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Distributed Data Placement and Content Delivery in Web Caches
with Non-Metric Access Costs
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ABSTRACT
Motivated by applications in web caches and content delivery in

peer-to-peer networks, we consider the non-metric data placement

problem and develop distributed algorithms for computing or ap-

proximating its optimal solutions. In this problem, the goal is to

store copies of the data points among a set of cache-capacitated

servers to minimize overall data storage and clients’ access costs.

We first show that the non-metric data placement problem in which

the access costs between servers can be arbitrary nonnegative num-

bers is inapproximable up to a logarithmic factor. We then provide

a game-theoretic decomposition of the objective function and show

that a natural type of Glauber dynamics in which servers update

their cache contents with probability proportional to the utility they

receive from caching those data will converge to an optimal global

solution for a sufficiently large noise parameter. In particular, we

establish the polynomial mixing time of the Glauber dynamics for

a certain range of noise parameters. Such a game-theoretic decom-

position not only provides a good performance guarantee in terms

of content delivery but also allows the system to operate in a fully

distributed manner, hence reducing the system’s computational

load and improving its robustness to system failures. Finally, we

provide another auction-based distributed algorithm, which allows

us to approximate the optimal global solution with a performance

guarantee that depends on the ratio of the revenue vs. social welfare

obtained from the underlying auction.

KEYWORDS
Content delivery, web caches, distributed data placement, Glauber

learning dynamics, potential games, LP duality.
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Data placement is one of the fundamental allocation problems

in storage-capable distributed systems, such as content delivery

networks, web caches, peer-to-peer (P2P) networks, and mobile net-

works. In many such applications one aims to store limited copies

of the data points among a set of cache-aided servers in order to

improve data availability to the clients, enhance system reliability

and fault tolerance (e.g., against adversarial attacks), and reduce

the computational load at the local servers [16]. As an example,

consider a movie-sharing P2P network among multiple servers [15].

Due to limited disk space, the movies can be stored either locally
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or obtained from other servers with some delay cost. The commu-

nication network shared by the servers determines the delay costs,

where the farther the servers are from each other, the more delay

costs they incur in obtaining access to each other. When a client

connects to one of the local servers to download a certain movie,

either the movie is available in the cache of that local server, in

which case the client can get access to it without any delay. Oth-

erwise, the client can access the movie through the closest server

that has the requested movie in its cache, hence incurring a delay

cost. Thus, the storing decisions at each local server affect everyone

who uses this service, and a major question is on how to distribute

the movies locally among the servers to minimize communication

delays while respecting servers’ capacity constraints. In particular,

we often want the data distribution to be robust and reliable, mean-

ing that if a server goes down or behaves selfishly, other servers

can fulfill their clients’ demands with a small delay cost.

The data placement problem can be viewed under a more general

framework of resource allocation problems that looks at how to

store copies of different data (resources) among a set of capacity-

constrained servers (agents) to minimize the overall resource place-

ment and access costs.
1
The placement cost captures the cost of

allocating a particular resource to an agent (e.g., the storage cost on

a server due to data incompatibility). On the other hand, the access

costs measure the cost of getting access to resources from other

agents (e.g., the data transmission delay between servers). However,

most works on data placement problems assume that all agents

fully comply with the centralized designed protocols. Nevertheless,

in real-world data replication applications, the agents (e.g., servers,

data providers/consumers) can belong to different stakeholders or

administrative domains with different preferences and objectives

[12, 13, 15, 16]. On the other hand, the access costs among agents

could be a complex function of many parameters, such as agents’

physical locations, available bandwidth, or the network congestion

shared by them, and hence may not satisfy any simplifying assump-

tions. Therefore, our main goal in this work is to analyze the data

placement problem from a distributed computation perspective and

without any assumption on the access costs.

Related Work: The data placement problem has been exten-

sively studied in the past literature. The optimal data placement

on networks with a constant number of clients and arbitrary ac-

cess costs was considered in [2], where a polynomial algorithm for

computing the optimal allocation for uniform resource length was

developed. The data placement problem was studied from a mecha-

nism design perspective in [16]. There have been several efforts to

obtain constant factor approximation algorithms for themetric data
placement problem, starting with [5] and improved by [4, 20, 27].

The main idea behind most of these approximation algorithms is

based on solving a natural LP relaxation of the problem and then

rounding the solution using refined clustering, network flow, or

1
We refer to servers as agents and data points as resources interchangeably.
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iterative rounding. A generalization of these results to the so-called

“matroid median problem" has been studied in [20, 27]; as a special

case, it results in improved approximation algorithms for the met-

ric data placement problem. We refer to [3, 28] for other heuristic

approximation algorithms with or without theoretical performance

guarantees. It was shown in [12] that in the case of homogeneous

metric data placement when agents have identical request rates, a

simple greedy algorithm could achieve an approximation factor of

3, hence improving the existing approximation factors that were

given for the heterogeneous setting. Moreover, it was shown that

the same algorithm results in a 3-competitive algorithm for the

online version of the problem in which agents arrive adversarially

over time and reveal their specifications. A different online variant

of the data placement problem has also been studied in [10].

The data placement problem is also closely related to the un-

capacitated facility location problem (UFLP) [19] and its variants

[1, 18, 26], such as the 𝑘-median and matroid median problems

[7, 9], in which the goal is to open a subset of facilities and assign

each client to an open facility in order to minimize the total facility

opening costs and clients’ access costs. In fact, as we will show,

the data placement problem is a more complicated version of the

UFLP in which there are multiple facility types that are coupled

through the cache constraints. In particular, one can show that

by relaxing the cache constraints in the data placement problem

using Lagrangian multipliers, the data placement problem can be

decomposed into a sum of separable UFLPs. A heuristic approxima-

tion algorithm based on decomposing the data placement objective

function using Lagrangian relaxation has been studied in [11].

This work is also related to the literature on distributed caching

using auctions [6] and resource allocation games [14, 22–25]. One

advantage of studying content delivery and web caching problems

using distributed game-theoretic frameworks is improving resource

availability and robustness against failures [8, 13]. An uncapaciteted

distributed caching gamewas studied in [8], where the authors were

able to characterize the set of Nash equilibrium points. However, the

situation is more complex for content delivery systems with limited

cache size, as the agents’ caching decisions are more coupled such

that there is no simple characterization of the equilibrium points

at hand. The capacitated distributed caching games were studied

in [12, 13, 15], where it was shown that the game admits a pure

Nash equilibrium if the access costs are metric and the request

rates are uniform across agents. Our work is different from the

prior work as it provides a novel game-theoretic decomposition for

the distributed caching problem with different request rates and

general access costs.

Contributions:We consider the non-metric data placement

problem and devise distributed algorithms to compute or approxi-

mate its global optimum solution. More specifically:

• We first show that the data placement problem with non-

metric access costs is NP-hard to approximate within a factor

better than 𝑂 (log𝑛), where 𝑛 is the number of agents.

• We then provide a novel potential game decomposition of

the data placement problem that allows the agents to inter-

nalize the global cost through their own local cost functions.

Such a decomposition aligns the changes in the global objec-

tive function with the agents’ selfish behavior, allowing the

system to operate in a fully distributed manner.

• We obtain a bound on the objective value of any pure Nash

equilibrium (NE) in terms of the sensitivity to agents’ cache

contents. In general, the objective value of a NE could be

far from an optimum value. However, we show that natu-

ral distributed Glauber dynamics will allow the agents to

randomly update their resources to collectively achieve an

optimum solution for a reasonably large noise parameter.

Moreover, the Glauber dynamics mix quickly if the noise

parameter is within a certain range, hence providing a clear

tradeoff between the computation time and the quality of

the suboptimal solution obtained from the dynamics.

• Finally, using the dual formulation of the data placement

problem, we provide another distributed algorithm based on

the first price auction, in which the resources bid on agents’

cache capacities and provide a worst-case guarantee on the

quality of the obtained solution.

Our results provide the first distributed computation algorithms

for the non-metric data placement problem and provide new in-

sights on how to trade-off between the computation cost versus the

optimality of the achieved solution in a fully distributed setting.

Notations: We adopt the following notations throughout the

paper. For a positive integer 𝑛, we let [𝑛] = {1, 2, . . . , 𝑛}. For a
discrete set 𝑋 ⊆ [𝑛] and 𝑖 ∈ 𝑋 , we often write 𝑋 − 𝑖 and 𝑋 + 𝑖

to denote 𝑋 \ {𝑖} and 𝑋 ∪ {𝑖}, respectively. For two probability

distributions 𝜇 and𝜈 supported over a finite set𝐴, we let ∥𝜇−𝜈 ∥𝑇𝑉 =
1

2

∑
𝑎∈𝐴 |𝜇 (𝑎) − 𝜈 (𝑎) | be the total variation distance between those

distributions. To denote the mixing time of a Markov chain with

transition probability matrix 𝑃 , we use 𝑡mix (𝜖) = min{𝑡 : 𝑑 (𝑡) < 𝜖},
where 𝑑 (𝑡) = sup𝜇 ∥𝜇𝑃𝑡 − 𝜋 ∥𝑇𝑉 is the maximum total variation

between the distribution of the Markov chain at time 𝑡 and its

stationary distribution 𝜋 . The ℓ1 norm of a vector 𝑥 is denoted by

∥𝑥 ∥1 =
∑ |𝑥𝑖 |. Given two vectors 𝑥 and 𝑦, we let 𝜌 (𝑥,𝑦) be the

number of coordinates for which those two vectors differ. We let

1 and 0 be the vectors with all one entries and all zero entries,

respectively. Finally, for a real number 𝑎, we let (𝑎)+ = max{𝑎, 0}.

1 PROBLEM FORMULATION AND
PRELIMINARY RESULTS

Let us consider the data placement problem [5, 27] in which there

are a set of [𝑛] = {1, 2, . . . , 𝑛} agents and a set [𝑘] = {1, 2, . . . , 𝑘}
of unit size resource types. We assume that there are unlimited

copies of each resource type. Agent 𝑖 ∈ [𝑛] has a cache of size

𝑢𝑖 ∈ Z+, and the cost of storing resource ℓ in its cache is given by

𝑓 ℓ
𝑖
≥ 0. Moreover, we assume that agent 𝑖 ∈ [𝑛] has a nonnegative

demand/request rate𝑤 ℓ
𝑖
≥ 0 for resource ℓ . Here,𝑤 ℓ

𝑖
can be thought

of as the rate of clients who refer to agent 𝑖 to request resource

ℓ and is a measure of the popularity of resource ℓ at server 𝑖 . In

addition, we let 𝑐𝑖 𝑗 = 𝑐 𝑗𝑖 ≥ 0 be the (symmetric) cost of getting

access to agent 𝑖 from agent 𝑗 , and 𝑐𝑖𝑖 = 0 ∀𝑖 ∈ [𝑛]. The goal is to
fill agents’ caches with proper resources to minimize the overall

placement and access costs. More precisely, given an allocation of

resources to the agents, let us use 𝑋 ℓ ⊆ [𝑛] to denote the set of

agents that hold resource ℓ in their caches. Then, the cost of agent

𝑗 to get access to resource ℓ is given by𝑤 ℓ
𝑗
𝑑 ( 𝑗, 𝑋 ℓ ), where

𝑑 ( 𝑗, 𝑋 ℓ ) = min{𝑐𝑖 𝑗 : 𝑖 ∈ 𝑋 ℓ },
2023-10-13 01:00. Page 2 of 1–10.
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is the minimum distance that agent 𝑗 needs to travel to get access

to resource ℓ . In particular, the overall access cost among all the

agents and for all the resources is given by

∑
𝑗,ℓ 𝑤

ℓ
𝑗
𝑑 ( 𝑗, 𝑋 ℓ ). An

integer program (IP) formulation for the data placement problem is

given by

min

∑︁
𝑖, 𝑗,ℓ

𝑤 ℓ
𝑗𝑐𝑖 𝑗𝑥

ℓ
𝑖 𝑗 +

∑︁
𝑖,ℓ

𝑓 ℓ𝑖 𝑦
ℓ
𝑖

𝑥 ℓ𝑖 𝑗 ≤ 𝑦ℓ𝑖 ∀𝑖, 𝑗, ℓ,
𝑛∑︁
𝑖=1

𝑥 ℓ𝑖 𝑗 ≥ 1 ∀𝑗, ℓ,

𝑘∑︁
ℓ=1

𝑦ℓ𝑖 ≤ 𝑢𝑖 ∀𝑖,

𝑥 ℓ𝑖 𝑗 , 𝑦
ℓ
𝑖 ∈ {0, 1}, ∀𝑖, 𝑗, ℓ, (1)

where 𝑦ℓ
𝑖
= 1 if we allocate resource ℓ to agent 𝑖 , and 𝑥 ℓ

𝑖 𝑗
= 1

if agent 𝑗 gets access to resource ℓ through agent 𝑖 . The first set

of constraints in (1) ensures that agent 𝑗 can access resource ℓ

through agent 𝑖 only if agent 𝑖 holds resource ℓ in its cache. The

second set of constraints implies that each agent 𝑗 has to get access

to all the resources, and the last set of constraints is the cache

capacity constraints that allow agent 𝑖 to hold at most 𝑢𝑖 resources

in its cache. Subject to these constraints, the goal is to allocate the

resources to the agents to minimize the sum of the placement cost∑
𝑖,ℓ 𝑓

ℓ
𝑖
𝑦ℓ
𝑖
and the access cost

∑
𝑖, 𝑗,ℓ 𝑤

ℓ
𝑗
𝑐𝑖 𝑗𝑥

ℓ
𝑖 𝑗
.

The following lemma shows that without loss of generality, we

can restrict our attention to the data placement problem with unit

cache size, i.e., when 𝑢𝑖 = 1∀𝑖 ∈ [𝑛].

Lemma 1.1. An instance of the data placement problem in which
agent 𝑖 has cache size𝑢𝑖 , demand vector (𝑤1

𝑖
, . . . ,𝑤𝑘

𝑖
), and installment

vector (𝑓 1
𝑖
, . . . , 𝑓 𝑘

𝑖
) can be reduced to a unit cache size instance by

replacing agent 𝑖 with𝑢𝑖 independent and collocated agents 𝑖1, . . . , 𝑖𝑢𝑖 ,
where each agent 𝑖 𝑗 , 𝑗 = 1, . . . , 𝑢𝑖 has a unit cache size, demand vector

( 𝑤
1

𝑖

𝑢𝑖
, . . . ,

𝑤𝑘
𝑖

𝑢𝑖
) and installment vector (𝑓 1

𝑖
, . . . , 𝑓 𝑘

𝑖
).

Proof. Consider an arbitrary allocation profile 𝑋 = (𝑋 ℓ , ℓ ∈
[𝑘]) in the original instance and assume that the content of cache 𝑖

is filled with resources ℓ1, . . . , ℓ𝑢𝑖 . Now let us replace agent 𝑖 with

𝑢𝑖 independent and collocated unit cache size agents, where the

caches of agents 𝑖1, . . . , 𝑖𝑢𝑖 are filled with ℓ1, . . . , ℓ𝑢𝑖 , respectively.

For any agent 𝑗 ≠ 𝑖 , the cost of getting 𝑗 access to all the resources

is the same in both instances. Moreover, the cost of agent 𝑖 in the

original instance equals

∑
ℓ 𝑤

ℓ
𝑖
𝑑 (𝑖, 𝑋 ℓ ) +∑𝑢𝑖

𝑟=1
𝑓
ℓ𝑟
𝑖
, while the total

cost of agents 𝑖1, . . . , 𝑖𝑢𝑖 in the new instance equals∑︁
ℓ

𝑢𝑖∑︁
𝑟=1

𝑤 ℓ
𝑖𝑟
𝑑 (𝑖𝑟 , 𝑋 ℓ ) +

𝑢𝑖∑︁
𝑟=1

𝑓
ℓ𝑟
𝑖

=
∑︁
ℓ

𝑢𝑖∑︁
𝑟=1

1

𝑢𝑖
𝑤 ℓ
𝑖 𝑑 (𝑖, 𝑋

ℓ ) +
𝑢𝑖∑︁
𝑟=1

𝑓
ℓ𝑟
𝑖

=
∑︁
ℓ

𝑤 ℓ
𝑖 𝑑 (𝑖, 𝑋

ℓ ) +
𝑢𝑖∑︁
𝑟=1

𝑓
ℓ𝑟
𝑖
,

which shows that the total costs of the two instances are the same.

Thus, there is a one-to-one correspondence between optimal solu-

tions of the original instance and the new instance with more unit

cache agents. The proof is completed by repeating the same process

for every agent 𝑖 until all the agents have unit cache size. □

Henceforth, we will focus only on the data placement problem

with unit-cache size.
2
But before we get into the analysis, the fol-

lowing proposition shows that even approximating the non-metric

data placement problem to within a logarithmic factor is a hard

problem (see Appendix I for a proof).

Proposition 1.2. It is NP-hard to approximate the non-metric
data placement problem up to a factor better than 𝑂 (ln𝑛).

Remark 1. It is known that when the access costs are metric, i.e.,
𝑐𝑖𝑘 ≤ 𝑐𝑖 𝑗 + 𝑐 𝑗𝑘 ∀𝑖, 𝑗, 𝑘 ∈ [𝑛], the data placement problem admits
constant factor approximations [5, 27]. This is in sharp contrast with
the non-metric case that assumes no conditions on the access costs. The
reason is that the reduction of Proposition 1.2 is based on non-metric
UFLP, while the metric UFLP admits constant factor approximations.

Despite the above negative result, we are still interested in find-

ing distributed algorithms that perform well in most instances of

the non-metric data placement problem. The reason is that often as-

suming any property on the access costs in general content delivery

systems is unrealistic because the access costs could be a compli-

cated function of many factors. To that end, we will develop two

distributed algorithms in which either the agents or the resources

are viewed as selfish entities that aim to maximize their payoffs, and

we will analyze the performance of the allocation profiles resulting

from agents’ interactions. That not only allows the content delivery

system to operate in a fully distributed manner but also allows

us to trade-off the computation time to obtain better suboptimal

solutions.

2 A GAME-THEORETIC DECOMPOSITION
FOR THE DATA PLACEMENT PROBLEM

In order to develop a distributed algorithm for the data placement

problem, in this section, we first provide a game-theoretic decom-

position for its objective function. Let us consider the objective

function of the (unit cache size) data placement problem

Φ(𝑥) =
∑︁
𝑗,ℓ

𝑤 ℓ
𝑗𝑑 ( 𝑗, 𝑋

ℓ ) +
∑︁
𝑖

𝑓
𝑥𝑖
𝑖
,

where 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ [𝑘]𝑛 denotes the resource allocation

profile of all the agents, 𝑋 ℓ = {𝑖 : 𝑥𝑖 = ℓ} is the set of agents that
have resource ℓ in their cache, and 𝑑 ( 𝑗, 𝑋 ℓ ) = min{𝑐 𝑗𝑖 : 𝑖 ∈ 𝑋 ℓ }.
Consider a noncooperative game in which each agent 𝑖 ∈ [𝑛] can
be viewed as one player with the action set [𝑘]. The action of player
𝑖 is the resource 𝑥𝑖 ∈ [𝑘] that it caches, and incurs a cost that is

given by

𝑐𝑖 (𝑥) =
∑︁
𝑗,ℓ

𝑤 ℓ
𝑗

(
𝑑 ( 𝑗, 𝑋 ℓ ) − 𝑐𝑖 𝑗

)+ + 𝑓
𝑥𝑖
𝑖
,

where for a real number 𝑎 we define (𝑎)+ = max{0, 𝑎}.

Lemma 2.1. The above noncooperative game G = ( [𝑛], [𝑘]𝑛, {𝑐𝑖 })
is an exact potential game with the potential function Φ(𝑥).
2
In fact, the reduction of Lemma 1.1 holds even for metric access costs, i.e., when

𝑐𝑖𝑘 ≤ 𝑐𝑖 𝑗 +𝑐 𝑗𝑘 , ∀𝑖, 𝑗, 𝑘 . The reason is that the distances in the unit cache size instance

still satisfy the metric property, as the distance between any two agents is the same as

the distance between their collocated copies.
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Proof. Consider an arbitrary player 𝑖 and an action (allocation)

profile 𝑥 = (𝑥𝑖 , 𝑥−𝑖 ) such that 𝑥𝑖 = ℓ . Assume that player 𝑖 changes

its action from 𝑥𝑖 = ℓ to 𝑥 ′
𝑖
= ℓ′, and call the new action profile 𝑥 ′ =

(𝑥 ′
𝑖
, 𝑥−𝑖 ). For any 𝑜 ∈ [𝑘], let us use𝑋𝑜

and𝑋 ′𝑜
to denote the set of

players holding resource 𝑜 in action profiles 𝑥 and 𝑥 ′, respectively.
Then, we have 𝑖 ∈ 𝑋 ℓ , 𝑖 ∉ 𝑋 ℓ ′

and 𝑋 ′ℓ = 𝑋 ℓ − 𝑖, 𝑋 ′ℓ ′ = 𝑋 ℓ ′ + 𝑖 . We

can write

𝑐𝑖 (𝑥 ′𝑖 , 𝑥−𝑖 ) − 𝑐𝑖 (𝑥𝑖 , 𝑥−𝑖 )

=
∑︁
𝑗

𝑤 ℓ
𝑗

(
𝑑 ( 𝑗, 𝑋 ′ℓ ) − 𝑐𝑖 𝑗

)+ +
∑︁
𝑗

𝑤 ℓ ′
𝑗

(
𝑑 ( 𝑗, 𝑋 ′ℓ ′ ) − 𝑐𝑖 𝑗

)+ + 𝑓 ℓ
′

𝑖

−
∑︁
𝑗

𝑤 ℓ
𝑗

(
𝑑 ( 𝑗, 𝑋 ℓ ) − 𝑐𝑖 𝑗

)+ −
∑︁
𝑗

𝑤 ℓ ′
𝑗

(
𝑑 ( 𝑗, 𝑋 ℓ ′ ) − 𝑐𝑖 𝑗

)+ − 𝑓 ℓ𝑖

=
∑︁
𝑗

𝑤 ℓ
𝑗

(
𝑑 ( 𝑗, 𝑋 ℓ − 𝑖) − 𝑐𝑖 𝑗

)+ + 𝑓 ℓ
′

𝑖

−
∑︁
𝑗

𝑤 ℓ ′
𝑗

(
𝑑 ( 𝑗, 𝑋 ℓ ′ ) − 𝑐𝑖 𝑗

)+ − 𝑓 ℓ𝑖 , (2)

where the first equality holds because for any resource 𝑜 ∉ {ℓ, ℓ′},
we have𝑋𝑜 = 𝑋 ′𝑜

. The second equality follows from 𝑑 ( 𝑗, 𝑋 ℓ ) ≤ 𝑐𝑖 𝑗

and 𝑑 ( 𝑗, 𝑋 ′ℓ ′ ) ≤ 𝑐𝑖 𝑗 because 𝑖 ∈ 𝑋 ℓ , 𝑖 ∈ 𝑋 ′ℓ ′
.

Next, we compute the amount of change in the potential function

Φ(𝑥). We have

Φ(𝑥 ′𝑖 , 𝑥−𝑖 ) − Φ(𝑥𝑖 , 𝑥−𝑖 )

=
∑︁
𝑗

𝑤 ℓ
𝑗𝑑 ( 𝑗, 𝑋

′ℓ ) +
∑︁
𝑗

𝑤 ℓ ′
𝑗 𝑑 ( 𝑗, 𝑋

′ℓ ′ ) + 𝑓 ℓ
′

𝑖

−
∑︁
𝑗

𝑤 ℓ
𝑗𝑑 ( 𝑗, 𝑋

ℓ ) −
∑︁
𝑗

𝑤 ℓ ′
𝑗 𝑑 ( 𝑗, 𝑋

ℓ ′ ) − 𝑓 ℓ𝑖

=
∑︁
𝑗

𝑤 ℓ
𝑗

(
𝑑 ( 𝑗, 𝑋 ′ℓ ) − 𝑑 ( 𝑗, 𝑋 ℓ )

)
+ 𝑓 ℓ

′
𝑖

−
∑︁
𝑗

𝑤 ℓ ′
𝑗

(
𝑑 ( 𝑗, 𝑋 ℓ ′ ) − 𝑑 ( 𝑗, 𝑋 ′ℓ ′ )

)
− 𝑓 ℓ𝑖

=
∑︁
𝑗

𝑤 ℓ
𝑗

(
𝑑 ( 𝑗, 𝑋 ℓ − 𝑖) − 𝑑 ( 𝑗, 𝑋 ℓ )

)
+ 𝑓 ℓ

′
𝑖

−
∑︁
𝑗

𝑤 ℓ ′
𝑗

(
𝑑 ( 𝑗, 𝑋 ℓ ′ ) − 𝑑 ( 𝑗, 𝑋 ℓ ′ + 𝑖)

)
− 𝑓 ℓ𝑖

=
∑︁
𝑗

𝑤 ℓ
𝑗

(
𝑑 ( 𝑗, 𝑋 ℓ − 𝑖) − 𝑑 ( 𝑗, 𝑋 ℓ )

)
+ 𝑓 ℓ

′
𝑖

−
∑︁
𝑗

𝑤 ℓ ′
𝑗

(
𝑑 ( 𝑗, 𝑋 ℓ ′ ) − 𝑐𝑖 𝑗

)+ − 𝑓 ℓ𝑖

=
∑︁
𝑗

𝑤 ℓ
𝑗

(
𝑑 ( 𝑗, 𝑋 ℓ − 𝑖) − 𝑐𝑖 𝑗

)+ + 𝑓 ℓ
′

𝑖

−
∑︁
𝑗

𝑤 ℓ ′
𝑗

(
𝑑 ( 𝑗, 𝑋 ℓ ′ ) − 𝑐𝑖 𝑗

)+ − 𝑓 ℓ𝑖 , (3)

where in the fourth equality we have used the fact that

𝑑 ( 𝑗, 𝑋 ℓ ′ ) − 𝑑 ( 𝑗, 𝑋 ℓ ′ + 𝑖) =
(
𝑑 ( 𝑗, 𝑋 ℓ ′ ) − 𝑐𝑖 𝑗

)+
,

by considering two cases. First, if𝑑 ( 𝑗, 𝑋 ℓ ′ ) ≤ 𝑐𝑖 𝑗 , then𝑑 ( 𝑗, 𝑋 ℓ ′+𝑖) =
𝑑 ( 𝑗, 𝑋 ℓ ′ ), and thus 𝑑 ( 𝑗, 𝑋 ℓ ′ ) − 𝑑 ( 𝑗, 𝑋 ℓ ′ + 𝑖) = 0 =

(
𝑑 ( 𝑗, 𝑋 ℓ ′ ) −

𝑐𝑖 𝑗
)+
. Second, if 𝑑 ( 𝑗, 𝑋 ℓ ′ ) > 𝑐𝑖 𝑗 , then 𝑑 ( 𝑗, 𝑋 ℓ ′ + 𝑖) = 𝑐𝑖 𝑗 , and thus

𝑑 ( 𝑗, 𝑋 ℓ ′ )−𝑑 ( 𝑗, 𝑋 ℓ ′+𝑖) = 𝑑 ( 𝑗, 𝑋 ℓ ′ )−𝑐𝑖 𝑗 =
(
𝑑 ( 𝑗, 𝑋 ℓ ′ )−𝑐𝑖 𝑗

)+
. Similarly,

the last equality is obtained from

𝑑 ( 𝑗, 𝑋 ℓ − 𝑖) − 𝑑 ( 𝑗, 𝑋 ℓ ) =
(
𝑑 ( 𝑗, 𝑋 ℓ − 𝑖) − 𝑐𝑖 𝑗

)+
,

which can be shown by considering two cases: if 𝑑 ( 𝑗, 𝑋 ℓ − 𝑖) ≤ 𝑐𝑖 𝑗 ,

then 𝑑 ( 𝑗, 𝑋 ℓ − 𝑖) = 𝑑 ( 𝑗, 𝑋 ℓ ), and thus 𝑑 ( 𝑗, 𝑋 ℓ − 𝑖) − 𝑑 ( 𝑗, 𝑋 ℓ ) =

0 =
(
𝑑 ( 𝑗, 𝑋 ℓ − 𝑖) − 𝑐𝑖 𝑗

)+
. Otherwise, if 𝑑 ( 𝑗, 𝑋 ℓ − 𝑖) > 𝑐𝑖 𝑗 , then

𝑑 ( 𝑗, 𝑋 ℓ ) = 𝑐𝑖 𝑗 , and thus 𝑑 ( 𝑗, 𝑋 ℓ − 𝑖) −𝑑 ( 𝑗, 𝑋 ℓ ) = 𝑑 ( 𝑗, 𝑋 ℓ − 𝑖) −𝑐𝑖 𝑗 =(
𝑑 ( 𝑗, 𝑋 ℓ − 𝑖) − 𝑐𝑖 𝑗

)+
. Finally, by comparing (2) and (3), we get

Φ(𝑥 ′𝑖 , 𝑥−𝑖 ) − Φ(𝑥𝑖 , 𝑥−𝑖 ) = 𝑐𝑖 (𝑥 ′𝑖 , 𝑥−𝑖 ) − 𝑐𝑖 (𝑥𝑖 , 𝑥−𝑖 ),

which completes the proof. □

As a result of Lemma 2.1, if players selfishly update their re-

sources by minimizing their cost functions, the overall allocation

profile will converge to a pure Nash equilibrium (NE), which must

be a local minimum of the potential function. Therefore, one could

ask about the quality of the solution obtained at a NE compared to

the global optimum of the potential function, which is the optimal

solution to the data placement problem. To evaluate the quality of

a solution obtained at a NE, we leverage the dual program corre-

sponding to the linear program relaxation of the data placement

problem (1), which is given by

max

∑︁
𝑗,ℓ

𝛽ℓ𝑗 −
∑︁
𝑖

𝛼𝑖

𝛽ℓ𝑗 − 𝑢ℓ𝑖 𝑗 ≤ 𝑤 ℓ
𝑗𝑐𝑖 𝑗 ∀𝑖, 𝑗, ℓ,∑︁

𝑗

𝑢ℓ𝑖 𝑗 − 𝛼𝑖 ≤ 𝑓 ℓ𝑖 ∀𝑖, ℓ,

𝑢ℓ𝑖 𝑗 , 𝛽
ℓ
𝑗 , 𝛼𝑖 ≥ 0, ∀𝑖, 𝑗, ℓ . (4)

Using the first set of constraints, in an optimal dual solution we

may assume 𝑢ℓ
𝑖 𝑗

=
(
𝛽ℓ
𝑗
−𝑤 ℓ

𝑗
𝑐𝑖 𝑗

)+
,∀𝑖, 𝑗, ℓ . Otherwise, if 𝑢ℓ

𝑖 𝑗
>

(
𝛽ℓ
𝑗
−

𝑤 ℓ
𝑗
𝑐𝑖 𝑗

)+
for some 𝑖, 𝑗, ℓ , we can create a new feasible dual solution

by reducing 𝑢ℓ
𝑖 𝑗
to

(
𝛽ℓ
𝑗
−𝑤 ℓ

𝑗
𝑐𝑖 𝑗

)+
. Such a change preserves the dual

feasibility of the second set of constraints while potentially allowing

one to reduce 𝛼𝑖 and hence increase the dual objective value. By

abuse of notation, if we use 𝛽ℓ
𝑗
to denote 𝛽ℓ

𝑗
/𝑤 ℓ

𝑗
, we can write the

dual program (4) in an equivalent form as

max

∑︁
𝑗,ℓ

𝑤 ℓ
𝑗 𝛽

ℓ
𝑗 −

∑︁
𝑖

𝛼𝑖∑︁
𝑗

𝑤 ℓ
𝑗

(
𝛽ℓ𝑗 − 𝑐𝑖 𝑗

)+ − 𝑓 ℓ𝑖 ≤ 𝛼𝑖 ∀𝑖, ℓ,

𝛽ℓ𝑗 , 𝛼𝑖 ≥ 0, ∀𝑖, 𝑗, ℓ . (5)

Using this dual formulation, we are able to show the following

bound on the quality of an NE compared to the optimal global

solution. The proof of this theorem can be found in Appendix A.

Theorem 2.2. Let 𝑥 be any pure NE of the potential game G and
𝑥𝑜 be the optimal solution to the data placement problem. Then,

Φ(𝑥) ≤
Φ(𝑥𝑜 ) +∑𝑛

𝑗=1 Φ(𝑥 \ 𝑗)
𝑛 + 1

,

where Φ(𝑥 \ 𝑗) denotes the value of the potential function when the
cache content of player 𝑗 is evacuated.
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Theorem 2.2 provides an upper bound for the objective value

at any NE in terms of the global minimum value and the objective

function’s sensitivity to each player’s cache content at that NE. For

instance, if the resources are well-distributed such that each agent

𝑗 can find a resource of similar type at a distance of at most 𝑑 , then

Φ(𝑥\ 𝑗) ≤ Φ(𝑥)+𝑑 , in which Theorem 2.2 impliesΦ(𝑥) ≤ Φ(𝑥𝑜 )+𝑛𝑑 .
Note that the optimal solution 𝑥𝑜 is also a NE as it is the global

maximizer of the potential function. However, due to the non-

metric property of the access costs, it may be possible that the

potential function Φ(·) has many local minima (NE points). In that

case, in the worst-case scenario, the quality of an arbitrary NE can

be significantly smaller than that of the best NE 𝑥𝑜 . The reason

is that a NE is the outcome of a local search algorithm that is

unimprovable up to a single-player deviation.
3
Therefore, to bridge

this gap at a more computational cost, in the next section, we rely

on Glauber dynamics with noisy updates to steer the resource

allocation outcome resulting from players’ interactions closer to

the global optimal solution.

3 GLAUBER DYNAMICS FOR FINDING A
GLOBAL OPTIMAL SOLUTION

Let X = [𝑘]𝑛 be the space of all possible resource allocations.

We consider Glauber dynamics over the space X in which players

iteratively update their cache contents. More precisely, given an

allocation profile 𝑥 ∈ X, at each time instance 𝑡 = 1, 2, . . ., one

player 𝑖 will be chosen uniformly and independently from the past

and will update its resource to 𝑜 ∈ [𝑘] with probability

𝑒−𝛽𝑐𝑖 (𝑜,𝑥−𝑖 )∑
ℓ∈[𝑘 ] 𝑒−𝛽𝑐𝑖 (ℓ,𝑥−𝑖 )

, (6)

where 𝛽 ∈ [0,∞) is a noise parameter. In other words, given that

player 𝑖 is chosen to update its resource at time 𝑡 , the probability

that it caches resource 𝑜 is proportional to the utility that resource

𝑜 brings to that player subject to an additional noise 𝛽 that captures

the uncertainty or mistake of player 𝑖 in choosing resource 𝑜 . As

𝛽 → ∞, the above Glauber dynamics replicate the best response

dynamics. Moreover, one can see that the above Glauber dynamics

induce a Markov chain over the state space of all the allocation

profiles X. The following lemma shows that the stationary distribu-

tion of such a Markov chain is given by the Gibbs distribution with

respect to the potential function Φ (see Appendix I for a proof).

Lemma 3.1. The stationary distribution of the Markov chain in-
duced by the Glauber dynamics (6) is given by 𝜋 : X → [0, 1], where

𝜋 (𝑥) = 𝑒−𝛽Φ(𝑥 )∑
𝑧∈X 𝑒−𝛽Φ(𝑧 )

. (7)

As a result, for sufficiently large 𝛽 , the Glauber dynamics will

concentrate on an allocation profile with the smallest potential func-

tion, which is the global minimum of the data placement problem.

However, for larger 𝛽 , the induced chain takes longer to converge

to its stationary distribution. Nevertheless, the following theorem

shows that still for reasonably large values of 𝛽 , the inducedMarkov

chain mixes quickly to its stationary Gibbs distribution.

3
In fact, it is known that for the simpler UFLP or 𝑘-median problem, a richer class

of local search moves are required to guarantee the existence of a “good" suboptimal

solution [29].

Theorem 3.2. Given 𝜖 > 0, let 𝑡mix (𝜖) be the 𝜖-mixing time of the
Glauber dynamics with underlying transition matrix 𝑃 : X2 → [0, 1]
and stationary distribution 𝜋 , i.e., 𝑡mix = min𝑡 sup𝜇 ∥𝜇𝑃𝑡 − 𝜋 ∥𝑇𝑉 .
Then for 𝛽 ≤ 𝑘

6𝑛𝑢 where 𝑢 = max𝑖,𝑥 𝑐𝑖 (𝑥), the mixing time of the
Glauber dynamics is at most 𝑡mix (𝜖) = 𝑂 (𝑛 ln 𝑛

𝜖 ).
Proof. Let 𝑥 and 𝑦 be two allocation profiles that differ in the

resource of exactly one player 𝑖 , that is, 𝑥−𝑖 = 𝑦−𝑖 and 𝑥𝑖 ≠ 𝑦𝑖 . Let

𝑍𝑥
𝑡 and 𝑍

𝑦
𝑡 be the Markov chains obtained from Glauber dynamics

with initial states 𝑥 and 𝑦, respectively. Moreover, by abuse of

notation, let us use 𝑥 and 𝑦 to denote the current states of the

two Markov chains, respectively. Assuming that player 𝑖′ ∈ [𝑛]
is selected to update its action at the current time, the transition

probability distributions of the chains denoted by 𝜇𝑖
′
and 𝜈𝑖

′
equal

𝜇𝑖
′
𝑜 =

𝑒−𝛽𝑐𝑖′ (𝑜,𝑥−𝑖′ )∑
ℓ∈[𝑘 ] 𝑒−𝛽𝑐𝑖′ (ℓ,𝑥−𝑖′ )

, 𝑜 ∈ [𝑘],

𝜈𝑖
′
𝑜 =

𝑒−𝛽𝑐𝑖′ (𝑜,𝑦−𝑖′ )∑
ℓ∈[𝑘 ] 𝑒−𝛽𝑐𝑖′ (ℓ,𝑦−𝑖′ )

, 𝑜 ∈ [𝑘] .

We couple these chains together by allowing the same player and

the same resource (whenever possible) to be used in both chains

at each time instance. More precisely, if player 𝑖′ = 𝑖 is selected

to update, then in both chains, we update the resource of player

𝑖 to 𝑜 with the probability given in (6). Otherwise, if player 𝑖′ ≠
𝑖 is selected, we update the resource of player 𝑖′ in both chains

according to the optimal coupling between 𝜇𝑖
′
and 𝜈𝑖

′
.
4

For two action profiles 𝑧, 𝑧′ ∈ X, let 𝜌 (𝑧, 𝑧′) denote the number

of positions in which 𝑧 and 𝑧′ differ from each other. According to

the above coupling, when player 𝑖 is selected, the two chains become

identical, i.e., 𝜌 (𝑍𝑥
1
, 𝑍

𝑦

1
) = 0. Thus, 𝜌 (𝑍𝑥

1
, 𝑍

𝑦

1
) might increase from

1 to 2 only if a player 𝑖′ ≠ 𝑖 were selected, and the resource of

that player were updated to two different resources in those chains.

Let 𝑀𝑖′
and 𝑁 𝑖′

be the random variables denoting the updated

resource of player 𝑖′ with corresponding distributions 𝜇𝑖
′
and 𝜈𝑖

′
,

respectively. We have

P{𝜌 (𝑍𝑥
1
, 𝑍

𝑦

1
) = 2} = 1

𝑛

∑︁
𝑖′≠𝑖

P{𝑀𝑖′ ≠ 𝑁 𝑖′ } = 1

𝑛

∑︁
𝑖′≠𝑖

∥𝜇𝑖
′
− 𝜈𝑖

′
∥𝑇𝑉 ,

where the second equality holds because we use optimal coupling

of distributions 𝜇𝑖
′
and 𝜈𝑖

′
to update the resource of player 𝑖′.

Next, we proceed to bound ∥𝜇𝑖′ − 𝜈𝑖
′ ∥𝑇𝑉 . Given action profiles

𝑥 = (𝑥𝑖 , 𝑥−𝑖 ) and 𝑦 = (𝑦𝑖 , 𝑥−𝑖 ), by abuse of notation, let 𝑋𝑥𝑖
and

𝑋 𝑦𝑖
be the set of players in [𝑛] \ {𝑖′} that hold resources 𝑥𝑖 and 𝑦𝑖

in the action profile 𝑥 , respectively. Then, if 𝑥𝑖′ ∉ {𝑥𝑖 , 𝑦𝑖 }, we have

𝑐𝑖′ (𝑥)−𝑐𝑖′ (𝑦)=
∑︁
𝑗

𝑤
𝑦𝑖
𝑗

(
𝑑 ( 𝑗, 𝑋 𝑦𝑖 )−𝑐𝑖′ 𝑗

)++∑︁
𝑗

𝑤
𝑥𝑖
𝑗

(
𝑑 ( 𝑗, 𝑋𝑥𝑖 )−𝑐𝑖′ 𝑗

)+
−
∑︁
𝑗

𝑤
𝑦𝑖
𝑗

(
𝑑 ( 𝑗, 𝑋 𝑦𝑖 + 𝑖)−𝑐𝑖′ 𝑗

)+−∑︁
𝑗

𝑤
𝑥𝑖
𝑗

(
𝑑 ( 𝑗, 𝑋𝑥𝑖 − 𝑖)−𝑐𝑖′ 𝑗

)+
:=Δ.

Otherwise, if 𝑥𝑖′ = 𝑥𝑖 , then

𝑐𝑖′ (𝑥) − 𝑐𝑖′ (𝑦)

=
∑︁
𝑗

𝑤
𝑦𝑖
𝑗

( (
𝑑 ( 𝑗, 𝑋 𝑦𝑖 ) − 𝑐𝑖′ 𝑗

)+ −
(
𝑑 ( 𝑗, 𝑋 𝑦𝑖 + 𝑖) − 𝑐𝑖′ 𝑗

)+)
= Δ + Δ𝑥𝑖 ,

4
Given two random variables 𝑋 and 𝑌 with distributions 𝜋𝑋 and 𝜋𝑌 , the optimal

coupling between them induces a joint probability distribution P over (𝑋,𝑌 ) such
that 𝑃 (𝑋 ≠ 𝑌 ) = ∥𝜋𝑋 − 𝜋𝑌 ∥𝑇𝑉 , where ∥ · ∥𝑇𝑉 denotes the total variation distance.
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whereΔ𝑥𝑖 :=
∑

𝑗 𝑤
𝑥𝑖
𝑗

( (
𝑑 ( 𝑗, 𝑋𝑥𝑖 −𝑖)−𝑐𝑖′ 𝑗

)+− (
𝑑 ( 𝑗, 𝑋𝑥𝑖 )−𝑐𝑖′ 𝑗

)+) ≥ 0.

Similarly, if 𝑥𝑖′ = 𝑦𝑖 , we have

𝑐𝑖′ (𝑥) − 𝑐𝑖′ (𝑦)

=
∑︁
𝑗

𝑤
𝑥𝑖
𝑗

( (
𝑑 ( 𝑗, 𝑋𝑥𝑖 ) − 𝑐𝑖′ 𝑗

)+ −
(
𝑑 ( 𝑗, 𝑋𝑥𝑖 − 𝑖) − 𝑐𝑖′ 𝑗

)+)
= Δ − Δ𝑦𝑖 ,

whereΔ𝑦𝑖 :=
∑

𝑗 𝑤
𝑦𝑖
𝑗

( (
𝑑 ( 𝑗, 𝑋 𝑦𝑖 )−𝑐𝑖′ 𝑗

)+− (𝑑 ( 𝑗, 𝑋 𝑦𝑖 +𝑖)−𝑐𝑖′ 𝑗
)+) ≥ 0.

Now let us define the notations

𝐵1=𝑒
−𝛽𝑐𝑖′ (𝑥𝑖 ,𝑥−𝑖′ ) , 𝐵2=𝑒

−𝛽𝑐𝑖′ (𝑦𝑖 ,𝑥−𝑖′ ) , 𝐵=𝐵1 + 𝐵2,

𝐶1=𝑒
−𝛽 (𝑐𝑖′ (𝑥𝑖 ,𝑥−𝑖′ )−Δ𝑥𝑖

) , 𝐶2=𝑒
−𝛽 (𝑐𝑖′ (𝑦𝑖 ,𝑥−𝑖′ )+Δ𝑦𝑖

) , 𝐶 =𝐶1 +𝐶2,

𝐴=
∑︁

ℓ∉{𝑥𝑖 ,𝑦𝑖 }
𝑒−𝛽𝑐𝑖′ (ℓ,𝑥−𝑖′ ) ,

and note that 𝐵2 ≥ 𝐶2 and 𝐶1 ≥ 𝐵1. Then, the probability distribu-

tion 𝜈𝑖
′
can be written as

𝜈𝑖
′
𝑜 =


exp(−𝛽𝑐𝑖′ (𝑜,𝑥−𝑖′ ) )

𝐴+𝐶 if 𝑜 ∉ {𝑥𝑖 , 𝑦𝑖 },
𝐶1

𝐴+𝐶 if 𝑜 = 𝑥𝑖 ,
𝐶2

𝐴+𝐶 if 𝑜 = 𝑦𝑖 .

Therefore, by definition of the total variation, we have

2∥𝜈𝑖
′
− 𝜇𝑖

′
∥𝑇𝑉 = |𝜈𝑖

′
𝑥𝑖

− 𝜇𝑖
′
𝑥𝑖
| + |𝜈𝑖

′
𝑦𝑖

− 𝜇𝑖
′
𝑦𝑖
| +

∑︁
𝑜∉{𝑥𝑖 ,𝑦𝑖 }

|𝜈𝑖
′
𝑜 − 𝜇𝑖

′
𝑜 |.

(8)

To bound the last term in (8), for any 𝑜 ∉ {𝑥𝑖 , 𝑦𝑖 }, we have∑︁
𝑜∉{𝑥𝑖 ,𝑦𝑖 }

|𝜈𝑖
′
𝑜 − 𝜇𝑖

′
𝑜 | =

∑︁
𝑜∉{𝑥𝑖 ,𝑦𝑖 }

��𝑒−𝛽𝑐𝑖′ (𝑜,𝑥−𝑖′ )
𝐴 +𝐶 − 𝑒−𝛽𝑐𝑖′ (𝑜,𝑥−𝑖′ )

𝐴 + 𝐵

��
=

𝐴|𝐵 −𝐶 |
(𝐴 +𝐶) (𝐴 + 𝐵) .

Similarly, we can compute the first two terms in (8) as

|𝜈𝑖
′
𝑥𝑖

− 𝜇𝑖
′
𝑥𝑖
| = 𝐶1

𝐴 +𝐶 − 𝐵1

𝐴 + 𝐵
,

|𝜈𝑖
′
𝑦𝑖

− 𝜇𝑖
′
𝑦𝑖
| = 𝐵2

𝐴 + 𝐵
− 𝐶2

𝐴 +𝐶 .

Substituting the above three relations into (8), we get

2∥𝜈𝑖
′
− 𝜇𝑖

′
∥𝑇𝑉 =

𝐵2 − 𝐵1

𝐴 + 𝐵
+ 𝐶1 −𝐶2

𝐴 +𝐶 + 𝐴|𝐵 −𝐶 |
(𝐴 +𝐶) (𝐴 + 𝐵) .

Let us define 𝑢 = max𝑖,𝑥 𝑐𝑖 (𝑥) and note that Δ𝑥𝑖 ≤ 𝑢 and Δ𝑦𝑖 ≤ 𝑢.

Then, 𝐴 + 𝐵 ≥ 𝑘𝑒−𝛽𝑢 and 𝐴 +𝐶 ≥ 𝑘𝑒−2𝛽𝑢 . Using the mean-value

theorem for 𝑓 (𝑟 ) = 𝑒−𝛽𝑟 , we have the following relations:

𝐵2 − 𝐵1 ≤ 𝛽
��𝑐𝑖′ (𝑥𝑖 , 𝑥−𝑖′ ) − 𝑐𝑖′ (𝑦𝑖 , 𝑥−𝑖′ )

��𝑒0 ≤ 𝛽𝑢,

𝐶1 −𝐶2 ≤ 𝛽
��𝑐𝑖′ (𝑥𝑖 , 𝑥−𝑖′ ) − Δ𝑥𝑖 − 𝑐𝑖′ (𝑦𝑖 , 𝑥−𝑖′ ) − Δ𝑦𝑖

��𝑒𝛽𝑢 ≤ 3𝛽𝑢𝑒𝛽𝑢 ,

|𝐵 −𝐶 | ≤ |𝐵1 −𝐶1 | + |𝐵2 −𝐶2 | ≤ 2𝛽𝑢𝑒𝛽𝑢 .

Therefore, for any 𝑖′ we have

2∥𝜈𝑖
′
− 𝜇𝑖

′
∥𝑇𝑉 ≤ 𝛽𝑢

𝑘
𝑒𝛽𝑢 + 3𝛽𝑢

𝑘
𝑒3𝛽𝑢 + 2𝛽𝑢

𝑘
𝑒2𝛽𝑢 ≤ 6𝛽𝑢

𝑘
𝑒3𝛽𝑢

⇒ ∥𝜈𝑖
′
− 𝜇𝑖

′
∥𝑇𝑉 ≤ 3𝛽𝑢

𝑘
𝑒3𝛽𝑢 . (9)

Next, we bound the mixing time of the Glauber dynamics. For one

step of the chain, we have

E[𝜌 (𝑍𝑥
1
, 𝑍

𝑦

1
)] = 1 − 1

𝑛
+ 1

𝑛

∑︁
𝑖′≠𝑖

∥𝜇𝑖
′
− 𝜈𝑖

′
∥𝑇𝑉 . (10)

Substituting (9) into (10) and using the assumption 𝛽 ≤ 𝑘
6𝑛𝑢 , we get

E[𝜌 (𝑍𝑥
1
, 𝑍

𝑦

1
)] ≤ 1 − 1

𝑛
+ 𝑛 − 1

𝑛𝑘
3𝛽𝑢𝑒3𝛽𝑢

≤ 1 − 1

𝑛
+ 1

𝑘
(3𝛽𝑢)𝑒3𝛽𝑢

≤ 1 − 1

𝑛
+ 1

2𝑛
𝑒

𝑘
4𝑛 ≤ 1 − 1

7𝑛
.

Starting from any two arbitrary initial states 𝑥 and 𝑦 that dif-

fer in 𝑑 positions, we can reach from 𝑥 to 𝑦 using a sequence

𝑥0 = 𝑥, 𝑥1, . . . , 𝑥𝑑 = 𝑦 such that every two consecutive alloca-

tions differ in exactly one position. As 𝜌 (·, ·) is metric over the

space of allocations, using triangle inequality, we can write

E[𝜌 (𝑍𝑥
1
, 𝑍

𝑦

1
)] ≤

𝑑∑︁
𝑘=1

E[𝜌 (𝑍𝑥𝑘−1
1

, 𝑍𝑥𝑘

1
)]

≤ (1 − 1

7𝑛
)𝑑 = (1 − 1

7𝑛
)𝜌 (𝑥,𝑦) .

Moreover, using the Markov property of the chains, we can write

E[𝜌 (𝑍𝑥
𝑡 , 𝑍

𝑦
𝑡 )] = E

[
E[𝜌 (𝑍𝑥

𝑡 , 𝑍
𝑦
𝑡 ) |𝑍

𝑥
𝑡−1, 𝑍

𝑦

𝑡−1]
]

= E[𝜌 (𝑍𝑍𝑥
𝑡−1

1
, 𝑍

𝑍
𝑦

𝑡−1
1

)]

≤ (1 − 1

7𝑛
)E[𝜌 (𝑍𝑥

𝑡−1, 𝑍
𝑦

𝑡−1)] .

By using the above inequality recursively, we obtain

E[𝜌 (𝑍𝑥
𝑡 , 𝑍

𝑦
𝑡 )] ≤ (1 − 1

7𝑛
)𝑡 𝜌 (𝑍𝑥

0
, 𝑍

𝑦

0
) = (1 − 1

7𝑛
)𝑡 𝜌 (𝑥,𝑦) ≤ 𝑛𝑒−

𝑡
7𝑛 .

Finally, using Markov’s inequality, we can write

P(𝑍𝑥
𝑡 ≠ 𝑍

𝑦
𝑡 ) ≤ P(𝜌 (𝑍

𝑥
𝑡 , 𝑍

𝑦
𝑡 ) ≥ 1) ≤ E[𝜌 (𝑍𝑥

𝑡 , 𝑍
𝑦
𝑡 )] ≤ 𝑛𝑒−

𝑡
7𝑛 .

The above relation, in view of Lemma .4, shows that the mixing

time of the Gluaber dynamics is at most 𝑡mix (𝜖) = 𝑂 (𝑛 ln 𝑛
𝜖 ). □

As we mentioned earlier, there is a trade-off between the mixing

time of the Glauber dynamics and the concentration of the induced

stationary distribution around the global optimum solution. For

the Glauber dynamics to concentrate better around the optimal

solution of the data placement problem, one needs a higher noise

parameter 𝛽 . However, choosing 𝛽 too large can result in a slow

mixing time. Therefore, Theorem 3.2 provides a threshold for this

computation/optimality trade-off by characterizing a range of noise

parameters with a fast mixing time guarantee, while for obtaining

better suboptimal solutions, one must pay the price with higher

computation time. Note that such a computation/optimality trade-

off is inevitable because by Proposition 1.2, finding a suboptimal

solution within a factor better than 𝑂 (log𝑛) will likely require

supper-polynomial running time. However, in practice, the costs

of players are mainly determined by their nearby neighbors. Thus,

one can leverage the locality of players’ cost functions to establish a

fast mixing time for larger values of 𝛽 . For instance, if each player’s

action can affect the cost of at most 𝑑 nearby players, then the

bound for 𝛽 in Theorem 3.2 can be improved to 𝛽 = 𝑂 ( 1𝑢 ln( 𝑘
𝑑
)).
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4 AUCTION-BASED DISTRIBUTED METHOD
FOR THE DATA PLACEMENT PROBLEM

In the previous section, we developed a distributed game-theoretic

framework that allows players to update their resources selfishly

subject to some noise parameter. In that formulation, players are the

agents, and the actions are the choices of resources. An alternative

perspective is to view the resources as players who bid to buy

the cache spaces of the agents (viewed as items). That leads us

to the following auction-based distributed algorithm for the data

placement problem.

4.1 An Auction-Based Distributed Algorithm
Consider an auction with 𝑘 players (resources) and𝑛 items.We view

the unit cache space of agent 𝑖 as an item that will be sold to players.

We assume that each player ℓ ∈ [𝑘] represents a set of 𝑛 clients

{( 𝑗, ℓ) : 𝑗 ∈ [𝑛]} and charges a 𝛽ℓ
𝑗
≥ 0 fee per unit demand to client

( 𝑗, ℓ). This charge is for representing client ( 𝑗, ℓ) in the auction and

for connecting that client to resource ℓ . Moreover, we assume that

the items are sold separately using a first-price auction in which

players submit their bids for different items. An item is sold to the

player with the highest bid (ties are broken arbitrarily), and the

winner must pay an amount equal to the highest bid. In addition,

we assume that the entrance fee for player ℓ to participate in the

auction for item 𝑖 is 𝑓 ℓ
𝑖
. Next, we specify the bidding strategies for

the players.

Let us consider player ℓ , who charges 𝛽ℓ
𝑗
per unit demand to its

client ( 𝑗, ℓ). From that amount, player ℓ subtracts 𝑐𝑖 𝑗 to account

for the cost of connecting ( 𝑗, ℓ) to agent 𝑖 , and therefore includes

only a (𝛽ℓ
𝑗
− 𝑐𝑖 𝑗 )+ portion of that amount toward bidding for item 𝑖 .

Therefore, summing over the total demand of all the clients, player

ℓ bids
( ∑

𝑗 𝑤
ℓ
𝑗
(𝛽ℓ

𝑗
− 𝑐𝑖 𝑗 )+ − 𝑓 ℓ

𝑖

)+
toward item 𝑖 , where the term 𝑓𝑖

is to account for the entrance fee that player ℓ has to pay to be able

to bid for item 𝑖 . Thus, if player ℓ wins a bundle of items 𝑋 ℓ ⊆ [𝑛]
in the auction, ℓ’s utility equals the amount that ℓ collects from its

clients minus the amount that ℓ has to pay to the auctioneer, i.e.,

𝑢ℓ (𝛽ℓ , 𝑋 ℓ ) =
∑︁
𝑗

𝑤 ℓ
𝑗 𝛽

ℓ
𝑗 −

∑︁
𝑖∈𝑋 ℓ

(∑︁
𝑗

𝑤 ℓ
𝑗 (𝛽

ℓ
𝑗 − 𝑐𝑖 𝑗 )+ − 𝑓 ℓ𝑖

)+
=
∑︁
𝑗

𝑤 ℓ
𝑗 𝛽

ℓ
𝑗 −

∑︁
𝑖∈𝑋 ℓ

(∑︁
𝑗

𝑤 ℓ
𝑗 (𝛽

ℓ
𝑗 − 𝑐𝑖 𝑗 )+ − 𝑓 ℓ𝑖

)
, (11)

where the second equality holds by individual rationality. Other-

wise, if

∑
𝑗 𝑤

ℓ
𝑗
(𝛽ℓ

𝑗
− 𝑐𝑖 𝑗 )+ − 𝑓 ℓ

𝑖
< 0 for some 𝑖 , there is no incentive

for player ℓ to enter the auction for item 𝑖 . Therefore, player ℓ’s

goal is to determine a charging strategy 𝛽ℓ
𝑗
to maximize its utility.

4.2 Performance Guarantee of the Solution
To analyze the performance guarantee of the allocation profile

obtained from the above auction, let us again consider the dual

program corresponding to the LP relaxation of (1) given by

max

∑︁
𝑗,ℓ

𝑤 ℓ
𝑗 𝛽

ℓ
𝑗 −

∑︁
𝑖

𝛼𝑖∑︁
𝑗

𝑤 ℓ
𝑗

(
𝛽ℓ𝑗 − 𝑐𝑖 𝑗

)+ − 𝑓 ℓ𝑖 ≤ 𝛼𝑖 ∀𝑖, ℓ,

𝛽ℓ𝑗 , 𝛼𝑖 ≥ 0, ∀𝑖, 𝑗, ℓ . (12)

To satisfy all the constraints in (12) while maximizing the dual

objective function, we must set 𝛼𝑖 = maxℓ

( ∑
𝑗 𝑤

ℓ
𝑗

(
𝛽ℓ
𝑗
−𝑐𝑖 𝑗

)+− 𝑓 ℓ
𝑖

)+
,

which gives us the following compact form for the dual program:

max

𝛽ℓ
𝑗
≥0

{∑︁
𝑗,ℓ

𝑤 ℓ
𝑗 𝛽

ℓ
𝑗 −

∑︁
𝑖

max

ℓ

(∑︁
𝑗

𝑤 ℓ
𝑗

(
𝛽ℓ𝑗 − 𝑐𝑖 𝑗

)+ − 𝑓 ℓ𝑖
)+}

. (13)

Let us use variables 𝑦ℓ
𝑖
to denote the inner maximization in (13) as

5

max

𝛽ℓ
𝑗
≥0

min∑
ℓ 𝑦

ℓ ≤1
𝑦ℓ ≥0∀ℓ

{∑︁
𝑗,ℓ

𝑤 ℓ
𝑗 𝛽

ℓ
𝑗 −

∑︁
𝑖

∑︁
ℓ

𝑦ℓ𝑖
(∑︁

𝑗

𝑤 ℓ
𝑗

(
𝛽ℓ𝑗 − 𝑐𝑖 𝑗

)+ − 𝑓 ℓ𝑖
)}
.

(14)

Now, for every resource type ℓ , let us define a utility function as

𝑢ℓ (𝛽ℓ , 𝑦ℓ ) =
∑︁
𝑗

𝑤 ℓ
𝑗 𝛽

ℓ
𝑗 −

∑︁
𝑖

𝑦ℓ𝑖
(∑︁

𝑗

𝑤 ℓ
𝑗 (𝛽

ℓ
𝑗 − 𝑐𝑖 𝑗 )+ − 𝑓 ℓ𝑖

)
,

which is the same as the utility function (11) defined for player ℓ if

we take 𝑋 ℓ = {𝑖 : 𝑦ℓ
𝑖
= 1}. Then, the dual program (14) becomes

max

𝛽ℓ
𝑗
≥0

min∑
ℓ 𝑦

ℓ ≤1
𝑦ℓ ≥0∀ℓ

∑︁
ℓ

𝑢ℓ (𝛽ℓ , 𝑦ℓ ) = min∑
ℓ 𝑦

ℓ ≤1
𝑦ℓ ≥0∀ℓ

max

𝛽ℓ
𝑗
≥0

∑︁
ℓ

𝑢ℓ (𝛽ℓ , 𝑦ℓ ), (15)

where the equality holds because each 𝑢ℓ (𝛽ℓ , 𝑦ℓ ) is concave in 𝛽ℓ

and linear (convex) in 𝑦ℓ . In particular, we note that the optimal

solution to 𝑦 is always integral because 𝑢ℓ (𝛽ℓ , 𝑦ℓ ) is linear with
respect to 𝑦ℓ and the constraints {∑ℓ 𝑦

ℓ ≤ 1, 𝑦ℓ ≥ 0∀ℓ} define an
integral polytope.

Using the above derivations, it should be clear that if (𝛽,𝑦) is an
optimal dual solution to (15), then player ℓ’s strategy to maximize

its utility is to charge𝑤 ℓ
𝑗
𝛽ℓ
𝑗
to client ( 𝑗, ℓ), and ℓ receives item 𝑖 if

𝑦ℓ
𝑖
= 1, in which case ℓ has to pay 𝛼𝑖 =

∑
𝑗 𝑤

ℓ
𝑗
(𝛽ℓ

𝑗
−𝑐𝑖 𝑗 )+− 𝑓 ℓ

𝑖
, which

is the maximum bid among all the bids for item 𝑖 . Therefore, the

allocation profile obtained from the auction when all the players

selfishly maximize their utilities is the same as the optimal dual

solution to the min-max problem (15).

Theorem 4.1. Consider the data placement problem with zero
placement costs 𝑓 ℓ

𝑖
= 0,∀𝑖, ℓ , and let (𝛼, 𝛽) be the optimal solution to

the dual program (4). Then, the resource allocation profile obtained
from the auction is an ( 1

1−𝛾 )-approximation of the data placement
problem, where 𝛾 = ∥𝛼 ∥1/∥𝛽 ∥1 ∈ [0, 1).

Proof. We prove the theorem through the following four steps:

I) Primal feasibility and integrality: By abuse of notation, let

(𝛽,𝑦) be the minimal optimal solution to the min-max dual problem

(15) (i.e., a solutionwith the least number of nonzero entries), and let

𝑋 ℓ = {𝑖 : 𝑦ℓ
𝑖
= 1}. Clearly, (𝑋 ℓ , ℓ ∈ [𝑘]) partitions the set of agents

[𝑛]. We complement this solution with an integral feasible solution

for the primal program by setting 𝑥 ℓ
𝑖 𝑗

= 1 if 𝑖 = argmin𝑖′∈𝑋 ℓ 𝑐𝑖′ 𝑗

(ties are broken arbitrarily), i.e., we connect agent 𝑗 to the closest

agent in 𝑋 ℓ
to get access to resource ℓ . Then, (𝑥,𝑦) defined in this

way forms a feasible integral solution to the primal program (1).

II) Dual feasibility: Let 𝛽 be the optimal solution to (15) and define

𝛼𝑖 = maxℓ

( ∑
𝑗 𝑤

ℓ
𝑗
(𝛽ℓ

𝑗
−𝑐𝑖 𝑗 )+ − 𝑓 ℓ

𝑖

)+
and 𝑢ℓ

𝑖 𝑗
= 𝑤 ℓ

𝑗

(
𝛽ℓ
𝑗
−𝑐𝑖 𝑗

)+
. Then,

5
In fact, 𝑦ℓ

𝑖
can be thought of as dual variables corresponding to the first set of

constraints in the convex program (12), which also coincide with the primal variables

𝑦ℓ
𝑖
in the original linear program (1).
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from the above arguments, ({𝛼𝑖 }, {𝑤 ℓ
𝑗
𝛽ℓ
𝑗
}, {𝑢ℓ

𝑖 𝑗
}) forms an optimal

solution to the dual program (4).

III) Complementary slackness conditions: Based on Proposi-

tion 1.2, we cannot expect all the complementary slackness condi-

tions for the above primal-dual solutions to hold.
6
However, as we

show, the proposed solutions satisfy most of these conditions and

still constitute a good suboptimal solution.

1) Since 𝑦 is a minimal optimal integral solution to (14), 𝑦ℓ
𝑖
= 1

implies that

𝛼𝑖 = max

ℓ ′

(∑︁
𝑗

𝑤 ℓ ′
𝑗 (𝛽

ℓ ′
𝑗 − 𝑐𝑖 𝑗 )+ − 𝑓 ℓ

′
𝑖

)+
=
(∑︁

𝑗

𝑤 ℓ
𝑗 (𝛽

ℓ
𝑗 − 𝑐𝑖 𝑗 )+ − 𝑓 ℓ𝑖

)+
=
∑︁
𝑗

𝑤 ℓ
𝑗 (𝛽

ℓ
𝑗 − 𝑐𝑖 𝑗 )+ − 𝑓 ℓ𝑖 ,

where the last equality holds because if

∑
𝑗 𝑤

ℓ
𝑗
(𝛽ℓ

𝑗
− 𝑐𝑖 𝑗 )+ −

𝑓 ℓ
𝑖
< 0 we would have 𝑦ℓ

𝑖
= 0.

2) Since the primal solution (𝑋 ℓ , ℓ ∈ [𝑘]) partitions [𝑛], and
using the definition of 𝑥 that assigns every agent 𝑗 to exactly

one agent in each 𝑋 ℓ
, the primal constraints

∑
ℓ 𝑦

ℓ
𝑖
≤ 1 and∑

𝑖 𝑥
ℓ
𝑖 𝑗

≥ 1 are always satisfied by equality. Therefore, the

complementary slackness conditions always hold for these

two types of primal constraints.

3) As we showed before, for the optimal dual solution we have

𝑢ℓ
𝑖 𝑗

= 𝑤 ℓ
𝑗

(
𝛽ℓ
𝑗
− 𝑐𝑖 𝑗

)+∀𝑖, 𝑗, ℓ . Therefore, to show complemen-

tary slackness for the first set of dual constraints in (4), we

only need to show that if 𝑥 ℓ
𝑖′ 𝑗 ′ = 1 for some 𝑖′, 𝑗 ′, ℓ , then(

𝛽ℓ
𝑗 ′ − 𝑐𝑖′ 𝑗 ′

)+
= 𝛽ℓ

𝑗 ′ − 𝑐𝑖′ 𝑗 ′ , or, equivalently, 𝛽
ℓ
𝑗 ′ ≥ 𝑐𝑖′ 𝑗 ′ . This

is also true because if 𝑥 ℓ
𝑖′ 𝑗 ′ = 1, that means 𝑦ℓ

𝑖′ = 1 (and thus

𝑖′ ∈ 𝑋 ℓ
) and 𝑐𝑖′ 𝑗 ′ ≤ 𝑐𝑖 𝑗 ′ ,∀𝑖 ∈ 𝑋 ℓ

. Moreover, using case (1)

we have 𝛼𝑖 =
∑

𝑗 𝑤
ℓ
𝑗
(𝛽ℓ

𝑗
− 𝑐𝑖 𝑗 )+ − 𝑓 ℓ

𝑖
≥ 0,∀𝑖 ∈ 𝑋 ℓ

. Therefore,

𝑢ℓ (𝛽ℓ , 𝑋 ℓ ) =
∑︁
𝑗

𝑤 ℓ
𝑗 𝛽

ℓ
𝑗 −

∑︁
𝑖∈𝑋 ℓ

(∑︁
𝑗

𝑤 ℓ
𝑗 (𝛽

ℓ
𝑗 − 𝑐𝑖 𝑗 )+ − 𝑓 ℓ𝑖

)
=

∑︁
𝑖∈𝑋 ℓ

𝑓 ℓ𝑖 +
∑︁
𝑗

𝑤 ℓ
𝑗 𝛽

ℓ
𝑗 −

∑︁
𝑗

∑︁
𝑖∈𝑋 ℓ

𝑤 ℓ
𝑗 (𝛽

ℓ
𝑗 − 𝑐𝑖 𝑗 )+

=
∑︁
𝑖∈𝑋 ℓ

𝑓 ℓ𝑖 +
∑︁
𝑗≠𝑗 ′

(
𝑤 ℓ
𝑗 𝛽

ℓ
𝑗 −

∑︁
𝑖∈𝑋 ℓ

𝑤 ℓ
𝑗 (𝛽

ℓ
𝑗 − 𝑐𝑖 𝑗 )+

)
+
(
𝑤 ℓ
𝑗 ′𝛽

ℓ
𝑗 ′ −

∑︁
𝑖∈𝑋 ℓ

𝑤 ℓ
𝑗 ′ (𝛽

ℓ
𝑗 ′ − 𝑐𝑖 𝑗 ′ )+

)
.

Suppose, by contrary, 𝛽ℓ
𝑗 ′ < 𝑐𝑖′ 𝑗 ′ . Then 𝛽ℓ

𝑗 ′ < 𝑐𝑖 𝑗 ′∀𝑖 ∈ 𝑋 ℓ

and we have

∑
𝑖∈𝑋 ℓ 𝑤 ℓ

𝑗 ′ (𝛽
ℓ
𝑗 ′ − 𝑐𝑖 𝑗 ′ )+ = 0. Therefore, if 𝛽ℓ

𝑗 ′

is slightly increased, the last term in the above expression

strictly increases.
7
This contradicts the fact that 𝛽ℓ corre-

sponds to the optimal dual solution that maximizes 𝑢ℓ (·, 𝑋 ℓ ).
IV) Bounding the performance: Using the properties of the

primal-dual solutions that we established above, the only set of

6
Otherwise, the proposed primal solution will be an optimal integral solution to an

NP-hard problem.

7
Note that since the dual function is given by the sum of utilities defined over separate

variables 𝛽ℓ , ℓ ∈ [𝑘 ], such an increase does not affect other terms in the dual objective.

constraints that may violate the complementary slackness condi-

tions are the primal constraints 𝑥 ℓ
𝑖 𝑗

≤ 𝑦ℓ
𝑖
with the corresponding

dual variables 𝑢ℓ
𝑖 𝑗

= 𝑤 ℓ
𝑗

(
𝛽ℓ
𝑗
− 𝑐𝑖 𝑗

)+
. Therefore, using Lemma .5

with the block of constraints 𝐴1𝑥 ≥ 𝑏1 representing constraints

𝑦ℓ
𝑖
− 𝑥 ℓ

𝑖 𝑗
≥ 0 and corresponding dual variables 𝑢∗

1
= (𝑢ℓ

𝑖 𝑗
), the cost

of the generated primal solution denoted by Cost(𝑋 ) equals

Cost(𝑋 ) = OPT +
∑︁
𝑖, 𝑗,ℓ

𝑢ℓ𝑖 𝑗 (𝑦
ℓ
𝑖 − 𝑥 ℓ𝑖 𝑗 ) ≤ OPT +

∑︁
𝑖, 𝑗,ℓ

𝑢ℓ𝑖 𝑗 (1 − 0)

= OPT +
∑︁
ℓ

∑︁
𝑖∈𝑋 ℓ

∑︁
𝑗

𝑤 ℓ
𝑗

(
𝛽ℓ𝑗 − 𝑐𝑖 𝑗

)+
= OPT +

∑︁
ℓ

∑︁
𝑖∈𝑋 ℓ

(𝛼𝑖 + 𝑓 ℓ𝑖 )

= OPT +
∑︁
𝑖

𝛼𝑖 , (16)

where the third equality holds through use of case 1 of the comple-

mentary slackness conditions, and the last equality holds by the

assumption 𝑓 ℓ
𝑖
= 0,∀𝑖, ℓ . Dividing both sides by OPT =

∑
𝑗,ℓ 𝛽

ℓ
𝑗
−∑

𝑖 𝛼𝑖 ,
8
and using the definition of 𝛾 , completes the proof. □

Remark 2. We note that the only place that we assumed 𝑓 ℓ
𝑖
= 0 is

in the last equality of (16). Otherwise, all the remaining derivations
continue to hold for general 𝑓 ℓ

𝑖
≥ 0. In fact, using the same ideas

as in Proposition 1.2, one can show that even under the assumption
𝑓 ℓ
𝑖
= 0, the non-metric data placement problem remains NP-hard and

inapproximable up to an 𝑂 (log𝑛) factor.

Remark 3. In fact, the optimal dual objective value denoted by
OPT equals the social welfare resulting from the auction, i.e., the sum
of the players’ utilities SW :=

∑
ℓ 𝑢ℓ =

∑
𝑗,ℓ 𝑤

ℓ
𝑗
𝛽ℓ
𝑗
− ∑

𝑖 𝛼𝑖 , while
the revenue derived by the auctioneer equals to the sum of all the
payments Rev :=

∑
𝑖 𝛼𝑖 . Therefore, another way of interpreting the

result of Theorem (4.1) is to say that the approximation guarantee of
the allocation profile obtained from the auction is 1 + Rev

SW
.

5 CONCLUSIONS
We studied the general non-metric data placement problem from

a multiagent game-theoretic perspective and devised distributed

computation algorithms for obtaining or approximating its global

optimal solutions. The motivation behind this work is that in many

real-world content delivery applications, such as web caches, P2P

networks, or ad hoc storage systems, the servers are independent or

selfish entities that only want tomaximize their own payoffs, yet the

goal is to achieve good global performance in terms of content deliv-

ery and resource availability. We showed that although the problem

is hard to approximate within a logarithmic factor, some natural

Glauber dynamics by the servers/agents can collectively result in

good suboptimal allocation profiles. Moreover, the achieved subop-

timal solutions can continuously get closer to the global optimum

solution of the data placement problem at a higher computational

time. Finally, we provided an auction-based distributed algorithm

that can approximate the global optimum solution with a theo-

retical performance guarantee and can be easily implemented in

distributed content delivery systems.

8
Here, we are using the original definition of dual variables 𝛽ℓ

𝑗
given in (4) rather that

their scaled version 𝑤ℓ
𝑗
𝛽ℓ
𝑗
.
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APPENDIX I
Proposition .1. It is NP-hard to approximate the non-metric data

placement problem up to a factor better than 𝑂 (ln𝑛).

Proof. We show that the non-metric uncapacitated facility lo-

cation problem (UFLP) can be formulated as a special instance of

the non-metric data placement problem. On the other hand, it is

known that the non-metric UFLP with 𝑛 clients is at least as hard

as the set cover problem, which is hard to approximate within an

𝑂 (ln𝑛) factor [17]. Therefore, the same inapproximability result

must also hold for the non-metric data placement problem.

Consider an arbitrary instance of the non-metric UFLP with the

same set [𝑛] of clients and facilities, non-metric access costs {𝑐𝑖 𝑗 :
𝑖, 𝑗 ∈ [𝑛]}, and facility installment costs {𝑓𝑖 , 𝑖 ∈ [𝑛]}. The goal is to
open a subset of facilities and connect each client to its nearest open

facility to minimize the sum of the cost of opening facilities and the

cost of assigning clients to opened facilities. This problem can be

formulated as an instance of the data placement problem with a set

[𝑛] of agents, non-metric access costs {𝑐𝑖 𝑗 : 𝑖, 𝑗 ∈ [𝑛]}, and 𝑘 = 2

resources. For the first resource we set𝑤1

𝑗
= 1, 𝑓 1

𝑖
= 𝑓𝑖 ,∀𝑖, 𝑗 ∈ [𝑛].

For the second (dummy) resource we set𝑤2

𝑗
= 0, 𝑓 2

𝑖
= 0,∀𝑖, 𝑗 ∈ [𝑛].

In other words, the agents that receive resource ℓ = 1 correspond to

the set of open facilities in the UFLP, while the agents that receive

the dummy resource ℓ = 2 correspond to the set of closed facilities.

By the construction, it should be clear that any optimal solution

to the non-metric UFLP corresponds to an optimal solution in the

non-metric data placement problem with the same objective cost,

and vice versa. □

Lemma .2. The stationary distribution of theMarkov chain induced
by the Glauber dynamics is given by 𝜋 : X → [0, 1], where

𝜋 (𝑥) = 𝑒−𝛽Φ(𝑥 )∑
𝑧∈X 𝑒−𝛽Φ(𝑧 )

. (17)

Proof. We first note that any transition of the Markov chain is

between two states that differ in the resource of at most one player.

We show that the distribution (17) satisfies the detailed-balanced
conditions [21], and hence must be a stationary distribution for

the induced Markov chain. Let us consider two allocation profiles

𝑥 and 𝑦 that differ in the resource of at most one player 𝑖 , that is,

𝑥−𝑖 = 𝑦−𝑖 . Then, we have

𝜋 (𝑥)𝑃𝑥𝑦 = 𝜋 (𝑥)
1

𝑛 𝑒
−𝛽𝑐𝑖 (𝑦𝑖 ,𝑥−𝑖 )∑

ℓ∈[𝑘 ] 𝑒−𝛽𝑐𝑖 (ℓ,𝑥−𝑖 )

= 𝜋 (𝑥)
1

𝑛 𝑒
−𝛽 (𝑐𝑖 (𝑦𝑖 ,𝑥−𝑖 )−𝑐𝑖 (𝑥 ) )∑

ℓ∈[𝑘 ] 𝑒−𝛽 (𝑐𝑖 (ℓ,𝑥−𝑖 )−𝑐𝑖 (𝑥 ) )

= 𝜋 (𝑥)
1

𝑛 𝑒
−𝛽 (Φ(𝑦𝑖 ,𝑥−𝑖 )−Φ(𝑥 ) )∑

ℓ∈[𝑘 ] 𝑒−𝛽 (Φ(ℓ,𝑥−𝑖 )−Φ(𝑥 ) )

=
1

𝑛

( 𝑒−𝛽Φ(𝑥 )∑
𝑧∈X 𝑒−𝛽Φ(𝑧 )

) ( 𝑒−𝛽Φ(𝑦)∑
ℓ∈[𝑘 ] 𝑒−𝛽Φ(ℓ,𝑥−𝑖 )

)
.
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Similarly, one can show that

𝜋 (𝑦)𝑃𝑦𝑥 =

1

𝑛 𝑒
−𝛽Φ(𝑦)∑

𝑧∈X 𝑒−𝛽Φ(𝑧 )
𝑒−𝛽𝑐𝑖 (𝑥𝑖 ,𝑥−𝑖 )∑

ℓ∈[𝑘 ] 𝑒−𝛽𝑐𝑖 (ℓ,𝑥−𝑖 )

=
1

𝑛

( 𝑒−𝛽Φ(𝑥 )∑
𝑧∈X 𝑒−𝛽Φ(𝑧 )

) ( 𝑒−𝛽Φ(𝑦)∑
ℓ∈[𝑘 ] 𝑒−𝛽Φ(ℓ,𝑥−𝑖 )

)
.

Comparing the above two relations shows that 𝜋 (𝑥)𝑃𝑥𝑦 = 𝜋 (𝑦)𝑃𝑦𝑥 ,
which completes the proof. □

Theorem .3. Let 𝑥 be any pure NE of the potential game G and
𝑥𝑜 be the optimal solution to the data placement problem. Then,

Φ(𝑥) ≤
Φ(𝑥𝑜 ) +∑

𝑗 Φ(𝑥 \ 𝑗)
𝑛 + 1

,

where Φ(𝑥 \ 𝑗) denotes the value of the potential function when the
cache content of player 𝑗 is evacuated.

Proof. Let us use 𝑥 = (𝑥𝑖 , 𝑥−𝑖 ) to denote a pure NE of the

potential game G. Then, for any player 𝑖 and any action 𝑥 ′
𝑖
, if we

let 𝑥 ′ = (𝑥 ′
𝑖
, 𝑥−𝑖 ), we must have 𝑐𝑖 (𝑥) ≤ 𝑐𝑖 (𝑥 ′), which implies∑︁

𝑗

𝑤
𝑥𝑖
𝑗

(
𝑑 ( 𝑗, 𝑋𝑥𝑖 ) − 𝑐𝑖 𝑗

)+ +
∑︁
𝑗

𝑤
𝑥 ′
𝑖

𝑗

(
𝑑 ( 𝑗, 𝑋𝑥 ′

𝑖 ) − 𝑐𝑖 𝑗
)+ + 𝑓

𝑥𝑖
𝑖

≤
∑︁
𝑗

𝑤
𝑥𝑖
𝑗

(
𝑑 ( 𝑗, 𝑋𝑥𝑖 − 𝑖) − 𝑐𝑖 𝑗

)++∑︁
𝑗

𝑤
𝑥 ′
𝑖

𝑗

(
𝑑 ( 𝑗, 𝑋𝑥 ′

𝑖 + 𝑖) − 𝑐𝑖 𝑗
)++ 𝑓 𝑥 ′

𝑖

𝑖
.

Since 𝑖 ∈ 𝑋𝑥𝑖
and 𝑖 ∈ 𝑋𝑥 ′

𝑖 + 𝑖 , for any 𝑖 and 𝑥 ′
𝑖
, we have∑︁

𝑗

𝑤
𝑥 ′
𝑖

𝑗

(
𝑑 ( 𝑗, 𝑋𝑥 ′

𝑖 ) − 𝑐𝑖 𝑗
)+− 𝑓 𝑥 ′

𝑖

𝑖
≤
∑︁
𝑗

𝑤
𝑥𝑖
𝑗

(
𝑑 ( 𝑗, 𝑋𝑥𝑖 − 𝑖) − 𝑐𝑖 𝑗

)+− 𝑓 𝑥𝑖
𝑖

.

That means that if we define

𝛽ℓ𝑗 = 𝑑 ( 𝑗, 𝑋 ℓ ) ≥ 0,

𝛼𝑖 =
∑︁
𝑗

𝑤
𝑥𝑖
𝑗

(
𝑑 ( 𝑗, 𝑋𝑥𝑖 − 𝑖) − 𝑐𝑖 𝑗

)+ − 𝑓
𝑥𝑖
𝑖
,

then (𝛼𝑖 , 𝛽ℓ𝑗 ) forms a feasible dual solution to the dual program

(5) whose objective value by weak duality is less than the optimal

fractional solution to the LP relaxation of (1). Therefore, if the

optimal solution of the data placement problem is denoted by 𝑥𝑜

with minimum objective cost Φ(𝑥𝑜 ), we have

Φ(𝑥𝑜 ) ≥
∑︁
𝑗,ℓ

𝑤 ℓ
𝑗 𝛽

ℓ
𝑗 −

∑︁
𝑖

𝛼𝑖

=
∑︁
𝑗,ℓ

𝑤 ℓ
𝑗𝑑 ( 𝑗, 𝑋

ℓ ) +
∑︁
𝑖

𝑓
𝑥𝑖
𝑖

−
∑︁
𝑖

∑︁
𝑗

𝑤
𝑥𝑖
𝑗

(
𝑑 ( 𝑗, 𝑋𝑥𝑖 − 𝑖) − 𝑐𝑖 𝑗

)+ −
∑︁
𝑖

𝑓
𝑥𝑖
𝑖

= Φ(𝑥) −
∑︁
𝑖

∑︁
𝑗

𝑤
𝑥𝑖
𝑗

(
𝑑 ( 𝑗, 𝑋𝑥𝑖 − 𝑖) − 𝑐𝑖 𝑗

)+
.

As a result, the objective value of the solution obtained at NE 𝑥 is

at most

Φ(𝑥) ≤ Φ(𝑥𝑜 ) +
∑︁
𝑖

∑︁
𝑗

𝑤
𝑥𝑖
𝑗

(
𝑑 ( 𝑗, 𝑋𝑥𝑖 − 𝑖) − 𝑐𝑖 𝑗

)+
= Φ(𝑥𝑜 ) +

∑︁
ℓ

∑︁
𝑖∈𝑋 ℓ

∑︁
𝑗

𝑤 ℓ
𝑗

(
𝑑 ( 𝑗, 𝑋 ℓ − 𝑖) − 𝑐𝑖 𝑗

)+
= Φ(𝑥𝑜 ) +

∑︁
ℓ

∑︁
𝑗

𝑤 ℓ
𝑗

( ∑︁
𝑖∈𝑋 ℓ

(
𝑑 ( 𝑗, 𝑋 ℓ − 𝑖) − 𝑐𝑖 𝑗

)+)
= Φ(𝑥𝑜 ) +

∑︁
ℓ

∑︁
𝑗

𝑤 ℓ
𝑗

(
𝑑 ( 𝑗, 𝑋 ℓ − 𝑖 𝑗 ) − 𝑑 ( 𝑗, 𝑋 ℓ )

)
,

where 𝑖 𝑗 = argmin𝑘∈𝑋 ℓ 𝑐 𝑗𝑘 , and the last equality holds because

for any 𝑖 ∈ 𝑋 ℓ − 𝑖 𝑗 , we have 𝑑 ( 𝑗, 𝑋 ℓ − 𝑖) = 𝑐 𝑗𝑖 𝑗 = 𝑑 ( 𝑗, 𝑋 ℓ ) ≤ 𝑐𝑖 𝑗 ,

and hence

(
𝑑 ( 𝑗, 𝑋 ℓ − 𝑖) − 𝑐𝑖 𝑗

)+
= 0. Thus, if we let Φ(𝑥 \ 𝑗) be the

value of the potential function when the cache content of player 𝑗

is evacuated, from the above expression we have

Φ(𝑥) ≤ Φ(𝑥𝑜 ) +
∑︁
ℓ

∑︁
𝑗

𝑤 ℓ
𝑗

(
𝑑 ( 𝑗, 𝑋 ℓ − 𝑖 𝑗 ) − 𝑑 ( 𝑗, 𝑋 ℓ )

)
= Φ(𝑥𝑜 ) +

∑︁
𝑗

(
Φ(𝑥 \ 𝑗) − Φ(𝑥)

)
,

or, equivalently, Φ(𝑥) ≤ Φ(𝑥𝑜 )+∑𝑗 Φ(𝑥\𝑗 )
𝑛+1 . □

Lemma .4. Let 𝑍𝑥
𝑡 and 𝑍𝑦

𝑡 be copies of a Markov chain with initial
states 𝑥 and 𝑦 and transition probability matrix 𝑃 . Suppose that for
each pair of initial states 𝑥,𝑦 ∈ X there is a coupling (𝑍𝑥

𝑡 , 𝑍
𝑦
𝑡 ). Then,

𝑑 (𝑡) ≤ max𝑥,𝑦 P(𝑍𝑥
𝑡 ≠ 𝑍

𝑦
𝑡 ), where 𝑑 (𝑡) = sup𝜇 ∥𝜇𝑃𝑡 − 𝜋 ∥𝑇𝑉 is

the maximum total variation between the distribution of the Markov
chain at time 𝑡 and its stationary distribution 𝜋 . In particular, the
mixing time of the Markov chains is at most

𝑡mix (𝜖) := min{𝑡 : 𝑑 (𝑡) < 𝜖} ≤ min{𝑡 : max

𝑥,𝑦
P(𝑍𝑥

𝑡 ≠ 𝑍
𝑦
𝑡 ) < 𝜖}.

Proof. The proof follows from Theorem 5.4 and Corollary 5.5

in [21]. □

Lemma .5. Consider an LP: OPT = min{𝑐𝑥 : 𝐴𝑥 ≥ 𝑏, 𝑥 ≥ 0}
and its dual max{𝑢𝑏 : 𝑢𝐴 ≤ 𝑐,𝑢 ≥ 0}. Suppose 𝐴 = [𝐴1

𝐴2

] can be
represented using two blocks of constraints 𝐴1 and 𝐴2. Let 𝑢∗ be the
optimal dual solution, and assume 𝑥 is a feasible primal solution such
that (𝑥,𝑢∗) satisfy all the complementary slackness conditions except
for the constraints 𝐴1𝑥 ≥ 𝑏1 with corresponding dual variables 𝑢∗

1
,

where 𝑏 = [𝑏1
𝑏2
]. Then 𝑥 forms an approximate optimal solution for

the LP such that 𝑐𝑥 = OPT + 𝑢∗
1
(𝐴1𝑥 − 𝑏1).

Proof. Since dual constraints satisfy complementary slackness

with respect to 𝑥 , (𝑢∗𝐴 − 𝑐)𝑥 = 0. Moreover, since all the primal

constraints except 𝐴1𝑥 ≥ 𝑏1 satisfy complementary slackness con-

ditions,

𝑢∗ (𝐴𝑥 − 𝑏) = 𝑢∗
1
(𝐴1𝑥 − 𝑏1) + 𝑢∗2 (𝐴2𝑥 − 𝑏2) = 𝑢∗

1
(𝐴1𝑥 − 𝑏1),

⇒ 𝑢∗𝐴𝑥 = 𝑢∗𝑏 + 𝑢∗
1
(𝐴1𝑥 − 𝑏1).

Thus, we conclude that 𝑥 is a feasible primal solution whose objec-

tive cost equals

𝑐𝑥 = 𝑢∗𝐴𝑥 = 𝑢∗𝑏 + 𝑢∗
1
(𝐴1𝑥 − 𝑏1) = OPT + 𝑢∗

1
(𝐴1𝑥 − 𝑏1),

where the last equality follows by strong duality. □
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