
Automated Generation of Executable
Cross-Language Background Knowledge

Anonymous Author(s)

Motivation

Certain problems require specific semantic
knowledge to be solved, e.g. the transforma-
tion “January → 1”. Without the required
domain specific knowledge, a program synthe-
sizer can’t generalize towards a program that
also learns the other months of the year. On-
line repositories of code contain many of these
transformations and they can be used to im-
prove the semantic strength of a synthesis tech-
nique [He et al., 2018]. By reusing previously
written code that contains parts of or the entire
transformation, these domain specific problems
can now be solved as well. This background
knowledge, in the form of method declarations,
is however not easily available in a uniform for-
mat. The lack of formalization of this process
results in handcrafted crawling and parsing soft-
ware for each program synthesis technique, as
can be found in recent works [He et al., 2018,
Yan and He, 2018]. Moreover, when the pro-
gram space spans over multiple programming
languages these techniques have to be adapted by
the synthesis researchers for each separate lan-
guage. This work tries to formalize the process
of generating executable background knowledge
in multiple programming languages that can be
used in different synthesis techniques. Such
framework would lower the amount of time spent
on crawling, parsing and runtime environments
within future research projects.

Framework

The creation of such a background knowledge
consists of three main phases: crawling code, se-
lecting relevant functions and creating a runtime
environment. Crawling code on a website like
GitHub provides a rich and diverse collection of
functions for each programming language. The
found source code files can be scanned from

which method declarations1 can be collected
and filtered according to a set of chosen cri-
teria. Given some runtime environment, these
previously collected methods can be executed on
provided input examples. An important note is
that each of these steps is intertwined with the
used programming language. For example, the
filtering step requires an AST-like representa-
tion of the method declarations to properly pro-
cess each entry. The libraries used to construct
these ASTs are clearly language specific and
can’t be generalized. These language specific
steps have to be clearly marked so that an open
source contributor can extend the framework
easily by implementing these steps for the new
programming language. This reduces the com-
plexity of adding a new programming language
to implementing the language specific steps. A
collection of function handles processed by this
framework, potentially containing multiple pro-
gramming languages, can thus be ran by merely
supplying input parameters, see figure 1. This
process severely reduces the amount of software
engineering work needed from the synthesis re-
searcher.

Using one uniform framework which clearly
marks the language specific steps, has two clear
advantages. Firstly, a uniform open source
framework only requires a programming lan-
guage to be added once. Secondly clearly mark-
ing the language specific steps, reduces the com-
plexity of extending the framework with another
programming language to providing an imple-
mentation of the language specific steps. The
next subsections will give a high level overview
of the current design of the framework which
as of writing this paper has implementations for
Python and Java, for a Prolog extension see
section Extending to Prolog. Figure 2 contains

1In a language like Prolog analogous steps can be followed to collect predicates.

Preprint. Under review.



Figure 1: Framework interaction as a synthesis researcher

a high level of overview of the proposed frame-
work. Each of the next subsections describes
both the generic part that works for any program-
ming language and the programming language
specific part.

Crawling

External information is needed to provide the
aforementioned building blocks. While the
source of information can be any collection of
readable source files, the implementation of the
current framework only supports the GitHub
API.

Abstractions. Given the description of the de-
sired files, usually a file extension, the process
of downloading the code from GitHub and as-
sembling the desired documents is entirely auto-
mated.

Language Specific. Crawling from more com-
plex data sources or from e.g. readme files can
be implemented to increase the method decla-
ration yield at a programming language specific
level.

Collecting & Filtering

The found source files could contain methods
that provide domain knowledge needed to solve
certain transformation tasks. This step collects
these method declarations and subjects them to
filters so that low quality methods are left out.

Abstractions. This phase mainly consists of a
collection of filters that reduce the method dec-
laration set. While the abstractions made here
will orchestrate the execution of the different fil-
ters, it does not bring much value on its own. It
does however handle storage, serialization of the
AST information and marks building blocks with
meta information for future use. This informa-

tion can be used as a syntactic bias over the pro-
gram space, and thus needs to be collected for
algorithmic performance. These aforementioned
steps are another example of tedious software en-
gineering work that should not be reinvented ev-
ery research project.

Language Specific. Collecting the method dec-
larations from the found files can be achieved
through language specific AST software. This
step has to be implemented once for each pro-
gramming language, but can rely on a vast col-
lection of AST parsers. The most primitive im-
plementation would support functions that oper-
ate without their scope-bound context, yet more
advanced collection techniques can be added to
improve the quality of this step. Some of the
filters are also language specific, but as stated
before these only have to be written once. For
example one of the already implemented Java
filters will check if the provided code compiles.
This does not need to be implemented again and
works out of the box. Given the open source
nature of this framework, frequently used filters
should appear if the framework is adopted within
the community.

Runtime Environment

To run one of the left over methods, it is impor-
tant that a runtime environment is present that
can handle its programming language. The same
issue occurs when a filter needs language spe-
cific elements like access to a compiler. A true
cross-language research project thus requires a
runtime environment for each programming lan-
guage. It would be inefficient to reimplement
this for every program synthesis technique as a
generic solution would only require one imple-
mentation for each programming language. This
framework uses Docker to provide runtime en-

2



Figure 2: High level overview of the framework.

vironments, as it’s widely used and provides an
easy installation format for end users.

Abstractions. A generic program is written to
handle the life cycle of any docker container and
retrieves the output of the ran program. Meth-
ods that would run infinitely or throw errors will
also be caught using the aforementioned life cy-
cle management. Given that any language out-
puts a JSON, the storage of the output of these
containers also can be automated regardless of
the used programming language.

Language Specific. A docker image must be
selected for the new programming language and
some JSON serializer software has to be added to
the image. The files that should be ran are vol-
ume mounted into the container and ran through
a run script. From this point on the generic
docker wrapper can operate on its own. See the
next chapter for an example.

Extending To Prolog

To show what it takes to extend such a frame-
work, this section will describe the required steps
to add Prolog. This would also be the running
example presented in the workshop.

Crawling

By adding the “Prolog” keyword to the GitHub
API and providing the correct file extension, i.e.
.pl, the framework automatically starts down-
loading the N most starred Prolog repositories
on GitHub. These files will contain the predi-

cates that can be used as background knowledge
in other synthesis techniques.

Collecting & Filtering

The predicates from the aforementioned Prolog
files have to be extracted. A very simple ver-
sion of this step could make use of a simple
regex matching the predicate structure or make
us of prolog xref 2 to analyze the contents of the
source files. An example of a filter would be an
attempt to execute this predicate without its sur-
rounding context, so that non executable predi-
cates within this setup are thrown away.

This rudimentary implementation does not work
for predicates requiring dependencies, but it is
clear that on a programming language specific
level this can be extended to increase predicate
yield.

Runtime Environment

The swipl image provides the needed environ-
ment for Prolog predicates to be evaluated.
Within this environment a template file is needed
to handle the process of running arbitrary Pro-
log predicates. This template includes access-
ing the JSON serializer3, logging this JSON to
stdout and wrapping the end user provided in-
put in the Prolog file. Once such a template ex-
ist, the found predicates can be pasted into this
template and ran from the terminal. From there
on the generic Docker wrapper can process the
output data.

2https://www.swi-prolog.org/pldoc/doc/_SWI_/library/prolog_xref.pl
3http/json

3

https://www.swi-prolog.org/pldoc/doc/_SWI_/library/prolog_xref.pl
https://www.swi-prolog.org/pldoc/doc/_SWI_/library/prolog_xref.pl


References

Yeye He, Xu Chu, Kris Ganjam, Yudian Zheng,
Vivek Narasayya, and Surajit Chaudhuri.
Transform-data-by-example (tde) an extensi-
ble search engine for data transformations.
Proceedings of the VLDB Endowment, 11(10):

1165–1177, 2018.

Cong Yan and Yeye He. Synthesizing type-
detection logic for rich semantic data types
using open-source code. In Proceedings of
the 2018 International Conference on Man-
agement of Data, pages 35–50, 2018.

4


