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Learning in Restless Bandits Under Exogenous
Global Markov Process

Tomer Gafni , Michal Yemini , Member, IEEE, and Kobi Cohen , Senior Member, IEEE

Abstract—We consider an extension to the restless multi-armed
bandit (RMAB) problem with unknown arm dynamics, where an
unknown exogenous global Markov process governs the rewards
distribution of each arm. Under each global state, the rewards
process of each arm evolves according to an unknown Markovian
rule, which is non-identical among different arms. At each time,
a player chooses an arm out of N arms to play, and receives a
random reward from a finite set of reward states. The arms are
restless, that is, their local state evolves regardless of the player’s
actions. Motivated by recent studies on related RMAB settings, the
regret is defined as the reward loss with respect to a player that
knows the dynamics of the problem, and plays at each time t the
arm that maximizes the expected immediate value. The objective
is to develop an arm-selection policy that minimizes the regret.
To that end, we develop the Learning under Exogenous Markov
Process (LEMP) algorithm. We analyze LEMP theoretically and
establish a finite-sample bound on the regret. We show that LEMP
achieves a logarithmic regret order with time. We further analyze
LEMP numerically and present simulation results that support
the theoretical findings and demonstrate that LEMP significantly
outperforms alternative algorithms.

Index Terms—Markov processes, restless multi-armed bandit,
sequential learning, sequential decision making.

I. INTRODUCTION

THE multi-armed bandit (MAB) problem is a popular model
for sequential decision making with unknown information:

A player chooses actions repeatedly among N different arms.
After each action it receives a random reward having an unknown
probability distribution that depends on the chosen arm. The
objective is to maximize the expected total reward over a finite
horizon of T periods. Restless multi-armed bandit (RMAB)
problems are generalizations of the MAB problem. Differing
from the classic MAB, where the states of passive arms remain
frozen, in the RMAB setting, the state of each arm (active or
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passive) can change. In this paper we consider an extension to
the RMAB problem, in which we assume that an exogenous
(global) Markov process governs the distribution of the restless
arms, and thus the reward depends on both the state of the global
process, and the local state of the chosen (active) arm.

A. Applications

RMAB problems have attracted much attention for their
wide application in diverse areas such as manufacturing sys-
tems [2], economic systems [3], biomedical engineering [4],
wireless communication systems [5], [6] and communication
network [7], [8]. A particularly relevant application captured by
the extended RMAB model considered in this paper is the Dy-
namic Spectrum Access (DSA) paradigm [9], [10], [11], where
primary users (licensed) occupy the spectrum occasionally, and
a secondary user is allowed to transmit over a single channel
when the channel is free. This behavior is commonly modeled by
a Gilbert-Elliot model that comprises a Markov chain with two
binary states. This model is captured as our exogenous (global)
process, where global state 1 denotes a transmitting primary
user and global state 0 denotes a vacant channel, i.e., an inactive
primary user. The statistical model for the arms establishes
the relationship between a physical channel and its finite-state
Markov model for a packet transmission system. We adopt the
view of previous studies, forming a finite-state Markov channel
model to reflect the fading channel effect [12]. The received SNR
values are partitioned into a finite number of states according to a
criterion based on the average duration of each state. This model
is very useful and enables one to avoid slow bit-level simulations
and focus on the overall system design. The differences in time
scales of fading and primary user switching can be manifested
in our model by increasing the probability of the global state to
remain in its state, compared to the probability of a local state
to remain in a certain state.

Other potential applications of the model include important
tasks in federated learning [6], recommendation systems [13],
[14], and dynamic pricing [15]. Federated learning [6] is an
emerging machine learning paradigm for training models across
multiple edge devices holding local datasets, without explicitly
exchanging the data. An important task in federated learning
is to design user scheduling algorithms that determine which
subset of users transmit at each round to save the communication
resources, where the overall completion time of a task depends
on the local processing time (including sensing, computation,
transmission) of each selected user [6]. This application can be
modeled by our new RMAB framework by modeling the random
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processing time of local users as Markov processes (e.g., due to
Markovian channel fading, queue length of data samples, etc.).
The global feature of the objective function in the federating
learning task can be modeled by the global Markov process (e.g.,
the source state that generates the data samples, the location of
the server that affects the communication channels, etc.).

In recommendation system tasks [13], [14], a well-known
problem is the task of learning the “preference” or “rating” that
a new user in the system would give to an item. The agent’s goal
is then to maximize the aggregated reward, which is associated
with e.g., clicks, likes, shares, sells, etc. This problem is called
the cold-start problem, and MAB-based formulations have been
used to model it [13], [14]. Here, the arms represent items (or
categories of items) and the reward distribution of each arm
represents the user preference regarding this item. If the user
interacts with the item, a positive feedback (i.e., a high reward)
is given, if not, a negative feedback (e.g., a zero reward) is
given. Furthermore, it is well known that often there are some
global “trends” that affect the preferences of the user. Rather
than assuming deterministic feature signals in MAB-based for-
mulations [14], using the new RMAB framework considered
in this paper, global trends can be modeled by an exogenous
global Markov process (drawn from an unknown Markovian
process and needs to be learned). Our new model allows different
distributions when arms are active (selected) or passive (not
selected), which is well suited to capture different preference
distributions when items are presented to the user or not.

Finally, in dynamic pricing tasks [15], a key problem for
businesses is to learn online the market demands to set prices for
products or services dynamically. Consider the pricing decision
for a manager at an online retailer. At the time of pricing, the
manager is unlikely to have complete information about each
product’s demand curve. In these markets, a manager must
consider an automated pricing policy to set real-time retail
prices with incomplete demand information. For example, a
consumer would buy a product only if its preference is higher
than the price. Using our new RMAB model, the local arms
represent the consumer’s preferences which evolve as a Markov
process. However, global economic changes (e.g., inflation)
affect the consumer’s preferences regarding various purchases.
These global changes are captured by the global Markov process.

B. Performance Measure of RMAB Under Exogenous Global
Markov Process

Computing the optimal policy for RMABs is P-SPACE hard
even when the Markovian model is known [16], therefore,
alternative tractable policies and objective functions have been
proposed. Nevertheless, always playing the arm with the highest
expected reward is optimal in the classic MAB under i.i.d. or
rested Markovian rewards, up to an additional constant term [17].
Thus, a commonly used approach in classic RMAB (i.e., without
exogenous process) with unknown dynamics settings to measure
the algorithm performance in a tractable way defines the regret
as the reward loss of the algorithm with respect to a genie that
always plays the arm with the highest expected reward, also
known as weak regret [18], [19], [20].

However, in our setting, due to the exogenous process, each
global state is associated with different “best” arm (i.e., the arm
with the highest expected reward). To accommodate the effect of
the exogenous global Markovian state, we extend the definition
of regret, and measure the performance of the algorithm by
the reward loss of the algorithm with respect to a genie that
plays in each time step the arm with the highest expected reward
given the global state. Furthermore, since the next global state
is unknown before choosing the arm for the next time step, we
adopt a myopic performance measure, as considered also in [21],
[22]. That is, the objective in this paper is to select the arm
that has the highest immediate expected value at each time slot
under unknown arm dynamics. The expected value, and thus also
the arm selection, depend on both the transition probabilities of
the global exogenous Markov process and the mean reward of
the arms, which depends on the global state. Consequently, we
define the regret as the reward loss of an algorithm with respect
to a genie that knows the transition probabilities of the global
process and the expected rewards of the local arms. Thus, we
note that the regret is not defined with respect to the best arm on
average (that would result in a weak regret), but with respect to
a strategy tracking the best arm at each step, which is stronger.
This notion of regret was also considered in Section 8 of [23]
and in [24], for the non-stochastic bandit problem.

C. Main Results

Due to the restless nature of both active and passive arms,
learning the Markovian reward statistics requires that arms will
be played in a consecutive manner for a period of time (i.e.,
phase) [18], [19], [20]. Thus we divide the time horizon into
two phases, an exploration phase and exploitation phase. The
goal of the exploration phase is to identify the best arm for each
global state before entering the exploitation phase.

Upper Confidence Bound (UCB)-based policies, that are used
to identifying the best arm, require parameter tuning depending
on the unobserved hardness of the task [25], [26], [27]. The
hardness parameter is a characteristic of the hardness of the
problem, in the sense that it determines the order of magnitude
of the sample complexity required to find the best arm with
a required probability. In the classic MAB formulation, the
hardness of the task is characterized by Hi =

1
(μ∗−μi)2 , where

μ∗, μi are the means of the best arm and arm i, respectively.
However, since the hardness parameter is unknown, existing
algorithms use an upper bound on maxi Hi (e.g., [19]), which
increases the order of magnitude of exploration phases, and
consequently the regret. Considering the above, we summarize
our main results and contributions.

1) An Extended Model for RMAB: RMAB problems have
been investigated under various models of observation distribu-
tions in past and recent years. The extended model considered in
this paper is capable of capturing more complex scenarios and
requires an adaptation of the regret measure as discussed above.
Handling this extension in the RMAB setting leads to different
algorithm design and analysis as compared to existing methods.

2) Algorithm Development: We develop a novel algorithm,
dubbed Learning under Exogenous Markov Process (LEMP),
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that estimates online the appropriate hardness parameter
from past observations (Section III-A). Based on these past
observations, the LEMP algorithm generates adaptive sizes of
exploration phases, designed to explore each arm in each global
state with the appropriate number of samples. Thus, LEMP
avoids oversampling bad arms, and at the same time identifies
the best arms with sufficient high probability. To ensure the con-
sistency of the restless arms’ mean estimation, LEMP performs
regenerative sampling cycles (Section III-B). In the exploitation
phases, LEMP dynamically chooses the best estimated arm,
based on the evaluation of the global state (Section III-C). The
rules that decide when to enter each phase are adaptive in the
sense that they are updated dynamically and controlled by the
current sample means and the estimated global transition prob-
abilities in a closed-loop manner (Section III-D). Interestingly,
the size of the exploitation phases is deterministic and the size
of the exploration phases is random.

3) Performance Analysis: We provide a rigorous theoretical
analysis of LEMP algorithm. Specifically, we establish a finite
sample upper bound on the expected regret, and show that its or-
der is logarithmic with time. We also characterize the appropriate
hardness parameter for our model (the Di parameter defined in
(3)), and we demonstrate that estimating the hardness parameter
indeed results in a scaled regret proportional to the hardness of
the problem. The result in Theorem 1 also clarifies the impact of
different system parameters (rewards, mean hitting times of the
states, eigenvalues of the transition probability matrices, etc.)
on the regret. We provide numerical simulations that support
the theoretical results presented in this paper.

D. Related Work

The extended RMAB model considered here is a generaliza-
tion of the classic MAB problem [17], [28], [29], [30], [31].
RMAB problems have been extensively studied under both the
non-Bayesian [18], [19], [20], [21], [32], [33], [34], [35], [36],
and Bayesian [37], [38], [39], [40], [11], [41], [42], [43], [44],
[45] settings. Under the non-Bayesian setting, special cases of
Markovian dynamics have been studied in [18], [21]. There are a
number of studies that focused on special classes of RMABs. In
particular, the optimality of the myopic policy was shown under
positively correlated two-state Markovian arms [41], [42], [43],
[46] under the model where a player receives a unit reward for
each arm that was observed in a good state. In [44], [47], the
indexability of a special classes of RMAB has been established.
In [33], the traditional restless bandit is extended by relaxing
the restriction of a risk-neutral target function, and a general
risk measure is introduced to construct a performance criterion
for each arm. Our work is also related to models of partially
observed Markov decision process (POMDP) [48], with the goal
of balancing between increasing the immediate reward and the
benefits of improving the learning accuracy of the unknown
states. In [7], the offloading policy design in a large-scale
asynchronous MEC system with random task arrivals, distinct
workloads, and diverse deadlines is formulated as an RMAB
problem, and the authors in [49] considered a tracking problem
with independent objects and used an approximated Gittins
index approach for finding policies.

The setting in this paper is also related to the non-stationary
bandit problems, where distributions of rewards may change
in time [24], [50], [51], [52], [53]. However, the distribution
that governs the non-stationary models in these studies differs
from our settings, and leads to a different problem structure.
Finally, [54], [55] and recently [56] considered the setting of
global Markov process that governs the reward distribution.
However, they addressed the linear/affine model, and not the
RMAB formulation that is explored in this paper. This new
setting leads to fundamentally different algorithm design and
regret analysis, mainly due to the restless nature of both active
and passive arms in our model, that requires that arms will be
played in a consecutive manner for a period of time.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a set of N arms, indexed by {1, . . . , N} � N ,
and a global system state process {st}t=1,2,..., which is governed
by a finite space, irreducible, and aperiodic discrete time Markov
chain S with unknown transition matrix PS . We denote the
transition probability between states s̃ and š in S by ps̃š, and
we denote by πs the stationary distribution of states s ∈ S .
For each global state s ∈ S , the ith arm is modeled as a finite
space, irreducible, and aperiodic discrete time Markov chain X i

s

with unknown transition matrix PX i
s
. We denote the transition

probability between states x and y in X i
s by ps,ixy . We assume that

X i
s̃

⋂X i
š = ∅ for all i, s̃, š (i.e., we can recover the global state

in each time slot1). We also define the stationary distribution
of state x in arm i at global state s to be πi

s(x). An illustration
for the model with |S| = 2, N = 2, |X i

s | = 2, ∀s, i is given in
Fig. 1.

At each time t, the player chooses one arm to play. When
played, each arm offers a certain positive reward that defines the
current state of the arm, xi

st
. The player receives the reward of

the chosen arm, and infers the current global state st. Then, the
global state transitions to a new state, which is unknown to the
player before choosing the next arm to play. We assume that the
arms are mutually independent and restless, i.e., the local states
of the arms continue to evolve regardless of the player’s actions
according to the unknown Markovian rule PX i

s
. The unknown

stationary reward mean of arm i at global state s, μi
s, is given

by:

μi
s =

∑
x∈X i

s

xπi
s(x).

We further define the expected value of arm i in global state s
to be

V i
s �

∑
š∈S

psšμ
i
š. (1)

Let σ be a permutation of {1, . . ., N} such that

V σ(1)
s ≥ V σ(2)

s ≥ · · · ≥ V σ(N)
s .

LetV i
st
(t)denote the value of arm i at time t, let i∗t be the arm with

the highest expected value at time t, i.e., i∗t � argmaxi V
i
st
(t),

1If this assumption does not hold, the player may recover the global state using
techniques for the specific application task, e.g., spectrum sensing methods in
the DSA paradigm [57].
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Fig. 1. An illustration of the system model with |S| = 2,N = 2, |X i
s | = 2, ∀s, i.

and let φ(t) ∈ {1, 2, . . ., N} be a selection rule indicating which
arm is chosen to be played at time t, which is a mapping from
the observed history of the process to N . Denote

Ve(n) = {i : V i
sn
(n) < V σ(1)

sn
(n)}.

The expected regret of policy φ is defined as:

Eφ[r(t)]=Eφ

⎡⎣ t∑
n=1

∑
i∈Ve(n)

(
xi∗n
sn
(n)−xi

sn
(n)

)
1{φ(n)=i}

⎤⎦ , (2)

where hereafter 1{A} denotes an indicator of an event A. The
objective is to find a policy that minimizes the growth rate of
the regret with time (this notion of regret is similar to the “regret
against arbitrary strategies” introduced in Section 8 of [23] and
in [24] for the non-stochastic bandit problem). We note that,
in this paper, the regret is not defined with respect to the best
arm on average (e.g., as in RMAB models in [18], [19], [20]),
but with respect to the best arm at each step according to the
instantaneous global state, which is a stronger regret. A list of
notations used in the paper is summarized in Table 1.

III. THE LEARNING UNDER EXOGENOUS MARKOV PROCESS

(LEMP) ALGORITHM

The LEMP algorithm divides the time horizon into two types
of phases, namely exploration and exploitation. In order to en-
sure sufficient small regret in exploitation phases (i.e., to reduce
the probability for choosing sub-optimal arms in exploitation),
our strategy estimates the required exploration rate of each arm,
and updates the arm selection dynamically with time, controlled
by the random sample means and transition probability estimates
in a closed loop manner.

A. Design Principles of LEMP

For sufficient small regret during exploitation phases, we
should take a sufficiently large number of samples in the ex-
ploration phases. From (1) we observe that we should estimate
accurately two terms: the mean reward of each arm i in each

TABLE I
NOTATIONS

global state s, μi
s, and the transition probabilities of the global

Markov chain S , pšs̃.
In the analysis, we show that in each global state s, we must

explore a suboptimal arm i with a local exploration rate of at
least D

i
s log(t) times for being able to distinguishing it from

i∗s � argmaxi V
i
s (i.e., the arm that maximizes the expected

value in state s) with a sufficiently high accuracy, where

D
i
s �

4L
(V ∗

s − V i
s )

2
, (3)

where V ∗
s � maxi V

i
s , and L is the exploration coefficient that

depends on the system parameters, defined in (12). The D
i
s

parameter is a type of hardness parameter [25], appropriate for
the setting considered in this paper, in the sense that it determines
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Algorithm 1: LEMP Algorithm.

initialize: t = 0, Ns = 0, nI = 0, ni
O = 1, T i

s = 0, ris =
0, ∀i = 1 . . . N

for i = 1:N do
play arm i; observe global state s (denote the previous
global state by s̃) and local state as x and set γi(ni

O) = x
t := t+ 1; T i

s := T i
s + 1; ni

O := ni
O + 1; ris := ris + rxs

Ns = Ns + 1;
while (1) do

for i = 1 : N do
set μ̂i

s(t), p̂s̃s(t), D̂
i
s(t) according to (4), (5), (6),

respectively;
while condition (10) holds for some arm i (or condition
(11) holds) do
play arm i (or arm iM ); observe global state s and local
state as x;

while x �= γi(ni
O − 1) (SB1) do

t := t+ 1 Ns = Ns + 1
play arm i; observe global state s and local state as x

t := t+ 1;T i
s := T i

s + 1; ris := riO + rxs
;Ns = Ns + 1;

for n = 1 : 4n
i
O−1 (SB2) do

play arm i; observe global state s and local state as x
t = t+ 1;T i

s = T i
s + 1; ris = ris + rxs

;Ns = Ns + 1;
ni
O := ni

O + 1; set μ̂i
s(t), p̂s̃s(t) according to (4), (5),

(6), respectively; γi(ni
O) = x

set V̂ i
s (t) ∀s according to (7)

set i∗s = argmaxi V̂
i
s (t) ∀s

for n = 1 : 2 · 4nI−1 do
play arm i∗s; observe new global state s and local state
as x
t := t+ 1;Ns = Ns + 1

nI := nI + 1;

the order of magnitude of the sample size required to find the
best arm in each global state with a required probability.

We point out that in order to derive D
i
s, we should know

the system parameters {psš}, {μi
š}. Since the reward means and

the transition probabilities are unknown, we estimate D
i
s by

replacing μi
s, psš by their estimators:

μ̂i
s(t) =

1

T i
s(t)

T i
s(t)∑
n=1

xi
s(t

i
s(n)), (4)

p̂sš(t) =
Nsš(t)

Ns(t)
. (5)

where tis(n) is the time index of the nth play on arm i in global
state s in sub-block SB2 only (SB2 is detailed in Section III-B),
T i
s(t) is the number of samples from arm i in global state s in

sub-block SB2 up to time t, Ns(t) is the number of occurrences
of the state s until time t, and Nsš(t) is the number of transitions
from s to š up to time t. We also define: Δi

s � (V ∗
s − V i

s )
2,

Δs � mini Δ
i
s, and we define 0 < Δ ≤ mins Δs to be a known

lower bound on mins Δs.

Denote the estimator of D
i
s by:

D̂i
s(t) �

4L

max
{
Δ, (V̂ ∗

s (t)− V̂ i
s (t))

2 − ε
} , (6)

where:

V̂ i
s (t) �

∑
š∈S

p̂sš(t)μ̂
i
š(t), (7)

V̂ ∗
s (t) � maxi V̂

i
s (t), ε > 0 is a fixed tuning parameter, and L

is defined in (12).
Using {D̂i

s(t)}, which are updated dynamically over time
and controlled by the corresponding estimators, we can design
an adaptive arm selection for sampling arm i at state s that will
converge to its exploration rate required for efficient learning, as
time increases. That is, the LEMP algorithm generates adaptive
sizes of exploration phases, designed to explore each arm in
each global state with the appropriate number of samples. Thus,
LEMP avoids oversampling bad arms, and at the same time iden-
tifies the best arms with sufficiently high probability. Whether
we succeed to obtain a logarithmic regret order depends on how
fast D̂i

s(t) converges to a value that is no smaller than D
i
s (so

that we take at least D
i
s samples from bad arms in most of the

times).

B. Description of the Exploration Phases

Due to the restless nature of both active and passive arms,
learning the Markovian reward statistics requires that arms
will be played in a consecutive manner for a period of time
(i.e., phase). Therefore, the exploration phases are divided into
sub-blocks SB1 and SB2. Consider time t (and we remove
the time index t for convenience). We define ni

O(t) as the
number of exploration phases in which arm i was played up
to time t. Let γi(ni

O − 1) be the last reward state observed at
the (ni

O − 1)th exploration phase for arm i. As illustrated in
Fig. 2, once the player starts the (ni

O)
th exploration phase, it first

plays a random period of time, also known as a random hitting
time, until observing state γi(ni

O − 1). This random period of
time is referred to as SB1. Then, the player plays arm i until
it observes 4n

i
O samples. This period of time is referred to as

SB2. The player stores the (4n
i
O )th state γi(ni

O) observed at the
current (ni

O)
th exploration phase, and so on. We define the set

of time indices during SB2 sub-blocks by Vi. This procedure
ensures that each interval in Vi starts from the last state that was
observed in the previous interval. Therefore, cascading these
intervals forms a sample path which is equivalent to a sample
path generated by continuously sampling the Markov chain.

C. Description of the Exploitation Phases

Let nI(t) be the number of exploitation phases up to time t.
The player plays the exploitation phase for a deterministic period
of time with length 2 · 4nI(t)−1 according to the following rule:
at each time slot the player computes the expected value, V̂ i

s (t),
of each arm given the observed global state when entering the
(nI)

th exploitation phase, and plays the arm that maximizes the
expected value.
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Fig. 2. An illustration of the exploration and exploitation phases of LEMP Algorithm.

D. Phase Selection Conditions

At the beginning of each phase, the player needs to decide
whether to enter an exploration phase for one of the N arms, or
whether to enter an exploitation phase. We recall that the purpose
of the exploration phases is to estimate both the expected rewards
of the arms, and the transition probabilities of the global process.
We therefore define:

IL � λ̄min

3072 ((xmax + 2)2 · |Xmax| · π̂max · |S| · (V ∗
max + 2))2

,

(8)

IG � 1

128 ((xmax + 2) · |S| · (V ∗
max + 2))2

, (9)

which we denote as the local and global (respectively) minimal
rate functions. The decision to explore or exploit will be made
due to the next two conditions: first, if there exists an arm i and
a global state s such that the following condition holds:

T i
s(t) ≤ max

{
D̂i

s(t),
2

ε2 · IL

}
· log t, (10)

then the player enters an exploration phase for arm i. Second, if
there exists a global state s ∈ S where

Ns(t) ≤ 2

ε2 · IG · log t, (11)

then the player enters an exploration phase for arm iM where
iM � argmini{mins D̂

i
s(t)}. Otherwise, the player enters an

exploitation phase. This selection rule of the LEMP algorithm
is thus designed based on the following insights. First, the
algorithm must take at least D

i
s(t) · log(t) samples from each

sub-optimal arm for computing a sufficiently accurate estimate
of the expected value V̂ i

s (t). Since D
i
s(t) depends on the ex-

pected values which are unknown, the algorithm replaces the
unknown value D

i
s(t) by D̂i

s(t), which overestimates D
i
s(t) to

obtain the desired property. Second, since D̂i
s(t) is a random

variable, we need to make sure that the desired property holds
with a sufficiently high probability. The parameters IL, IG in
(10), (11) are used to guarantee the desired property.

IV. REGRET ANALYSIS

In the following theorem we establish a finite-sample bound
on the expected regret as the function of time, resulting in a
logarithmic regret order.

Theorem 1: Assume that LEMP algorithm is implemented
and the assumptions on the system model described in
Section II hold, and an upper bound on Δ in known. Let λi

s

be the second largest eigenvalue of PX i
s
, and let Ms,i

x,y be the
mean hitting time of state y starting at initial state x for arm
i in global state s. Define xmax � maxs∈S,i∈N xi

s, |Xmax| �
maxs∈S,i∈N |X i

s |, πmin � mins∈S,i∈N ,x∈X i
s
πi
s(x), π̂max �

maxs∈S,i∈N ,x∈X i
s
{πi

s(x), 1− πi
s(x)}, V ∗

max =� maxs∈S V ∗
s ,

λmax � maxs∈S,i∈N λi
s, λmin � 1− λmax, λi

s � 1− λi
s,

M i
s,max � maxx,y∈X i

s ,x �=y M
s,i
x,y,M

i
max � maxs M

i
s,max,

L ≥ 1

16(V ∗
max + 2)2

·max

{
1

IL
,
1

IG

}
. (12)

Then, the regret at time t is upper bounded by:

Eφ[r(t)] ≤ xmax ·
⎡⎣ N∑

i=1

(
1

3
[4 (3Ai · log(t) + 1)− 1]

+M i
max · log4 (3Ai log(t) + 1)

)
+ 6N |S|

( |S||Xmax|
πmin

+ 2|S|
)
max

s
πs

·
⌈
log4

(
3

2
t+ 1

)⌉⎤⎦+ β, (13)

where

Ai �
{
max{ 2

ε2IL
, 2
ε2IG

, maxs D
i
s,max} , if ∀ s : i ∈ Ks

max{ 2
ε2IL

, 2
ε2IG

, 4L/Δ} , if ∃ s : i � ∈ Ks
,

(14)

D
i
s,max � 4L

(V ∗
s − V i

s )
2 − 2ε

, Ks is defined as the set of all

indices i ∈ {2, . . ., N} in global state s that satisfy:(
V ∗
s − V σ(i)

s

)2

− 2ε > Δs,

and

β ≤ 8|S|N |Xmax|
πmin

·
[
ζ (2 + δ) +

1

1 + δ
ζ (1 + δ)

]
,

for some arbitrarily small δ > 0, where ζ(·) is the Reimann zeta
function.

Theorem 1 shows that the regret under LEMP has a log-
arithmic order with time. The scaling of the regret with the
mean hitting time M i

max under LEMP (which arises due to
the construction of SB1 in the exploration phases) is of order
O(

∑
i M

i
max log log t). We point out that the scaling withM i

max

under LEMP is significantly better than the scaling under other
algorithms that use regenerative cycles. For example, in [18],
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the RCA algorithm performs random regenerative cycles until
catching predefined states in each phase, thus the scaling with
the mean hitting time (which scales at least polynomially with
the state space) is O

(∑
i M

i
max log t

)
. The scaling with N and

Δ under LEMP is of order O
((

1√
Δ
+N − 2

)
log t

)
since every

bad arm is sampled according to its unique exploration rate
which is estimated by the adaptive sequencing rules. We point
out that the scaling with N and Δ under LEMP is significantly
better than the scaling under other algorithms that divides the
time horizon into exploration and exploitation phases. For ex-
ample, in [19], the scaling under the DSEE algorithm is of
order O

((
1√
Δ
+ N−2

Δ

)
log t

)
since all bad arms are explored

according to the worst exploration rate. We also point out that
the scaling of the regret under LEMP with the size of the global
space |S| and local space |Xmax| is similar to the scaling of
these parameters in classic works in the literature (e.g., [58]
for |S| and [18], [31] for |X i

s |). Moreover, if the exogenous
Markov process has just a single state, we obtain the typical
regret bound for restless Markovian MAB (e.g., as in [20]), as
expected. However, we note that if the local arms evolve as an
i.i.d process, we do not obtain the bound of stochastic K-armed
bandit. This is due to the fact that under the restless Markovian
model we are required to design a much more complicated
algorithm compared to algorithms in the stochastic K-armed
bandit (e.g., UCB1) in order to obtain the logarithmic regret.

We finally note that the model considered in this paper can
alternatively be adjusted such that we allow transitions of local
arms at each time unit, and allow transitions of the global arm
at each K time units, as done, for example, in queuing system
applications, when some servers may be faster than others. We
can apply the LEMP algorithm in this model as well by adjusting
the estimation of the expected reward based on the same global
state for K time units. Note that the assumptions in the analysis
still hold, and we can still use Lezaud’s result [59] in Lemma 5
(which bounds the probability of a large deviation from the
stationary distribution) since it is applied to the local arms. Also,
(26) in Lemma 1 (which bounds the estimation error of the global
transition probabilities) holds as well. This adjustment would
result in an additional K constant term in the first term of the
regret, as a consequences of (11). This additional constant does
not violate the logarithmic order of the regret.

Before proceeding to prove Theorem 1, we define the follow-
ing auxiliary notation.

Definition 1: Let T1 be the smallest integer, such that for all
t ≥ T1 the following holds: D

i
s ≤ D̂i

s(t) for all i ∈ N , s ∈ S ,

and also D̂i
s(t) ≤ D

i
s,max for all i ∈ Ks, s ∈ S .

The term T1 captures the random time by which the explo-
ration rates for all arms are sufficiently close to the desired
exploration rates needed for achieving the desired logarithmic
regret bound (as shown later).

Proof of Theorem 1: The layout of the proof is as follows, first
we show in Lemma 1 that the expectation of the random time
T1 is bounded independently of t. Then, based on Lemma 2 we
show in Lemmas 3 and 4, that a logarithmic regret is obtained
for all t > T1, which yields the desired expected regret.

In the next Lemma we show that the expected value of T1 is
bounded under the LEMP algorithm.

Lemma 1: Assume that the LEMP algorithm is implemented
as described in Section III. Then, E[T1] < ∞ is bounded inde-
pendent of t.

The proof of the Lemma 1 is given in Appendix A.
The second step of the proof is to show that a logarithmic re-

gret is obtained for all t > T1, which yields the desired expected
regret.

Lemma 2: Let T̃ i(t) �
∑t

n=1 1{φ(n)=i �=i∗n} denote the num-
ber of times arm iwas played when it was not the best arm during
the t first rounds. Then the expected regret is upper bounded by:

Eφ[r(t)] ≤ xmaxEφ[T1] + xmax

N∑
i=1

Eφ[T̃
i(t)]. (15)

We present the proof of this lemma in Appendix B.
From (15) we observe that it is sufficient to upper-bound the

expected number of times an arm i is played when this arm is sub-
optimal. We will bound (15) for the exploration and exploitation
phases separately. Specifically, let T i

O(t), and T i
I (t), denote the

time spent on sub-optimal arm i in exploration and exploitation
phases, respectively, by time t. Thus,

T̃ i(t) = T i
O(t) + T i

I (t).

The following two lemmas show that bothE[T i
O(t)] andE[T i

I (t)]
have a logarithmic order with time.

Lemma 3: The time spent by time t in exploration phases for
sub-optimal arm i is bounded by:

E[T i
O(t)] ≤

N∑
i=1

[
1
3 [4(3Ai · log(t) + 1)− 1]

+M i
max · log4(3Ai log(t) + 1)

]
.

Lemma 4: The time spent by time t in exploitation phases for
sub-optimal arm i is bounded by:

E
[
T i
I (t)

] ≤ 6|S| ·
( |S||Xmax|

πmin
+ 2|S|

)
·max

s
πs ·

⌈
log4

(
3

2
t+ 1

)⌉
.

The proofs of Lemmas 3 and 4 are given in Appendix C and
D, respectively.

Finally, we show at Appendix E, that combining the above
four lemmas concludes the proof of Theorem 1. �

V. SIMULATION RESULTS

In this section we evaluate the regret of the LEMP algorithm
numerically in four different scenarios.

We compare the LEMP algorithm to an extended version of
the DSEE algorithm [19] which is an efficient and widely used
algorithm in the RMAB settings, and to a strategy that chooses in
the exploitation phases the best arm on average (i.e., competing
against weak regret as in [18], [20]). The DSEE algorithm uses
deterministic sequencing of exploration and exploitation phases,
however, it does not estimate the hardness parameter, and ex-
plores each arm 4L

Δ · log(t) times, which results in oversampling
bad arms to achieve the desired logarithmic regret. We simulate
and compare the regret of these three algorithms averaged over
1000 Monte-Carlo experiments, under four scenarios, denoted
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TABLE II
A DESCRIPTION OF THE EXPERIMENT PARAMETERS

Fig. 3. S1: Performance comparison of the regret (normalized by log t).

by S1, S2, S3, S4. In Table II we summarize the number of
arms, the number of global states, and the difference between
the highest and the second highest values for each scenario. In
all scenarios we set L = 6, IL = 0.1, IG = 0.1.

1) RMAB With Exogenous Process (S1): In Fig. 3 we simu-
lated S1 scenario. Here, the global state models the presence of
the primary user that uses the entire bandwidth by a Gilbert-Eliot
model [60] that comprises a Markov chain with two binary states,
where global state s = 1 denotes a transmitting primary user and
s = 0 denotes a vacant channel, i.e., inactive primary user. To
limit the interference to the primary user, a secondary user may
choose to transmit over one of three possible channels (i.e.,N =
3), where the channels are modeled by a Finite-State Markovian
Channel (FSMC), which is a tractable model widely used to cap-
ture the time-varying behavior of a radio communication channel
(e.g., a Rayleigh fading channels [12]). The transition probabili-
ties of the global chain are p00 = 0.4, p10 = 0.75. In global state
1, the local transition probabilities for all arms to transition from
1 to 1 and from 2 to 1, respectively, are: p11 = [0.5, 0.6, 0.7],
p21 = [0.5, 0.4, 0.3], and the rewards for all arms at states 1,2,
respectively, are r1 = [4, 5.8, 1], r2 = [6, 8.2, 2]. In global state
2, the local transition probabilities for all arms to transition from
1 to 1 and from 2 to 1, respectively, are: p11 = [0.55, 0.65, 0.75],
p21 = [0.45, 0.35, 0.25], and the rewards for all arms at states
1,2, respectively, are r1 = [10, 9, 2.5], r2 = [14, 11, 3]. It can be
seen that LEMP significantly outperforms the extended DSEE
algorithm. Fig. 3 also shows the superior of LEMP against a
strategy that chooses the best arm on average, demonstrating
the gain in tracking the best arm at each step according to the
global process evolution.

2) Increasing the Number of Arms (S2): Next, we are in-
terested in examine the regret in a larger system, i.e., we in-
creased the number of arms to 6 (S2). The results are depicted

Fig. 4. S2: Performance comparison of the regret (normalized by log t).

Fig. 5. S3: Performance comparison of the regret (normalized by log t).

in Fig. 4. The transition probabilities of the global process is
as in the previous scenario. In global state 1, the local tran-
sition probabilities for all arms to transition from 1 to 1 and
from 2 to 1, respectively, are: p11 = [0.5, 0.6, 0.7, 0.7, 0.6, 0.5],
p21 = [0.5, 0.4, 0.3, 0.3, 0.4, 0.5], and the rewards for all arms
at states 1,2, respectively, are r1 = [4, 5.8, 1, 1.1, 0.6, 1.2], r2 =
[6, 8.2, 2, 1.9, 0.9, 2.2]. In global state 2, the local transition
probabilities for all arms to transition from 1 to 1 and from 2
to 1, respectively, are: p11 = [0.55, 0.65, 0.75, 0.75, 0.65, 0.55],
p21 = [0.45, 0.35, 0.25, 0.25, 0.35, 0.45], and the rewards for all
arms at states 1,2, respectively, are r1 = [10, 9, 2.5, 3, 2.56, 2.7],
r2 = [14, 11, 3, 2.8, 3.1, 3.3]. Increasing the number of arms is
expected to decrease the performance under the extended DSEE
algorithm, since more arms are sampled by the worst exploration
rate. Indeed, it can be seen in Fig. 4, that the gap in the regret
between LEMP and the extended DSEE algorithm is increased
compared to the previous simulation. This is due to the fact that in
the proposed LEMP algorithm, each arm is played according to
its unique exploration rate (as a result of the online estimation of
the hardness parameter), thus adding “bad” arms (i.e., arms with
high exploration rate) does not significantly affect the LEMP
performances. LEMP outperforms the strategy that chooses the
best arm on average also in this scenario.

3) Increasing the Number of Global States (S3): In Fig. 5 we
increased the number of global states to 3 (S3). The transition
probabilities of the global chain are p00 = 0.85, p01 = 0.1,
p02 = 0.05, p10 = 0.08, p11 = 0.85, p12 = 0.07, p20 = 0.06,
p21 = 0.09, p22 = 0.85. In global state 1, the local transition
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Fig. 6. S4: Performance comparison of the regret (normalized by log t).

probabilities for all arms to transition from 1 to 1 and from 2 to
1, respectively, are: p11 = [0.5, 0.6, 0.7], p21 = [0.5, 0.4, 0.3],
and the rewards for all arms at states 1,2 are r1 = [4, 1, 1.2],
r2 = [6, 3, 1.8], respectively. In global state 2, the local tran-
sition probabilities for all arms to transition from 1 to 1 and
from 2 to 1, respectively, are: p11 = [0.55, 0.65, 0.75], p21 =
[0.45, 0.35, 0.25], and the rewards for all arms at states 1,2 are
r1 = [5, 9, 4.5], r2 = [7, 11, 8.5], respectively. In global state 3,
the local transition probabilities for all arms to transition from 1
to 1 and from 2 to 1, respectively, are: p11 = [0.52, 0.62, 0.72],
p21 = [0.48, 0.38, 0.28], and the rewards for all arms at states
1,2 are r1 = [9.9, 9.5, 14], r2 = [10.3, 11.5, 16], respectively. In
this scenario, for each global state s, there is a different best
arm that is significantly better then the other two arms. Thus,
playing the best arm on average in each time slot results in poor
performances compared to LEMP, that tracks the best arm at each
step, as can be seen in Fig. 5. LEMP outperforms the extended
DSEE algorithm also in this scenario.

4) Decreasing the Difference Between the Highest and the
Second Highest Values (S4): Finally, we simulated S4, where
we decreased the difference between the highest and the second
highest values in global state 1, compared to this difference in
the first simulation (i.e., in Fig. 3). The transition probabilities
of the global chain are p00 = 0.4, p10 = 0.75. In global state 1,
the local transition probabilities for all arms to transition from
1 to 1 and from 2 to 1, respectively, are: p11 = [0.5, 0.6, 0.7],
p21 = [0.5, 0.4, 0.3], and the rewards for all arms at states 1,2,
respectively, are r1 = [4, 5.8, 1], r2 = [6, 9.2, 2]. In global state
2, the local transition probabilities for all arms to transition from
1 to 1 and from 2 to 1, respectively, are: p11 = [0.55, 0.65, 0.75],
p21 = [0.45, 0.35, 0.25], and the rewards for all arms at states
1,2, respectively, are r1 = [10, 9, 2.5], r2 = [14, 11, 3]. Decreas-
ing the difference between the highest and the second highest
values in global state 1 results in a high exploration rate used to
distinguish between the two best arms in this state. As discussed
in Section III, LEMP explores only these two arms using the high
exploration rate, where the extended version of the DSEE algo-
rithm explores all the arms with the high exploration rate. Indeed,
as can be seen in Fig. 6, this effect results in a high regret under
the extended DSEE algorithm as compared to LEMP, which also
outperforms the strategy that chooses the best arm on average.

We finally note that practically, it is well known that there is
often a gap between the sufficient conditions required by theoret-
ical analysis (often due to union-bounding events in the analysis)
and practical conditions used for efficient online learning. While
the sufficient conditions provided by the theoretical analysis in
Section IV require to overestimate D

i
s(t) as in (6), simulation

results provide much better performance when higher values of
IL and IG and lower value of L are used. Thus, we tuned the
parameters in all algorithms that we tested to achieve the best
performance.

VI. CONCLUSION

We developed a novel Learning under Exogenous Markov
Process (LEMP) algorithm for an extended version of the RMAB
problem, where an exogenous Markov global process governs
the distribution of the arms. Inspired by recent developments
of sequencing methods of exploration and exploitation phases,
LEMP estimates the hardness parameter of the problem which
controls the size of exploration phases. During the exploitation
phases, LEMP switches arms dynamically according to the
global process evolution. Simulation results support the theoret-
ical analysis, and show superior performances of the proposed
LEMP algorithm against competitive strategies. The model and
analytical results presented in this paper lead to interesting
future research directions. One direction would consider the
case where the global process is not directly observed (e.g.,
when the reward is a probabilistic function of the unobserved
finite-state Markov process), by incorporating methods from
hidden Markov model literature [48]. Another open problem is
to derive a lower bound for the regret in our model, to understand
the optimality properties of the LEMP algorithm. We leave this
for future work.

APPENDIX A
PROOF OF LEMMA 1

Proof of Lemma 1: First note that E[T1] can be written as
follows:

E[T1] =

∞∑
n=1

n · P (T1 = n) =

∞∑
n=1

P (T1 ≥ n)

≤
∑
s∈S

∑
i∈Ks

∞∑
n=1

∞∑
j=n

P

(
D̂i

s(j) < D
i
s or D̂i

s(j) > D
i
s,max

)

+
∑
s∈S

∑
i�∈Ks

∞∑
n=1

∞∑
j=n

P

(
D̂i

s(j) < D
i
s

)
.

Note that if we show that

P

(
D̂i

s(j) < D
i
s or D̂i

s(j) > D
i
s,max

)
≤ C · j−(2+δ), (16)

for some constants C > 0, δ > 0 for all i ∈ Ks, s ∈ S for all
j ≥ n, then we get:∑

s∈S

∑
i∈Ks

∞∑
n=1

∞∑
j=n

P

(
D̂i

s(j) < D
i
s or D̂i

s(j) > D
i
s,max

)
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≤ |S|NC

⎡⎣ ∞∑
j=1

j−(2+δ) +
∞∑

n=2

∞∑
j=n

j−(2+δ)

⎤⎦
≤ |S|NC

⎡⎣ ∞∑
j=1

j−(2+δ) +
∞∑

n=2

∫ ∞

n−1

j−(2+δ)dj

⎤⎦
= |S|NC

⎡⎣ ∞∑
j=1

j−(2+δ) +
1

1 + δ

∞∑
n=2

(n− 1)−(1+δ)

⎤⎦
< ∞,

which is bounded independent of t. Similarly, showing that
P(D̂i

s(j) < D
i
s) ≤ C · j−(2+δ) for some constants C, δ > 0 for

all i �∈ Ks, s ∈ S for all j ≥ n completes the statement.
Step 1. Simplifying (16): First,

P

(
D̂i

s(t) < D
i
s or D̂i

s(t) > D
i
s,max

)
= P

(
4L

max
{
Δ, (V̂ ∗

s (t)− V̂ i
s (t))

2 − ε
} <

4L
(V ∗

s − V i
s )

2

⋃ 4L

max
{
Δ, (V̂ ∗

s (t)− V̂ i
s (t))

2 − ε
} >

4L

(V ∗
s − V i

s )
2 − 2ε

)

= P

([((
V̂ ∗
s (t)− V̂ i

s (t)
)2 − ε > (V ∗

s − V i
s )

2

∩ (
V̂ ∗
s (t)− V̂ i

s (t)
)2 − ε ≥ Δ

)
⋃ (

Δ >
(
V ∗
s − V i

s

)2 ∩ (
V̂ ∗
s (t)− V̂ i

s (t)
)2 − ε < Δ

)]
⋃[((

V̂ ∗
s (t)− V̂ i

s (t)
)2

− ε <
(
V ∗
s − V i

s

)2 − 2ε

∩
(
V̂ ∗
s (t)− V̂ i

s (t)
)2

− ε ≥ Δ

)
⋃(

Δ <
(
V ∗
s − V i

s

)2 − 2ε ∩
(
V̂ ∗
s (t)− V̂ i

s (t)
)2

− ε < Δ

)])
≤ P

([(
V̂ ∗
s (t)− V̂ i

s (t)
)2

− ε >
(
V ∗
s − V i

s

)2
⋃

Δ >
(
V ∗
s − V i

s

)2 ]
⋃[(

V̂ ∗
s (t)− V̂ i

s (t)
)2

− ε <
(
V ∗
s − V i

s

)2 − 2ε

⋃(
V̂ ∗
s (t)− V̂ i

s (t)
)2

− ε < Δ

])
.

The probability for the second event on the RHS is zero, and the
forth event lies inside the measure of the third event due to the
fact that i ∈ Ks. Hence,

P

(
D̂i

s (t) < D
i
s or D̂i

s (t) > D
i
s,max

)
≤ P

((
V̂ ∗
s (t)− V̂ i

s (t)
)2

− (
V ∗
s − V i

s

)2
> ε

⋃(
V̂ ∗
s (t)− V̂ i

s (t)
)2

− (
V ∗
s − V i

s

)2
< −ε

)
= P

(∣∣∣∣(V̂ ∗
s (t)− V̂ i

s (t)
)2

− (
V ∗
s − V i

s

)2∣∣∣∣ > ε

}
= P

(∣∣∣∣(V̂ ∗
s (t)− V̂ i

s (t)
)2

−
(
V̂ ∗
s (t)− V̂ i

s (t)
) (

V ∗
s − V i

s

)
+

(
V̂ ∗
s (t)− V̂ i

s (t)
) (

V ∗
s − V i

s

)− (
V ∗
s − V i

s

)2 | > ε
}

= P

(∣∣∣(V̂ ∗
s (t)− V̂ i

s (t)
) [(

V̂ ∗
s (t)− V̂ i

s (t)
)
− (

V ∗
s − V i

s

)]
+
(
V ∗
s − V i

s

) [(
V̂ ∗
s (t)− V̂ i

s (t)
)
− (

V ∗
s − V i

s

)]∣∣∣ > ε
}

≤P

(∣∣∣(V̂ ∗
s (t)−V̂ i

s (t)
) [(

V̂ ∗
s (t)−V̂ i

s (t)
)
−(

V ∗
s −V i

s

)]∣∣∣> ε

2

)
+ P

(∣∣∣(V ∗
s − V i

s

) [(
V̂ ∗
s (t)− V̂ i

s (t)
)
− (

V ∗
s − V i

s

)]∣∣∣> ε

2

)
.

(17)

We continue by bounding the first term on the RHS of (17).
For every R > 0, we have:

P

(∣∣∣(V̂ ∗
s (t)− V̂ i

s (t)
) [(

V̂ ∗
s (t)−V̂ i

s (t))− (V ∗
s − V i

s

)]∣∣∣ > ε

2

)
≤ P

(∣∣∣(V̂ ∗
s (t)− V̂ i

s (t)
)
− (

V ∗
s − V i

s

)∣∣∣ > 1
)

+ P

(∣∣∣(V̂ ∗
s (t)− V̂ i

s (t)
)
− (

V ∗
s − V i

s

)∣∣∣ > ε

2(R+ 1)

)
+ P

(∣∣(V ∗
s − V i

s ) + 1
∣∣ > R

)
≤ 2P

(∣∣∣(V̂ ∗
s (t)− V̂ i

s (t)
)
− (

V ∗
s − V i

s

)∣∣∣ > ε

2(R+ 1)

)
+ P (V ∗

s + 1 > R) .

We choose R = V ∗
s + 1. Then, the second term is equal to 0.

We proceed with the first term:

2 · P
(∣∣∣(V̂ ∗

s (t)− V̂ i
s (t)

)
− (

V ∗
s − V i

s

)∣∣∣ > ε

2 (V ∗
s + 2)

)
≤ 2P

(∣∣∣V̂ ∗
s (t)− V ∗

s

∣∣∣ > ε

4(V ∗
s + 2)

)
+ 2P

(∣∣∣V̂ i
s (t)− V i

s

)∣∣∣ > ε

4(V ∗
s + 2)

)
. (18)

We next bound the second term on the RHS of (17). For every
R′ > 0, we have:

P

(
| (V ∗

s − V i
s

)
[
(
V̂ ∗
s (t)− V̂ i

s (t)
)
− (

V ∗
s − V i

s

)
]| > ε

2

)
≤ P (V ∗

s > R′)

+ P

(
|
(
V̂ ∗
s (t)− V̂ i

s (t)
)
− (

V ∗
s − V i

s

) | > ε

2 (R′ + 1)

)
.

We now choose R′ = R = V ∗
s + 1, so the first term is equal to

0. We continue with the second term:

P

(∣∣∣(V̂ ∗
s (t)− V̂ i

s (t)
)
− (

V ∗
s − V i

s

)∣∣∣ > ε

2 (R′ + 1)

)
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≤ P

(∣∣∣V̂ ∗
s (t)− V ∗

s

∣∣∣ > ε

4 (V ∗
s + 2)

)
+ P

(∣∣∣V̂ i
s (t)− V i

s

)∣∣∣ > ε

4 (V ∗
s + 2)

)
. (19)

By combining (18) and (19) we get:

P

(
D

i
s (t) < D̂i

s or D
i
s (t) > D

i
s,max

)
≤ 6 ·max

{
P

(∣∣∣V̂ ∗
s (t)− V ∗

s

∣∣∣ > ε

4 (V ∗
s + 2)

)
,

P

(∣∣∣V̂ i
s (t)− V i

s

∣∣∣ > ε

4 (V ∗
s + 2)

)}
. (20)

Step 2. Bounding (20): We first bound the second term in (20)
(the first term is bounded similarly).

P

(∣∣∣V̂ i
s (t)− V i

s

∣∣∣ > ε

4 (V ∗
s + 2)

)

= P

(∣∣∣∣∣∑
s′∈S

p̂ss′ (t) μ̂
i
s′ (t)−

∑
s′∈S

pss′μ
i
s′

∣∣∣∣∣ > ε

4 (V ∗
s + 2)

)

≤P

(∣∣∣∣∑
s′∈S

(
p̂ss′ (t) μ̂

i
s′ (t)−pss′μ

i
s′ −

ε

4 (V ∗
s +2) |S|

) ∣∣∣∣>0

)

≤
∑
s′∈S

P

(∣∣∣∣p̂ss′ (t) μ̂i
s′ (t)− pss′μ

i
s′

∣∣∣∣ > ε

4 (V ∗
s + 2) |S|

)
.

Following similar steps as we did to obtain (20) from (17), we
get

P

(∣∣∣∣p̂ss′ (t) μ̂i
s′ (t)− pss′μ

i
s′

∣∣∣∣ > ε

4 (V ∗
s + 2) |S|

)
≤ 2P

(∣∣∣∣p̂ss′ (t)− pss′

∣∣∣∣ > ε

16 (V ∗
s + 2) (xmax + 2) ‖S|

)
(21)

+ P

(∣∣∣∣μ̂i
s′ (t)− μi

s′

∣∣∣∣ > ε

16 (V ∗
s + 2) (xmax + 2) |S|

)
.

(22)

To complete the statement, we need to bound (21) and (22). To
bound (22), we will use Lezaud’s result [59].

Lemma 5 ([59]): Consider a finite-state, irreducible Markov
chain {Xt}t≥1 with state space S, matrix of transition proba-
bilities P , an initial distribution q, and stationary distribution π.
Let Nq = ‖( qxπx

, x ∈ S)‖2. Let P̂ = P ′P be the multiplicative
symmetrization of P where P ′ is the adjoint of P on l2(π).
Let ε = 1− λ2, where λ2 is the second largest eigenvalue of
the matrix P ′. ε will be referred to as the eigenvalue gap of P ′.
Let f : S → R be such that

∑
y∈S πyf(y) = 0, ‖f‖2 ≤ 1 and

0 ≤ ‖f‖22 ≤ 1 if P ′ is irreducible. Then, for any positive integer
n and all 0 < λ ≤ 1, we have:

Pr

(
1

n

n∑
t=1

f(Xt) ≥ λ

)
≤ Nq exp

[
−nλ2ε

12

]
.

Consider an initial distribution qi
s for the ith arm in global

state s. We have:∥∥∥∥( qis (x)

πi
s (x)

, x ∈ X i
s

)∥∥∥∥
2

≤
∑
x∈X i

s

∥∥∥∥ qis (x)πi
s (x)

∥∥∥∥
2

≤ 1

πmin
.

Before applying Lezaud’s bound, we pay attention for the
following: (i) The sample means {μ̂i

s(t)} are calculated only
from measurements in the set Vi. As discussed in Section III-B,
these measurements are equivalent to a sample path generated by
continuously sampling the Markov chain. Hence, we can apply
Lezaud’s bound to upper bound (22). (ii) By the construction of
the algorithm, (10) ensures that once exploitation phases are exe-
cuted (which are deterministic), the event T i

s(t) ≥ (2+δ)
ε2IL

log(t)

for δ > 0 arbitrarily small surely occurs2. During exploration
phases, the randomness of SB1 (say for arm r �= i) affects T i

s(t)
since SB1 can be very long (with small probability) and then
T i
s(t) ≥ (2+δ)

ε2IL
log(t) might not hold until the end of the phase

once the algorithm corrects the exploration gap by condition
(10). Therefore, we define Ei(t) as the event when all SB1
phases that have been executed by time t are smaller than δ · t.
When event Ei(t) occurs we have T i

s(t) ≥ (2+δ)
ε2IL

log(t) (for
all t > D, for a sufficiently large finite deterministic value D).
Then, for all i and s′, we have:

P

(
|μ̂i

s′ (t)− μi
s′ | >

ε

16 (V ∗
s + 2) (xmax + 2) |S|

)
=P

(
|μ̂i

s′ (t)−μi
s′ | >

ε

16 (V ∗
s +2) (xmax+2) |S| , Ei (t) occurs

)
+ P

(
|μ̂i

s′ (t)− μi
s′ | >

ε

16 (V ∗
s + 2) (xmax + 2) |S| ,

(Ei (t) does not occur)

≤P

(
|μ̂i

s′ (t)−μi
s′ |>

ε

16 (V ∗
s +2) (xmax + 2) |S| , Ei (t) occurs

)
(23)

+ P (Ei (t) does not occur) . (24)

We next bound (22) by bounding (23) and (24):
We define Oi,x

s(t) as the number of occurrences of local state
x on arm i in global state s up to time t, and we first look at:

P

(
μ̂i
s′ (t)− μi

s′ >
ε

16 (V ∗
s + 2) (xmax + 2) |S| , Ei (t)

)

= P

⎛⎝∑
x∈X i

s

x ·Oi,x
s (t)− T i

s (t)
∑
x∈X i

s

x · πi
s (x)

>
T i
s (t) · ε

16 (V ∗
s + 2) (xmax + 2) |S| , Ei (t)

)

2We point out that a precise statement requires to set (2 + 2δ) in (10) and the
statement holds for all t > D, where D is a finite deterministic value. However,
since δ > 0 is arbitrarily small and is not a design parameter, we do not present
it explicitly when describing the algorithm to simplify the presentation.
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≤
∑
x∈X i

s

P

(∑t
n=1 1

(
xi
s (n) = x

)− T i
s (t)π

i
s (x)

π̂i
s (x) · T i

s (t)

>
T i
s (t) · ε

16 (V ∗
s + 2) (xmax + 2) |S||X i

s | · xπ̂i
s (x)

, Ei (t)

)
≤ |X i

s |N (i)
s,q

· exp
(
−T i

s (t)
ε2

(16(V ∗
s+2)(xmax+2)|S|)2·x2

max|X i
s |2π̂2

max

λ̄min

12

)
and due to Ei(t): T i

s(t) >
2+δ
ε2IL

· log(t), so we have:

P

(
μ̂i
s′ (t)− μi

s′ >
ε

16 (V ∗
s + 2) (xmax + 2) |S| , Ei (t)

)
≤ |Xmax|

πmin

exp
(
− (2+δ)

ε2IL
ε2·λ̄min

12·162(V ∗
s+2)2(xmax+2)2x2

max|X i
s |2|S|2π̂2

max

log (t)
)

≤ |Xmax|
πmin

· e−(2+δ)·log(t) =
|Xmax|
πmin

· t−(2+δ), (25)

for some δ > 0 arbitrarily small.
Together with applying Lemma 3 to −f , we get the bound for

(23). We next upper bound (24). When event Ei(t) does not oc-
cur, there exists an SB1 phase (i.e., hitting time) which is greater
than δ · t. Since all arms are finite state and irreducible Markov
chains (i.e., the hitting time of some state x starting from state y
is almost surely finite), we have that P(Ei(t) does not occur) ≤
e1 · e− δ

|Xmax | t. Therefore for all t > D, for a sufficiently large
finite deterministic valueD, we haveP(Ei(t) does not occur) ≤
|Xmax|
πmin

t−(2+δ), which completes (22). (21) is bounded by:

P

(
p̂ss′(t)− pss′ >

ε

16(V ∗
s + 2)(xmax + 2)|S|

)

≤ exp

(
−2Ns(t) ·

(
ε

16(V ∗
s + 2)(xmax + 2)|S|

)2
)

(26)

The bound in (26) follows similar steps as in Part A of Ap-
pendix A in [56]. Using condition (11), Ns(t) >

2+δ
ε2·IG · log(t)

for some arbitrarily small δ > 0, we conclude that (26) is
bounded by t(2+δ), which proves that (16) is bounded by
4 |Xmax|

πmin
· t−(2+δ).

Finally, showing that P(D̂i
s(j) < D

i
s) ≤ j−(2+δ) for some

δ > 0 for all i �∈ Ks for all j ≥ n follows similar steps as showed
by handling D̂i

s(j) < D
i
s when proving (16). Thus, Lemma 1

follows.

APPENDIX B
PROOF OF LEMMA 2

Next, we prove the upper bound (15). Note that the regret can
be written as follows:

Eφ[r(t)] = Eφ

⎡⎣ t∑
n=1

∑
i∈Ve(n)

(xi∗n
sn
(n)− xi

sn
(n))1{φ(n)=i}

⎤⎦

= Eφ

⎡⎣ T1∑
n=1

∑
i∈Ve(n)

(
xi∗n
sn
(n)− xi

sn
(n)

)
1{φ(n)=i}

⎤⎦
(27)

+Eφ

⎡⎣ t∑
n=T1+1

∑
i∈Ve(n)

(xi∗n
sn
(n)− xi

sn
(n))1{φ(n)=i}

⎤⎦ .

(28)

By applying Lemma 1, we obtain that (27) is bounded indepen-
dent of t:

Eφ

⎡⎣ T1∑
n=1

∑
i∈Ve(n)

(xi∗n
sn
(n)− xi

sn
(n))1{φ(n)=i}

⎤⎦ ≤ xmaxEφ[T1],

which results in the additional constant term O(1) in the regret
bound in (13) which is independent of t.

Next, we upper bound (28). Note that for all t > T1, we have:

D
i
s ≤ D̂i

s(t) ≤ D
i
s,max, (29)

for all s ∈ S, i ∈ Ks, and we have the LHS of the inequality for
i �∈ Ks. For convenience, we will develop (28) between n = 1
and t with (29) (and the LHS for i �∈ Ks) holds for all 1 ≤ n ≤ t,
which upper bounds (28) between n = T1 + 1 and t:

Eφ

⎡⎣ t∑
n=T1+1

∑
i∈Ve(n)

(xi∗n
sn
(n)− xi

sn
(n))1{φ(n)=i}

⎤⎦
≤ Eφ

⎡⎣ t∑
n=1

∑
i∈Ve(n)

(xi∗n
sn
(n)− xi

sn
(n))1{φ(n)=i}

⎤⎦ . (30)

Finally, note that:

Eφ

⎡⎣ t∑
n=1

∑
i∈Ve(n)

(xi∗n
sn
(n)− xi

sn
(n))1{φ(n)=i}

⎤⎦
≤ xmax

N∑
i=1

Eφ[T̃
i(t)]. (31)

APPENDIX C
PROOF OF LEMMA 3

Proof of Lemma 3: We first upper bound the number of
exploration phases ni

O(t) for each arm (say i) by time t. If the
player has started the nth exploration phase, we have by (10)
and the fact that t ≥ T1:

ni
O(t)∑
n=1

4n−1 =
1

3

(
4n

i
O(t) − 1

)
≤ Ai · log(t).

Hence, ni
O(t) ≤ �log4(3Ai log(t) + 1)�+ 1.

Next, note that exploration phase ni
O(t) for arm i consists

of the time until the last state observed at the (ni
O(t)− 1)th

exploration phase γi(ni
O − 1) is observed again (i.e., SB1 sub-

block), and another 4n
i
O(t) time slots. Thus, the time spent by
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time t in exploration phases for arm i is bounded by:

E[T i
O(t)] ≤

ni
O(t)−1∑
n=0

(
4n +M i

max

)
=

1

3

(
4n

i
O(t) − 1

)
+M i

max · ni
O(t)

≤ 1

3
[4(3Ai · log(t) + 1)− 1] +M i

max · log4(3Ai log(t) + 1).

APPENDIX D
PROOF OF LEMMA 4

Proof of Lemma 4: We first upper bound the number of
exploitation phases by time t, nI(t). By time t, at most t time
slots have been spent on exploitation phases. Thus, we have:

nI(t)∑
n=1

2 · 4n−1 ≤ t,

which implies that 2
3 (4

nI(t) − 1) ≤ t. Hence,

nI(t) ≤
⌈
log4

(
3

2
t+ 1

)⌉
. (32)

Next, we use (32) to bound the regret caused by choosing
sub-optimal arms in exploitation phases. Let T i

s,I(t) denotes
the time spent on sub-optimal arm i in global state s in ex-
ploitation phases, by time t (note that T i

I (t) =
∑

s∈S T
i
s,I(t) ≤

|S|maxs{T i
s,I(t)}). We define Pr[i, s, n] as the probability that

a sub-optimal arm i is played when the global state is s in the
nth exploitation phase. From (32) we have:

E[T i
s,I(t)] ≤

nI∑
n=1

2 · 4n−1 · πs · Pr[i, s, n]

≤
�log4(

3
2 t+1)�∑

n=1

2 · 4n−1 · πs · Pr[i, s, n]

≤
�log4(

3
2 t+1)�∑

n=1

3tn · πs · Pr[i, s, n], (33)

where tn denotes the starting time of the nth exploitation phase
and (33) follows from the fact that tn ≥ 2

34
n−1. Note that it

suffices to show that Pr[i, s, n] has an order of t−1
n so as to

obtain a logarithmic order with time for the summation in (33).
Next, we bound Pr[i, s, n]. We define Ci

s,t =√
L log(t)/T i

s(t), C
∗
s,t =

√
L log(t)/T ∗

s (t), where T ∗
s (t)

denotes the number of plays on the best arm of global state s,
i∗s, by time t.

Pr[i, s, n] = P

(
V̂ i
s (tn) ≥ V̂ ∗

s (tn)
)

≤ P

(
V̂ ∗
s (tn) ≤ V ∗

s − C∗
s,tn

)
+ P

(
V̂ i
s (tn) ≥ V i

s + Ci
s,tn

)
+ P

(
V ∗
s < V i

s + Ci
s,tn

+ C∗
s,tn

)
. (34)

We first show that the third term in (34) is zero. Note that from
(10) we have:
T i
s(t) > max{D̂i

s(t),
2

ε2IL
} · log tn,

and from (29) and the fact that D
i
s ≤ maxi D

i
s, we have:

min{T ∗
s , T

i
s} ≥ D

i
s · log tn.

As a result,

P
(
V ∗
s < V i

s + Ci
s,tn

+ C∗
s,tn

)
= P

(
V ∗
s − V i

s <

√
L log tn
T i
s (tn)

+

√
L log tn
T ∗
s (tn)

)

≤ P

(
V ∗
s − V i

s < 2

√
L log tn

min {T ∗
s (tn) , T

i
s (tn)}

)

= P

((
V ∗
s − V i

s

)2
<

4L log tn
min {T ∗

s (tn) , T
i
s (tn)}

)
= P

(
min

{
T ∗
s (tn) , T

i
s (tn)

}
< D

i
s · log tn

)
= 0.

Therefore, we can rewrite (34) as follows:

Pr[i, s, n] ≤ P

(
V̂ i
s (tn) ≥ V̂ ∗

s (tn)
)

≤ P

(
V̂ ∗
s (tn) ≤ V ∗

s − C∗
s,tn

)
+ P

(
V̂ i
s (tn) ≥ V i

s + Ci
s,tn

)
. (35)

Next, we bound both terms on the RHS of (35). Using similar
steps as we used for bounding the second term in (20), we get:

P

(
V̂ i
s (tn)− V i

s ≥ Ci
s,tn

)
≤ 2|S|P

(
|p̂ss′ (tn)− pss′ | ≥ 1

4|S| (xmax + 2)
· Ci

s,tn

)
+ |S|P

(
|μ̂i

s′ (tn)− μi
s′ | ≥

1

4|S| (xmax + 2)
· Ci

s,tn

)
.

(36)

The second term in (36) is bounded similarly as in (22):

|S|P
(
|μ̂i

s′ (tn)− μi
s′ | ≥

1

4|S| (xmax + 2)
· Ci

s,tn

)
≤ |S||Xmax|

πmin

· exp
(
−T i

s (tn)
L log(tn)
T i
s(tn)

1
16(xmax+2)2|S|2

λ̄min

12(xmax|Xmax|πmax)
2

)
≤ |S||Xmax|

πmin
· t−1

n ,

where the last inequality is due to (12). The first term in (36) is
bounded similarly as in (21):

2|S|P
(
|p̂ss′ (tn)− pss′ | ≥ 1

4|S| (xmax + 2)
· Ci

s,tn

)
≤ 2|S| exp

(
−2Ns (tn) · 1

16|S|2 (xmax + 2)2
· L · log (tn)

Ns (tn)

))
≤ 2|S|t−1

n ,
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where the last inequality is due to (12), and the fact that ∀i :
Ns(t) > T i

s(t). The first term in (35) is bounded similarly, and
therefore:

Pr[i, s, n] ≤ 2

( |S||Xmax|
πmin

+ 2|S|
)
· t−1

n . (37)

Using (37), we can bound (33), and therefore:

E
[
T i
I (t)

] ≤ 6|S| ·
( |S||Xmax|

πmin
+ 2|S|

)
·max

s
πs

·
⌈
log4

(
3

2
t+ 1

)⌉
. (38)

APPENDIX E
INCORPORATING THE REGRET EVENTS TO PROVE THEOREM 1

We conclude the proof of Theorem 1 by incorporating the
regret events discussed above., i.e., regret that is caused by
imprecise estimation of the exploration rate, regret that is caused
by playing bad arms in exploration phases, and regret that is
caused by playing bad arms in exploitation phases.

Lemmas 1 and 2 result in the additional constant term O(1)
in the regret bound (13) which is independent of t.

From Lemmas 3 and 2, the regret caused by playing bad arms
in exploration phases by time t is bounded by:

xmax ·
N∑
i=1

[
1

3
[4(3Ai · log(t) + 1)− 1]

+M i
max · log4(3Ai log(t) + 1)

]
,

which coincides with the first and second terms on the RHS of
(13).

From Lemmas 4 and 2, the regret caused by playing sub-
optimal arms in exploitation phases by time t is bounded by:

xmax ·N · 6|S| ·
( |S||Xmax|

πmin
+ 2|S|

)
·max

s
πs ·

⌈
log4

(
3

2
t+ 1

)⌉
,

which coincides with the third term on the RHS of (13), and thus
Theorem 1 follows.
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