© N O O A~ W N =

w N = O ©

15
16
17
18
19
20

21
22
23
24
25
26
27
28
29
30
31
32
33

34
35

Let the Experts Speak: Improving Survival Prediction
& Calibration via Mixture-of-Experts Heads

Anonymous Author(s)
Affiliation
Address

email

Abstract

Deep mixture-of-experts models have attracted a lot of attention for survival analy-
sis problems, particularly for their ability to cluster similar patients together. In
practice, grouping often comes at the expense of key metrics such calibration error
and predictive accuracy. This is due to the restrictive inductive bias that mixture-of-
experts imposes, that predictions for individual patients must look like predictions
for the group they’re assigned to. Might we be able to discover patient group
structure, where it exists, while improving calibration and predictive accuracy?
In this work, we introduce several novel deep mixture-of-experts (MoE) based
architectures for survival analysis problems, one of which achieves all desiderata:
clustering, calibration, and predictive accuracy. We show that a key differentiator
between this array of MoEs is how expressive their experts are. We find that more
expressive experts that tailor predictions per patient outperform experts that rely on
fixed group prototypes.

1 Introduction

Al has the potential to have a profound impact on clinical decision support systems (CDSS) (Eltawil
et al., 2023). In this work, we focus on what clinicians care about most: highly accurate models,
where probabilities have intuitive meaning (i.e., calibration), and the ability to reason by analogy to
similar patients. Our work addresses survival analysis problems, where the task is to predict when
clinical events will occur (i.e., time-to-event regression) while contending with right censoring (i.e.,
not observing the event time for all patients).

Mixture-of-experts (MoE) models for medical survival analysis are defined by two key components:
1) a router that assigns patients to groups and 2) a set of experts that produce event distributions
for each group. We develop three novel deep MoE based survival architectures with an eye toward
the above desiderata. Importantly, these three architectures differ only in the degree to which their
experts customize their predictions for individual patients, allowing us to isolate the effect this has
on the quality of predictive accuracy and calibration, which has not been carefully investigated in
the medical survival modeling setting. The first architecture, static MoE, uses several experts where
each expert learns an associated event distribution, which is then static across all patients. The second
architecture, adjustable MoE, again learns a prototypical event distribution per expert, but can be
adjusted to the individual patient. The third architecture, dynamic MoE, uses experts that each
form a custom event distribution for individual patients. Only the third architecture is able to cluster
patients and outperform strong baseline models on calibration and absolute error. The contributions
of our work are as follows:

1. we develop three novel deep mixture-of-experts (MoE) based survival architectures, one of
which achieves excellent clustering, calibration error, and absolute error.

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

36
37
38

39

40
41
42
43
44
45
46
47
48
49
50

51
52
53
54
55

56
57
58
59

60
61
62
63
64

65

66
67

68
69

2. we report that the expressiveness of the experts is a key differentiator between deep MoE-
based survival analysis models, supported by a targeted set of experiments on these three
architectures.

2 Methods

We now describe our three proposed deep mixture-of-experts (MoE) based survival architectures.
All models are feedforward deep learning models that use information from a patient’s record (e.g.,
demographic data, physiological data, etc.) to forecast when they are likely to have a clinical event.
Raw patient records x{, € R® fori = 1...n are composed of categorical indicators (e.g., gender,
etc.), standardized continuous features (e.g., heart rate), and any other available features (e.g., text
embeddings of patient records, etc.). We learn embeddings for categorical indicators, which results
in a d-dimensional feature vector that is fed to the model. Let x = x271 € R" be shorthand for the

penultimate hidden state representation of our feedforward model with ¢ layers for the i patient.
We will now describe the £ layer (i.e., the final layer), which is the MoE layer in all architectures.
All methods are trained using an MTLR-style (Yu et al., 2011; Fotso, 2018) loss function, which is
described in the appendix.

Static Mixture-of-Experts. The static MoE architecture, which learns an event distribution per
expert that is then static with respect to all patients, is composed of a learnable router W € R"*"
where n is the number of experts and a collection of learnable experts M € R™*™ where each row
can be mapped to a distribution over the m possible discrete event times. We produce a probability
mass function (PMF) p over discrete event times as follows

a(x) = softmax(xW7T/k) (1
p:aM’:ZajM]’- (2
=1

where o is the weight on expert j, M J’ is the j™ row of the parameter matrix M after it has been
normalized to form a discrete event distribution, and « is a learnable temperature parameter that
modulates the sharpness of expert selection. This architecture is the discrete-time analog to Hou et
al.’s (2023) Deep Clustering Survival Machine.

Adjustable Mixture-of-Experts. The adjustable MoE learns an event distribution per expert and
then warps it per patient. Let t € [0, 1]™ denote the canonical grid over the m discrete time bins,
witht; = j/(m —1)forj =0,...,m — 1. Each expert k maintains a prototype vector M} € R™
of unnormalized scores over event times. To tailor expert k to patient ¢z, we define a strictly monotone
bijection between the expert’s internal time 7 € [0, 1]™ and the canonical grid t:

-1
Orx T — t, Vpx : t —>T:¢k’x.

forward inverse

Concretely, we take the forward map to be a normalized mixture of two logistic CDFs,

1

S Tre ®

Frn(w) = 3w (%) ofan, (x) [u— cer(x)]), o(2)

with weights wy, »(x) > 0 and), wg »(x) = 1, slopes aj ,(x) > 0, and ordered centers 0 <
ck,1(x) < cg2(x) < 1. We enforce a mapping from [0, 1] — [0, 1] via endpoint normalization,

Flox(u) — Fiy x(0)
Fiex(1) = Fix(0)

and define ¢y, x(u) = Fk7x(u) and ¢y x = qb,;i. Given a canonical gridpoint ¢;, we compute
uj = (m — 1) 9 x(t;) and linearly interpolate the prototype scores:

Frx(u) = € [0,1],)

io = LUjJ, il = Hlin(io + 1,m — 1), wj; = u; — io, (5)
M = (1= wj) Myiq +wj My, ©)

70
71

72
73
74
75

76
77
78
79
80

81
82
83

84

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

101

102

104
105
106
107
108
109
110
111

Let M, .. denote the row-wise normalization of Mj, into an event-time PMF. The final per-patient PMF
is then

a(x) = softmax(xW7/k), (N
p=aM =Y ax) M. ®)
k=1

In practice, we evaluate 1)y, «(¢;) via a batched bisection solver (see appendix for more details). This
transformation family generalizes simple shift/scale warps and can emulate proportional-hazards
style tilts while allowing richer early/late adjustments with minimal additional parameters per expert
(Zhong et al., 2021; Nagpal et al., 2021).

Dynamic Mixture-of-Experts. The dynamic MoE architecture provides the most flexibility to
the experts to form custom event distributions per patient. Since this architecture generates new
expert distributions for each patient, we first project the final hidden state representaion x to a router
representation with x,. = xW,T for W,. € R"*" and an expert representation with x, = xWJ for
W, € R We then divide the expert representation into n evenly-sized chunks x. j, for k =
1,...,n, which are each fed to a linear layer denoted L;, € R™*("/") to form an event-distribution
to obtain My, (X, i) = Xe, kLZ, which collectively form the dynamic matrix of unnormalized densities
over event times M (x.) € R"*™. The final PMF is then

a(x,) = softmax(x, WT/k))
p=aM(x.) = Zosz(xe);. (10)
j=1

3 Experiments

We experiment with 3 datasets to probe the properties and capabilities of our proposed methods.
SurvivalMNIST is a synthetic dataset (see Figure 1), which allows us to probe the models’ abilities
to predict event times and recover latent groups. We censor 15% of examples. SUPPORT?2 is a
survival analysis dataset with 9,105 examples and ~32% censoring. Sepsis is a larger dataset with
40,336 patient records and only 2,932 positive instances of sepsis, making this a very challenging
anomaly detection task (Reyna et al., 2020). The first 100 hours of each patient’s ICU stay was
summarized to perform a retrospective prediction, helpful when using partially labeled historical
datasets to accelerate human labeling. Patients were administratively censored after 100 hours. We
measure equal mass expected calibration error (ECE) (Roelofs et al., 2022) adjusted with inverse
probability of censoring weighting (IPCW) and average over all time bins, concordance index, and
absolute error adjusted with pseudo-observations (Qi et al., 2023). We also report the test set negative
log-likelihood loss and parameter count for each method. All measurements are averaged over 5
random seeds. In order to obtain a ranking of the models by performance, for each random seed we
take the difference between the MoE model’s metric and MTLR model’s metric, and then average that
over the 5 runs to obtain an average performance gap. Network architectures and hyperparameters
are described in the appendix.

4 Results

We report our results in Table 1. The SurvivalMNIST dataset represents the Platonic ideal of a dataset
with clear latent groups and as a result the static MoE model performs best across all metrics, followed
by dynamic MoE. This is a setting where the static MoE is perfectly specified, with exactly 10 expert
heads, one for each digit. The only information needed to make Bayes-optimal predictions is to
identify the digit, at which point the appropriate expert can predict the group’s event distribution. Any
attempt to adjust or customize the expert distributions per patient only adds unnecessary complexity
and hurts performance. Nevertheless, we can see in Figure 1 that the dynamic MoE is able to
recover the latent groups, with each expert specializing in a particular digit. The SurvivalMNIST
dataset provides an interesting contrast to real-world datasets, where latent groups are almost never
as well-defined.

112
113
114
115
116
117
118
119
120
121
122
123
124
125

126

127
128
129
130
131
132
133

Table 1: We report averages over 5 random seeds and in parentheses average deviation, given a
random seed, from the MTLR baseline. Best results per dataset are bolded. | indicates lower is better
and 71 indicates higher is better.

Dataset Model ECE | Concordance T Abs. Error | Loss | Parameters |

Static MoE 0.004 (-0.003) 93.24 (0.69) 2.74 (-0.10) 2.197 (-0.041) 209,847
Adjustable MoE 0.008 (0.001) 92.48 (-0.08) 2.89(0.04) 2.292 (0.054) 194,883
Dynamic MoE 0.005 (-0.002) 92.65 (0.09) 2.81 (-0.03) 2.222 (-0.015) 195,731
MTLR 0.006 (0.000) 92.56 (0.00) 2.84 (0.00) 2.238 (0.000) 187,189
Static MoE 0.066 (0.007) 79.68 (-0.48) 640.63 (3.12) 2.320(0.131) 69,483
Adjustable MoE 0.051 (-0.008) 79.65 (-0.52) 621.35(-16.16) 2.322 (0.134) 69,435

Survival MNIST

SUPPORT2 Dynamic MoE 0.043 (-0.016) 80.97 (0.81) 619.89 (-17.62) 2.153 (-0.036) 62,013
MTLR 0.059(0.000) 8017 (0.00) 637.51 (0.00) 2.189 (0.000) 68.521
Static MoE 0.012(0.002) 79.87(323) 437(0.04) 0449(0.032) 62179
Sepsis Adjustable MOE 0.010 (-0.000) 8148 (-1.62) 4.34(-007) 0433 (0.016) 62.835

Dynamic MoE 0.007 (-0.003) 82.89 (-0.21) 4.32 (-0.09) 0.412 (-0.005) 57,269
MTLR 0.010 (0.000) 83.10 (0.00) 4.41 (0.00) 0.418 (0.000) 62,241

Results on SUPPORT?2 show the dynamic MoE model outperforms all other methods across all
metrics. Importantly, the dynamic MoE model is outperforming the MTLR model on calibration error,
concordance, absolute error, and loss, while the static and adjustable MoE models are, in general,
not. We see similar results on the Sepsis dataset, providing further evidence that the dynamic MoE
model is able to deliver on all desiderata: clustering, calibration, and predictive accuracy. Consistent
with prior work that is subsumed by our adjustable MoE (e.g., Deep Cox Mixtures (Nagpal et al.,
2021)), we observe that per-patient adjustments chiefly benefit calibration and predictive accuracy
as measured by absolute error relative to MTLR, though we see limited impact on concordance or
likelihood. Our dynamic MoE model extends those gains, delivering simultaneous improvements
in calibration, accuracy, and discrimination, achieved with simple end-to-end learning rather than
more elaborate training pipelines (e.g., spline estimation of baseline hazard rates, EM-based cluster
estimation, etc.). The dynamic MoE model’s ability to form custom event distributions per patient
appears to be key to its strong performance on real-world datasets, where latent groups are not as
well-defined as in SurvivalMNIST.

0.8 4 0 0.09 [OE]
074 Digit 1 0.96
—0 2 0.90 0.06}
0.6 1 1
—> 3 0.02 9
%‘ 0.5 1 —3 ‘GL'J 4 0.8 0.14]
c —4 a
3 0.4 —5 X5 37 0.61]
0.3 - —S 6 0.9
0.2 8 ya0.97
014 —9 8 0.06] 91
9 0.03
00 T T I\ T
0 10 20 30 40 0123 45%6 789
Time MNIST Digit

Figure 1: The left plot shows synthetic event distributions for each MNIST digit in SurvivalMNIST
and the right plot shows which digits get routed to each expert in a dynamic MoE model.

5 Conclusion

We developed three novel deep mixture-of-experts (MoE) based survival architectures, one of
which achieves excellent clustering, calibration error, and absolute error. We have shown that the
expressiveness of the experts is a key differentiator between deep MoE-based survival analysis
models, supported by a targeted set of experiments on these three architectures. Future work will
explore the optimal allocation of parameters between the network backbone and the MoE layer, a
wider range of adjustable MoE’s given the rich space of possible parameter-efficient transformations
of expert distributions, and how patients are routed to experts on real-world datasets.

134

135
136
137

139
140

141
142
143

144
145
146

147
148
149
150

151
152
153
154

156
157

158
159
160

161
162
163

References

Eltawil, F. A., Atalla, M., Boulos, E., Amirabadi, A., and Tyrrell, P. N. Analyzing Barriers and
Enablers for the Acceptance of Artificial Intelligence Innovations into Radiology Practice: A
Scoping Review. Tomography, 9(4):1443-1455, August 2023. ISSN 2379-139X. doi: 10.3390/
tomography9040115.

Fotso, S. Deep Neural Networks for Survival Analysis Based on a Multi-Task Framework, January
2018.

Hou, B., Li, H., Jiao, Z., Zhou, Z., Zheng, H., and Fan, Y. Deep Clustering Survival Machines with
Interpretable Expert Distributions. In 2023 IEEE 20th International Symposium on Biomedical
Imaging (ISBI), pp. 1-4, April 2023. doi: 10.1109/ISBI53787.2023.10230844.

Nagpal, C., Yadlowsky, S., Rostamzadeh, N., and Heller, K. Deep Cox Mixtures for Survival
Regression. In Proceedings of the 6th Machine Learning for Healthcare Conference, pp. 674-708.
PMLR, October 2021.

Qi, S.-a., Kumar, N., Farrokh, M., Sun, W., Kuan, L.-H., Ranganath, R., Henao, R., and Greiner, R.
An effective meaningful way to evaluate survival models. In Proceedings of the 40th International
Conference on Machine Learning, volume 202 of ICML’23, pp. 28244-28276, Honolulu, Hawaii,
USA, July 2023. JMLR.org.

Reyna, M. A, Josef, C. S., Jeter, R., Shashikumar, S. P., Westover, M. B., Nemati, S., Clifford,
G. D, and Sharma, A. Early Prediction of Sepsis From Clinical Data: The PhysioNet/Computing
in Cardiology Challenge 2019. Critical Care Medicine, 48(2):210-217, February 2020. ISSN
0090-3493. doi: 10.1097/CCM.0000000000004145.

Roelofs, R., Cain, N., Shlens, J., and Mozer, M. C. Mitigating Bias in Calibration Error Estimation.
In Proceedings of The 25th International Conference on Artificial Intelligence and Statistics, pp.
4036-4054. PMLR, May 2022.

Yu, C.-N., Greiner, R., Lin, H.-C., and Baracos, V. Learning Patient-Specific Cancer Survival Distri-
butions as a Sequence of Dependent Regressors. In Advances in Neural Information Processing
Systems, volume 24. Curran Associates, Inc., 2011.

Zhong, Q., Mueller, J. W., and Wang, J.-L. Deep Extended Hazard Models for Survival Analysis.
In Advances in Neural Information Processing Systems, volume 34, pp. 15111-15124. Curran
Associates, Inc., 2021.

164

165

166
167
168
169
170
171

172
173
174
175
176

177
178
179
180
181
182

183

184

185
186
187
188

189

190

191
192
193
194
195

A Loss Functions

A.1 Uncensored Loss

All of our models are optimized using the Multitask Logistic Regression Loss (MTLR) (Yu et al.,
2011; Fotso, 2018). We encode event times such that if patient ¢ has a medical event at time s then
all times ¢ > s will have label 3! = 1. Correspondingly, times ¢ < s will be labeled with 0. Typical
label strings will look like a sequence of Os followed by a sequence of 1s (e.g., (0,0,0,1,1)). The
probability that our model assigns to the ground truth label sequence for a particular patient (the
likelihood function) is then given as
exp(3_7L 1 ¥5%)
Y = e Ym)|Z) = =3 J 11

p((y17y27 'Y)l) Zk:()exp(f(zgk>) ()
where z € R™ are logits from the model and f(z, k) = Z?:o 0-2z;+ Z;n:k.ﬂ 1.-zjfor0 <k <m,
which constrains the space of valid event sequences to runs of Os followed by runs of 1s and
corresponds to the disease occurring in the interval [k, k 4+ 1). The boundary case is f(z, m) = 0,
which corresponds to the sequence of all Os. We can minimize the negative log-likelihood for an
uncensored patient with the following loss

['uncensored = - Z Yjz5 — IOg (Z exp(f(z, k))) (12)
=1 k=0

We now provide more detail on how to exchange between the model’s logits z and a PMF p € [0, 1]™
over event times. Our model produces increment logits due to its interaction with the cumulative-sum
parameterization of the softmax (Equation 11). However, all methods must blend distributions over
event times from different experts in probability space and therefore we rely on Equation 11 to map
from increment logit space to probability space. We must also define an inverse operation to map
from a PMF back to increment logits. We have

z; = log(p;) —log(pj41) forj=1,...,m—1 (13)
and set z,,, = 0. We now derive this inverse operation for completeness. Let

utzz:zjfort:l,...,m. (14)
j=t
By Equation 11, p; = % for j = 1,..., m, which is equivalent to softmax(u) for u €
k=0 ’

R™. Recall that the softmax function is invariant to additive shifts (i.e., softmax(u) = softmax(u+c)
for any constant c¢). We can therefore set c = —u,, so that u,,, = 0 and by Equation 14, z,,, = 0. We
can now write u; = log(p;) + ¢ for j = 1,...,m. Since u,, = 0, we have ¢’ = —log(p,,) and

therefore u; = log(p;) — log(pym) for j =1,...,m. By Equation 14, we have
25 = Uj — Ujy1 (15)
= log(p;) — log(pm) — log(p;+1) + log(pm) (16)
:log(pj)ilog(p]-i-l) fOI'j = 17"'7m71 (17)

and z,, = 0, which completes the derivation.

A.2 Censored Loss

We now describe how to contend with censored data, which occurs when we do not observe if or
when a patient has an event. Suppose a patient is censored at time s. and time ¢ + ¢; is the closest
time point after s.. Then all sequences Y = (y1,¥2, ..., ¥m) With y; = 0 for ¢ < j are consistent
with this censored observation. Therefore the likelihood for a censored patient is the survival function
(i.e., 1 minus the cumulative density function (CDF)), which is

S e (k)
ST exp(f (s)

p(S >t+t;|z) (18)

196

197

198

199
200
201

202
203

204

211

214

and in turn, the negative log-likelihood loss for a censored patient is
Lcensored = - IOg Zexp(f(z, k)) - IOg (Z eXp(f(Z, k))) . (19)
k=j k=0

A.3 Regularizers

We apply a load-balancing loss to all MoE models to ensure the model uses all available experts. Let

o= % Zi’:l a(x") be the average expert distribution over a batch of size b. The load-balancing
loss encourages the model to use all experts equally across the batch of examples by penalizing
low-entropy average expert distributions. For a given batch, the loss is given as

Lioad-balance = Alp * T Z 5422; (20

i=1

where n is the number of experts and)\, is a hyperparameter that controls the strength of the
regularization. This loss is minimized when ¢ is the uniform distribution.

B Hyperparameters and Training Details

Table 2: Model specific hyperparameters for SUPPORT?2 and Sepsis datasets.

Model Static MoE ~ Adjustable MoE Dynamic MoE MTLR
Hidden Dim. (h) 176 186 128 176
Num. Layers (¢) 2 2 1 2
Num. Experts (n) 10 10 8 -

Table 3: Model specific hyperparameters for SurvivalMNIST.

Model Static MoE ~ Adjustable MoE Dynamic MoE MTLR
Hidden Dim. (h) 208 186 160 176
Num. Layers (¢) 2 2 1 2
Num. Experts (n) 10 10 10 -

Table 4: Shared hyperparameters for all models.

Hyperparameter Value

Learning Rate le-3
Batch Size 64

Alb 0.01
£ Init. 2.0
m 100

We define a validation set for SurvivalMNIST by randomly sampling 5,000 examples from the
training set and then use the provided test set for final evaluation. For SUPPORT?2 and Sepsis, we
randomly sample 10% of all examples to form a validation set and sample another 10% to form a test
set. We use the validation set to perform minimal hyperparameter tuning and in general defaulted to
the same hyperparameters across all models with the exception of parameter counts to ensure a fair
comparison. We train all models to convergence as measured by the validation set loss, using early
stopping with a patience of 10 epochs. All models are trained with the Adam optimizer. We use a
hidden dimension of 128-208 and 1-2 hidden layers for all models, which are fully connected layers
with ReLU activations. We use 8-10 experts for all MoE models. The number of discrete time bins
is set to m = 100 for all datasets. The load-balancing loss weight is set to A, = 0.01 for all MoE

215
216
217

218

219

220

221

222

223

224

225

226
227

228
229

230

231

232

233

234

235

236
237

238

239
240
241

242

243
244

245

models. The temperature parameter « is initialized to 2.0 for all MoE models and learned during
training. All models are implemented in PyTorch and trained on a single GPU. Our Github code
repository will be released upon publication.

C Inversion and Gradients for the Two-Logistic Warp

A. Inversion by Bisection

Recall the patient- and expert-specific forward map

Frx(u) = Zwlm(x) G(ahr(x)[u — c;w(x)}), o(z) = H%’ 21
r=1

and its endpoint-normalized version

Fuxtu) = PO =P € 0.1 @)

We define _

Oex(t) = Frx(u) and thpx = ¢p .
Since o is strictly increasing and wy, ,(x), ak »(x) > 0 with 0 < ¢ 1(x) < ¢ 2(x) < 1, Fi, x (and
hence F, k%) is strictly increasing on [0, 1], so the inverse exists and is unique.

For a given (k,x,t;) we obtain 7% = 9y, «(¢;) as the unique solution to

g(1;0) = Frx(1;0) —t; = 0, 6= (wk1.2,0k1:2,Ch1:2)-

Because ¢g(0) < 0 < ¢g(1) and g is strictly increasing, bisection converges to 7* with bracketing on
[0,1].

Vectorized bisection (batched). For all items in a batch and all experts/time-bins (indices sup-
pressed):

1. Initialize lo < 0, hi + 1.
2. Fors=1,...,5=20:

(a) mid < (lo+ hi)/2.

(b) v ¢ F, (mid) — ;.

(c) Update lo <= 14, <oy - mid + 1yy,>03 - 10, hi <= 1,00y hi+ 1,50y - mid.
3. Return 7* = (lo + hi)/2.

This procedure halves the bracketing interval at each step, so S = 20 iterations yield ~ 1076
precision.

Numerical safeguards. We clip the denominator D = Fj, (1) — Fj x(0) away from 0 when
forming Fy, x, bound the slopes ak ,(X) € [Gmin, Gmax] (€-8 Amin = 0.1, amax = 35), enforce
wy, 1.2 via a softmax, and enforce ordered centers by a stick-breaking parameterization to improve
conditioning.

B. Gradients via the Implicit Function Theorem

Let 7 = oy, x(;) satisfy g(7*;0) = 0 with g(7;0) = F}, x(7;0) — t;. Because 9, F}, »(1%;60) > 0,
the implicit function theorem gives

or _ (r“)g,l'?k}x(T ;9). (23)
a9 0-Fj x (1% 0)
Write F' = Fy, x, Fy = F(0), Fy = F(1), and D = I} — F}. Using
- F(r) - Fy
F = —
(T) D ?

246

247

248
249

we obtain

&—F(T) _ 8TF(T), (%F(T) _ 89F(7’) — 89F0 — F(T) (89F1 — 8@F0) . (24)

D D

For F(7) = S.7_, w, o(a, (1 — ¢,)) we have the elementary partials

2
0-F(r) =Y wyaro'(ar(r —c)), o'(2) = a(2)(1 - o(2)), (25)
r=1

Ow, F(7) = U(GT(T — cr))7 04, F(1) =w, (T —¢,) 0'(ar(7' — cT))7 (26)
0o, F(1) = —wy a, o'(ar (T — ¢)), (27)

and the same forms evaluated at 7 = 0 and 7 = 1 for Fy and F7j. Substituting (24) into (23) yields
closed-form expressions for 97* /00.

	Introduction
	Methods
	Experiments
	Results
	Conclusion
	Loss Functions
	Uncensored Loss
	Censored Loss
	Regularizers

	Hyperparameters and Training Details
	Inversion and Gradients for the Two-Logistic Warp

