ¢) From left to right: A
sample room with two disjoint regions (i.e, there is no memory connecting them) whose shapes
match boundaries’ shape; ESWM'’s latent space when a memory bank observing either the top or
bottom region is given as input; ESWM’s latent space when a memory bank observing both regions
is given as input. d) From left to right: A sample room containing two disjoint regions whose shapes
give no cues about their relative position; ESWM'’s latent space when a memory bank of the room
is given as input; Updated room with a new wall, the regions remain disjoint; ESWM’s latent space
when a memory bank of the updated room is given as input. See Fig. [0} [T0} [TT} [T2] [T3] for more
examples.

ories. However, simpler, hand-engineered memory-lookup mechanisms like those in |[Coda-Forno
et al| (2022a) fail on this inference task (Fig. [I6), highlighting the need for learnable attention-
based mechanisms. Moreover, we also show that ESWM-T can also model spatial environments
when trained on inputs distributions that lack the Minimality constraint (Fig. [7). In addition, the
sequence-based transformer model TEM-T, while outperforming non-transformer ESWM models,
still significantly underperforms relative to the transformer ESWM-T, highlighting the advantage of
directly inferring from episodic memories, rather than segregated encoding of structure and mem-
ories. Furthermore, while ESWM-T clearly improves with larger model size, the performance in
larger TEM-T models significantly degrades (Fig. 2h-b).

In the second scenario, the Random Wall, we found that all ESWM models are capable of learn-
ing the task (Fig. 2p). Although, there was a substantial gap between transformer-based models
and other models, even with equal number of parameters (LSTM-4L, T-2L, and MAMBA-5L). This
showed that ESWM learned a general strategy for modeling an environment from sparse and disjoint
episodic memories, enabling it to generalize across environments with different structures. Consis-
tent with our prediction, TEM-T fails at modeling the set of environments with varying structures.
This underscores the importance of direct structural inference from memories rather than encoding
it in the model’s weights.

Finally, we also considered environments with duplicate observations. In the absence of historical
context, one-step transition prediction prevents the model from disambiguating between duplicate
states. However, this limitation can easily be overcome by prepending a trajectory, serving as con-
text, to the query. To show this, we train ESWM-T in environments with duplicated states and find
that it is capable of solving the task in both Open Arena and Random Wall (see Fig.[6).

4.2 SPATIAL MAPS EMERGE ROBUSTLY WITHIN ESWM’S LATENT SPACE

To simulate an unseen transition, ESWM must integrate disjoint memory fragments into a coher-
ent internal map that reflects both observed states and obstacles. Inspired by low-dimensional,
environment-like neural manifolds in rodents’ MTL |Nakai et al.|(2024), we applied ISOMAP Tenen-
baum et al] (2000) (Extended Methods [A.6) to ESWM’s latent space. The resulting manifolds re-
vealed that ESWM consistently organizes its internal representations to mirror the spatial layout of
each specific environment.

In obstacle-free environments, the manifold adopts a smooth, saddle-like shape (Fig. [3h). When
obstacles are introduced, they create localized discontinuities that correspond precisely to blocked
regions in physical space (Fig. Bb). This structure is remarkably robust and persists under out-of-
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distribution obstacle shapes (Fig. 0] [I0), partial observation of environments (Fig. [TI), across ar-
chitectures (LSTM, Transformer, Mamba; Figs, and throughout all transformer layers, which
become progressively more continuous with depth (Fig. [[3). All prediction tasks (ss, a, s.) yield
similar maps (Fig. [ITh). In the presence of disjoint memory clusters with unclear spatial relations,
ESWM pieces its fragmented internal representation into a coherent map by aligning them along
the inferred wall shapes or boundaries’ shapes (Fig. [3c,d; Additional Analysis [B.I)). Quantitatively,
path lengths in latent and physical spaces correlate strongly (B? = 0.89, Npyt = 1500, Neny = 75;
Fig. [I5p), and a linear classifier on ESWM activations can accurately discriminate which of two
states is farther from a reference state with 93.42 4+ 0.006% accuracy (chance = 50%, Ngeeq = 10;
Extended Methods[A.7).

Notably, such structured spatial representations do not emerge in episodic agents trained for navi-
gation, such as Episodic Planning Network (EPN; Ritter et al. (2020)), despite being trained with
meta-RL on the same environments and data as ESWM (Fig. 9} [10} Appendix [E).

4.3 ESWM INTEGRATES OVERLAPPING MEMORIES

We ran several experiments to test whether ESWM truly retrieves the information scattered across
its memory bank. First, we find that ESWM’s prediction uncertainty—measured by entropy of its
output distribution probability—increases with the length of the integration path needed to solve a
query (Fig.[4p). Second, we found that introducing shortcut memories that reduce this path length,
significantly alters the prediction distribution (independent two-sample t-test; n = 5000, p < 0.001;
Fig.@b). Third, we find that ESWM trained in size-19 environments can generalize to substantially
larger environments of size 37 in Open Arena, achieving lower, but still well-above-chance pre-
diction accuracy (ss: 59%, a: 90%, s.: 55%)— unlikely if the model had simply memorized patterns.
Lastly, ESWM’s performance improves with denser memory banks (i.e. increasing memory bank
size), despite being out-of-distribution in Random Wall (Fig. @k). Altogether, these results sug-
gest that ESWM indeed builds coherent spatial representations by integrating overlapping episodes.
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Figure 4: ESWM integrates memories. a) X-axis is the shortest path length between the source
and end states in the query, with edges corresponding to episodic memories in the memory bank, and
the Y-axis is the entropy of ESWM’s prediction probabilities (n=5000). b) KL divergence between
ESWM prediction distributions before and after adding an episodic memory to the memory bank.
An informative episodic memory shortens the integration path required for the model to solve the
prediction task, while a non-informative episodic memory does not (n=5000). ¢) Prediction accura-
cies for unseen transistions as ESWM receive larger, out-of-distribution, memory banks (n=2000).
ESWM-T-14L is used for a) and b) while ESWM-T-4L is used for c).

4.4 EXPLORATION IN NOVEL ENVIRONMENTS

So far, we have assumed that ESWM has access to informative episodic memories. However, an-
imals actively acquire such memories through exploration. The ability to rapidly map out novel
environments—identifying obstacles, rewards, and threats without prior knowledge—is critical for
survival. We show that ESWM enables autonomous exploration in unfamiliar spaces without any
additional training.

We designed a simple exploration algorithm based on ESWM’s “I don’t know” predictions (Alg[2).
Starting with an empty memory bank, the agent evaluates all possible actions at each step by query-
ing ESWM. It selects the action with the highest predicted uncertainty (i.e., highest “I don’t know”
probability) and adds the resulting transition to memory. When ESWM is confident about all im-
mediate actions, the agent performs multi-step lookahead by unrolling the model to identify frontier
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states with low prediction confidence (Yamauchi, [1997). A prediction is deemed unconfident if
ESWM ceither outputs “I don’t know” or assigns < 80% probability to the predicted outcome.

Interestingly, the agent adopts an efficient zig-zag exploration strategy, only revisiting states when
separated by long paths. In the Random Wall environment, ESWM explores 16.8% more unique
states than EPN (one-way ANOVA; n = 1000, F' = 2803.63, p < 0.05; Tukey’s HSD post hoc test:
ESWM > EPN, p < 10~3), and achieves 96.48% of the performance of an oracle agent with full
obstacle knowledge (Fig. Bh, Fig. [I4). When exploration continues until memory reaches the max
length seen during training, ESWM visits on average 91 & 2% of all unique states (n¢,;q;s = 1000).
Moreover, the collected memory banks allow ESWM to predict s, a, s with 97%, 93%, 98% of the
accuracy of those achieved using procedurally generated memory banks (n = 1000). Together, these
results highlight ESWM’s ability to support data-efficient, near-oracle exploration and mapping in
novel environments.
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Figure 5: Exploration, navigation, and adaptability. a) Comparison of exploration strategies
based on the number of unique states visited over 15 time steps in Random Wall. The optimal
agent explores along the path found by the Traveling Salesman Algorithm over known free space.
N=1000. b) Comparison of navigation success rate and path optimality over path lengths between
EPN and ESWM, n=2400. ¢) Comparison of navigation success rates with increasing number of
unexpected obstacles. The baseline agent is trained on the original environment and tested after
structural changes, while ESWM navigates with memory banks from the original environment and
needs to autonomously adapt to changes (n=100). Random Wall Experiments include 19 locations.

4.5 NAVIGATING WITH MINIMAL SPANNING EPISODIC MEMORIES

A key benefit of a world model is the ability to plan by simulating trajectories. We test this capabil-
ity by using the memory-bank-equipped ESWM for planning in the Random Wall environment.
The task is to find a path from a source state Syource t0 @ goal state Sgoq using only the current ob-
servation and the episodic memories in the memory bank, without access to global information like
coordinates or a complete map of obstacles.

Our planning strategy relies on ESWM’s ability to infer the end state of any given transition. Ini-
tialized at a state, an agent can imagine multiple steps into the future by querying ESWM on the
consequences of all applicable actions, bootstrapping on ESWM’s own predicted end states, and
tracking visited states until the goal state is reached (Alg[I). Then the agent can act out the imag-
ined sequence of actions in reality.

Using this strategy, an ESWM-based navigational agent can navigate between arbitrary states in
Random Wall with 96.8% success rate and 99.2% path optimality, outperforming EPN Ritter et al.
(2020) by 18% and 21% respectively (Fig.[5p) (one-sided independent t-test; n=2400: ESWM>EPN
on optimality; p < 10~?). Navigation is successful if the agent reaches the target within 15 time
steps, and path optimality is defined as the ratio between the shortest and actual path length. We
also include a variant of such an algorithm in the appendix (Additional Analysis that biasedly
considers the action that shortens the geodesic distance to the target on ESWM'’s latent spatial map,
demonstrating how structured latent spaces in world models can serve as efficient heuristics for
planning.

It is important to emphasize that the navigation success primarily stems from the high-fidelity world
models constructed by ESWM using minimal memory (requiring 4x fewer memories than EPN),
rather than from the planning algorithm itself. Thus, the key finding is not that a classic search
algorithm can outperform an RL agent, but that a world model learned from such sparse, disjoint
data is accurate enough to enable it to do so.
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4.6 ESWM ENABLES FAST ADAPTATION TO CHANGES

Unlike traditional world models that embed environment knowledge in their weights, ESWM de-
couples memory from reasoning. This separation makes ESWM inherently adaptable to changes:
when the environment changes, no retraining is needed—only the external memory bank is updated.
Because ESWM operates on sparse, independent one-step transitions, targeted edits to memory are
straightforward. We demonstrate this flexibility in a dynamic navigation task. After introducing sub-
stantial changes—such as new obstacles—an ESWM agent continues to navigate between arbitrary
states with a 93% success rate (Fig. E}:).

The adaptive agent works as follows: Given a (possibly outdated) memory bank M, it plans a path
from Sggar tO Sgoal (Section . During execution, it compares predicted observations with actual
ones. When mismatches occur (indicating environmental changes), the agent removes outdated
transitions (where s or s, match the predicted observation from M), prompting exploration (Section
to fill the gaps. After acquiring new transitions, the agent replans with the updated memory.

ESWM'’s adaptability significantly surpasses both EPN and a baseline RL agent trained specifically
for the original environment (see Extended Methods for baseline details). For example, after
adding a new wall consisting of multiple contiguous obstacles, ESWM maintains a 93% naviga-
tion success rate, whereas EPN and the baseline drop to 72% and 56% respectively (see Fig. [Bt).
Unsurprisingly, the baseline agent fails to form any structured latent spatial map.

4.7 SCALING TO EGOCENTRIC SETTINGS

In the previous sections, we focused on simple grid environments, where episodic memories are
transitions between integer observations via allocentric actions (e.g., go north), to examine how
ESWM behaves under various scenarios. To test ESWM’s scalability, we next evaluate it in Mini-
grid (see Section3.3), a more complex scenario with egocentric high-dimensional observations and
actions. In this setting, ESWM continues to exhibit strong predictive performance (Fig. [8|top-right)
while constructing coherent internal map representations (Fig. 8| bottom) that adapt to the environ-
ment structure. To adapt ESWM to MiniGrid, its operation on a discrete bank of transitions remains
unchanged, and we only adjusted the encoding function for observations and actions and the read-
out function for generating the predictions to match those in this environment (Extended Methods
[A-T). These results demonstrate ESWM’s scalability to more complex, purely egocentric settings,
positioning ESWM as a compelling model of the cognitive map.

5 DISCUSSION

In this work, we introduced ESWM, a neural network model that can rapidly construct a coherent
spatial world model from sparse and fragmented one-step transitions. ESWM exhibits strong spatial
reasoning and supports downstream tasks like exploration and navigation—even without explicit
training for them. Unlike prior models that rely on fixed circuitry for spatial representation (Wang
et al.| [2023; |Chandra et al., 2025} [Kymn et al., 2024), ESWM learns both representation and up-
date mechanisms directly from experience. It encodes new memories in a single shot, avoiding the
iterative parameter tuning required by earlier approaches (Wang et al., 2023} |Chandra et al., 2025
Stachenfeld et al.,2017). By storing transitional memories instead of state-observation pairs (Whit-
tington et al., [ 2020; Coda-Forno et al., 2022bj; |Whittington et al., [2022), ESWM also adapts quickly
to environmental changes, such as the addition or removal of obstacles—an area where many exist-
ing models struggle.

A limitation of this work is that ESWM is evaluated in settings that greatly simplify the complex
sensory inputs and egocentric motion cues processed by humans— a gap we leave for future work.
Another limitation is the use of highly controllable environments, which allowed us to scale up
the training and control different aspects of the environment and data freely. Future work could
explore extending this approach to more realistic settings with natural, complex sensory informa-
tion. Although theoretical, our work has potential societal impacts in autonomous navigation and
exploration, highlighting the need for safe, ethical, and responsible deployment (see Section [F).
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6 REPRODUCIBILITY STATEMENT

We provide detailed descriptions to ensure the reproducibility of our work. These include training
details (Extended Methods data generation pipeline (Extended Methods -[A4), baseline
implementations (Extended Methods [A.5] [A.8] Section [E), methods of analysis (Extended Methods

[A7), and algorithm pseudo codes (Section D).

REFERENCES

Eloi Alonso, Adam Jelley, Vincent Micheli, Anssi Kanervisto, Amos Storkey, Tim Pearce, and
Francois Fleuret. Diffusion for world modeling: Visual details matter in atari. arXiv preprint
arXiv:2405.12399, 2024.

Andrea Banino, Caswell Barry, Benigno Uria, Charles Blundell, Timothy Lillicrap, Piotr Mirowski,
Alexander Pritzel, Martin J Chadwick, Thomas Degris, Joseph Modayil, et al. Vector-based
navigation using grid-like representations in artificial agents. Nature, 557(7705):429-433, 2018.

Amir Bar, Gaoyue Zhou, Danny Tran, Trevor Darrell, and Yann LeCun. Navigation world models,
2025. URL https://arxiv.org/abs/2412.03572.

Max Bennett. A brief history of intelligence: evolution, Al, and the five breakthroughs that made
our brains. HarperCollins, 2023.

Sarthak Chandra, Sugandha Sharma, Rishidev Chaudhuri, and Ila Fiete. Episodic and associative
memory from spatial scaffolds in the hippocampus. Nature, 638(8051):739-751, February 2025.
ISSN 1476-4687. doi: 10.1038/s41586-024-08392-y. URL https://www.nature.com/
articles/s41586-024-08392-y. Publisher: Nature Publishing Group.

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo Perez-Vicente, Lucas Willems,
Salem Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld: Mod-
ular & customizable reinforcement learning environments for goal-oriented tasks. In Advances in
Neural Information Processing Systems 36, New Orleans, LA, USA, December 2023.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder
for statistical machine translation, 2014. URL https://arxiv.org/abs/1406.1078.

Julian Coda-Forno, Changmin Yu, Qinghai Guo, Zafeirios Fountas, and Neil Burgess. Lever-
aging Episodic Memory to Improve World Models for Reinforcement Learning. https:
//memari-workshop.github.io/papers/paper_3.pdf, 2022a. [Accessed 09-05-
2025].

Julian Coda-Forno, Changmin Yu, Qinghai Guo, Zafeirios Fountas, and Neil Burgess. Leveraging
Episodic Memory to Improve World Models for Reinforcement Learning. NeurlPS MemARI
Workshop, 2022b.

Christopher J Cueva and Xue-Xin Wei. Emergence of grid-like representations by training recurrent
neural networks to perform spatial localization. arXiv preprint arXiv:1803.07770, 2018.

Frederik Ebert, Chelsea Finn, Sudeep Dasari, Annie Xie, Alex Lee, and Sergey Levine. Visual fore-
sight: Model-based deep reinforcement learning for vision-based robotic control. arXiv preprint
arXiv:1812.00568, 2018.

Howard Eichenbaum. Hippocampus: Cognitive Processes and Neural Representations that Underlie
Declarative Memory. Neuron, 44(1):109-120, September 2004. ISSN 0896-6273. doi: 10.1016/j.
neuron.2004.08.028. URL https://www.sciencedirect.com/science/article/
P11i/5089662730400529X.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with im-
portance weighted actor-learner architectures. In International conference on machine learning,
pp. 1407-1416. PMLR, 2018.

10


https://arxiv.org/abs/2412.03572
https://www.nature.com/articles/s41586-024-08392-y
https://www.nature.com/articles/s41586-024-08392-y
https://arxiv.org/abs/1406.1078
https://memari-workshop.github.io/papers/paper_3.pdf
https://memari-workshop.github.io/papers/paper_3.pdf
https://www.sciencedirect.com/science/article/pii/S089662730400529X
https://www.sciencedirect.com/science/article/pii/S089662730400529X

Under review as a conference paper at ICLR 2026

Dave Ferguson, Maxim Likhachev, and Anthony Stentz. A guide to heuristic-based path planning.
In Proceedings of the international workshop on planning under uncertainty for autonomous sys-
tems, international conference on automated planning and scheduling (ICAPS), pp. 9-18, 2005.

James Gornet and Matt Thomson. Automated construction of cognitive maps with visual predictive
coding. Nature Machine Intelligence, 6(7):820-833, 2024.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2024.
URLhttps://arxiv.org/abs/2312.00752.

Agrim Gupta, Stephen Tian, Yunzhi Zhang, Jiajun Wu, Roberto Martin-Martin, and Li Fei-Fei.
Maskvit: Masked visual pre-training for video prediction. arXiv preprint arXiv:2206.11894,
2022.

David Ha and Jiirgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019.

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with dis-
crete world models. arXiv preprint arXiv:2010.02193, 2020.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

Torkel Hafting, Marianne Fyhn, Sturla Molden, May-Britt Moser, and Edvard I. Moser. Microstruc-
ture of a spatial map in the entorhinal cortex. Nature, 436(7052):801-806, August 2005. ISSN
1476-4687. doi: 10.1038/nature03721. URL https://www.nature.com/articles/
nature03721. Number: 7052 Publisher: Nature Publishing Group.

Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE transactions on Systems Science and Cybernetics, 4(2):100-107,
1968.

D. Hassabis, D. Kumaran, S. D. Vann, and E. A. Maguire. Patients with hippocampal amnesia cannot
imagine new experiences. Proceedings of the National Academy of Sciences, 104(5):1726-1731,
2007. ISSN 0027-8424. doi: 10.1073/pnas.0610561104. URL http://www.pnas.org/
cgi/doi/10.1073/pnas.0610561104. Number: 5.

Sepp Hochreiter and Jiirgen Schmidhuber. Long Short-Term Memory. Neural Computation, 9(8):
1735-1780, November 1997. ISSN 0899-7667. doi: 10.1162/nec0.1997.9.8.1735. Conference
Name: Neural Computation.

Marc W. Howard and Howard Eichenbaum. Time and space in the hippocampus. Brain
Research, 1621:345-354, September 2015. ISSN 0006-8993. doi: 10.1016/j.brainres.
2014.10.069. URL https://www.sciencedirect.com/science/article/pii/
S0006899314014917.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model-based
reinforcement learning for atari. arXiv preprint arXiv:1903.00374, 2019.

Pentti Kanerva. Sparse distributed memory. MIT press, 1988.

Arbaaz Khan, Clark Zhang, Nikolay Atanasov, Konstantinos Karydis, Vijay Kumar, and Daniel D.
Lee. Memory Augmented Control Networks, February 2018. URL http://arxiv.org/
abs/1709.05706. arXiv:1709.05706 [cs].

Apoorv Khandelwal, Luca Weihs, Roozbeh Mottaghi, and Aniruddha Kembhavi. Simple but effec-
tive: Clip embeddings for embodied ai. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 14829-14838, 2022.

Daniel P. Kimble. The effects of bilateral hippocampal lesions in rats. Journal of Comparative
and Physiological Psychology, 56(2):273-283, 1963. ISSN 0021-9940. doi: 10.1037/h0048903.
URL https://doi.apa.org/doi/10.1037/h0048903.

11


https://arxiv.org/abs/2312.00752
https://www.nature.com/articles/nature03721
https://www.nature.com/articles/nature03721
http://www.pnas.org/cgi/doi/10.1073/pnas.0610561104
http://www.pnas.org/cgi/doi/10.1073/pnas.0610561104
https://www.sciencedirect.com/science/article/pii/S0006899314014917
https://www.sciencedirect.com/science/article/pii/S0006899314014917
http://arxiv.org/abs/1709.05706
http://arxiv.org/abs/1709.05706
https://doi.apa.org/doi/10.1037/h0048903

Under review as a conference paper at ICLR 2026

Christopher J. Kymn, Sonia Mazelet, Anthony Thomas, Denis Kleyko, E. P. Frady, Friedrich T. Som-
mer, and Bruno A. Olshausen. Binding in hippocampal-entorhinal circuits enables composition-
ality in cognitive maps. Advances in Neural Information Processing Systems, 37:39128-39157,
December 2024. URL https://proceedings.neurips.cc/paper_files/paper/
2024 /hash/4526cfacdbca6bb6el84568dac91bf070-Abstract-Conference.
htmll

Daniel Levenstein, Aleksei Efremov, Roy Henha Eyono, Adrien Peyrache, and Blake A. Richards.
Sequential predictive learning is a unifying theory for hippocampal representation and replay,
April 2024. URL https://www.biorxiv.org/content/10.1101/2024.04.28.
591528v1. Pages: 2024.04.28.591528 Section: New Results.

Sam McKenzie, Andrea J. Frank, Nathaniel R. Kinsky, Blake Porter, Pamela D. Riviere, and Howard
Eichenbaum. Hippocampal Representation of Related and Opposing Memories Develop within
Distinct, Hierarchically Organized Neural Schemas. Neuron, 83(1):202-215, July 2014. ISSN
0896-6273. doi: 10.1016/j.neuron.2014.05.019. URL https://www.cell.com/neuron/
abstract/S0896-6273(14) 00405-X. Publisher: Elsevier.

Vincent Micheli, Eloi Alonso, and Francois Fleuret. Transformers are sample-efficient world mod-
els. arXiv preprint arXiv:2209.00588, 2022.

Volodymyr Mnih. Asynchronous methods for deep reinforcement learning. arXiv preprint
arXiv:1602.01783, 2016.

Shinya Nakai, Takuma Kitanishi, and Kenji Mizuseki. Distinct manifold encoding of naviga-
tional information in the subiculum and hippocampus. Science Advances, 10(5):eadi4471, 2024.
doi: 10.1126/sciadv.adi4471. URL https://www.science.org/doi/abs/10.1126/
sciadv.adid4471l

John O’Keefe. Place units in the hippocampus of the freely moving rat.  Experimental
Neurology, 51(1):78-109, January 1976. ISSN 0014-4886. doi: 10.1016/0014-4886(76)
90055-8. URL https://www.sciencedirect.com/science/article/pii/
0014488676900558l

John O’keefe and Lynn Nadel. The hippocampus as a cognitive map. Oxford: Clarendon Press,
1978.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al.
A generalist agent. arXiv preprint arXiv:2205.06175, 2022.

Sam Ritter, Ryan Faulkner, Laurent Sartran, Adam Santoro, Matt Botvinick, and David Raposo.
Rapid task-solving in novel environments. arXiv preprint arXiv:2006.03662, 2020.

Jan Robine, Marc Hoftmann, Tobias Uelwer, and Stefan Harmeling. Transformer-based world mod-
els are happy with 100k interactions. arXiv preprint arXiv:2303.07109, 2023.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
g0, chess and shogi by planning with a learned model. Nature, 588(7839):604—609, 2020.

W. B. Scoville and B. Milner. Loss of recent memory after bilateral hippocampal lesions. Journal
of neurology, neurosurgery, and psychiatry, 20(1):11-21, 1957. ISSN 00223050. doi: 10.1136/
jnnp.20.1.11. Number: 1.

Dhruv Shah, Ajay Sridhar, Nitish Dashora, Kyle Stachowicz, Kevin Black, Noriaki Hirose, and
Sergey Levine. VINT: A Foundation Model for Visual Navigation, June 2023. URL http:
//arxiv.orqg/abs/2306.14846. arXiv:2306.14846 [cs].

Kimberly L. Stachenfeld, Matthew M. Botvinick, and Samuel J. Gershman. The hippocampus
as a predictive map. Nature Neuroscience, 20(11):1643-1653, 2017. ISSN 15461726. doi:
10.1038/nn.4650. URL http://dx.doi.org/10.1038/nn.4650. Number: 11 arXiv:
1011.1669v3 Publisher: Nature Publishing Group ISBN: 9788578110796.

12


https://proceedings.neurips.cc/paper_files/paper/2024/hash/4526cfacdbca6b6e184568dac91bf070-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2024/hash/4526cfacdbca6b6e184568dac91bf070-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2024/hash/4526cfacdbca6b6e184568dac91bf070-Abstract-Conference.html
https://www.biorxiv.org/content/10.1101/2024.04.28.591528v1
https://www.biorxiv.org/content/10.1101/2024.04.28.591528v1
https://www.cell.com/neuron/abstract/S0896-6273(14)00405-X
https://www.cell.com/neuron/abstract/S0896-6273(14)00405-X
https://www.science.org/doi/abs/10.1126/sciadv.adi4471
https://www.science.org/doi/abs/10.1126/sciadv.adi4471
https://www.sciencedirect.com/science/article/pii/0014488676900558
https://www.sciencedirect.com/science/article/pii/0014488676900558
http://arxiv.org/abs/2306.14846
http://arxiv.org/abs/2306.14846
http://dx.doi.org/10.1038/nn.4650

Under review as a conference paper at ICLR 2026

Richard S Sutton. Reinforcement learning: An introduction. A Bradford Book, 2018.

Joshua B Tenenbaum, Vin de Silva, and John C Langford. A global geometric framework for
nonlinear dimensionality reduction. science, 290(5500):2319-2323, 2000.

Thomas Unterthiner, Sjoerd Van Steenkiste, Karol Kurach, Raphael Marinier, Marcin Michalski,
and Sylvain Gelly. Towards accurate generative models of video: A new metric & challenges.
arXiv preprint arXiv:1812.01717, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need, December 2017. URL
http://arxiv.org/abs/1706.03762. arXiv:1706.03762 [cs].

Raymond Wang, Jaedong Hwang, Akhilan Boopathy, and Ila R. Fiete. Rapid Learning without
Catastrophic Forgetting in the Morris Water Maze. 2023. URL https://openreview.
net/forum?id=MulANyzcyrS.

Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to control: A
locally linear latent dynamics model for control from raw images. Advances in neural information
processing systems, 28, 2015.

James C. R. Whittington, Timothy H. Muller, Shirley Mark, Guifen Chen, Caswell Barry, Neil
Burgess, and Timothy E. J. Behrens. The Tolman-Eichenbaum Machine: Unifying Space and
Relational Memory through Generalization in the Hippocampal Formation. Cell, 183(5):1249—
1263.e23, November 2020. ISSN 0092-8674, 1097-4172. doi: 10.1016/j.cell.2020.10.024. URL
https://www.cell.com/cell/abstract/S0092-8674 (20) 31388-X. Publisher:
Elsevier.

James C. R. Whittington, Joseph Warren, and Timothy E. J. Behrens. Relating transformers to
models and neural representations of the hippocampal formation, 2022. URL http://arxiv.
org/abs/2112.04035. arXiv:2112.04035 [cs, g-bio].

Erik Wijmans, Abhishek Kadian, Ari Morcos, Stefan Lee, Irfan Essa, Devi Parikh, Manolis Savva,
and Dhruv Batra. Dd-ppo: Learning near-perfect pointgoal navigators from 2.5 billion frames.
arXiv preprint arXiv:1911.00357, 2019.

Erik Wijmans, Manolis Savva, Irfan Essa, Stefan Lee, Ari S Morcos, and Dhruv Batra. Emergence
of maps in the memories of blind navigation agents. Al Matters, 9(2):8-14, 2023.

Matthew A. Wilson and Bruce L. McNaughton. Dynamics of the Hippocampal Ensemble Code
for Space. Science, 261(5124):1055-1058, August 1993. doi: 10.1126/science.8351520.
URL https://www.science.org/doi/abs/10.1126/science.8351520. Pub-
lisher: American Association for the Advancement of Science.

Brian Yamauchi. A frontier-based approach for autonomous exploration. In Proceedings 1997
IEEE International Symposium on Computational Intelligence in Robotics and Automation
CIRA’97. Towards New Computational Principles for Robotics and Automation’, pp. 146-151.
IEEE, 1997.

Weipu Zhang, Gang Wang, Jian Sun, Yetian Yuan, and Gao Huang. Storm: Efficient stochastic
transformer based world models for reinforcement learning. Advances in Neural Information
Processing Systems, 36, 2024.

13


http://arxiv.org/abs/1706.03762
https://openreview.net/forum?id=MuANyzcyrS
https://openreview.net/forum?id=MuANyzcyrS
https://www.cell.com/cell/abstract/S0092-8674(20)31388-X
http://arxiv.org/abs/2112.04035
http://arxiv.org/abs/2112.04035
https://www.science.org/doi/abs/10.1126/science.8351520

Under review as a conference paper at ICLR 2026

A EXTENDED METHODS

A.1 TRAINING DETAILS

Transition Embedding. In the Open Arena environment, each integer state value is encoded
as a 6-bit binary. Each bit is independently projected—via either the source-state or end-state linear
projector—into a 128-dimensional embedding. The six embeddings are concatenated into a single
768-dimensional state vector. Actions are similarly mapped into 768-dimensional embeddings using
a dedicated linear projector. The final transition embedding is then obtained by averaging the three
768-dimensional vectors corresponding to (1) the start-state, (2) the action, and (3) the end-state.

In the Random Wall environment, the same procedure applies, except that each state is
represented by an integer and projected into a 1,024-dimensional embedding, yielding a
1,024-dimensional transition vector.

In the Minigrid environment, the states are 5 x 5 egocentric view, observing 25 locations all at once.
Each location in the environment is assigned one of the colored objects (e.g, red floor) among a
pre-defined set of 9 possible colored objects. Each of the objects among the 25 observed objects
in a state is encoded into a 64 dimensional vector separately. The encodings of the 25 objects are
then concatenated to produce a single 1600 dimensional representation for the state. Similar to
Open Arena and Random Wall, the s, a, and s, embeddings are averaged to produce the final
embedding for the transition. The prediction for the state is 25 independent 9-way classifications.

Model Architectures.

* Transformer: 8 attention heads per layer; feed-forward hidden dimension of 2,048.
e LSTM: hidden state size of 1,024.
¢ Mamba: model dimension of 768 in Open Arena and 1,024 in Random Wall.

Training Hyperparameters. All models were trained on a single NVIDIA A100 GPU for 480,000
iterations using:

* Optimizer: AdamW with initial learning rate 1 x 10~ and cosine decay schedule.
* Dropout: 0.1.

* Batch size: 128 memory bank and query pairs.

* Training time: 19-28 hours, depending on model capacity.

* Memory usage: 2GB. The low memory consumption is attributed to the online generation
of data.

A.2 BUILDING RANDOM ENVIRONMENTS

To generate an input (memory bank, query) pair to ESWM, we first generate an environment e € £.
Each e is represented as a 5-tuple (G, g, W, 1, A), where:

* G = (L, E): An undirected graph, with L representing unique locations and E represent-
ing undirected edges connecting adjacent locations. The graph G adopts a fixed hexagonal
structure across all environments. It models grid-like movement dynamics and serves as
the canvas for creating complex environments.

* g: A filtering function that generates a subgraph G, C G, containing only observable
locations L,y € L and transitions Ey,s C E (i.e. part of the environment that will be
observable to the agent in that sample).

* W: A subset of contiguous locations in L, representing a wall that restrict agent’s motion
in the environment.

* 1 A mapping from L to integer observations, assigning each location to a unique obser-
vation from S C Z. This allows random association of locations and observed values (or
states) in each sample.
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» A: Maps an undirected edge e = (I;,1;) € E, which is a pair of locations, to an action-
induced transition either starting from [; or [; with equal chances. e.g. A(l;,[;) returns a
3-tuple transition (I;, go West, [;) or (I;, go East, I;) with equal probability.

In the Open Arena setting (Section [3.3)), the entire environment is observable and there are no
obstacles (i.e, g is the identity function, W = ). In the Random Wall setting (Section [3.3), g
removes a random subset Vo C V' along with their attached edges, and W # (). The components
g, W, and v are randomly generated for each environment e, where applicable.

A.3 GENERATING MEMORY BANKS

The minimal spanning episodic memories M for an environment e = (G, g, W, 1, A) is generated
as follows:

1. Apply the filtering function g to G to produce the partially observed subgraph Gops =
(LobS7 Eobs)-

2. Run a minimal spanning tree (MST) algorithm on G, With random weights assigned to
edges to ensure diversity. Tree effectively models a set of fragmented transitions that do
not naturally integrate into a continuous trajectory. This produces a set of undirected edges
T = {(li,lj> | li,lj (S Lobs}~

3. Use A to map edges in 7" to directed 3-tuple transitions between locations and 1 to map
locations to observations. This produces an array of transitions between observations
[(ss, @, Se)]-

4. Modify transitions ending at locations in W to form self-loops, effectively modeling
blocked movement. Then, randomly permute the array of transitions to produce the final
array of transitions M.

In Open Arena and Random Wall, the memory banks M observe at most 18 and 36 transitions
out of the total 84 and 180 transitions, respectively.

A.4 QUERY SELECTION

The resulting memory bank M is an unordered set of one-step transitional episodic memories that
span all observable locations in the environment (Fig. 2). Given M, the model is tasked to infer the
missing component of a query transition g = (s, a, Se).

For Random Wall, the query g is selected from 1) the set of transitions that are in Gops but not
in the memory bank (unseen transitions; 68%); 2) from the memory bank (seen transitions; 15%)
and; 3) from a set of unsolvable transitions where one end is in Lypops (17%). In Open Arena, the
query q is always selected from unseen transitions.

The model receives the M and ¢ = (s, a, S.), with either s, a, or s, masked randomly with equal
probability, as input, and asked to infer the masked component.

A.5 TEM-T IMPLEMENTATION

Our goal is to maximally equalize the training of TEM-T and ESWM to eliminate potential con-
founds such as task differences. Thus, TEM-T also receive the concatenation of memory bank and
unseen query transition as input, except that the disjoint memory bank is replaced with a sequential
trajectory that spans the entire environment. The task is to predict the missing end-state of the final
query transition, analogous to inferring the masked end state in ESWM. The trajectory is kept mini-
mal, generated by NetworkX traveling salesman problem, to match the sparsity of the
memories we provide for ESWM. In Random Wall, we explicitly ensure that the agent runs into
each obstacle at least once throughout the traversal so that the model has sufficient knowledge to
infer the underlying structure of the environment.

To our best knowledge, no publicly available code exists for TEM-T. Therefore, we resort to a
custom implementation that closely follows the authors’ recipe. We use the same dimensions to
encode the positions e; and observations x; (384 in Open Arena and 512 in Random Wall)and
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ensure the combined dimension of h; = [z4, ;] matches ESWM’s embedding dimension. Sigmoid
is used as the non-linear activation o in positional encoding generation, following the observation
that linear and ReL.U activation produce exploding gradients. We use 8 heads and 2048 feed-forward
dimensions, matching the configuration of ESWM. The prediction is read out linearly from the
embedded query transition after a single/multiple transformer blocks. We train TEM-T over 460k
iterations with a batch size of 128 and a cosine learning rate schedule, same as ESWM.

A.6 ISOMAP

We consider ESWM'’s population neuron activity at a particular location as the ESWM'’s activation
vector as it infers the missing component of a query transition that either starts or ends at that
location. For s. and a predictions (i.e, s is visible to ESWM), the activation vector is associated
with the s,’s location, while for s¢ prediction (i.e, s, is not visible), we associate the activation with
the s.’s location. For transformer models, we used the query token after each transformer encoder
block as the activation vector, while for multilayer LSTM and Mamba, we used the final hidden state
(i.e, the last token from the processed sequence) from the last layer.

To collect ESWM'’s activation across all locations in an environment, we task ESWM to do either
Ss a, or s, prediction for all transitions in the environment conditioned on a memory bank. This
process is repeated with multiple memory banks from the same environment until approximately
1,000 activation vectors are collected. We then apply ISOMAP using cosine distance and 20-60
neighbors to generate the visualizations.

A.7 EUCLIDEAN DISTANCE ESTIMATION FROM ACTIVATION

A linear layer receives as input the concatenation of three vectors: the activations from Transformer-
2L ESWM corresponding to action predictions starting from states A, B, and C. It outputs a scalar
representing the probability that the Euclidean distance between A and B exceeds that between A
and C. The classifier is trained on 3,000 state triplets sampled all from different environments and
evaluated on 1,000 held-out triplets. Reported accuracies are averaged over 10 runs with different
randomly initialized weights for the linear layer.

A.8 BASELINE NAVIGATIONAL AGENT

The baseline agent is trained via A2C (Sutton, 2018} [Mnih, 2016) to navigate between any two
states in a single Random Wall environment, which differs from ESWM and EPN, which are
meta-trained across many environments. At each time step ¢, the agent receives as input a sequence
of historical interactions with the environment, each as a tuple (s;—_1, a;—1, S¢, Sgoal)> and is tasked
to output an action towards the goal state sgo,. Each part of the tuple is distinctly embedded onto
a 128D vector and the vectors are averaged to produce the final observation at each time step. The
embedded sequence is fed into a one-layer LSTM (with a hidden dimension of 256) and the predicted
action and value are read out from the final hidden state via distinct linear heads.

The agent receives a penalty of -0.01 every time step except when it reaches the goal state, where it
receives a reward of 1. The training is done over 5000 episodes with a discount factor of 0.99 and
learning rate of 1 x 1073,
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B ADDITIONAL ANALYSIS

B.1 HANDLING DISJOINT MEMORY CLUSTERS

During Random Wall training, memory banks can contain disjoint memory clusters, with no paths
between observations in distinct clusters. This leads to uncertainty in spatial relationships as path
integration provides no avail. In rare cases, the model is asked to solve queries that bridge discon-
nected clusters. This raises two questions: (1) Does the model infer the relative positions of disjoint
memory clusters (e.g., which part of the room each cluster maps onto)? (2) Which cues enable these
inferences?

B.1.1 INFERENCE FROM ENVIRONMENTAL STRUCTURE

We observe that when memory clusters are disjoint, the model leverages the underlying structure of
the room to infer their relative positions. For example, the model aligns memory clusters with the
room’s boundary when their shape matches. This allows the model to piece together disjoint memory
clusters, like solving a puzzle, by identifying the configuration that satisfies the invariant structural
constraints. Evidence for this behaviour is twofold. First, in the model’s latent space, the disjoint
clusters are stitched together, rather than overlapping or disconnecting, to form a smooth surface
reflecting the room’s structure (Fig. 3k). Second, the model’s end state prediction distributions,
starting from the boundary states of one cluster, are biased towards the boundary states of the inferred
neighbouring cluster, instead of exclusively outputting the “I don’t know” option.

B.1.2 GENERALIZATION FROM OBSERVATIONS OF OBSTACLES

In cases where disjoint memory clusters’ shapes do not provide clear cues about their relative lo-
cations, the model relies on observations of obstacles to deduce their positions. For instance, given
two disjoint clusters of memories, the model initially maps them to different locations in its latent
space and outputs predictions exclusively reflecting uncertainty (‘“I don’t know”). However, if both
clusters observe obstacles, even though the clusters remain disjoint, the model applies its knowledge
of common wall shapes (e.g, walls are usually straight) to make inferences about the relative loca-
tions of the clusters. In the latent space, the two previously disconnected clusters are connected and
aligned along the inferred wall shape to form a continuous representation (Fig.[3[d, [[2). The model’s
predictions are also biased towards the inferred neighbours. Moreover, a single observation of ob-
stacles from both clusters is sufficient for the model to infer the shape of the wall, and therefore infer
the relative positions of the clusters (Fig.[I2). These results demonstrate that ESWM can leverage
the invariant structure of the room and combine observations of obstacles with prior knowledge of
wall shapes to construct a coherent spatial representation.

B.2 PLANNING BY GUIDED IMAGINATION

While the strategy introduced in the main paper enables planning, it uniformly searches through
the space, unbiasedly imagining the consequences of all actions, even if some move further from
the goal. In contrast, animals with internal maps encoding geometric constraints plan biasedly,
prioritizing actions that shorten the geodesic distance (i.e, the shortest path length) to the goal. We
show that the spatial maps in ESWM’s latent space, which accurately encode obstacles and geodesic
distance between states (Fig.[I5b), can be used for guided imagination towards the goal.

The previous strategy is akin to Dijkstra’s algorithm, or A* with a null heuristic function (Hart
et al., [1968 |[Ferguson et al.,[2005)). The key to efficient planning, which prunes undesirable actions
early, then, is a heuristic function containing rich information on the geodesic distances between
states in the environment. Inspired by ISOMAP [Tenenbaum et al.| (2000), we construct such a
heuristic function Ajaen as follows (See Alg for pseudocode): 1) Query the model to solve the end
state prediction task for all possible (s, a) pairs, collecting activations. 2) Construct a graph Giaen
where nodes are activations and edges connect nodes within radius Rjene (Appendix @]) Edges are
weighted by the cosine distance between their two endpoints (Fig. [[3b). Intuitively, each node on
Ghatent 1 the activation of predicting the outcome of action « starting at state s. 3) Compute pairwise
shortest paths on this graph to create a geodesic distance table Ajyen,-

17



Under review as a conference paper at ICLR 2026

hiaent captures ESWM'’s latent spatial map into a look-up table containing information on which
action takes you closer to the goal state at every step of imagination. A* guided imagination with
hilatent, improves planning efficiency by 57% (Fig. E}a), as measured by the number of states visited,
over Dijkstra’s while maintaining path optimality (Fig. [I5c). Furthermore, greedy policy based on
hiatent achieves 70% success in navigating around obstacles (Fig. ). These results suggest that
structured latent spaces in world models can serve as efficient heuristics for planning.
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Figure 6: ESWM’s evaluation accuracy in grid environments with duplicated states. A trajec-
tory is prepended to the query transition to serve as context for disambiguating two locations with
the same state. The context trajectory begins at a random state and ends at s of the query transition.
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Figure 8: ESWM in scaled-up egocentric MiniGrid environments. (Top left) Examples of
procedurally-generated 9 x9 environments with random coloring and wall patterns in which ESWM
is trained. Episodic memory is considered a transition between 5x5 egocentric observations via
egocentric actions (turn left, turn right, and move forward). Memory bank is a set of one-step tran-
sitions that observe the room, with some degree of overlap between transitions to enable memory
integration. The model has to self-localize based on partial egocentric views of the environment
experienced from varying head directions. (Top right) Accuracies for sg, a, and s. predictions.

(Bottom) ISOMAP analysis on ESWM’s latent space shows a map-like representation. Inset shows
the color scheme across spatial locations.
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Figure 9: ISOMAP projection of various ESWM-trained models’ latent space. The last two
environments are out-of-distribution — ESWM has never seen multiple walls in the same room
nor a cluster of obstacles that does not form a long, straight wall during training. For Transformer-
2L, LSTM-4L, and Random network (LSTM-4L initialized with random weights), the activations
for end-state prediction are used while for Mamba, the activations for action prediction are used.
EPN (Section [E)) is an episodic-memory-based navigational and exploration agent trained on the
same environment as ESWM.
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Figure 10: Same ISOMAP projections as Fig.[9]but in a different angle.
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Figure 11: ESWM’s latent spatial map persists for all prediction tasks and partial observations.
a) ESWM’s latent spatial map for s, a, and s, predictions. Mamba is excluded as the spatial map
is only found for the action prediction task. For Transformer-2L, the spatial map is found in the
first layer for a prediction, and the second layer for s, and s, prediction. b) Spatial map when the
memory bank observes an irregular subsection of the room. Transformer-2L’s first layer’s activation
for action prediction is used.
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30 Manifold Representation
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Figure 12: ESWM'’s latent spatial map adjusts to structural changes. ISOMAP projections of
the 14-layer transformer model’s seventh layer’s activations. a) ESWM’s latent space when the
input memory bank M consists of two disjoint memory clusters. b) ESWM’s latent space when
both memory clusters observe a wall to their left; despite remaining separate in the memory bank,
ESWM inferred them to be connected as reflected in its latent space. ¢) ESWM’s latent space when
both memory clusters observe a single obstacle to their left. ESWM, again, inferred the clusters are
connected but with sparser observations of obstacles than in b). 900 activations and 45 neighbours
are used to fit the ISOMAP.
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Figure 13: Representation becomes more continuous with depth. Left to right are 30-neighbours
ISOMAP projections from layer 1, 6, 9, and 14 of Transformer-14L (2000 activations). The model
was trained without random masking of subregions. Representation in the latent space becomes
progressively more continuous.
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Figure 14: Exploration, navigation, and adaptability for ESWM and EPN. a) Number of unique
states visited by different exploration strategies in a Random Wall environment with 37 locations
over 25 time steps (n=1000). On average, ESWM explores a comparable number of states to an
oracle explorer with access to obstacle locations. b, ¢, d) Performance on Random Wall with 19
locations of individual EPN’s random seeds, and EPN with memory bank size ablated from 200 to
50 (small memory). b) Number of unique states visited over the initial 15 time steps in a novel
environment. ¢) Navigation success rate and optimality when tasked to navigate to a goal across
various path lengths, n=2400 paths. d) Adaptation to structural changes in the environment. Success
rate of navigating to a goal location when obstacles contradicting past experiences are inserted
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Figure 15: The latent space of ESWM can be harnessed as a heuristic for more efficient plan-
ning. All the results are on Random Wall environment with 37 locations. a) (Left) Average number
of nodes expanded for different heuristics over 1000 paths. (Middle) Success rates of greedy nav-
igation using different heuristics over 2400 paths. (Right) Success rates for greedy navigation on
paths requiring detours around obstacles over 800 paths. b) (Left) Correlation between geodesic
distances on Giaent (see@ and corresponding distances in the environment, using n=1500 pairs
of states (Sgrt, sgoal) over 75 environments. The linear fit shows a strong positive correlation with
R? = 0.89. (Mid-Left) sample grid environment. (Mid-Right) Glyen for the same environment.
(Right) Agent navigates greedily on Ay, On a path that requires detours around obstacles. ¢) Com-
parison of navigation success rate and path optimality between Dijkstra’s and A* over different path
lengths (n=1500). Although not guaranteed to be admissible, hjyen empirically preserves path opti-
mality.
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Figure 16: Comparison of end-state prediction accuracy between EMWM |Coda-Forno et al.|
and Transformer-2LL ESWM in RandomWall. EMWM predicts using a weighted aver-
age over the top-K matches (K=5), but we found K=1 performs best, likely due to the sparsity of
our memory banks (i.e, transitions are unique, so averaging more than one transition offers no ben-
efit). To adapt the author’s implementation to our task, we embed each token (transitional memory
tokens or the end-state masked query) by averaging the embedding of each item (sy, at, s¢+1), each
produced using a distinct MLP layer — identical to ESWM. All tokens are sequentially fed into a
1-layer GRU to obtain the sequence of hidden states, which become the keys with
the corresponding end-state embeddings as values for the memory table. The network is optimized
to predict the s, for each token.
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D ALGORITHMS

Algorithm 1 Dijkstra-Style Pathfinding with ESWM

1: procedure FINDPATH(ESWM, memoryBank, Sart, Sgoals Tmax)

»

26:
27:

const ACTION_COST
Initialize priority queue OpenSet
Initialize dictionary C'ost
Initialize dictionary Parent
Cost[syar] = 0, Parent[sgan| = nil
Push (Sgtar, cost = 0, depth = 0) into OpenSet
while OpenSet # @ do
(u, ¢, d) < PopMinCostNode(OpenSet)
if u = 5404 then
return ReconstructPath(Parent, u)
end if
if d > T,,.x then
continue > remove path that exceeds horizon
end if
for all action a in PossibleActions do
v < PredictNextState(ESW M, memoryBank, u, a)
d < c+ ACTION_COST
d+d+1
if vnotin Cost or ¢ < Cost[v] then
Push (v, ¢/, d’) into OpenSet
Cost[v] = ¢
Parent[v] =u
end if
end for
end while
return FAIL() > no path within horizon Ty, ax

28: end procedure

Algorithm 2 Explore Function

1: procedure EXPLORE(ESWM, memoryBank, s, actions) > $ 1S current observation

2
3
4.
5:
6.
7
8

9:
10:
11:
12:

Initialize ¢ as a max heap
for all a € actions do
s', logits <+ ESWM.PREDICTEND(memoryBank, s, a)
probs <— SOFTMAX(logits)
if s’ = "I don’t know’ then
Enqueue a into ¢ with cost = 1 — SENTROPY (probs)) > 8 = 0.2 in our experiments
else if probs[s'] < 0.8 then
Enqueue a into ¢ with cost = YENTROPY (probs)) >~ = 0.1 in our experiments
end if
end for
return ¢. REMOVEMAX()

13: end procedure
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Algorithm 3 Get all State-Action Pairs

1: procedure GETS AS(memoryBank)
2 S < GETUNIQUESTATES(memoryBank)
3 Initialize [ as an empty list
4 for all s € S do
5 for all ¢ € Actions do
6: l.append((s, a))
7
8
9

10:

end for
end for
return [
end procedure

Algorithm 4 Compute Geodesic Distance Table hjyen

1: procedure GETHEURISTICS(ESWM, memoryBank, Rjyent)
2: S As <+ GETSAs(memoryBank)

3: N + |SAs|
4: Initialize nodesToSAs as an empty dictionary
5: Initialize activations as an empty list
6: Initialize Ayyen; as a matrix of shape N x N
7: for all (s,a) € saPairs do
8: activation < ESWM’s activation for end state prediction task starting at s taking action
a
9: nodesToSAs[activation] « (s,a)
10: activations.append(activation)
11: end for
12: Glatent < NEARESTNEIGHBOURGRAPH(activations, Ryent)
13: for all n; € Glaenc.n0des do
14: for all n; € Glaen.nodes do > m;, M are activations
15: sa;, sa; < nodesToSAs[n;], nodesToSAs[n;|
16: higtens[504, 5051 <= SHORTESTPATHLENGTH(Glatent, 745 75)
17: end for
18: end for
19: return A e

20: end procedure

Note that hjyene approximates the geodesic distance between any two state-action pairs rather than
between any two states. Geodesic distances between states can be obtained by averaging over the
action space.

Selection of R)¢ent

In essence, Rjyen is the radius among a set of radii R in which the corresponding hjene, Obtained
from AlgH] best captures the geodesic distance information in the environment. More specifically,
Rygtent 1s the 7 € R that maximizes both the success rate and the optimality of the agent’s path when
it navigates greedily to the corresponding hj,en. We consider a navigation as successful if the the
agent reaches the goal state within 20 time steps. Path optimality is measured by the ratio between
the shortest path and the agent’s path. To determine Rj,nt, We conducted a search over a bounded
range R, which includes those whose ISOMAP projections accurately reflect the structure of the
environment.

Limitations of Algd]

One drawback is that hj,ene can overestimate the true geodesic distance, i.e. it is non-admissible.
This is because Gyen might be under-connected for the given Rjyen and memory bank (i.e. nodes
aren’t connected by an edge when they should). This can be mitigated by using a larger radius
Ryatent + € to build Gluen (i.e. prefer over-connection over under-connection). However, we ac-
knowledge that there is no way to guarantee admissibility, hence, the optimality of the path. This

29



Under review as a conference paper at ICLR 2026

is a trade-off for faster search. In future work, we will explore adaptive radius where radius, hence
hiatent, can be adjusted dynamically as agents interact with the environment.

E EPIsoDIC PLANNING NETWORKS (EPN)

The Episodic Planning Networks (EPN) model Ritter et al.| (2020) is specifically designed and
trained to rapidly learn to navigate in novel environments. Comparatively, ESWM is a general-
purpose model not explicitly trained for navigation. By comparing with EPN, we investigate whether
ESWM’s ability to construct internal models of spatial structures enables navigational capabilities.
Similarly to ESWM, EPN is designed to leverage episodic memory to facilitate rapid adaptation in
unfamiliar environments, and both models are episodic memory-driven transformer-based models.

Hyperparameters — We use the same hyperparameters as those reported by Ritter et al.| (2020).

Training — Both models are trained on the same environment structure variations and amount of
data, approximately 1.14e9 steps, which is a restrictive data regime for EPN. EPN is trained to
navigate through reinforcement learning, using IMPALA (Espeholt et al., 2018). ESWM is trained
to build internal model of environments from sparse disjointed episodic experiences through self-
supervision.

Memory bank — EPN has a memory bank containing 200 transitions, whereas ESWM only stores
the minimal spanning tree, with 19 transitions for smaller environments and 36 for larger ones.
When evaluating EPN ability to navigate, we follow the methodology from Ritter et al.|(2020). EPN
explores to populate its memory bank for the first 2/3 of episodes , and the performance is only
measured on the last third.

F IMPACT STATEMENTS

This paper presents work whose goal is to advance the field of Machine Learning. There are many
potential societal consequences of our work, particularly in autonomous exploration, navigation,
and decision-making in real-world environments. While our work primarily focuses on theoretical
and methodological advancements, potential societal consequences include enhanced autonomous
navigation technologies, more efficient exploration strategies in robotics, and improved Al models
inspired by human cognitive abilities. We also acknowledge the potential misuse of the technology
in collecting sensitive data and the ethical considerations regarding the deployment of autonomous
agents in critical decision-making scenario, emphasizing the importance of responsible and safe
integration of such models in real-world applications.
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