
Let the Experts Speak: Improving Survival Prediction
& Calibration via Mixture-of-Experts Heads

Anonymous Author(s)
Affiliation
Address
email

Abstract

Deep mixture-of-experts models have attracted a lot of attention for survival analy-1

sis problems, particularly for their ability to cluster similar patients together. In2

practice, grouping often comes at the expense of key metrics such calibration error3

and predictive accuracy. This is due to the restrictive inductive bias that mixture-of-4

experts imposes, that predictions for individual patients must look like predictions5

for the group they’re assigned to. Might we be able to discover patient group6

structure, where it exists, while improving calibration and predictive accuracy?7

In this work, we introduce several novel deep mixture-of-experts (MoE) based8

architectures for survival analysis problems, one of which achieves all desiderata:9

clustering, calibration, and predictive accuracy. We show that a key differentiator10

between this array of MoEs is how expressive their experts are. We find that more11

expressive experts that tailor predictions per patient outperform experts that rely on12

fixed group prototypes.13

1 Introduction14

AI has the potential to have a profound impact on clinical decision support systems (CDSS) (Eltawil15

et al., 2023). In this work, we focus on what clinicians care about most: highly accurate models,16

where probabilities have intuitive meaning (i.e., calibration), and the ability to reason by analogy to17

similar patients. Our work addresses survival analysis problems, where the task is to predict when18

clinical events will occur (i.e., time-to-event regression) while contending with right censoring (i.e.,19

not observing the event time for all patients).20

Mixture-of-experts (MoE) models for medical survival analysis are defined by two key components:21

1) a router that assigns patients to groups and 2) a set of experts that produce event distributions22

for each group. We develop three novel deep MoE based survival architectures with an eye toward23

the above desiderata. Importantly, these three architectures differ only in the degree to which their24

experts customize their predictions for individual patients, allowing us to isolate the effect this has25

on the quality of predictive accuracy and calibration, which has not been carefully investigated in26

the medical survival modeling setting. The first architecture, static MoE, uses several experts where27

each expert learns an associated event distribution, which is then static across all patients. The second28

architecture, adjustable MoE, again learns a prototypical event distribution per expert, but can be29

adjusted to the individual patient. The third architecture, dynamic MoE, uses experts that each30

form a custom event distribution for individual patients. Only the third architecture is able to cluster31

patients and outperform strong baseline models on calibration and absolute error. The contributions32

of our work are as follows:33

1. we develop three novel deep mixture-of-experts (MoE) based survival architectures, one of34

which achieves excellent clustering, calibration error, and absolute error.35

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



2. we report that the expressiveness of the experts is a key differentiator between deep MoE-36

based survival analysis models, supported by a targeted set of experiments on these three37

architectures.38

2 Methods39

We now describe our three proposed deep mixture-of-experts (MoE) based survival architectures.40

All models are feedforward deep learning models that use information from a patient’s record (e.g.,41

demographic data, physiological data, etc.) to forecast when they are likely to have a clinical event.42

Raw patient records xi
0 ∈ Ra for i = 1 . . . n are composed of categorical indicators (e.g., gender,43

etc.), standardized continuous features (e.g., heart rate), and any other available features (e.g., text44

embeddings of patient records, etc.). We learn embeddings for categorical indicators, which results45

in a d-dimensional feature vector that is fed to the model. Let x = xi
ℓ−1 ∈ Rh be shorthand for the46

penultimate hidden state representation of our feedforward model with ℓ layers for the ith patient.47

We will now describe the ℓth layer (i.e., the final layer), which is the MoE layer in all architectures.48

All methods are trained using an MTLR-style (Yu et al., 2011; Fotso, 2018) loss function, which is49

described in the appendix.50

Static Mixture-of-Experts. The static MoE architecture, which learns an event distribution per51

expert that is then static with respect to all patients, is composed of a learnable router W ∈ Rn×h52

where n is the number of experts and a collection of learnable experts M ∈ Rn×m, where each row53

can be mapped to a distribution over the m possible discrete event times. We produce a probability54

mass function (PMF) p over discrete event times as follows55

α(x) = softmax(xW ⊺/κ) (1)

p = αM ′ =

n∑
j=1

αjM
′
j (2)

where αj is the weight on expert j, M ′
j is the jth row of the parameter matrix M after it has been56

normalized to form a discrete event distribution, and κ is a learnable temperature parameter that57

modulates the sharpness of expert selection. This architecture is the discrete-time analog to Hou et58

al.’s (2023) Deep Clustering Survival Machine.59

Adjustable Mixture-of-Experts. The adjustable MoE learns an event distribution per expert and60

then warps it per patient. Let t ∈ [0, 1]m denote the canonical grid over the m discrete time bins,61

with tj = j/(m− 1) for j = 0, . . . ,m− 1. Each expert k maintains a prototype vector Mk ∈ Rm62

of unnormalized scores over event times. To tailor expert k to patient i, we define a strictly monotone63

bijection between the expert’s internal time τ ∈ [0, 1]m and the canonical grid t:64

ϕk,x : τ → t︸ ︷︷ ︸
forward

, ψk,x : t→ τ︸ ︷︷ ︸
inverse

= ϕ−1
k,x.

Concretely, we take the forward map to be a normalized mixture of two logistic CDFs,65

Fk,x(u) =

2∑
r=1

wk,r(x)σ
(
ak,r(x) [u− ck,r(x) ]

)
, σ(z) =

1

1 + e−z
, (3)

with weights wk,r(x) > 0 and
∑

r wk,r(x) = 1, slopes ak,r(x) > 0, and ordered centers 0 <66

ck,1(x) < ck,2(x) < 1. We enforce a mapping from [0, 1]→ [0, 1] via endpoint normalization,67

F̃k,x(u) =
Fk,x(u)− Fk,x(0)

Fk,x(1)− Fk,x(0)
∈ [0, 1], (4)

and define ϕk,x(u) = F̃k,x(u) and ψk,x = ϕ−1
k,x. Given a canonical gridpoint tj , we compute68

uj = (m− 1)ψk,x(tj) and linearly interpolate the prototype scores:69

i0 = ⌊uj⌋, i1 = min(i0 + 1,m− 1), wj = uj − i0, (5)

M̃k,j = (1− wj)Mk,i0 + wj Mk,i1 . (6)

2



Let M̃ ′
k denote the row-wise normalization of M̃k into an event-time PMF. The final per-patient PMF70

is then71

α(x) = softmax
(
xW ⊺/κ

)
, (7)

p = αM̃ ′ =

n∑
k=1

αk(x) M̃
′
k. (8)

In practice, we evaluate ψk,x(tj) via a batched bisection solver (see appendix for more details). This72

transformation family generalizes simple shift/scale warps and can emulate proportional-hazards73

style tilts while allowing richer early/late adjustments with minimal additional parameters per expert74

(Zhong et al., 2021; Nagpal et al., 2021).75

Dynamic Mixture-of-Experts. The dynamic MoE architecture provides the most flexibility to76

the experts to form custom event distributions per patient. Since this architecture generates new77

expert distributions for each patient, we first project the final hidden state representaion x to a router78

representation with xr = xW ⊺
r for Wr ∈ Rh×h and an expert representation with xe = xW ⊺

e for79

We ∈ Rh×h. We then divide the expert representation into n evenly-sized chunks xe,k for k =80

1, . . . , n, which are each fed to a linear layer denoted Lk ∈ Rm×(h/n) to form an event-distribution81

to obtain Mk(xe,k) = xe,kL
⊺
k , which collectively form the dynamic matrix of unnormalized densities82

over event times M(xe) ∈ Rn×m. The final PMF is then83

α(xr) = softmax(xrW
⊺/κ) (9)

p = αM(xe)
′ =

n∑
j=1

αjM(xe)
′
j . (10)

3 Experiments84

We experiment with 3 datasets to probe the properties and capabilities of our proposed methods.85

SurvivalMNIST is a synthetic dataset (see Figure 1), which allows us to probe the models’ abilities86

to predict event times and recover latent groups. We censor 15% of examples. SUPPORT2 is a87

survival analysis dataset with 9,105 examples and ∼32% censoring. Sepsis is a larger dataset with88

40,336 patient records and only 2,932 positive instances of sepsis, making this a very challenging89

anomaly detection task (Reyna et al., 2020). The first 100 hours of each patient’s ICU stay was90

summarized to perform a retrospective prediction, helpful when using partially labeled historical91

datasets to accelerate human labeling. Patients were administratively censored after 100 hours. We92

measure equal mass expected calibration error (ECE) (Roelofs et al., 2022) adjusted with inverse93

probability of censoring weighting (IPCW) and average over all time bins, concordance index, and94

absolute error adjusted with pseudo-observations (Qi et al., 2023). We also report the test set negative95

log-likelihood loss and parameter count for each method. All measurements are averaged over 596

random seeds. In order to obtain a ranking of the models by performance, for each random seed we97

take the difference between the MoE model’s metric and MTLR model’s metric, and then average that98

over the 5 runs to obtain an average performance gap. Network architectures and hyperparameters99

are described in the appendix.100

4 Results101

We report our results in Table 1. The SurvivalMNIST dataset represents the Platonic ideal of a dataset102

with clear latent groups and as a result the static MoE model performs best across all metrics, followed103

by dynamic MoE. This is a setting where the static MoE is perfectly specified, with exactly 10 expert104

heads, one for each digit. The only information needed to make Bayes-optimal predictions is to105

identify the digit, at which point the appropriate expert can predict the group’s event distribution. Any106

attempt to adjust or customize the expert distributions per patient only adds unnecessary complexity107

and hurts performance. Nevertheless, we can see in Figure 1 that the dynamic MoE is able to108

recover the latent groups, with each expert specializing in a particular digit. The SurvivalMNIST109

dataset provides an interesting contrast to real-world datasets, where latent groups are almost never110

as well-defined.111

3



Table 1: We report averages over 5 random seeds and in parentheses average deviation, given a
random seed, from the MTLR baseline. Best results per dataset are bolded. ↓ indicates lower is better
and ↑ indicates higher is better.

Dataset Model ECE ↓ Concordance ↑ Abs. Error ↓ Loss ↓ Parameters ↓

Survival MNIST

Static MoE 0.004 (-0.003) 93.24 (0.69) 2.74 (-0.10) 2.197 (-0.041) 209,847
Adjustable MoE 0.008 (0.001) 92.48 (-0.08) 2.89 (0.04) 2.292 (0.054) 194,883
Dynamic MoE 0.005 (-0.002) 92.65 (0.09) 2.81 (-0.03) 2.222 (-0.015) 195,731
MTLR 0.006 (0.000) 92.56 (0.00) 2.84 (0.00) 2.238 (0.000) 187,189

SUPPORT2

Static MoE 0.066 (0.007) 79.68 (-0.48) 640.63 (3.12) 2.320 (0.131) 69,483
Adjustable MoE 0.051 (-0.008) 79.65 (-0.52) 621.35 (-16.16) 2.322 (0.134) 69,435
Dynamic MoE 0.043 (-0.016) 80.97 (0.81) 619.89 (-17.62) 2.153 (-0.036) 62,013
MTLR 0.059 (0.000) 80.17 (0.00) 637.51 (0.00) 2.189 (0.000) 68,521

Sepsis

Static MoE 0.012 (0.002) 79.87 (-3.23) 4.37 (-0.04) 0.449 (0.032) 62,179
Adjustable MoE 0.010 (-0.000) 81.48 (-1.62) 4.34 (-0.07) 0.433 (0.016) 62,835
Dynamic MoE 0.007 (-0.003) 82.89 (-0.21) 4.32 (-0.09) 0.412 (-0.005) 57,269
MTLR 0.010 (0.000) 83.10 (0.00) 4.41 (0.00) 0.418 (0.000) 62,241

Results on SUPPORT2 show the dynamic MoE model outperforms all other methods across all112

metrics. Importantly, the dynamic MoE model is outperforming the MTLR model on calibration error,113

concordance, absolute error, and loss, while the static and adjustable MoE models are, in general,114

not. We see similar results on the Sepsis dataset, providing further evidence that the dynamic MoE115

model is able to deliver on all desiderata: clustering, calibration, and predictive accuracy. Consistent116

with prior work that is subsumed by our adjustable MoE (e.g., Deep Cox Mixtures (Nagpal et al.,117

2021)), we observe that per-patient adjustments chiefly benefit calibration and predictive accuracy118

as measured by absolute error relative to MTLR, though we see limited impact on concordance or119

likelihood. Our dynamic MoE model extends those gains, delivering simultaneous improvements120

in calibration, accuracy, and discrimination, achieved with simple end-to-end learning rather than121

more elaborate training pipelines (e.g., spline estimation of baseline hazard rates, EM-based cluster122

estimation, etc.). The dynamic MoE model’s ability to form custom event distributions per patient123

appears to be key to its strong performance on real-world datasets, where latent groups are not as124

well-defined as in SurvivalMNIST.125

0 10 20 30 40
Time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

De
ns

ity

Digit
0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9
MNIST Digit

0
1
2
3
4
5
6
7
8
9

Ex
pe

rt

0.09 0.88

0.96

0.90 0.06

0.02 0.94

0.81 0.14

0.37 0.61

0.99

0.97

0.06 0.91

0.97 0.03

Figure 1: The left plot shows synthetic event distributions for each MNIST digit in SurvivalMNIST
and the right plot shows which digits get routed to each expert in a dynamic MoE model.

5 Conclusion126

We developed three novel deep mixture-of-experts (MoE) based survival architectures, one of127

which achieves excellent clustering, calibration error, and absolute error. We have shown that the128

expressiveness of the experts is a key differentiator between deep MoE-based survival analysis129

models, supported by a targeted set of experiments on these three architectures. Future work will130

explore the optimal allocation of parameters between the network backbone and the MoE layer, a131

wider range of adjustable MoE’s given the rich space of possible parameter-efficient transformations132

of expert distributions, and how patients are routed to experts on real-world datasets.133

4



References134

Eltawil, F. A., Atalla, M., Boulos, E., Amirabadi, A., and Tyrrell, P. N. Analyzing Barriers and135

Enablers for the Acceptance of Artificial Intelligence Innovations into Radiology Practice: A136

Scoping Review. Tomography, 9(4):1443–1455, August 2023. ISSN 2379-139X. doi: 10.3390/137

tomography9040115.138

Fotso, S. Deep Neural Networks for Survival Analysis Based on a Multi-Task Framework, January139

2018.140

Hou, B., Li, H., Jiao, Z., Zhou, Z., Zheng, H., and Fan, Y. Deep Clustering Survival Machines with141

Interpretable Expert Distributions. In 2023 IEEE 20th International Symposium on Biomedical142

Imaging (ISBI), pp. 1–4, April 2023. doi: 10.1109/ISBI53787.2023.10230844.143

Nagpal, C., Yadlowsky, S., Rostamzadeh, N., and Heller, K. Deep Cox Mixtures for Survival144

Regression. In Proceedings of the 6th Machine Learning for Healthcare Conference, pp. 674–708.145

PMLR, October 2021.146

Qi, S.-a., Kumar, N., Farrokh, M., Sun, W., Kuan, L.-H., Ranganath, R., Henao, R., and Greiner, R.147

An effective meaningful way to evaluate survival models. In Proceedings of the 40th International148

Conference on Machine Learning, volume 202 of ICML’23, pp. 28244–28276, Honolulu, Hawaii,149

USA, July 2023. JMLR.org.150

Reyna, M. A., Josef, C. S., Jeter, R., Shashikumar, S. P., Westover, M. B., Nemati, S., Clifford,151

G. D., and Sharma, A. Early Prediction of Sepsis From Clinical Data: The PhysioNet/Computing152

in Cardiology Challenge 2019. Critical Care Medicine, 48(2):210–217, February 2020. ISSN153

0090-3493. doi: 10.1097/CCM.0000000000004145.154

Roelofs, R., Cain, N., Shlens, J., and Mozer, M. C. Mitigating Bias in Calibration Error Estimation.155

In Proceedings of The 25th International Conference on Artificial Intelligence and Statistics, pp.156

4036–4054. PMLR, May 2022.157

Yu, C.-N., Greiner, R., Lin, H.-C., and Baracos, V. Learning Patient-Specific Cancer Survival Distri-158

butions as a Sequence of Dependent Regressors. In Advances in Neural Information Processing159

Systems, volume 24. Curran Associates, Inc., 2011.160

Zhong, Q., Mueller, J. W., and Wang, J.-L. Deep Extended Hazard Models for Survival Analysis.161

In Advances in Neural Information Processing Systems, volume 34, pp. 15111–15124. Curran162

Associates, Inc., 2021.163

5



A Loss Functions164

A.1 Uncensored Loss165

All of our models are optimized using the Multitask Logistic Regression Loss (MTLR) (Yu et al.,166

2011; Fotso, 2018). We encode event times such that if patient i has a medical event at time s then167

all times t ≥ s will have label yit = 1. Correspondingly, times t < s will be labeled with 0. Typical168

label strings will look like a sequence of 0s followed by a sequence of 1s (e.g., (0, 0, 0, 1, 1)). The169

probability that our model assigns to the ground truth label sequence for a particular patient (the170

likelihood function) is then given as171

p(Y = (y1, y2, . . . , ym)|z) =
exp(

∑m
j=1 yjzj)∑m

k=0 exp(f(z, k))
(11)

where z ∈ Rm are logits from the model and f(z, k) =
∑k

j=0 0 · zj +
∑m

j=k+1 1 · zj for 0 ≤ k ≤ m,172

which constrains the space of valid event sequences to runs of 0s followed by runs of 1s and173

corresponds to the disease occurring in the interval [k, k + 1). The boundary case is f(z,m) = 0,174

which corresponds to the sequence of all 0s. We can minimize the negative log-likelihood for an175

uncensored patient with the following loss176

Luncensored = −
m∑
j=1

yjzj − log

(
m∑

k=0

exp(f(z, k))

)
(12)

We now provide more detail on how to exchange between the model’s logits z and a PMF p ∈ [0, 1]m177

over event times. Our model produces increment logits due to its interaction with the cumulative-sum178

parameterization of the softmax (Equation 11). However, all methods must blend distributions over179

event times from different experts in probability space and therefore we rely on Equation 11 to map180

from increment logit space to probability space. We must also define an inverse operation to map181

from a PMF back to increment logits. We have182

zj = log(pj)− log(pj+1) for j = 1, . . . ,m− 1 (13)
and set zm = 0. We now derive this inverse operation for completeness. Let183

ut =

m∑
j=t

zj for t = 1, . . . ,m. (14)

By Equation 11, pj =
exp(uj)∑m

k=0 exp(f(z,k)) for j = 1, . . . ,m, which is equivalent to softmax(u) for u ∈184

Rm. Recall that the softmax function is invariant to additive shifts (i.e., softmax(u) = softmax(u+c)185

for any constant c). We can therefore set c = −um so that um = 0 and by Equation 14, zm = 0. We186

can now write uj = log(pj) + c′ for j = 1, . . . ,m. Since um = 0, we have c′ = − log(pm) and187

therefore uj = log(pj)− log(pm) for j = 1, . . . ,m. By Equation 14, we have188

zj = uj − uj+1 (15)
= log(pj)− log(pm)− log(pj+1) + log(pm) (16)
= log(pj)− log(pj+1) for j = 1, . . . ,m− 1 (17)

and zm = 0, which completes the derivation.189

A.2 Censored Loss190

We now describe how to contend with censored data, which occurs when we do not observe if or191

when a patient has an event. Suppose a patient is censored at time sc and time t+ tj is the closest192

time point after sc. Then all sequences Y = (y1, y2, . . . , ym) with yi = 0 for i < j are consistent193

with this censored observation. Therefore the likelihood for a censored patient is the survival function194

(i.e., 1 minus the cumulative density function (CDF)), which is195

p(S ≥ t+ tj |z) =
∑m

k=j exp(f(z, k))∑m
k=0 exp(f(z, k))

(18)

6



and in turn, the negative log-likelihood loss for a censored patient is196

Lcensored = −

log
 m∑

k=j

exp(f(z, k))

− log

(
m∑

k=0

exp(f(z, k))

) . (19)

A.3 Regularizers197

We apply a load-balancing loss to all MoE models to ensure the model uses all available experts. Let198

ᾱ = 1
b

∑b
i=1 α(xi) be the average expert distribution over a batch of size b. The load-balancing199

loss encourages the model to use all experts equally across the batch of examples by penalizing200

low-entropy average expert distributions. For a given batch, the loss is given as201

Lload-balance = λlb · n
n∑

i=1

ᾱ2
i , (20)

where n is the number of experts and λlb is a hyperparameter that controls the strength of the202

regularization. This loss is minimized when ᾱ is the uniform distribution.203

B Hyperparameters and Training Details204

Table 2: Model specific hyperparameters for SUPPORT2 and Sepsis datasets.
Model Static MoE Adjustable MoE Dynamic MoE MTLR

Hidden Dim. (h) 176 186 128 176
Num. Layers (ℓ) 2 2 1 2
Num. Experts (n) 10 10 8 -

Table 3: Model specific hyperparameters for SurvivalMNIST.
Model Static MoE Adjustable MoE Dynamic MoE MTLR

Hidden Dim. (h) 208 186 160 176
Num. Layers (ℓ) 2 2 1 2
Num. Experts (n) 10 10 10 -

Table 4: Shared hyperparameters for all models.
Hyperparameter Value

Learning Rate 1e-3
Batch Size 64
λlb 0.01
κ Init. 2.0
m 100

We define a validation set for SurvivalMNIST by randomly sampling 5,000 examples from the205

training set and then use the provided test set for final evaluation. For SUPPORT2 and Sepsis, we206

randomly sample 10% of all examples to form a validation set and sample another 10% to form a test207

set. We use the validation set to perform minimal hyperparameter tuning and in general defaulted to208

the same hyperparameters across all models with the exception of parameter counts to ensure a fair209

comparison. We train all models to convergence as measured by the validation set loss, using early210

stopping with a patience of 10 epochs. All models are trained with the Adam optimizer. We use a211

hidden dimension of 128-208 and 1-2 hidden layers for all models, which are fully connected layers212

with ReLU activations. We use 8-10 experts for all MoE models. The number of discrete time bins213

is set to m = 100 for all datasets. The load-balancing loss weight is set to λlb = 0.01 for all MoE214

7



models. The temperature parameter κ is initialized to 2.0 for all MoE models and learned during215

training. All models are implemented in PyTorch and trained on a single GPU. Our Github code216

repository will be released upon publication.217

C Inversion and Gradients for the Two-Logistic Warp218

A. Inversion by Bisection219

Recall the patient- and expert-specific forward map220

Fk,x(u) =

2∑
r=1

wk,r(x)σ
(
ak,r(x)[u− ck,r(x)]

)
, σ(z) = 1

1+e−z , (21)

and its endpoint-normalized version221

F̃k,x(u) =
Fk,x(u)− Fk,x(0)

Fk,x(1)− Fk,x(0)
∈ [0, 1]. (22)

We define222

ϕk,x(u) = F̃k,x(u) and ψk,x = ϕ−1
k,x.

Since σ is strictly increasing and wk,r(x), ak,r(x) > 0 with 0 < ck,1(x) < ck,2(x) < 1, Fk,x (and223

hence F̃k,x) is strictly increasing on [0, 1], so the inverse exists and is unique.224

For a given (k,x, tj) we obtain τ⋆ = ψk,x(tj) as the unique solution to225

g(τ ; θ) = F̃k,x(τ ; θ)− tj = 0, θ = (wk,1:2, ak,1:2, ck,1:2).

Because g(0) ≤ 0 ≤ g(1) and g is strictly increasing, bisection converges to τ⋆ with bracketing on226

[0, 1].227

Vectorized bisection (batched). For all items in a batch and all experts/time-bins (indices sup-228

pressed):229

1. Initialize lo← 0, hi← 1.230

2. For s = 1, . . . , S = 20:231

(a) mid← (lo + hi)/2.232

(b) v ← F̃k,x(mid)− tj .233

(c) Update lo← 1{v<0} ·mid + 1{v≥0} · lo, hi← 1{v<0} · hi + 1{v≥0} ·mid.234

3. Return τ⋆ ≈ (lo + hi)/2.235

This procedure halves the bracketing interval at each step, so S = 20 iterations yield ≈ 10−6236

precision.237

Numerical safeguards. We clip the denominator D = Fk,x(1) − Fk,x(0) away from 0 when238

forming F̃k,x, bound the slopes ak,r(x) ∈ [amin, amax] (e.g., amin = 0.1, amax = 35), enforce239

wk,1:2 via a softmax, and enforce ordered centers by a stick-breaking parameterization to improve240

conditioning.241

B. Gradients via the Implicit Function Theorem242

Let τ⋆ = ψk,x(tj) satisfy g(τ⋆; θ) = 0 with g(τ ; θ) = F̃k,x(τ ; θ)− tj . Because ∂τ F̃k,x(τ
⋆; θ) > 0,243

the implicit function theorem gives244

∂τ⋆

∂θ
= − ∂θF̃k,x(τ

⋆; θ)

∂τ F̃k,x(τ⋆; θ)
. (23)

Write F = Fk,x, F0 = F (0), F1 = F (1), and D = F1 − F0. Using245

F̃ (τ) =
F (τ)− F0

D
,

8



we obtain246

∂τ F̃ (τ) =
∂τF (τ)

D
, ∂θF̃ (τ) =

∂θF (τ) − ∂θF0 − F̃ (τ)
(
∂θF1 − ∂θF0

)
D

. (24)

For F (τ) =
∑2

r=1 wr σ
(
ar(τ − cr)

)
we have the elementary partials247

∂τF (τ) =

2∑
r=1

wr ar σ
′(ar(τ − cr)), σ′(z) = σ(z)

(
1− σ(z)

)
, (25)

∂wrF (τ) = σ
(
ar(τ − cr)

)
, ∂arF (τ) = wr (τ − cr)σ′(ar(τ − cr)), (26)

∂crF (τ) = −wr ar σ
′(ar(τ − cr)), (27)

and the same forms evaluated at τ = 0 and τ = 1 for F0 and F1. Substituting (24) into (23) yields248

closed-form expressions for ∂τ⋆/∂θ.249

9


	Introduction
	Methods
	Experiments
	Results
	Conclusion
	Loss Functions
	Uncensored Loss
	Censored Loss
	Regularizers

	Hyperparameters and Training Details
	Inversion and Gradients for the Two-Logistic Warp

