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ABSTRACT

Deep learning is a powerful method for tasks like predictions and classification
but lacks interpretability and analytic access. Instead of fitting up to millions of
parameters, an intriguing alternative for a wide range of problems would be to
learn the governing equations from data. The resulting models would be con-
cise, parameters could be interpreted, the model could adjust to shifts in data, and
analytic analysis would allow for extra insights. Common challenges are model
complexity identification, stable feature selection, expressivity, computational fea-
sibility, and scarce data. In our work, the mentioned challenges are addressed by
combining existing methods in a novel way. We choose multiple regression as
a framework and argue that a large space of model equations is captured. For
feature selection, we exploit the computationally cheap coefficient of determina-
tion (R2) for a model elimination process in a semi-comprehensive search. Final
model selection is achieved by exact values of the Bayesian model evidence with
empirical priors, which is known to identify suitable model complexity without
relying on mass data. Random polynomials, an epidemiological model, and the
Lorenz system are used as examples. For the Lorenz system, which is particularly
challenging due to its chaotic nature, we demonstrate the favourable performance
of our approach to existing state-of-the-art like SINDy.

1 INTRODUCTION AND RELATED WORK

The arguably best way to learn about a system is to uncover its underlying laws. This principle is the
essence of the natural sciences. In the mathematical sciences, these laws are typically represented
in form of governing equations. With these equations at hand, predictions can be made, and new
insights can be distilled analytically.

A hall mark of such a mathematical description are concise equations that enable analytic work.
Naturally, using parsimonious models, often only the main tendency of made observations can be
captured. But it is these main tendencies that enable us to learn about a system.

The above principle has motivated scientists to infer the governing equations of a system directly
from the observations made on the system. Such endeavours go back as far as to the year 1609 when
Johannes Kepler published his first laws of planetary motion he deduced from observations Donahue
& Gingerich (1992), up until today where with modern machine learning significant progress has
been made in automated inference of equations from data.

This discipline of machine learning is often referred to as equation learning or symbolic regression.
Compared to deep learning, the focus shifts from predictions to learning a model that maximizes
expressivity while parsimoniously minimizing model size enabling interpretability. This delicate
balance between interpretability and expressivity is the central challenge of equation learning. Other
challenges are stable feature selection, computational feasibility, and dealing with scarce data.

Previous works addressing these challenges roughly split into three approaches: evolutionary algo-
rithms, trees and neural network representations, and regularized regression.

A popular example of evolutionary algorithms is EUREQA, a commercial software for symbolic re-
gression Dubčáková (2011); Stoutemyer (2013). Tree representations build equations by combining
basic operations, which is then used to minimize regularized objective functions Vaddireddy et al.
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(2020), to define a posterior sampler with sparsity promoting priors Jin et al. (2019), or minimized
using mixed-integer linear programming Neumann et al. (2020). Similar to expression trees, neural
network architectures have been used to represent equations, where the nodes of the network are
replaced by building blocks of expressions Martius & Lampert (2016); Sahoo et al. (2018); Werner
et al. (2021). These neural networks are then trained with regularized minimizers applied to objec-
tive functions Rackauckas et al. (2020). In a similar direction, a more flexible approach allowing
to take physics-informed properties like symmetries into account has been developed Udrescu &
Tegmark (2020).

Applications of these methods can be found in complementing deep neural networks to improve
generalisation Arabshahi et al. (2018) or for reducing the amount of data required for training Yang
et al. (2021). Other applications can be found for spatio-temporal biological data Nardini et al.
(2020) or uncovering complex ecosystem dynamics Chen et al. (2019).

These approaches are highly non-linear and require advanced optimisation algorithms. A typical,
simpler solution are linear regression models, where the features are replaced by basis functions on
observed data. Regularized regression then ensures sparse estimates for the weights on the basis
functions Hastie et al. (2009), which translate into concise mathematical expressions. A promi-
nent and widely used method for sparse regression is the LASSO using `1-regularization Tibshirani
(1996). The benefit of `1-regularization is that it leads to convex objective functions, for which ef-
ficient optimisers exist. Recent advancements of the LASSO are Zheng et al. (2019); Tibshirani &
Friedman (2020). However, as we will also see later, while sparse regression works well with in-
dependent features for reconstruction tasks, the correlations introduced by basis function expansion
can lead to detrimental instability for equation learning.

More successful for equation learning are therefore `0-regularized objective functions, which, how-
ever, require specialised optimisers. One of the leading approaches utilising `0-regularization is
SINDy (Sparse Identification of Nonlinear Dynamics) Brunton et al. (2016); de Silva et al. (2020).
Many extensions to SINDy have been made, e.g. to partial differential equations Rudy et al. (2017),
improved noise robustness through automated differentiation Kaheman et al. (2020), supplemented
with a-posteriori (MAP) estimates Niven et al. (2020), re-weighted `1-regularization Cortiella et al.
(2021) and more flexible regularization Champion et al. (2020). In Bayesian linear regression, spar-
sity promoting priors replacing the `0-regularization have been used for equation learning Nayek
et al. (2021), as well as threshold sparse regression Zhang & Lin (2018; 2021). Restricting basis
functions to quadratic order, the linear structure of the models allow for deterministic results even in
case of the more difficult `0-regularization Schaeffer et al. (2018).

In our work, we address the mentioned challenges of equation learning by fully exploiting the linear-
ity of the regression models without introducing any regularization. Our strategy is fundamentally
different to all mentioned approaches mentioned above, and, to our knowledge, has not yet been
explored in the literature. To ensure the sparsity required for concise model equations, we use the
Bayesian model evidence, which is proportional to the probability of the model being the true model
for the data Murphy (2012). Maximising the evidence in model space hence dismisses all models
with more detail than there is evidence for in the data. These properties make the evidence a perfect
criterion to penalise overfitting, and thus targeting the challenge of finding the best balance between
interpretability and expressivity Höge et al. (2018). Choosing specially tuned conjugate priors, we
can use analytic expressions for the evidence.

Despite the analytically known model evidence, it is still impossible to loop through candidate mod-
els that can be built from the basis function expansion. We therefore first apply an elimination pro-
cess that only requires the coefficient of determination, R2. This R2-elimination process takes place
in a semi-comprehensive search (SCS), where all models that can be built from the basis functions
are tested or excluded by greedy steps. Using R2 in this way to enable Bayesian model selection
for equation learning, it turns out that our SCS strategy allows to identify the correct model size just
from using R2, despite its non-existing overfitting penalty.

To test our approach, we use artificially generated data from known models.
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2 LINEAR EQUATION LEARNING

In this section, we show how linear regression can be applied to equation learning, which will set
the basis of this work. Details to regression can be found in Montgomery et al. (2012).

Starting point are N observations (yi, xij), where the index i denotes data points, and the index
j denotes features. We assume that the response (dependent) variable y is given as a function of
explanatory (independent) variable x,

y = f(x) + σz, (1)

where f(x) defines the model, z is a standard normal random variable, and σ2 is the variance of the
noise term. The explanatory observations are often organized in terms of a design matrix X , with
features in columns and datapoints in rows, Xij = xij .

We assume that f(x) can be given in terms of p basis functions kn(x),

f(x) =

p∑
n=1

wnkn(x), (2)

with weights wn, known as basis function expansion. Similar to the design matrix, we can define a
basis function design matrixK with elementsKin = kn(xi).

The ordinary least squares (OLS) estimates for wn are known to be

ŵ = (KTK)−1KT y (3)
Predictions based on the OLS estimates are then given by ŷ = Kŵ.

From the normality of linear regression, it is known that the estimates ŵ follow a normal distribution
with the mean given by the true values forw and the variance given by σ̂2 = (y−ŷ)T(y−ŷ)

N−p . We will
use these properties later to empirically define the prior in the Bayesian description.

In view of (3), once a choice of kn(x) is made, the actual learning of the model is straight forward.
The difficult part is the choice of kn(x): on the one hand we require sufficient expressivity of the
model to minimize bias, on the other hand we want to avoid overfitting to minimize variance of
predictions. This bias-variance tradeoff essentially dictates the number of kn(x), i.e. the effective
dimension of feature space or complexity. Apart from the appropriate model size, we also seek the
”correct” kn(x), in the sense that the true f(x) is recovered from data generated by (1).

A common approach to avoid overfitting is regularization,

ŵ = arg min
w∈RM

[∥∥Kw − y∥∥2

2
+ λ‖w‖q

]
, (4)

where ‖w‖q = [
∑
n |wn|q]1/q , and λ is the Lagrange parameter that sets the strength of the `q

penalty. The standard, sparsity promoting choice is q = 1 which is known as the LASSO.

2.1 COEFFICIENT OF DETERMINATION

A standard measure for goodness of fit is the coefficient of determination,R2, which relates the vari-
ance explained by the prediction ŷ to the variance of the response variable y. Assuming standardised
y, R2 can be written as

R2 =
yTK (KTK)−1KT y

yTy
. (5)

For sparse weight estimates ŵ, R2 is extremely efficient to compute. A value of R2 close to 1
signifies good predictions ŷ.

2.2 BAYESIAN MODEL EVIDENCE

For the purpose of adequate model selection, it is helpful to formulate regression in a Bayesian
setting. The main step to this end is defining the likelihood distribution for y. In the simple case of
(1), y is normally distributed,

pli(y|w, σ,M) = N (µ, σ), (6)
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where the mean vector is given by µi = f(xi), and we include the dependence on the choice of
modelM given by the representation (2) of f(xi) in terms ofK.

Marginalising over w and σ,

p(y|M) =

∫
dσ

∫
dw pli(y|w, σ,M) ppr(w, σ), (7)

we obtain the Bayesian model evidence (or marginal likelihood), which is proportional to the prob-
ability of the modelM being the true model for the data (y,X) Murphy (2012).

The integral in (7) is typically not solvable analytically, and also poses a particularly tough numeri-
cal challenge Von Der Linden et al. (1999); Knuth et al. (2015). Fortunately, by choosing ppr(w, σ)
conjugate to pli(y|w, σ,M), the integral becomes solvable analytically. The conjugate prior, how-
ever, is not necessarily the sensible choice from the inference point of view. In fact, making a good
choice for the prior is a much debated problem Fortuin (2021). Here, we demonstrate that for the
purpose of linear equation learning, the conjugate prior is a suitable choice, if hyper-parameters are
distilled from data. The question whether other choices for the prior would perform significantly
better is left for future research.

The conjugate prior for the likelihood (6) is the gamma-normal distribution O’Hagan & Kendall
(1994)

p(w, τ |µ,M , k, ϑ) =

√
detM

(2π)p/2Γ(k)ϑk
τp/2+k−1 e−

τ
2 (w−µ)TM(w−µ)−τ/ϑ (8)

with mean vector µ and precision matrix M for the weights w, and shape k and scale ϑ for the
precision τ = 1/σ2. Plugging (8) and (6) into (7) and performing the integration, we obtain for the
log-evidence per data-point the closed expression

1

N
ln p(y|M) =

1

2N
ln

detM

detA
− 1

2
ln 2π −

(1

2
+
k

N

)
ln
(ξ

2
+

1

ϑ

)
− k

N
lnϑ+

1

N
ln Γ

(N
2

+k
)
− 1

N
ln Γ(k) (9)

with A = KTK + M , b = KTy + Mµ, and ξ = yTy + µTMµ − bTA−1b. This is a
known result in Bayesian linear regression O’Hagan & Kendall (1994), but, to our knowledge, has
not yet been utilised for equation learning. For the benefit of the reader, we detail the calculations in
appendix B.

Owing to the normality of linear regression, and from standardising the data, it is reasonable to
assume the following parameters for the prior: For the mean vector, we choose µ = ŵ, and the
precision matrix is M is taken to be diagonal with elements diag(M) = 1−p/N

yTy−ŵTKTy , resulting
in normal distributions broadened by a factor N to make the prior more uninformative. The gamma
distribution entering (8) has the mode (k − 1)ϑ, which we set to 1 due to standardised y. The scale
is set to ϑ = 1/2 which appears to be broad enough for an uninformative prior.

2.3 OTHER SELECTION CRITERIA

For completeness, we mention a few more selection criteria used for comparison in this work. The
adjusted R2 Montgomery et al. (2012)

R2
adj = 1− N − 1

N − p− 1
(1−R2) (10)

equips the usual R2 with an overfitting penalty. The Akaike information criterion (AIC) measures
the loss of information by using the inferred model instead of the (unknown) true model Murphy
(2012), and similarly but derived from the model evidence (7) in the big data limit, follows the
Bayesian (Schwarz) information criterion,

AIC = 2pli(y|ŵ, σ̂)− 2p , BIC = pli(y|ŵ, σ̂)− 2p lnN (11)
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Algorithm 1 Basis function design matrix

1: Function DESIGNMATRIX(X)
2: Input: dataX with N datapoints, l features
3: Parameters: maximum degree M1 for individual features, maximum degree M2 for term
4: build all powers xmjij , mj = (1, ...,M1) # pre-computed for speed, limited to power M1

5: initialise counter p = 0 # counts generated features form basis function expansion
6: for all unique l-tuples (m1, ...,ml) do
7: if

∑
jmj ≤M2 then # ensure that collective power is limited to M2

8: p := p+ 1
9: K:,p :=

∏
jX

mj
:,j # Design matrix, candidate models in columns

10: end if
11: end for
12: Return: Design matrixK, shape N × p

3 DYNAMICAL SYSTEMS

Apart from the equations that can directly be written in the form of (2), a prominent application of
linear equation learning is the sparse identification of dynamical systems,

ẋ(t) = f(x(t)), (12)

where ẋ(t) denotes the time derivative of x(t). To map this problem to (2), the response variable
can be computed from finite differences yi = xi+1−xi

∆t for a fixed time step ∆t.

3.1 MODEL CLASS

A restriction for the regression models to stay linear in its parameters is that the parameters of basis
functions only enter as weights w. Basis functions like

eax, ln(a+ x), cos ax, xa,
1

(a+ x)m
, . . . (13)

with internal parameter a are not suitable.

This restriction might seem quite limiting. On the other hand, the function f(x(t),w) defining
a dynamical system typically is linear in its parameters w. The reason for that is that functions
shown in (13) often reproduce when differentiated, which can be used to eliminate these functions,
retrieving the standard form shown in (2) and (1).

In general, by considering the differentiated response variable,

y 7→ dy

dx
' y(xi+1)− y(xi)

xi+1 − xi
, (14)

if necessary to higher order, we can learn a surprisingly broad class of equations relating y and x,
even relations that do not exist in closed form.

4 SEMI-COMPREHENSIVE SEARCH WITH R2

To our knowledge, all equation learning approaches include an optimisation step in various represen-
tation spaces of equations. Here, we propose a strategy that does without any numerical optimisation
algorithms, and instead considers candidate models individually. Since already small dictionaries of
basis functions can lead to tremendous numbers of candidate models, a combination of cheap selec-
tion criteria and successive reduction of model space with a suitable stopping criterion is required.
We demonstrate how the simple criterion R2 can be used for such a semi-comprehensive search.

In a first step, a dictionary of basis functions is generated using Algorithm 1. These basis functions
consist of all possible products of available features xj . In these products, the factors are raised to all
possible combinations of powers (line 9), where we restrict individual powers to M1 (line 4) and the
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Algorithm 2 Model ranking R2

1: Function TOPRSQ(y,K)
2: Input: response data y, design matrixK
3: Parameters: number r of terms and t of top models
4: initialize criterion c # flexible length, to store R2 for candidate models
5: initialize model indicesM # p rows indicating terms part of models, flexible number of columns
6: initialize model number i = 0
7: for all n=(n1, ..., np) with nj ∈{0, 1},

∑
jnj=r do # possible selections of terms, for fixed r

8: i := i+1, append ci andM:,i = 0
9: reduceKred := K:,n # extract design matrix for selected terms

10: determine R2 forKred and y from (5)
11: store ci := R2 andM:,i := n # each column of M indicates a model with R2 value ci
12: end for
13: sort columns of M and c according to c (descending) # first columns of M now indicate top

models in terms of R2

14: Return: top models M:,:t (shape p× t), criterion c:t (length t) # only return the t best models

combined power of a term toM2 (line 7). For example, forM1 =3 andM2 =5, the term x4
1x3 would

not be allowed since 4>M1, and the term x2
1x2x

3
3 would not be allowed because 2+1+3>M2.

The SCS strategy we propose is based on this basis function expansion and described by Algorithm
3. It begins by considering all regression models with r non-zero weights wj (line 9), c.f. equation
(2). To this end, the auxiliary Algorithm 2 produces a list of models with top R2 values by looping
through all candidate models of size r. These models are returned as an index matrixM , indicating
selected terms with a 1 and deselected terms with a 0, where each column stands for a candidate
model (lines 5,11). The models are sorted in descending order with respect to R2 (line 13).

Back to Algorithm 3, we successively increase r starting from r=1 (lines 7,22). We found that for
a fixed r value, R2 performs particularly well in identifying the best model out of the millions of
models (see for instance Figure ??). To infer a value for r with just R2, we create a feature rating
matrix F defined as the weighted counts of terms being selected across s top models, where the
weight is given by R2. Based on F , we check for terms selected by R2 for two successive model
sizes r and r−1 (lines 16-20). If for both r and r−1 the same terms are selected consistently, we
choose these two terms as part of the inferred model and conclude the search.

As for larger values of r the number of candidate models can easily reach hundreds of millions,
we implement another strategy to divide out the list of candidate models. If terms have not been
selected for two successive model sizes r and r−1, we remove these terms from the design matrix
K (lines 14-15). In this way, we continuously reduce the model equation space as we go along.

The rationale for this selection and elimination strategy being solely based on R2 is the following:
If the true model has r terms, and we are testing all models with r−2 terms, then the models with
largest R2 will consistently be composed of the r−2 terms that contribute the most to explaining
the variance of y. The other 2 true terms will be selected sporadically but at least once, terms that
have not been selected at all can hence be removed from the candidate models. Testing in the next
stage all models with r − 1 terms, one more term will be consistently selected. The same holds for
testing models with r terms, but when testing models with r+1 terms, no new term can contribute
consistently to explaining more of the variance of y. The R2 measure will increase for models
for r+1 terms, but compared to models with r terms, no extra term will consistently be selected.
Therefore, once no new term is selected consistently when incrementing the number r of terms, we
can conclude that all contributing terms have been found. An illustration of this strategy can be
found in Figures ?? and ?? in appendix ??, where a typical case is shown.

Since the cheap computation of R2 allows to go through millions of models in a matter of minutes
on a standard computer, together with the described SCS strategy, we are able to consider or exclude
all candidate models that can be built from the basis function dictionary.

In a final step, the list of top models from the R2 evaluation can be combined and each tested with
other selection criteria like p(y|M), AIC, BIC or R2

adj.
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Algorithm 3 Semi-comprehensive search with R2

1: Function SC-SEARCH(y,X)
2: Input: data y,X
3: Parameters: maximum number rmax of terms, number s of top models for feature selection

4: K, p := DESIGNMATRIX(X )
5: initialize feature rating F of shape p× rmax # rate importance of terms for different model sizes r
6: initialize search := True
7: initialize number of terms r := 1
8: while search and r ≤ rmax do
9: M , c := TopRsq(y,K, r) # obtain list of models and with their R2 values for fixed model size r

10: appendM toMall # append models to index matrix keeping models for all r
11: F:,r :=

∑s
j cjM:,j # counts how often terms are selected in s top models, weighted by R2 criterion

12: normalise F:,r := F:,r / max(F:,r) # to have ratings between 0 and 1
13: if r ≥ 2 then
14: index i0 := (F:,r + F:,r−1 = 0) # i0=True if terms not selected for two successive model sizes
15: removeK[:, i0] fromK # reduce model equation space by those terms
16: index i1 := (F:,r ≥ 0.75) # indexes terms with significant rating across best s models of size r
17: index i2 := (F:,r−1 ≥ 0.75) # same for previously conidered model size r−1
18: if i1 = i2 then
19: search := False # if term is selected twice in a row like this, conclude search
20: end if
21: end if
22: r := r + 1
23: end while
24: Compute criteria { p(y|M),AIC,BIC, R2

adj } forMall

25: Return: Mall along with criteria

5 RESULTS AND DISCUSSION

5.1 RANDOM POLYNOMIALS

To put our strategy to the test, we randomly generated 100 polynomials with 2 and 3 non-zero
weights respectively. We restricted the terms of the polynomials to have a maximum powerM2 = 4,
where individual features are restricted to maximum power M1 = 2. The coefficients wn of the
polynomials are sampled uniformly from the interval ±[1, 4] where the sign is picked at random
with equal probability. To generate observations from each polynomial, we randomly generated N
datapoints xi with three features (xi1, xi2, xi3), sampled uniformly from three random intervals
nested in [−10, 10], respectively. Plugging xij into (1) with f(xi) given by the random polynomial,
and corrupting the output with normal noise with standard deviation σ = 0.01, we generate data yi
for the response variable.

Using the artificially generated data (xi, yi), we employ Algorithm 3 to uncover the underlying true
polynomials. We cut feature power at M1 = 4 and term power at M2 = 6, leading to a total of
p = 71 terms.The identification rates for polynomials are shown Figure 1.

5.2 PREDICTIONS ON DYNAMICAL SYSTEMS

Next we apply the equation learning strategy to dynamical systems as explained in Section 3. We
use the same hyper-parameters as for uncovering random polynomials in the previous section 5.1.

As a first non-chaotic example, we use an epidemiological model taken from Schlickeiser & Kröger
(2021). This model has 4 compartments, Susceptible, Infected, Recovered, Vaccinated. The pro-
portions of a population being in these self-descriptive categories are denoted by S, I , R, and V ,
respectively, hence the abbreviation SIRV for this model. The time evolution equation are of the
form

Ṡ(t) = −S(t)
(
a I(t) + v

)
, İ(t) = I(t)

(
aS(t) − µ

)
, Ṙ(t) = µI(t), V̇ (t) = vS(t). (15)
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Figure 1: Success rates of Algorithm 3 for uncovering true polynomials with maximum number
rmax = 8 of terms. In this simulation, we used 100 random polynomials left panel: with 2 terms,
from which we generated N = 20 datapoints; right panel: with 3 terms, from which we generated
N = 60 datapoints

We fix the vaccination rate to v = 0.05, the recovery rate to µ = 1, and the infection rate to a = 3.
Using 4 similar initial conditions,

we solve (15) with a standard Runge-Kutta scheme (RK45) from SCIPY.INTEGRATE for a total time
of T = 1 and T = 2, obtaining N = 100 datapoints for each initial value, respectively. We
derive the response variable y from (14) and corrupt it with normal noise with standard deviation
σ = 0.002.

Using the data for T = 1 and T = 2, we use Algorithm 3 with the model evidence p(y|M) as final
selection criterion. For T = 1, we are recovering all terms apart from the first term for S(t), and for
T = 2 we are completely recovering the structure of (15). Determining the coefficients using (3),
we solve the inferred models numerically and compare it in Figure 2 against the true solution up to
t = 10.

While the SIRV model was used to illustrate the prediction accuracy of our method in the case of
limited data on a merely qualitative level, we now turn to an in-depth analysis of our second example,
the chaotic Lorenz system,

ẋ(t) = ε
(
y(t)− x(t)

)
, ẏ(t) = x

(
ρ− z(t)

)
− y , ż(t) = x(t)y(t)− βz(t). (16)

The parameters are fixed to its standard values ε = 10, ρ = 28, β = 8/3. As initial values we use
(x = −20, y = 20, z = 2) to obtain data for training by solving the system numerically with the
Runge-Kutta scheme.

For the Lorenz system as a typical benchmark system for dynamical system identification, we per-
form a comparison to SINDy as a state-of-the-art technique Brunton et al. (2016). To this end, we
consider 60 different scenarios generating different training datasets, in which the size of datasets
range from N = 200 to N = 10000, the training time T various between T = 5 and T = 50, and
the noise magnitude σ takes values between σ = 0.0001 and σ = 0.2. For each of these scenarios,
we learn the model equations from the generated data using our Algorithm 2, which includes the
LASSO, SCS, evidence p(y,M), BIC, AIC, and R2

adj.

In addition, also the python package PYSINDY de Silva et al. (2020) was used to perform dynam-
ical system identification with SINDy. For SINDy, we use the same settings as used for the Lorenz
system example in the package documentation, in which the STLSQ optimizer (sequentially thresh-
olded least squares algorithm) is selected. Testing a few other optimizers (c.f. SSR, SR3, FROLS)
we found that STLSQ indeed works best in our numerical experiment. The maximum degree for
the polynomials was set to 4 for SINDy, which is equivalent to setting M2 = 4 in our Algorithm 1;
controlling the individual powers of the features in the polynomials (fixed by M1 in Algorithm 1) is
not possible in PYSINDY.

To not only test the ability to correctly learn the model equations from the generated data, but
also assess the prediction accuracy, we solved for each scenario the learnt model for 100 different
random initial values numerically using LSODA, and computed the mean absolute error (MAE)
between the solution of the learnt model and the solution of the correct model. The LSODA

8

https://pysindy.readthedocs.io/en/stable/examples/5_differentiation.html#lorenz-system
https://pysindy.readthedocs.io/en/stable/examples/5_differentiation.html#lorenz-system


Under review as a conference paper at ICLR 2023

solver is a Adams/BDF method with automatic stiffness detection and switching implemented in
SCIPY.INTEGRATE and the preferred method in PYSINDY. The initial values were uniformly sam-
pled from the interval [−20, 20] for x, from [−25, 25] for y, and from [0, 50] for z. The integration
time was fixed to T = 15 to allow convergence to the strange attractor of the Lorenz system. With
the 60 scenarios, 7 equation learning methods, and 100 initial values each we have a total of 42, 000
predicted trajectories to base our analysis on. We believe that in this way we can provide an in-depth
comparison between the various equation learning methods.

Given the large number of learnt models and initial values, some initial value problems are not
solvable by LSODA. In these cases, less trajectories contributed to the MAE and we kept track of
the number of failures for each method as reported in the results.

Figure 2: Predictions based on the model learnt from N = 400 noisy datapoints in the time interval
[0, 1] (left) and [0, 2] (right). The noise level was σ = 0.002. The true time evolution is given by
solid lines, the predictions by dashed lines. The ground truth is the SIRV model given by (15).

Figure 3: Comparison of prediction accuracy between various the equation learning methods. The
left panel shows the evolution of the MAE across 60 scenarios with 100 initial values for the dy-
namical system learnt in each scenario. The right panel depicts the overal MAE, broken down into
the x-, y- and z-component.
The results of the numerical experiments are summarised in 1. The MAE used for assessing the
prediction accuracy is illustrated in ?? for one example.

5.3 DISCUSSION

We were able to uncover most of the polynomials. We stress the difficulty of this task, which consists
in various aspects: i) Randomly generated polynomials are not hand-picked examples where some
fine-tuning is possible. ii) The artificially generated data was not tested to represent the polynomial
uniquely. iii) Even if the inferred polynomial is wrong by only one term and would still describe
the data very well, it does not count as success in the final results. With these aspects in mind, it is
quite remarkable that overall most of the polynomials could be recovered. Particular striking is the
success rate of the semi-comprehensive search (SCS) strategy solely based on R2. As mentioned
before, the LASSO does not turn out to be suitable for uncovering the ground truth equations.
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Table 1: Comparison of prediction accuracy: “all true terms” indicates how often the model includes
all true terms, while “exactly true” requires that the exact Lorenz system has been recovered without
extra terms. The MAE averaged over all timesteps, components, scenarios and initial values is
shown under “MAE overall average”, and “ranking in terms of MAE” indicates the rank (1-st to 7-
th) of the methods in terms of the MAE averaged across scenarios and initial values. Lastly, “learnt
model not solvable” reports how often an initial value caused a failure of LSODA. The first block
uses all scenarios, the second block is restricted to N ≤ 1000 datapoints.

LASSO SCS p(y|M) AIC BIC R2
adj SINDy

all scenarios
all true terms 94.9% 67.8% 74.6% 79.7% 76.3% 79.7% 78.0%
exact true model 0.0% 66.1% 30.5% 15.3% 23.7% 11.9% 42.4%
MAE overall average 9.02 6.49 6.21 6.15 6.22 6.19 7.03
ranking in terms of MAE 5.85 3.0 2.75 2.63 2.39 2.83 4.93
learnt model not solvable 20.66% 0.69% 0.0% 0.15% 0.15% 0.15% 6.34%

scarce data (N<1000)
all true terms 100.0% 54.1% 73.0% 73.0% 73.0% 73.0% 67.6%
exact true model 0.0% 51.4% 24.3% 2.7% 13.5% 0.0% 16.2%
MAE overall average 10.28 7.14 6.31 6.45 6.39 6.5 7.95
ranking in terms of MAE 5.54 3.73 2.54 2.43 2.03 2.59 6.08
learnt model not solvable 32.08% 1.11% 0.0% 0.24% 0.24% 0.24% 10.11%

The SIRV example demonstrated the ability to make accurate predictions to future times based
on little data in case an underlying concise mathematical model exists that can be learnt. To also
compare our method with SINDy as state-of-the-art, we used the well studied chaotic Lorenz system.
The identification rate and the prediction accuracy turned out to be favourable compared to SINDy,
in particular in the case of scarce data.

6 CONCLUSIONS

To our knowledge, we are the first to explore a deterministic model selection strategy that is based
on an semi-comprehensive candidate model evaluation with the ability to compete with existing
traditional and state-of-the-art methods. Being the first formulation of the method, it still holds
plenty possibilities for improvements of the strategy.

A direct advantage is that the model evaluation is trivially parallelizable. Also the little amount of
data needed for high success rates is striking – tests on all three sets of random polynomials where
done with less datapoints than features in K. Testing candidate models individually also allows for
great flexibility when it comes to constraints or conditions on models, as well as eliminating the
risk of getting stuck in local minima of an objective function. And finally, since our approach is
fundamentally different from all approaches we are aware of, it can complement existing methods
in an independent way with a potential of synergy effects.

While performance on the Lorenz system is substantially better than what has been achieved in the
literature, our approach is still lacking the generality as has been achieved for example with SINDy
Brunton et al. (2016) or neural networks Sahoo et al. (2018). Advancing these first steps, we expect
our strategy to also be successful for more challenging examples systems involving fractions.

Considering this success and the surprisingly large class of models than can be described by linear
regression models, we hope to open a new avenue of equation learning.
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B EXACT BAYESIAN MODEL EVIDENCE USED FOR EQUATION LEARNING

The model is given by

yi =
∑
n

wnKin + zi/
√
τ (17)

where Kin = Kn(xi) is the basis function design matrix, wn are the weights, τ = 1/σ2 is the
precision, and z ∼ N (0, 1). For the whole vector y of N responses, we can use the multivariate
normal for the likelihood,

p(y |K,w, τ) =
τN/2

(2π)N/2
exp

(
− τ

2
(y −Kw)T (y −Kw)

)
, (18)

where the precision matrix is diagonal with identical τ on the diagonal. Since the weight parameters
wn enter quadratically, we can rewrite this expression in normal form for w,

p(y|K,w, τ) =
τN/2

(2π)N/2
exp

(
− τ

2
S
)

exp
(
− τ

2
(w−ŵ)TKTK (w−ŵ)

)
(19)

with the residual sum of squares

S = (y−Kŵ)T(y−Kŵ) (20)

= yTy − ŵTKTy (21)

= yTy − yTK(KTK)−1KTy (22)

The mixed terms cancel after plugging in KTy = KTKŵ from the known OLS solution ŵ =
(KTK)−1KTy.

The above is of the form of a gamma distribution for τ multiplied with a normal distribution for w
conditioned on τ . If we use a prior of the same form, we keep the form for the posterior, and thus
have found the conjugate prior.

As a prior for the weights w, we choose

p(w |µ,M) =
τp/2
√

detM

(2π)p/2
exp

(
− τ

2
(w−µ)TM (w−µ)

)
, (23)

where τM is the precision matrix with τ split off, and µ is the mean vector of the multivariate
normal prior. Splitting off τ technical means that specifying M is relative to the unknown τ , but τ
does not need to be known for that, as we integrate over all possible τ values.

For the posterior, we are interested in the quadratic form involving w,

(w−ŵ)TKTK (w−ŵ) + (w−µ)TM (w−µ) = wTAw − 2wT b+ c (24)

with

A = KTK +M (25)

b = KTKŵ +Mµ

= KTy +Mµ (26)

c = ŵTKTKŵ + µTMµ

= ŵTKTy + µTMµ (27)

= yTK(KTK)−1KTy + µTMµ. (28)
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Put into this form, we can use the Gaussian integral
∫

dnx e−
1
2x

TAx+bTx =
√

(2π)n

detA e
1
2 b

TA−1b to
marginalise,

p(y | τ) = p(y |K, τ,µ,M) (29)

=

∫
dw p(y |K,w, τ) p(w |µ,M) (30)

=

√
τN+p detM√

(2π)N+p
e−

τ
2 (S+c)

∫
dw e−

τ
2 (wTAw−2bTw) (31)

=

√
τN+p detM√

(2π)N+p
e−

τ
2 (S+c)

√
(2π)p√

τp detA
e
τ
2 b

TA−1b (32)

=

√
τN detM

(2π)N detA
e−

τ
2 (yTy+µTMµ−bTA−1b). (33)

For the τ -integration, we choose the gamma distribution

p(τ |k, ϑ) =
1

Γ(k)ϑk
τk−1 exp

(
− τ/ϑ

)
(34)

as the (conjugate) prior for τ , and define

ξ = yTy + µTMµ− bTA−1b. (35)

The remaining τ -integral follows then from
∫∞

0
dτ τ c0e−c1τ = c−c0−1

1 Γ(c0+1) as

p(y) = p(y |K,µ,M , k, ϑ) (36)

=

∫ ∞
0

dτ p(τ |k, ϑ) p(y | τ) (37)

=
1

Γ(k)ϑk(2π)
N
2

√
detM

detA

∫ ∞
0

dτ τ
N
2 +k−1 e−τ( z2 + 1

ϑ ) (38)

=
Γ(N2 +k)

Γ(k)ϑk(2π)
N
2

√
detM

detA

(z
2

+
1

ϑ

)−N2 −k
(39)

and for the log-evidence per data-point we obtain

1

N
ln p(y) =

1

2N
ln

detM

detA
− 1

2
ln 2π −

(1

2
+
k

N

)
ln
(ξ

2
+

1

ϑ

)
− k

N
lnϑ+

1

N
ln Γ

(N
2

+k
)
− 1

N
ln Γ(k). (40)
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