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ABSTRACT

Recent models pre-trained on image-text pairs can learn rich vision-language rep-
resentations that improve downstream tasks, such as image classification. How-
ever, because of the absence of paired text/image descriptions in many fine-
grained domains, such as dermatology, it is difficult to fine-tune these models for
specific downstream tasks. In this work, we propose GIST – a method for gener-
ating image-specific fine-grained text descriptions from image-only datasets. Our
findings include 1) prompting a pretrained large language model with domain-
specific prompts generates diverse fine-grained text descriptions that capture inter-
class and intra-class differences, 2) using a pretrained vision-language model
to match each training image to the most relevant text descriptions generates
image-specific image-text pairs, and 3) summarizing the matched text using a
large language model prior to fine-tuning the image encoder improves the util-
ity of the learned representations. We demonstrate the utility of GIST by fine-
tuning vision-language models on the GIST-generated image-text pairs to learn an
aligned vision-language representation space. We evaluate this learned represen-
tation space in full-shot and few-shot scenarios across four diverse fine-grained
classification datasets, each from a different domain. Our method achieves an av-
erage of 1.1% improvement in accuracy over the existing state-of-the-art image-
text classification method and 4.1% improvement in accuracy over CLIP linear
probes on full-shot datasets. Our method achieves similar improvements across
few-shot regimes. Code will be made publicly available upon publication.

1 INTRODUCTION

The recent development of foundation models trained on image-text pairs has led to impressive per-
formance across vision and language tasks such as zero-shot classification, image generation, and
image captioning (Radford et al., 2021; Ramesh et al., 2021; Wang et al., 2022). Fine-tuning these
models for domain-specific tasks requires image-text pairs, which are often costly to obtain (Zhou
et al., 2022a;b). In particular, fine-tuning these models for fine-grained image classification re-
quires the construction of image-specific text prompts that differentiate visual features between sub-
categories of objects, e.g., between species of birds. Trained image captioning methods, such as
GIT (Wang et al., 2022), can generate descriptive captions for coarse-object-level interactions, but
often are not able to generate the details needed for fine-grained object representations (Fig. 1).

Large language models (LLMs) provide an opportunity for generating fine-grained text. Models,
such as GPT (Brown et al., 2020; OpenAI, 2023), contain rich prior knowledge about both coarse
and fine-grained classes Lee et al. (2020); Touvron et al. (2023); Gu et al. (2021). Large language
models are able to generate fine-grained text descriptions when prompted about a specific class.
Unfortunately, these descriptions are not specific to a particular image. Recent works have explored
how to bridge this gap to use text generated by GPT to improve few-shot image classification (Yang
et al., 2023; Zhang et al., 2023). These works use generic prompt templates, such as “What does
a cardinal look like?”, to generate class-specific text descriptions. We show that instead of using
generic templates, constructing domain-specific prompts that highlight potential sub-class differ-
ences can lead to more specific text descriptions that differentiate visual features of fine-grained
classes. By automatically matching each training image to specific captions, we generate diverse
image text pairs to fine tune multi-modal networks for fine-grained classification tasks.

1



Under review as a conference paper at ICLR 2024

Figure 1: Large pretrained vision-language models (top), such as GIT, perform well on tasks in-
volving coarse-level descriptions, but often don’t generalize well to fine-grained tasks. Our method
(bottom), GIST, generates fine-grained class-specific text descriptions. It then uses CLIP to match
each image to the closest label-preserving text. This results in fine-grained image-text pairs where
the text describes specific visual features in the image.

We introduce GIST (Generating Image-Specific Text), a novel approach for generating fine-grained,
image-specific text descriptions for any-shot fine-grained classification. We first use an LLM to
generate descriptive and diverse class-specific captions to cover the possible range of visual appear-
ances of each class. We then use a pretrained vision-language model to match each training image
to the closest label-preserving text descriptions so that the matched text specifically describes the
object of interest in the image. Our insight is that many domains can have intra-class differences
(e.g., male and female birds of the same species can appear differently) so it is important to prompt
the LLM to capture this diversity and then use a vision-language model to align the images and text
within each class. Once we have aligned image-text pairs, we use the LLM to summarize the long
text descriptions into a concise format well suited for fine tuning CLIP. We fine-tune CLIP on our
GIST image-text pairs to learn a better aligned vision-language representation space for downstream
applications, such as classification.

We evaluate our method against recent vision-language classification methods. We show that our
model improves upon state-of-the-art results on four diverse datasets across many different training
scenarios. Unlike other methods that are optimized for either full or few-shot classification, our
method is consistently better than existing methods on both scenarios.

The key contributions in this paper are:

• We introduce GIST, a method for generating fine-grained, image-specific text. To our knowledge,
we are the first to use language priors and image-text foundation models to generate image-specific
captions for fine-grained datasets.

• We demonstrate that fine-tuning CLIP on our GIST image-text pairs outperforms recent vision-
language classification methods on four fine-grained datasets in both full-shot and few-shot clas-
sification regimes.

• We provide in-depth analysis on GIST by comparing to existing captioning methods, comparing
to a visual-grounding approach, and studying the impacts of CLIP model, caption length, and
number of captions on our classification performance.

• We provide a new fine-grained image classification dataset, Fitzpatrick40.

2 RELATED WORK

2.1 VISION-LANGUAGE MODELS

Models pretrained on large-scale multimodal datasets provide data representations that are trans-
ferable to many tasks and domains (Joulin et al., 2016; Li et al., 2017; Desai & Johnson, 2021;
Sariyildiz et al., 2020). CLIP (Radford et al., 2021) is pretrained using self-supervised contrastive
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Figure 2: GIST overview. We leverage prior domain knowledge captured by large language models
(e.g., GPT) to generate multiple text descriptions for each label. We use CLIP to match each training
image to the closest n text descriptions with the same label. We then use GPT to summarize each of
the matched captions. We use the matched text-image pairs to train downstream models.

learning on a dataset of approximately 400 million image-text pairs and has shown strong perfor-
mance for both zero-shot learning and other downstream tasks. Other related approaches achieve
similar performance with larger and noisier datasets (Jia et al., 2021), or fine-tune CLIP to adapt it
to out-of-domain datasets (Kumar et al., 2022; Miller et al., 2021; Wortsman et al., 2022; Zhai et al.,
2022). Still other methods improve the efficacy of CLIP training by incorporating self-supervised
training techniques (Mu et al., 2022; Li et al., 2021; 2023), re-writing captions for pretraining im-
ages (Fan et al., 2023), and generating captions for images using off-the-shelf captioning models
(Nguyen et al., 2023).

Large-scale captioning models (Wang et al., 2022; Yu et al., 2022) leverage image-text pairs to
learn a shared representation space for generating text from images. However, we show in our
experiments that these captioning models do not perform well on fine-grained classes. Large-scale
image generation models such as DALL-E (Ramesh et al., 2021), Imagen (Saharia et al., 2022), and
stable diffusion (Rombach et al., 2022) are trained on large-scale image-text data in order to learn
to generate photo-realistic images from text. In the few-shot learning literature, DALL-E has been
shown to help by augmenting small image datasets with synthetic images (Zhang et al., 2023). This
works well for Imagenet (Russakovsky et al., 2015) classes, but we show in our experiments the
generated images are not specific or accurate enough for fine-grained domains, such as identifying
skin diseases.

2.2 LARGE LANGUAGE MODELS

Large language models trained with huge quantities of textual data have achieved promising per-
formance on many NLP tasks (Devlin et al., 2018; Lee et al., 2020; Brown et al., 2020; Touvron
et al., 2023; Chowdhery et al., 2022). GPT (Brown et al., 2020; OpenAI, 2023) is a self-supervised
pretrained large language model with 175 billion parameters. GPT can be used for a variety of lan-
guage tasks, including text generation. GPT can generate accurate, detailed descriptions for many
different domains given the appropriate prompt. We use the strong knowledge embedded in GPT to
generate text descriptions, and show that these text descriptions carry more useful information than
generated image captions from models such as GIT Wang et al. (2022). Our method pairs these text
descriptions with images to improve classification over image-only methods.

2.3 FEW-SHOT CLASSIFICATION USING FOUNDATION MODELS

Recent methods leverage foundation models for improving few-shot classification. A few methods
improve CLIP zero-shot or few-shot performance by constructing text prompts from the training
image labels (e.g. “a photo of class name”) (Udandarao et al., 2022; Lin et al., 2023; Goyal et al.,
2023). LaBo (Yang et al., 2023) uses GPT-3 to generate candidate concepts for each class and
aligns these text concepts to the images using CLIP. We show in our experiments that generating
full text descriptions using GPT improves classification accuracy more than using label names or
concepts. The Prompt, Generate, then Cache method (Zhang et al., 2023) uses generated text from
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GPT and synthetic images from DALL-E (Ramesh et al., 2021) to supplement few-shot learning.
We show in our experiments that DALL-E is not able to generalize to many domains, and that using
the unrealistic synthetic images can hurt classification performance. LaCLIP Fan et al. (2023) uses
LLMs for text augmentation to improve CLIP pre-training on image-text datasets. Their experiments
demonstrate that their language augmented CLIP models achieve better performance than CLIP
on downstream tasks such as classification. Unlike LaCLIP, our method generates text captions
rather than augmenting them; therefore our method can be used on image-only datasets rather than
requiring image-text datasets.

A concurrent paper (Maniparambil et al., 2023) to our work uses GPT-4 and a pre-trained CLIP
model to improve zero-shot and few-shot classification. Their method similarly generates N text
descriptions per class. Instead of matching images to text descriptions and fine-tuning CLIP, their
method averages over the N text embeddings per class to get a representative embedding per class.
They perform classification by computing cosine distance between the image embeddings and each
averaged class text embedding to improve zero-shot CLIP performance. In contrast, our generated
image-text pairs allow us to fine tune CLIP to achieve higher overall classification accuracy.

3 METHOD

Our key contribution is a method for building an image encoder for fine-grained image classification
tasks. In this section, we first introduce the fine-grained classification problem and then describe
how we use prior knowledge contained in large language and vision-language models for generating
image-specific text descriptions (Figure 2).

3.1 PROBLEM SET-UP

Consider a set of images {x1, ..., xn} that have corresponding fine-grained k-class classification
labels {y1, ..., yn}, where each yi ∈ {c1, ..., ck}. We aim to learn an embedding that facilitates
building an image classifier fθ, to solve y = fθ(x), given limited examples n.

We harness prior knowledge encoded in pretrained large language model llm(d) and pretrained
vision-language model vl(d, x), for text description d and image x. We use vlL(d) to represent the
language encoder and vlV (x) to represent the vision encoder of the vision-language model.

A pivotal insight is to define the learned model as
y = fθ(x) = gθg (hθV (x)), (1)

where θ = {θg, θV }, and gθg (·) is a small classifier with few parameters θg , applied to the embed-
ding space learned by the fixed image encoder model hθV (·). We aim to first learn a relevant image
encoder hθV (·) separately from the classification model.

We learn this image encoder hθV (·) by aligning images and associated text descriptions {xi,Di}
where Di represents a list of associated text descriptions for image xi. We align the images and
generated text descriptions in a contrastive learning manner, similar to CLIP training. We optimize
the objective for the image and language encoders hθV and hθL , respectively,

L(θV |{xi,Di}) :=
n∑

i=1

∑
di∈Di

−log
exp(hθV (xi) ∗ hθL(di))∑n

j=1

∑
dj∈D exp(hθV (xi) ∗ hθL(dj))

+

n∑
i=1

∑
di∈Di

−log
exp(hθV (xi) ∗ hθL(di))∑n

j=1

∑
dj∈D exp(hθV (xj) ∗ hθL(di))

,

where D := ∪Di and θV and θL represents the image and text encoder parameters, respectively.
The resulting hθV can be used as the frozen image encoder for the fine-grained classification task.
We next describe how to use GIST to generate image-associated text descriptions {xi,Di}.

3.2 VISION AND CLASS PRIORS VIA LANGUAGE MODELS

We generate image-associated text descriptions {xi,Di} using priors captured in existing large lan-
guage models.
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We first synthesize a set of m description candidates Dcj = {dcj ,m}Mm=1 for each class in {c1, ...ck}.
We employ a stochastic large language model

dci,m = llm(prompt(ci), s),
for random seed s. We describe prompt(·) below and in more detail in the Appendix.

We then form a set of t descriptions for each image xi, Dxi
= {dxi,j}tj=1 by using priors captured

in existing vision-language models. We form Dxi
by choosing the top-t descriptions in d ∈ Dyi

that
minimize the cosine similarity:

dist(vlV (x), vlL(d)).

Next, we use llm(·) to summarize the matched text descriptions into a more concise form. Follow-
ing summarization, we append the corresponding class name to each concise caption to generate
{xi,Di}.

3.3 MODEL DETAILS

We use GPT-3 as the pretrained prior language model llm(·) and the ViT-L/14@336px CLIP model
as the prior vision-language model vl(·). We initialize the image and language encoders hθV (·)
and hθL(·) using CLIP image and language encoders vlV (·) and vlL(·). Figure 3 illustrates the
fine-tuning process.

3.4 PROMPTING CLASS DESCRIPTIONS

We generate sample descriptions by creating LLM prompts that include domain-specific character-
istics. These help substantially for downstream matching of captions to images. For each domain,
we create one prompt template that identifies potential intra-class differences in that domain. This
prompt template can then be used across classes and datasets within that domain, amortizing the
small amount of upfront human labor. For example, the template might highlight the fact that male
and female birds of the same species can appear differently (“Describe what an image of a gender
species might look like”) or that dermatology diseases can appear on different parts of the body
(“Describe what an image of disease might look like on a person’s body part”). We can then prompt
GPT-3 while iterating through a set list of options for the intra-class difference category. This does
not require in-depth domain-specific knowledge as we iterate through the same list of options for
every label and do not need to know which classes have intra-class differences. We provide a list of
the prompts used for each of the domains in our experiments in Appendix Section A.3.

4 EXPERIMENTS

In this section, we provide training details and evaluate GIST on fine-grained classification. We first
compare GIST to several recent state-of-the-art benchmarks on any-shot classification performance
for four fine-grained classification datasets. We then evaluate all methods using different CLIP mod-
els. We also analyze how different GIST hyperparameter choices, including the number of matched
captions and the length of matched captions, affects downstream classification performance.

4.1 DATASETS

We evaluate on four fine-grained classification datasets:

• CUB200-2011 (Wah et al., 2011): The CUB200-2011 dataset has 11,788 labeled images of 200
different bird species. We use the published train/test split and separate 10% of the training set as
a validation set.

• Flowers102 (Nilsback & Zisserman, 2008): The Flowers102 dataset has 8,189 labeled images of
102 different flower species. We use the published train/val/test split.

• FGVC-Aircraft (Maji et al., 2013): The FGVC-Aircraft dataset has 10,000 labeled images of 100
different types of aircrafts. We use the published train/val/test split.

• Fitzpatrick40 – a cleaned subset of Fitzpatrick17k (Groh et al., 2021): The Fitzpatrick17k dataset
has 16,577 labeled images for 114 different skin diseases. The Fitzpatrick17k dataset includes
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Figure 3: Overview of proposed training of image encoder and classifier. We use a contrastive
strategy, fine-tuning the vision-language model from a CLIP initialization, using paired training
images and image-specific captions generated with the proposed GIST model. Given a learned
aligned image-text embedding space, we freeze the CLIP encoders and train a small classifier on
our original data.

erroneous images (Pakzad et al., 2023), and we also find that it has many mislabeled images, where
the image label in the dataset does not match the image label from the image’s original medical
website source. We clean a 40-label subset of the 114-label original dataset. We denote this
cleaned dataset as Fitzpatrick40. We include more information about the dataset cleaning process
in the Appendix. Fitzpatrick40 includes 2,609 images, which we split into 2,115 training, 222
validation, and 272 test. We provide the cleaned Fitzpatrick40 dataset as an additional contribution
of this work.

For all four datasets, we generate k-shot datasets by randomly sampling k training images from each
label. We report the 5-shot results in the main paper and report the 3-shot and 1-shot results in the
Appendix.

4.2 CLASS DESCRIPTIONS

For the Fitzpatrick40, Flowers102, and FGVC-Aircraft datasets, we generate text descriptions using
GPT-3 (Brown et al., 2020). For the CUB200-2011 dataset, we found that GPT-3 did not gener-
ate captions with accurate information. For this dataset, we generate text descriptions using GPT-
4 (OpenAI, 2023). We generate between 20 and 60 different class-specific captions, depending on
the dataset.

4.3 BASELINES

Image-only Baselines. We train a ResNet50 network (He et al., 2016) for 600 epochs using SGD
with a learning rate of 0.001, batch size of 64, momentum of 0.9, and 1e-4 weight decay. We also
train a second ResNet50 with class re-weighting (ResNet-RW) to compensate for class imbalance.
We use a weighted random sampler to sample from each class with equal probability during training.

Multi-modal Baselines.

• Zero-shot CLIP (CLIP ZS) and Linear-probe CLIP (CLIP LP) (Radford et al., 2021) Since
CLIP is trained to align image-text datasets, we perform zero-shot classification using the pre-
trained CLIP model. Given y ∈ Y class names, we use standard templates (e.g. “a photo of a
...”) to construct text descriptions for each class y. We use the average embedding, vlL(y), of the
descriptions as the class embedding. We then perform zero-shot classification CLIP-ZS for image
x by finding the most similar class embedding to image embedding vlV (x) using cosine similarity
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Methods Fitzpatrick40 CUB200 Flowers102 FGVC
Full-shot 5-shot Full-shot 5-shot Full-shot 5-shot Full-shot 5-shot

ResNet 67.30 (2.87) 31.62 (3.69) 79.08 (0.56) 49.83 (0.47) 98.54 (0.24) 81.35 (0.35) 69.79 (0.79) 22.31 (0.54)
ResNet-RW 70.95 (2.84) - 79.46 (0.55) - 69.79 (0.79) - 69.33 (0.77) -

CLIP ZS 2.94 (1.06) 2.94 (1.06) 63.29 (0.63) 63.29 (0.63) 76.64 (0.84) 76.64 (0.84) 32.18 (0.83) 32.18 (0.83)
CLIP LP 71.19 (2.84) 41.49 (2.99) 86.22 (0.45) 76.41 (0.57) 99.36 (0.17) 97.48 (0.32) 65.43 (0.83) 45.13 (0.86)

LaBo 57.35 (0.19) 32.17 (0.25) 83.00 (0.03) 73.66 (0.07) 99.26 (0.03) 96.06 (0.02) 64.16 (0.15) 45.20 (0.02)
CaFo - 40.32 (0.63) - 69.48 (0.28) - 95.40 (0.68) - 43.16 (1.15)
FLYP 73.16 (2.70) 42.18 (2.98) 86.41 (0.47) 78.68 (0.52) 99.47 (0.13) 97.80 (0.33) 71.70 (0.75) 48.07 (0.87)

GIST (Ours) 75.77 (2.67) 46.96 (3.13) 87.64 (0.44) 79.52 (0.55) 99.60 (0.15) 97.88 (0.29) 72.27 (0.76) 49.44 (0.86)

Table 1: Fine-tuning with GIST captions achieves the best top-1 accuracy for full-shot and 5-shot
classification across all datasets. We report the average accuracy and standard deviation over 1000
bootstrapped samples of the test set for full-shot and CLIP-zero shot experiments. For 5-shot exper-
iments, we report the average accuracy and standard deviation over three 5-shot samples.

of the l2-normalized embeddings. For CLIP-LP, we learn a linear classifier on the frozen image
embeddings computed using the pretrained image encoder vlV (x). We train the linear classifier
until convergence (500 epochs), using standard SGD with a learning rate of 0.05, batch size of 64,
momentum of 0.9, and 1e-4 weight decay. We select the model weights from the epoch with the
best validation accuracy to use for experiments.

• Language in a Bottle (LaBo) (Yang et al., 2023) We train LaBo, using the provided open source
code, on the full and k-shot datasets. We use the same CLIP model as in our method and generate
text concepts using the same GPT versions as in our method.

• Cascade of Foundation Models (CaFo) (Zhang et al., 2023) We train CaFo, using the provided
open source code, on each k-shot datasets. We do not compare to the full training set results since
these are not reported in the original paper, and CaFo was developed for few-shot learning. For the
Flowers102 and FGVC datasets, we use CaFo pre-generated DALL-E images and GPT-3 prompts.
For the other two datasets, we generate our own DALL-E images and GPT prompts following the
CaFo paper process. We use the same GPT versions and CLIP version that we use for GIST. For
each k-shot experiment, we report the best score between using 1 DALL-E generated image or
using k DALL-E images.

• Finetune Like You Pretrain (FLYP) (Goyal et al., 2023) We fine-tune the pretrained CLIP model
using class names only with simple templates (e.g. “a photo of a ...”) using contrastive training.
We then train a linear probe on the learned image encoding and report the classification accuracy.

4.4 FINE-GRAINED CLASSIFICATION RESULTS

Quantitative Results. Table 1 summarizes full-shot and 5-shot classification top-1 accuracy re-
sults, and we provide 3-shot and 1-shot results in the Appendix. For the full-shot and for the CLIP-
ZS experiments, we compute statistics over 1000 bootstrapped samples of the test set. For 5-shot,
we report the accuracy and standard deviation on the full test set for each dataset. For each k-shot
experiment, we average the test results over three samples of k training images.

GIST outperforms all baselines on all datasets, often by substantial margins, for top-1 accuracy in
both the full-shot and 5-shot case. Our improvements over the previous state-of-the-art, FLYP, are
statistically significant, using a paired t-test. We find a similar trend for top-3 accuracy (Appendix).
The Flowers102 and CUB200 datasets have relatively high image-text alignment in the pretrained
CLIP embedding space as shown by the CLIP-ZS accuracy. In contrast, the Fitzpatrick40 and FGVC
datasets have low CLIP-ZS accuracy, indicating they are less well represented in the pretrained CLIP.
GIST is able to achieve better classification performance for all four datasets despite the difference
in initial image-text alignment.

Qualitative Results. We also analyze the generated data for each method to better understand
the quantitative results. Our method, CaFo, and LaBo all use the same GPT models, but each
method prompts GPT differently and has different ways of using the generated text. Figure 4 shows
randomly selected examples of ground truth images from each dataset, corresponding generated text
from each method, and generated DALL-E images (for CaFo). Additional examples can be found
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Figure 4: Qualitative examples of dataset training images and corresponding generated data from
each method. Compared to other methods, GIST provides concise captions that capture key visual
features in the image relevant to classification.

in the Appendix. Our image-text matching and text summarization steps ensure that our matched
text is concise and image-specific. In comparison, CaFo generates long text that, while informative,
contains extraneous words and might not be specific to the described image. CaFo’s DALL-E images
convey correct coarse-level details, but often miss or incorrectly generate fine-grained details. For
Fitzpatrick40, the DALL-E images often contain class-inconsistent details such as incorrect shape,
texture, or color of the disease. We show more examples of the DALL-E images in the Appendix
(Figure 9). LaBo generates text concepts for each class, uses a selection function to narrow the set
of candidate concepts, and then weights the similarity between classes and each concept. We find
that some concepts carry useful information, while others are generic or not descriptive of visual
features. For example, the LaBo text description “black mask that extends through its yellow eyes”
provides useful visual knowledge of the Common Yellowthroat. However, LaBo text descriptions
such as “prefers open habitats such as marshes, fields, and edges of woods” and “beautiful and
popular choice for gardens” are less helpful for classifying images of bird or flower species. FLYP
creates text by appending “A photo of a” to each class name. FLYP achieves impressive results with
their short captions and does not risk having incorrect or irrelevant information like CaFo and LaBo
do. However, the FLYP text descriptions are not interpretable and do not capture visual descriptors
that describe and differentiate classes. This provides less insight into how the model makes its
classification decisions.

4.5 METHOD ANALYSIS

We analyze and provide insight into the GIST design choices. We run all ablation studies on Fitz-
patrick40 since it is the most difficult few-shot dataset. We expect that our ablation findings would
generalize across the other datasets.

Methods RN50 ViT-B/16 ViT-B/32 ViT-L/14 ViT-L/14@336px

CLIP LP 31.97 (2.85) 38.37 (2.93) 35.88 (2.90) 42.27 (3.14) 41.49 (2.99)
FLYP 32.58 (2.84) 40.35 (3.03) 37.25 (2.87) 43.97 (3.05) 42.18 (2.98)

GIST (Ours) 33.40 (2.81) 43.91 (3.01) 42.08 (2.97) 47.45 (3.12) 46.96 (3.13)

Table 2: GIST-generated captions improves on 5-shot Fitzpatrick40 classification over a selection of
different CLIP models. The top-3 GIST matched captions are used for fine-tuning.
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CLIP Model Selection. We show classification accuracy on the 5-shot Fitzpatrick40 dataset using
different CLIP models for the linear probing baseline, the best performing baseline, and GIST. Table
2 shows that performance for all methods can differ substantially depending on the CLIP model.
However, GIST consistently outperforms the other methods regardless of the CLIP model used.

Methods 1 2 3 4 5

Fitzpatrick 44.10 (2.97) 44.43 (3.04) 46.96 (3.13) 45.15 (3.01) 46.69 (3.03)
CUB200 79.52 (0.55) 79.14 (0.55) 79.19 (0.54) 79.34 (0.54) 79.25 (0.54)

Flowers102 97.88 (0.29) 97.52 (0.31) 97.52 (0.31) 96.96 (0.35) 97.06 (0.34)
FGVC 49.13 (0.87) 48.69 (0.86) 49.33 (0.86) 49.44 (0.86) 48.54 (0.86)

Table 3: We report average accuracy and standard deviation for 5-shot classification with different
values of t matched captions in each column. The results show that the best number of GIST matched
captions is dataset dependent, however, GIST classification accuracy is not strongly affected by the
number of GIST matched captions.

Number of Captions. We show the classification accuracy for different numbers of matched cap-
tions, t, on the 5-shot classification task for all datasets. Table 3 shows that the best number of
matched captions is dataset dependent, however, GIST achieves strong classification accuracy in-
dependent of the number of matched captions per image. We hypothesize that datasets with lower
image-text alignment in the pretrained CLIP representation space (approximated by the zero-shot ac-
curacy) slightly benefits from more matched captions per image because the additional information
helps with aligning text concepts to images.

Caption Length. Our results show that leveraging text descriptions improves image classification.
However, there are many possible design choices for how to generate and leverage text descriptions.
We find that automatically shortening the original GPT generated text and then using the shortened
texts to fine-tune CLIP improves downstream fine-grained classification performance over using the
original longer generated text or using only the label name in a template (e.g., the FLYP method).
For 5-shot classification on Fitzpatrick40, the average accuracy and standard deviation are 42.18
(2.98) for FLYP, 42.25 (3.12) for our method using long GPT descriptions, and 44.10 (2.97) for our
method using the summarized GIST text descriptions.

Captioning Model Comparison We compare GIST to off-the-shelf captioning models, GIT and
BLIP. For all generated captions, we append class label names. Using GIST captions to finetune
achieves the best fine-grained classification on all shots for Fitzpatrick40 classification. The full-
shot average accuracy and standard deviation is 74.17 (2.72) for GIT, 73.83 (2.75) for BLIP2, and
75.77 (2.67) for GIST (ours). The 5-shot average accuracy and standard deviation is 42.96 (2.99)
for GIT, 42.66 (3.03) for BLIP2, and 46.96 (3.13) for GIST (ours).

5 CONCLUSION

We present GIST as a method for generating fine-grained image-specific text descriptions and
demonstrate how to use GIST to learn an aligned image-text embedding space for improved any-
shot classification. Compared to previous approaches, our text generation and image-text matching
methods produce captions that are concise and specific to distinguishing image features. Our results
demonstrate that fine-tuning CLIP, using contrastive learning, on our image-text pairs results in a
well-aligned representation space, regardless of the original pretrained alignment. We show that
applying GIST to image classification outperforms recent vision-language classification methods,
black box probing methods, and image-only methods on full-shot and k-shot experiments for four
diverse fine-grained datasets. One current limitation of GPT is that it does not always output ac-
curate information, even with specific prompts. Thus, our current GIST method does require some
limited manual checking for particular datasets (more detailed information in the Appendix.) We
expect that as LLMs continue to improve, this will not be required.
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A APPENDIX

A.1 FITZPATRICK17K CLEANING

The original Fitzpatrick17k dataset (Groh et al., 2021) has 11,788 labeled images collected from
two dermatology websites, DermaAmin and Atlas Dermatologico. As mentioned in the CiRCLe
paper (Pakzad et al., 2023), the Fitzpatrick17k dataset contains some erroneous images that are un-
related to dermatology, such as X-ray images (Figure 5 in the CiRCLe paper). Additionally, there is
large class imbalance amongst the 114 class labels. We selected a subset of the dataset to manually
clean and form a new dataset. To determine which classes to include in our new dataset, we orga-
nized the classes by number of examples. We selected classes that had under 100 images for ease of
manual cleaning. We excluded six classes that had less than 100 images because they were diseases,
such as neurotic excoriations, that require non-visual information to diagnose. Fitzpatrick40 has
2,609 images, which we split into 2,115 training, 222 validation, and 272 test. There are between
25 and 73 training images per class.

The labels in our Fitzpatrick40 dataset include: becker nevus, epidermal nevus, pilar cyst, ery-
thema nodosum, stasis edema, sun damaged skin, xeroderma pigmentosum, behcets disease, peri-
oral dermatitis, lentigo maligna, disseminated actinic porokeratosis, halo nevus, solid cystic basal
cell carcinoma, port wine stain, livedo reticularis, lichen simplex, ichthyosis vulgaris, dyshidrotic
eczema, congenital nevus, naevus comedonicus, aplasia cutis, porokeratosis of mibelli, calcinosis
cutis, seborrheic keratosis, erythema elevatum diutinum, mucous cyst, pilomatricoma, erythema an-
nulare centrifigum, acrodermatitis enteropathica, pustular psoriasis, pityriasis lichenoides chronica,
nevocytic nevus, lichen amyloidosis, keratosis pilaris, granuloma pyogenic, epidermolysis bullosa,
drug induced pigmentary changes, basal cell carcinoma morpheiform, acanthosis nigricans, nevus
sebaceous of jadassohn.
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A.1.1 DUPLICATES AND NON-DERMATOLOGY IMAGES

After noticing there were duplicate images in the full dataset, we moved all duplicates and near
duplicates in the test set to the training set. We found these duplicates by using the Sentence Trans-
formers framework to embed the test set images into the CLIP embedding space (clip-ViT-B-32).
We used cosine distance to find similar images. We found .95605 to be a good threshold to filter
out duplicates in the test set. Once all duplicates were removed from the test set, we compared each
remaining image to images in the validation and training set. We used the same threshold to filter out
similar pairs and visually checked pairs with scores above the threshold. If we found a test set image
that had near duplicates in the validation or training set, we moved both images to the training set.
In addition to removing duplicates from the test set, we manually looked through the entire dataset
and removed images irrelevant to dermatology (e.g. images similar to the ones mentioned in the
CirCLe paper (Pakzad et al., 2023)).

Figure 5: Examples of mislabeled images in the Fitzpatrick17k dataset. We compared the dataset
label with the ground truth labels on the original source dermatology website.

A.1.2 INCORRECTLY LABELED IMAGES

The Fitzpatrick dataset was collected from two dermatology websites, DermaAmin and Atlas Der-
matologico. We could not find ground truth labels for the Atlas Dermatologico images. However,
when working with the 40 label dataset, we realized several DermaAmin images were labeled dif-
ferently in the Fitzpatrick dataset than on the website (Figure 5). We manually checked all of the
DermaAmin images in the 40 label set. We looked at the DermaAmin URL label and compared it to
the fitzpatrick label. If the label was different, we used Google and ChatGPT (Brown et al., 2020) to
check whether the labels were synonyms of each other. If the Fitzpatrick label described a different
disease than the DermaAmin disease, then we either 1) removed the image if the ground truth label
was not one of the 40 labels in our dataset, or 2) changed the image label if its ground truth label
was one of the 40 labels different from its current Fitzpatrick dataset label. In some cases, the label
synonyms were unclear (e.g. clinical websites differed in opinion). If we found a clinical website
supporting that the labels were synonyms, we left the image as is. In future work, we would like to
work with dermatologists to confirm the dataset cleaning choices.

For the training set, we removed a total of 223 images of the original 2338 training images and
corrected the labels of 27 images. 223 mislabeled images had ground truth labels that were not
one of the 40 labels, so we removed them entirely from the dataset. Seven images were labeled as
mucous cysts when they were actually sebaceous cysts (pilar cysts). Twenty images were labeled as
naevus comedonicus when the source website says they are congenital nevus.

For the validation set, we removed a total of 33 images of the original 255 validation images and
corrected the labels of four images. 33 of the mislabeled images had ground truth labels that were
not one of the 40 labels, so we removed them entirely from the dataset. One image was labeled as
mucous cysts when they were actually sebaceous cysts (pilar cysts). Three images were labeled as
naevus comedonicus when the source website says they are congenital nevus.

For the test set, we removed a total of 34 images of the 306 test images and corrected the labels of
five images. 34 of the mislabeled images had ground truth labels that were not one of the 40 labels,
so we removed them entirely from the dataset. Five images were labeled as naevus comedonicus
when the source website says they are congenital nevus.
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A.2 CUB200 MISLABELED IMAGES

The CUB200-2011 (Wah et al., 2011) is a well-cited, commonly-used dataset for image classifica-
tion. The dataset offers great diversity of images and bird species. While working with the CUB200
dataset and examining validation images misclassified by our model, we noticed that some images
in the dataset are mislabeled or are partially incorrect (e.g. have two different bird species present).
We show a few of these images in Figure 6.

Figure 6: CUB200-2011 images that have incorrect or partially incorrect labels.

A.3 GIST GPT PROMPTS

We provide the prompts we use for each dataset to generate the long GPT captions.

Given a set of generic body parts: face, neck, arms, torso, legs, torso, scalp, hands, feet. For the
Fitzpatrick40 labels, we generate long class captions with:

"You are a dermatology disease describer. Describe what an image of
<<disease>> might look like on a person’s <<body part>>."

For the CUB200-2011 labels, we generate long class captions for the male and female bird genders
with:

"You are a bird species describer. Describe what an image of a <<gender>>
<<species>> might look like."

For the Flowers102 labels, we generate long class captions for flower species with:

"You are a flower describer. Describe what an image of a flower of
<<species>> might look like."

For the FGVC labels, we generate long class captions for aircraft models with:

"You are an airplane model describer. Please describe distinguishing
characteristics of what the plane looks like in 2-3 sentences. What
would a plane of type <<model>> look like?"

A.4 GIST CAPTION LENGTH

Our method uses GPT to generate long class-specific descriptions. After matching each training
image to a description, our method uses GPT again to summarize the matched descriptions into
concise captions. We show examples of the original long and the summarized short captions in
Table 4. As explained in the main paper and supported by our method analysis studies, having
longer captions is useful for the image-caption matching phase. Including details, such as body
part, in the longer captions increases the likelihood that matched long captions will accurately and
specifically describe the images. After this matching, we find that using GPT to summarize the
captions results in descriptions that contain the key visual features needed for classification.
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Class Labels Dataset Long Caption Short Caption

Levido Reticularis Fitzpatrick40

“The image shows a person’s back.
The skin is mottled with a network of

red or purple discoloration. The
discoloration appears in a reticular
pattern with a lace-like structure.”

“mottled red or purple discoloration in
reticular pattern”

Erythema Nodosum Fitzpatrick40

“The image shows a person’s leg with
raised, red, tender lumps. The lumps
are usually on the shins, and may be
painful when touched. The lumps are

usually red to purple in color, and may
be swollen.”

“raised, red, tender lumps”

Red-winged Blackbird CUB200

“The male Red-winged Blackbird has a
black body with a red and yellow wing
patch on each shoulder. It has a sharp,

pointed black beak and a sleek in
appearance”

“black body with red and yellow wing
patch, sharp pointed black beak, sleek

in appearance.”

Yellow-billed Cuckoo CUB200

“The female Yellow-billed Cuckoo has
a slender, sleek body with a long tail.
She has a brownish-grey back, a white
chest and belly, and prominent white

spots on her dark tail. The bill is
yellow on the lower mandible and

black on the upper mandible.”

“brownish-grey back, white chest and
belly, white spots on tail, yellow lower

mandible, black upper mandible.”

Frangipani Flowers102

“Frangipani flowers have large, showy
blooms with five broad, waxy petals

that create a visually captivating
display. The petals can appear in

various colors, including shades of
white, yellow, pink, or orange with a

yellow or white center. The petals
often have a smooth texture.”

“large, waxy, and fragrant flowers that
have five to nine petals in a star shape
and come in a variety of colors such as

white, pink, yellow, and red”

Poinsettia Flowers102

“The poinsettia flower is captivating
with its vibrant colors and unique
structure. The bracts, which are

modified leaves, are the main attraction
of this flower. They are typically in

shades of red, but can also be found in
pink, white, or even specks of yellow.
The bracts are large and oval-shaped,
with a slightly wavy or scalloped edge

that adds a touch of elegance.”

“deep red, star-shaped flowers
surrounded by bright green, leaf-like

bracts”

727-200 FGVC Aircraft

“The Boeing 727-200 is a trijet,
narrow-body airliner known for its

distinctive T-tail configuration. It has a
relatively short and stout fuselage with
three engines mounted at the rear tail

section. The aircraft’s wings are
swept-back and positioned low on the
fuselage. Its unmistakable appearance
is further enhanced by the distinctive

trijet engine arrangement and the
characteristic dorsal intake on top of

the tail.”

“trijet, narrow-body airliner, T-tail
configuration, short and stout fuselage,

three rear-mounted engines,
swept-back low wings, distinctive trijet
engine arrangement, dorsal intake on

top of tail”

747-100 FGVC Aircraft

“The Boeing 747-100 is a large
wide-body jetliner renowned for its

iconic appearance. It features a
distinctive hump-shaped upper deck,

creating an instantly recognizable
profile. With four engines mounted
under the wings, the 747-100 has a

long and elegant fuselage.”

“large, wide-body jetliner,
hump-shaped upper deck, four engines
mounted under wings, long and elegant

fuselage”

Table 4: The original long captions generated by GPT are useful for pairing images to captions.
The summarized GPT captions provide more concise descriptions of important visual features for
classification.
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Figure 7: Example GIT, BLIP2 and GIST generated captions for Fitzpatrick40 images. For the
dermatology images, GIST contains the most disease relevant information in comparison to off-the-
shelf captioning models.

A.5 OFF-THE-SHELF CAPTIONING COMPARISONS

Figure 7 shows GIST captioning qualitative results in comparison to off-the-shelf captioning meth-
ods for three images from the Fitzpatrick40 dataset. Clearly, the GIST captions contain more disease
specific captions. Some of the off-the-shelf captions are incorrect. For example, in the second row,
BLIP2 identifies a toothbrush in the mouth of the baby even though neither the baby’s mouth nor a
toothbrush are shown.

Experiments GIT Ours

Full 64.83 (2.98) 74.59 (2.62)
5-shot Top-1 24.02 (1.21) 44.10 (2.97)
3-shot Top-1 12.13 (2.40) 40.24 (2.95)
1-shot Top-1 1.42 (0.29) 19.10 (2.19)

Table 5: Fine-tuning CLIP on GIST captions outperforms fine-tuning an image captioning model on
GIST for classification on the Fitzpatrick40 dataset. We fine-tune GIT to output a caption containing
the class prediction. We report the average accuracy and standard deviation for full-shot and few-
shot classification. For the full-shot, we compute statistics over 1000 bootstrapped samples of the
test set. For few-shot classification, we compute statistics over three k-shot samples. The results
show that for the same GIST captions, fine-tuning CLIP results in better classification accuracy than
fine-tuning the GIT captioning method.

A.6 VISUAL GROUNDING COMPARISON

We compare our method to a visual grounding image captioning method, GIT (Wang et al., 2022),
for both fine-grained text generation and fine-grained image classification. As shown in the bottom
row of Figure 8, the pretrained GIT model outputs coarse captions that mostly focus on object-level
details. In contrast, our GIST captions capture more fine-grained details.

We additionally compare our fine-tuning CLIP approach with fine-tuning GIT for classification
using the GIST fine-grained image-text pairs. We fine-tune GIT on our paired images and GPT-
generated text descriptions with three captions per image. We append the ground truth class name to
the text descriptions, in the format “description : class name”, to form the image training captions.
At inference time, we classify an image by comparing the class name in the caption to the ground
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truth class name. Table 5 shows the average accuracy and standard deviation for the full-shot and
k-shot experiments on the Fitzpatrick40 dataset. Our fine-tuning with the GPT-generated matched
captions outperforms fine-tuning GIT with the same image-text pairs. Figure 8 shows the GIT gen-
erated captions for two test images across different classification experiments. Without fine-tuning,
GIT focuses on objects or coarse-grained details without domain knowledge. When fine-tuning on
the full training set, GIT learns to properly describe the important image features and predict the
correct class name in many cases. In the k-shot experiments, however, GIT quickly overfits to the
training examples. The descriptions contain useful features, but are attributed to the wrong class.

Figure 8: Examples of generated captions and class predictions from GIT for two Fitzpatrick40 test
images. While the captions provide useful information and accurate predictions for the full-shot
experiment, GIT overfits on the few-shot experiments. Without fine-tuning, GIT lacks fine-grained
domain details.

Figure 9: Examples of ground truth images from our dataset compared to the DALL-E images
generated for the CaFo method. For the Fitzpatrick40 dataset, DALL-E is unable to generate realistic
images for most diseases. For example, the generated halo nevus image is missing the key light-
colored halo feature. For the other three datasets, DALL-E is able to generate coarse details, such as
color or shape, correctly, but the images don’t always appear realistic.

A.7 ADDITIONAL QUALITATIVE RESULTS COMPARING VISION-LANGUAGE METHODS

A.7.1 DALL-E IMAGES

Figure 9 shows DALL-E generated images from each dataset and their ground truth labels, which are
used for the CaFo baseline method. While DALL-E is able to generate correct coarse-grain and fine-

17



Under review as a conference paper at ICLR 2024

Figure 10: Generated captions and concepts from each method. Our method, GIST, generates con-
cise but detailed captions. The baselines either generate short captions that lack visual features or
generate long captions that have superfluous words.

grain details for flowers, birds and aircrafts, the photos are not fully realistic and lack sharp details.
Furthermore, it often misses important features for the dermatology dataset. For example, the halo
nevus image is missing the distinctive lighter pigmented halo around the dark mole. Our results in
Section A.8 show that the DALL-E images help the CaFo method in the 1-shot classification setup,
but do not boost performance compared to our method for other k-shot experiments. We hypothesize
this is because the DALL-E images convey enough visual features to add information in the 1-shot
setup, but lack enough realism and important features to help when there is more than one ground
truth image per class.

A.7.2 GENERATED TEXT

We show additional examples of the generated text from each baseline method and our method in
Figure 10.

A.7.3 LEARNED REPRESENTATION FEATURES

We also show an example of learned features from our fine-tuned representation space and CLIP’s
pretrained representation space. Figure 11 shows a test image (left column) that our method classi-
fies correctly and CLIP LP classifies incorrectly when trained on the full training set. The remaining
columns show the nearest neighbor training images to the test image using cosine similarity over
the L2 normalized embeddings. For the GIST method, we show the top matched caption for each
training nearest neighbor image. For CLIP, we show the ground truth label for each image. In this
dermatology example shown in Figure 11, GIST and CLIP have most of the same nearest neighbors.
However, GIST corrects the fourth nearest neighbor compared to CLIP. Even though the GIST near-
est neighbor in the fifth column does not visually look similar to the test image, they are close in
representation because they share class-specific features, as demonstrated in the text description (e.g.
“circular patch of baldness”). The GIST fine-tuned method seems to capture domain-specific fea-
tures, whereas CLIP focuses on image-specific features. The GIST representation is better for clas-
sification because the representation space should capture class-specific, rather than image-specific,
features.
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Figure 11: A qualitative example of the GIST fine-tuned representation space and the pretrained
CLIP representation space for a Fitzpatrick40 test example that our method predicts correctly and
CLIP LP predicts incorrectly. The left column shows a test image with its ground truth (GT) label.
The other five columns show the five nearest neighbor training images, in descending order, of the
test image with either the corresponding top matched caption (GIST) or the ground truth class name
(CLIP). Our approach captures domain-specific details (e.g. “circular patch of baldness”), whereas
CLIP focuses on image features that may not capture class differences.

Methods Fitzpatrick40 CUB200 Flowers102 FGVC
Top-3 Top-3 Top-3 Top-3

ResNet 85.67 (2.12) 92.63 (0.35) 99.88 (0.07) 89.11 (0.79)
ResNet-RW 85.62 (2.16) 92.35 (0.35) 89.11 (0.79) 88.98 (0.53)

CLIP ZS 7.40 (1.61) 84.47 (0.47) 85.45 (0.70) 61.12 (0.85)
CLIP LP 90.13 (1.76) 96.32 (0.25) 99.92 (0.06) 86.04 (0.60)

LaBo 81.62 (0.20) 95.17 (0.01) 99.88 (0.05) 85.27 (0.17)
FLYP 89.73 (1.89) 96.58 (0.28) 99.92 (0.06) 90.29 (0.50)

GIST (Ours) 90.81 (1.78) 96.86 (0.26) 99.92 (0.06) 90.42 (0.51)

Table 6: Fine-tuning with GIST captions achieves the best top-3 accuracy for full-shot classification
across all datasets. We report the average accuracy and standard deviation over 1000 bootstrapped
samples of the test set.

A.8 ADDITIONAL QUANTITATIVE RESULTS COMPARING VISION-LANGUAGE METHODS

We show top-3 accuracy for full-shot classification in Table 6. Our method outperforms the other
methods on three of the four datasets and ties with FLYP and CLIP LP on the Flowers102 dataset.
While we overlap for top-3 accuracy on Flowers102, we show in the main paper that we outperform
all methods for all datasets with top-1 accuracy.

We show top-1 and top-3 accuracy for k-shot experiments, where k=1,3,5, in Table 7, Table 8,
Table 9, and Table 10 for the Fitzpatrick40, CUB200, Flowers102, and FGVC-Aircraft datasets,
respectively. Our method outperforms the method on top-1 accuracy for both 5-shot and 3-shot clas-
sification. Additionally, we outperform other methods on top-3 accuracy for 5-shot classification.
CaFo performs best for the 1-shot setting. CaFo generates DALL-E (Ramesh et al., 2021) images
of each class to aid in few-shot classification. These DALL-E images are relatively, but not per-
fectly accurate, as shown in Figure 4 and Figure 9. We hypothesize that the relative improvement of
CaFo over GIST is due to GIST overfitting in the 1-shot case and that the generated images, while
imperfect, are helpful in the very-low data regime.
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Methods 5-shot 3-shot 1-shot
Top-1 Top-3 Top-1 Top-3 Top-1 Top-3

ResNet 31.62 (3.69) 50.37 (2.61) 19.98 (1.73) 40.32 (1.35) 12.13 (1.97) 25.73 (0.79)
CLIP ZS 2.94 (1.06) 7.40 (1.61) 2.94 (1.06) 7.40 (1.61) 2.94 (1.06) 7.40 (1.61)
CLIP LP 41.49 (2.99) 63.59 (3.01) 36.07 (2.94) 58.81 (2.99) 18.77 (2.23) 37.05 (2.88)

LaBo 32.17 (0.25) 60.47 (0.26) 31.62 (0.08) 54.78 (0.12) 24.63 (1.04) 53.68 (0.58)
CaFo 40.32 (0.63) 65.93 (1.83) 31.62 (2.67) 57.12 (2.11) 25.37 (1.08) 47.92 (1.21)
FLYP 42.18 (2.98) 65.50 (2.96) 39.87 (3.00) 61.20 (2.97) 19.90 (2.37) 38.35 (2.95)

GIST (Ours) 46.96 (3.13) 71.29 (2.82) 41.24 (2.95) 63.60 (3.01) 21.06 (2.38) 38.28 (2.91)

Table 7: Fine-tuning with GIST captions achieves the best top-1 and top-3 accuracy on Fitzpatrick40
for the 5-shot and 3-shot regimes. We report the average accuracy and standard deviation over three
k-shot samples. For the CLIP zero-shot experiments, we compute statistics over 1000 bootstrapped
samples of the test set.

Methods 5-shot 3-shot 1-shot
Top-1 Top-3 Top-1 Top-3 Top-1 Top-3

ResNet 49.83 (0.47) 72.05 (0.24) 34.89 (0.55) 55.04 (0.92) 13.37 (0.87) 24.65 (1.16)
CLIP ZS 63.29 (0.63) 84.47 (0.47) 63.29 (0.63) 84.47 (0.47) 63.29 (0.63) 84.47 (0.47)
CLIP LP 76.41 (0.57) 91.97 (0.36) 70.42 (0.59) 88.72 (0.42) 46.99 (0.68) 69.20 (0.62)

LaBo 73.66 (0.07) 90.51 (0.10) 69.15 (0.04) 87.27 (0.06) 54.21 (0.06) 76.79 (0.08)
CaFo 69.48 (0.28) 88.99 (0.24) 65.52 (1.21) 86.41 (2.17) 66.48 (0.38) 88.29 (0.08)
FLYP 78.68 (0.52) 93.03 (0.32) 73.11 (0.57) 90.47 (0.38) 50.28 (0.69) 70.68 (0.62)

GIST (Ours) 79.52 (0.55) 93.29 (0.34) 74.30 (0.57) 90.88 (0.38) 51.50 (0.66) 72.88 (0.60)

Table 8: Fine-tuning with GIST captions achieves the best top-1 and top-3 accuracy on CUB200-
2011 for the 5-shot and 3-shot regimes. We report the average accuracy and standard deviation
over three k-shot samples. For the CLIP zero-shot experiments, we compute statistics over 1000
bootstrapped samples of the test set.

Methods 5-shot 3-shot 1-shot
Top-1 Top-3 Top-1 Top-3 Top-1 Top-3

ResNet 81.35 (0.35) 91.30 (0.30) 72.84 (1.31) 86.45 (0.47) 48.47 (0.61) 64.78 (0.28)
CLIP ZS 76.64 (0.84) 85.45 (0.70) 76.64 (0.84) 85.45 (0.70) 76.64 (0.84) 85.45 (0.70)
CLIP LP 97.48 (0.32) 99.72 (0.11) 96.28 (0.38) 99.63 (0.12) 82.93 (0.73) 94.50 (0.45)

LaBo 96.06 (0.02) 99.11 (0.01) 92.75 (0.04) 97.28 (0.23) 80.63 (0.05) 93.24 (0.14)
CaFo 95.40 (0.68) 99.35 (0.15) 93.42 (0.56) 98.89 (0.23) 86.50 (0.95) 95.98 (0.23)
FLYP 97.80 (0.33) 99.76 (0.10) 96.89 (0.33) 99.76 (0.10) 84.56 (0.71) 95.03 (0.43)

GIST (Ours) 97.88 (0.29) 99.80 (0.09) 97.02 (0.34) 99.72 (0.10) 85.63 (0.68) 95.10 (0.43)

Table 9: Fine-tuning with GIST captions achieves the best top-1 and top-3 accuracy on Flowers-102
for the 5-shot and comparable accuracy for 3-shot. We report the average accuracy and standard
deviation over three k-shot samples. For the CLIP zero-shot experiments, we compute statistics
over 1000 bootstrapped samples of the test set.
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Methods 5-shot 3-shot 1-shot
Top-1 Top-3 Top-1 Top-3 Top-1 Top-3

ResNet 22.31 (0.54) 39.27 (1.34) 14.22 (0.37) 26.94 (0.84) 7.02 (0.56) 13.83 (0.70)
CLIP ZS 32.18 (0.83) 61.12 (0.85) 32.18 (0.83) 61.12 (0.85) 32.18 (0.83) 61.12 (0.85)
CLIP LP 45.13 (0.86) 68.79 (0.77) 39.51 (0.87) 62.76 (0.86) 26.01 (0.78) 44.82 (0.85)

LaBo 45.20 (0.02) 70.33 (0.04) 40.52 (0.03) 65.39 (0.15) 32.58 (0.28) 56.35 (0.42)
CaFo 43.16 (1.15) 70.73 (0.97) 40.85 (1.46) 68.44 (1.38) 40.05 (0.55) 69.78 (0.17)
FLYP 48.07 (0.87) 70.00 (0.79) 39.45 (0.86) 63.28 (0.86) 27.09 (0.78) 46.87 (0.87)

GIST (Ours) 49.44 (0.86) 72.93 (0.78) 41.84 (0.88) 67.30 (0.80) 28.52 (0.78) 48.85 (0.87)

Table 10: Fine-tuning with GIST captions achieves the best top-1 and accuracy on FGVC Aircraft
for the 5-shot and comparable accuracy for 3-shot. We report the average accuracy and standard
deviation over three k-shot samples. For the CLIP zero-shot experiments, we compute statistics
over 1000 bootstrapped samples of the test set.

Methods RN50 ViT-B/16 ViT-B/32 ViT-L/14 ViT-L/14@336px

CLIP LP 31.97 (2.85) 38.37 (2.93) 35.88 (2.90) 42.27 (3.14) 41.49 (2.99)
CLIP ZS 1.48 (0.73) 2.98 (1.03) 1.79 (0.81) 1.48 (0.74) 2.94 (1.06)

LaBo 23.16 (0.52) 31.44 (0.26) 29.60 (0.26) 33.91 (0.26) 32.17 (0.25)
CaFo 32.48 (4.40) 37.01 (3.04) 35.91 (2.00) 40.32 (1.71) 40.32 (0.63)
FLYP 32.58 (2.84) 40.35 (3.03) 37.25 (2.87) 43.97 (3.05) 42.18 (2.98)

GIST (Ours) 33.40 (2.81) 43.91 (3.01) 42.08 (2.97) 47.45 (3.12) 46.96 (3.13)

Table 11: GIST-generated captions improves on 5-shot Fitzpatrick40 classification over a selection
of different CLIP models. The top-3 GIST matched captions are used for fine-tuning. The relative
improvement of the GIST-generated captions over the baselines depends on the CLIP model used
for fine-tuning.

A.9 CLASSIFICATION RESULTS FOR DIFFERENT CLIP MODELS

In Table 11, we show the full results for comparing Fitzpatrick40 5-shot classification accuracy
across different CLIP methods. While classification accuracy can vary depending on the CLIP
model, our method outperforms other vision-language classification methods regardless of the CLIP
model used.

B LIMITATIONS

One current limitation of GPT is that it does not always output accurate information, even with
specific prompts. For our GIST approach, we found GPT-3 to work well without modification
for two datasets, Fitzpatrick40 and Flowers102. For FGVC-Aircraft, the GPT-3 captions required
manual checking of the captions for rare inaccurate information for particular classes. Most captions
did not require correction and the process took approximately 20 minutes of manual work. For the
CUB200 dataset, the majority of GPT-3 captions were incorrect. We therefore switched to using
GPT-4 for the CUB200 captions. These captions still required manual checking and this process took
less than a day of manual work. There is a slight improvement in accuracy when the captions are
manually checked and cleaned, however, even with the raw GPT-4 captions (no manual cleaning),
our method still has a higher average accuracy than the baselines. For example, the CUB200 5-shot
classification top-1 accuracy for fine-tuning on the cleaned GIST captions is 79.52 (0.55) versus
79.22 (0.51) when fine-tuning on the raw GPT-4 captions. The manual checking is currently a one-
time upfront cost for GIST. As LLMs improve, this will not be required.
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