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Abstract

Trained on vast corpora of human language, language models demonstrate emer-
gent human-like reasoning abilities. Yet they are still far from true intelligence,
which opens up intriguing opportunities to explore the parallels of humans and
model behaviors. In this work, we study the ability to skip steps in reasoning—a
hallmark of human expertise developed through practice. Unlike humans, who
may skip steps to enhance efficiency or to reduce cognitive load, models do not
inherently possess such motivations to minimize reasoning steps. To address this,
we introduce a controlled framework that stimulates step-skipping behavior by
iteratively refining models to generate shorter and accurate reasoning paths. Em-
pirical results indicate that models can develop the step skipping ability under our
guidance. Moreover, after fine-tuning on expanded datasets that include both com-
plete and skipped reasoning sequences, the models can not only resolve tasks with
increased efficiency without sacrificing accuracy, but also exhibit comparable and
even enhanced generalization capabilities in out-of-domain scenarios. Our work
presents the first exploration into human-like step-skipping ability and provides
fresh perspectives on how such cognitive abilities can benefit AI models.

1 Introduction

The pursuit of Artificial General Intelligence (AGI) is profoundly influenced and inspired by human
intelligence [35, 6]. Trained extensively on human language, language models not only excel in
various tasks, but also begin to exhibit emergent human-like abilities that are not explicitly engineered
into them [24]. Among these, reasoning stands out as a core human-like cognitive ability, and has
demonstrated great potential in a wide range of problem solving scenarios [47, 11, 30, 37, 28, 34].
Despite their advances in displaying human-like cognitive activities, huge gaps remain in how models
and humans actually behave [22, 46, 20]. These differences bring up interesting questions regarding
the exploration and development of similar capabilities between models and humans.

We aim to investigate whether the models exhibit any reasoning abilities unique to human experts,
and whether they can evolve from beginners to reasoning experts. When humans learn to reason,
beginners typically start with detailed, step-by-step solutions to imitate the gradual process of problem
solving. As practice makes perfect, human experts not only solve problems more swiftly but also
utilize shorter mental pathways, often skipping steps in their reasoning process [36]. This particular
ability helps them speed up the reasoning and saves cognitive load for more challenging steps [44].
As demonstrated in Figure 1, the step-skipping behavior illustrated on the right side is commonly
adopted by human experts during equation simplification.
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Step1: A * B * x * C = D / F
Step2: A * B * x = D / F / C
Step3: B * x = D / F / C / A
Step4: x = D / F / C / A / B

Step1: A * B * x * C = D / F
(Skip) A * B * x = D / F / C
(Skip) B * x = D / F / C / A
Step2: x = D / F / C / A / B

Q: A * B * x * C – D / F = 0
Solve it in 4 steps.

Q: A * B * x * C – D / F = 0
Solve it in 2 steps.

Figure 1: Step skipping in equation simplification. We use the specified number of steps in the input
as a stimulation to induce the model to perform skipping by using fewer steps.

In this work, we are curious whether models exhibit mature human-like reasoning ability — skipping
steps, and how such abilities can influence the model’s reasoning behaviors. Unlike humans, models
do not inherently possess the intrinsic motivation like time limit or skill maturity that naturally
drives efficiency in cognitive tasks. To induce the skipping step behavior in models, we introduce a
controlled training environment where models are instructed to generate reasoning sequences within
a specified number of steps. Our method includes two phases: initialization and iteration. We begin
with a dataset that contains complete stepwise reasoning processes for the questions. In initialization,
models are first trained to solve the tasks comprehensively, adhering to the full sequence of reasoning
steps. In Figure 1, the illustration on the left demonstrates how models are trained to follow a
specified number of steps. Then in the iteration phase, the models are prompted to produce shorter
answers based on the original training data (Figure 1 right). We then select the shorter reasoning paths
that still achieve correct answers and mix them with the full-step reasoning paths. This expanded
dataset is used to train a new model to have advanced step-skipping capabilities. Each iteration
refines the model’s ability to identify how steps can be skipped without sacrificing accuracy. Finally,
we fine-tune the models using these iteratively generated datasets, including data instances that
demonstrate successful step-skipping during each iteration.

We conduct experiments with three different reasoning datasets, each characterized by clear internal
reasoning steps, to evaluate model behaviors. Empirical results demonstrate that models exhibit
and develop the ability of skipping steps in our framework - not only solving tasks effectively but
also actively omitting steps to enhance efficiency. Further analysis of model behaviors indicate that
these skipped reasoning paths act as beneficial enhancements rather than mere biased shortcuts, as
evidenced by their maintenance or even improvement of out-of-distribution (OOD) performance
across various tasks. To the best of our knowledge, this work is the first investigation into the human-
like ability of step-skipping in language models, providing empirical evidence that models can indeed
skip steps. These preliminary findings provide a fresh perspective on easy-to-hard generalization —
training models on simpler data comprising both comprehensive and skipped reasoning steps can
enhance their ability to generalize to more complex scenarios. ¶

2 Related Work

Human-like Abilities in Language Models Many of the capabilities widely used in current models
are inspired by human intelligence. For instance, in-context learning enables models to address
problems by mimicking the patterns demonstrated in examples [5]. In reasoning tasks, models benefit
from progressively answer derivations and step-by-step chain-of-thought processes [47] and their
humanlike enhancements, such as planning [18], task decomposition [50], and refinement [32, 38].
Another series of studies explore from the perspectives of cognitive science and psychology [10, 2,
12, 9]. Kosinski [24] reveal that current large language models have demonstrated a certain level
of Theory-of-Mind (ToM) abilities by testing their performance to impute another’s mental states
and perspectives. Further studies [21] provide preliminary evidence of a correlation between the
embeddings in LLMs and human brain neurons during ToM tasks, while Ma et al. [31] highlights the
limitation of current ToM evaluations as they target narrow and inadequate aspects of ToM. Apart
from these cognitive abilities, our work draws inspiration from human problem solving [23, 42, 3, 44]
and evaluates language models on these unique step skipping behaviors. Additionally, our work
aligns with an expanding field exploring the correlation between System 1 and System 2 reasoning

¶Code and data are publicly available at: https://github.com/tengxiaoliu/LM_skip.
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Figure 2: Overall framework. The initialization phase aims to equip the model with the ability to
reason according to a specified number of steps. During iterations, each cycle produces a mixed
dataset Di, which is used to train a standard model to evaluate the model’s step-skipping capabilities.

mechanisms [14, 15, 49]. Rather than removing all reasoning trajectories, our work explores gradual
shortening to provide a smoother transition that mirrors natural cognitive processing.

Compositional Generalization Challenges Transformers have shown limitations in complex
compositional generalization scenarios [17, 39]. Previous work also indicates that models may
develop biased shortcut, negatively impacting their OOD performance [27, 25, 16]. A growing body
of research focuses on easy-to-hard generalization [4, 7, 19, 41, 48], where models improve their
generalization ability by learning from easy tasks, without requiring intensive supervision on harder
ones. Following this line, our work encourages the model to learn from self generated skipping paths,
which has been empirically shown to maintain and even enhance OOD generalization capabilities.

3 Method

Humans develop the ability to skip steps for several reasons. With practice in specific tasks, they
evolve from novices to experts, optimizing lengthy thought processes into quicker, more efficient
reasoning. Additionally, factors such as time constraints or the desire to conserve cognitive resources
can also prompt humans to skip steps [13]. In contrast, models lack an inherent cognitive signal that
would drive them to minimize reasoning steps. Rather than attempting to replicate these human-like
signals, we design a training approach to directly control the number of steps in their reasoning
processes. By restricting the steps in model responses, we can guide the model to self-generate data
including skipped steps. Our framework has two phases: initialization and iteration.

3.1 Initialization

We begin with a training dataset D0, which contains detailed full-step reasoning answers to the
questions. Our goal is to train a model that can generate answers by following the specified number
of steps in the input question. Depending on the characteristics of different tasks, there are two design
choices to initialize the framework: cold start and warm start.

Cold start In the cold start approach, we directly fine-tune the model on the original full-step
training data, i.e., Dinit = D0. The trained model is expected to not only learn to solve the problems,
but also adhere to the specified number of steps in the input instructions.

Warm start Training exclusively with full steps does not always guarantee the ability of controlling
the number of steps, especially for the challenging tasks. Therefore, we manually create answers that
contain skipped steps based on human expertise. Optionally, we can also randomly merge adjacent
steps or simply omit random steps within the rationales to create such skipped-step data. In either
way, we can expand the original training set with additional data Dskip that can better help models
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learn how to solve the problems with fewer steps. Thus, the data for warm start initialization can be
describes as Dinit = D0 +Dskip.

Using the prepared data, we fine-tune the model to generate the answers with the given number
of steps. For each QA pair in Dinit, the question q is concatenated with the instruction In which
indicates that the reasoning process a(n) should be completed in n steps. Therefore, the resulting
model in the initialization phase, M0, is described as:

M0 =
∏

(q,a(n))∈D0

P (a(n)|q, In), (1)

where the instruction In stands for “Solve it in n steps".

3.2 Iteration

After the initialization, the model is expected to have learned to solve the problems with detailed
steps using the specified number of steps in the input. Leveraging this particular ability, we can
encourage the model to actively engage in step skipping behavior. At the beginning of each iteration
k, the model Mk−1 is prompted to solve the same problems in the training set using fewer steps
than the full number. Responses that are both correct and meet the reduced step criterion are filtered
and composed into a new dataset D′

k. These reasoning answers are generated solely by the model
itself, reflecting its understanding after training on the initialized data and demonstrating its active
preferences when reducing steps.

We define the dataset used for current iteration as Dk = D0∪D′
k−1, where the original training set D0

includes full reasoning steps and the filtered dataset D′
k−1 contains new responses that successfully

utilized fewer steps. This ensures that the model has access to both the original complete reasoning
processes and examples of effective step-skipping generated by the model itself. To finalize current
iteration, the model Mk is trained on Dk: Mk =

∏
(q,a(n))∈Dk

P (a(n)|q, In).

The iterative training process described above requires specifying the number of steps in the input,
which is impractical in real-world applications because it can be difficult to determine the exact
number of steps needed for a given question. To be more applicable, we aim to understand how
models learn from the generated skipped data and what benefits they can derive from it. Therefore,
for each intermediate resulting dataset Dk, we train a new model using a standard QA finetuning
setting without specifying the number of steps in the input:

Mstandard
k =

∏
(q,a(n))∈Dk

P (a(n)|q). (2)

This phase aims to solidify the model’s skipping behavior, simulating a more advanced form of
cognitive processing akin to human reasoning.

4 Experiments

4.1 Datasets

We design three tasks to investigate the model’s step skipping behavior (Figure 3). In each task, the
intermediate steps needed to solve these problems are explicitly detailed and well-defined, facilitating
a clear analysis of the model’s predictions. When creating skipped data for warm start, we either
omit certain steps or heuristically merge two adjacent steps. Details on data creation can be found in
Appendix B.1.

Analog of Algebra Following Blessing and Anderson [3], we create an analog of algebra by
replacing the variables and operators with different symbols. As shown in Figure 3, each variable
and standard operator is mapped to a unique, unrelated symbol. The desired result is to isolate
the symbol ♥ (i.e., x) on the left side of the symbol ↔ (i.e., =). This task is entirely new for the
model, making it an ideal scenario to understand how models develop problem-solving abilities from
scratch. We use a heuristic script to generate the questions along with the stepwise solutions. After
generating the QA pairs, we filter the data based on the number of variables involved in the question
and the steps required to solve it. The training and in-domain test data contains questions with up to

4



Q:♋❀♙↔♏✾❤
(A - B = C * x)

Answer:
1.♏✾❤↔♋❀♙
(C * x = A – B)
2.❤↔♋ ♪♏❀♙ ♪♏
(x = A / C - B / C)

Q: 23 + 67 = ?

Answer:
1. 3 + 7 (plus carry 0) = 10 
write down 0, carry over 1.
2. 2 + 6 (plus carry 1) = 9 
write down 9, no carry over.
3. Thus, the answer is 90.

Q: Initial orientation facing 
North. … execute actions: 
Right, Around, Left

Answer:
1. East. Around, Left.
2. West. Left.
3. South.

Analog of Algebra Multi-digit Addition Directional Reasoning

Figure 3: Illustrations of three different tasks. Each question is accompanied by a comprehensive
detailed step-by-step solution.

7 variables and requiring no more than 5 steps. In addition, we create two out-of-domain datasets
of varying difficulties to evaluate generalization performance: OOD-easy includes variables unseen
during training, with 8 and 9 variables, no limit on steps. OOD-hard is the most challenging setting,
including 10 - 14 variables and ≥ 9 steps to solve. Both OOD sets contain unseen variables.

Multi-digit Addition As a basic arithmetic task, multi-digit addition naturally involves detailed
stepwise reasoning processes, serving as a suitable task for studying model behaviors in composi-
tionality generalization[45, 26, 40]. We utilize step-by-step reasoning processes to perform addition
operation digit by digit, as illustrated in Figure 3. For training and in-domain test data, we only
consider additions involving numbers with up to 3 digits. We introduce two out-of-domain datasets
depending on the number of digits involved in the addition: OOD-easy includes one number with up
to 3 digits and another with 4-7 digits. OOD-hard contains two numbers, both with 4-7 digits.

Directional Reasoning We additionally consider long-form symbolic directional reasoning, which
poses a challenge for direct solution and necessitates continuous reasoning steps to arrive at the
answer. This task provides an initial direction and a list of turning actions. The desired answer is the
final facing direction. For training and in-domain test set, we consider questions that contain ≤ 10
actions. OOD-easy includes questions with 11-20 actions and OOD-hard includes questions with
21-30 actions. The detailed statistics of three datasets can be found in Table 1.

Table 1: Dataset statistics.
Task Train In-domain test OOD-easy OOD-hard
Analog of Algebra 5,770 1,000 2,000 420
Multi-digit Addition 2,885 1,000 1,200 1,600
Directional Reasoning 2,080 1,000 500 500

4.2 Experiment Setting

For all our experiments, we use Llama 2 (7B parameters) [43] and phi-3-mini (3.8B parameters, with
context length of 4K) [1] as our base model. We train the model using a learning rate of 5e-6 for 2
epochs with the AdamW optimizer [29]. During inference, we employ greedy decoding. We run our
experiments with three different random seeds and report the average and standard deviation. All
experiments are conducted on eight V100 GPUs each with 32GB memory. The total training time
required to complete one full cycle of five iterations is under six hours.

5 Results

5.1 Can models learn to skip steps?

To make sure our framework can proceed to iterations smoothly, one crucial factor is the initialized
model’s ability to adhere to the specified number of steps in the input. In the cold start setting, we
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Table 2: Step number following ability of the initialized Llama2 models across different tasks. “#
Skipping” represents the number of instances where n− i > 0. “Step Consistency” quantifies the
match between the actual number of steps taken and the number indicated in the input. “Answer
Accuracy” calculates the percentage of correct final answers out of the “# Skipping” cases. “Average
Step” reflects the mean number of steps across all predictions within the dataset.

Analogy of Algebra Multi-digit Addition Directional Reasoning
i = 1 i = 2 i = 1 i = 2 i = 1 i = 2

# Skipping 5,308 4,159 2,844 2,175 2,071 2,049
Step Consistency 100.00 99.19 100.00 100.00 86.24 39.19
Answer Accuracy 8.14 2.77 98.35 82.58 85.47 29.62
Average Step 2.33 1.81 1.90 1.38 6.14 6.66

train the model exclusively using the full step training data. We then run inference on the training
set, instructing the model to use n− i steps to solve the question, where n denotes the original full
step number and i ∈ [1, 2]. If n− i ≤ 0, we do not ask the model to try skipping on such cases and
instruct the model to use n steps instead.

As shown in Table 2, the results demonstrate that the fine-tuned model exhibits good step-number
following ability on the Analog of Algebra — over 99 % of the answers follow the given number
of steps. Additionally, when prompted to generate condensed answers with fewer steps, the model
can produce some correct answers in the specified number of steps, achieving accuracies of 8.14%
and 2.77% respectively. Despite this relatively low accuracy, these small amount of correct data can
still assist the model in gradually developing step skipping ability through iterations. Ultimately, the
model manages to produce over 90% of correct skipping data. The trend of the data quantity change
can be found in Appendix B.2.

However, this ability varies across different tasks. For the other two tasks, models do not naturally
develop the capability for active step skipping, leading to near zero step consistency when required
to provide answers in fewer steps. To address this issue, we employ the warm start setting for these
tasks. Table 2 presents the results of Multi-digit Addition and Directional Reasoning under the warm
start setting, indicating that this approach enhances the models’ proficiency with step skipping.

Ideally, we aim for models to be initialized through cold start. The benefits of this approach are
obvious — it allows the model to spontaneously develop step skipping behavior, giving it sufficient
freedom to decide and control which steps to skip. However, our experiments have revealed that
it can be challenging for models to develop such capability in all scenarios. In contrast, the warm
start offers an alternative design choice by providing human-created skipped data. This data includes
intuitive and valid skipping steps derived from human expertise, making it more natural and helping
models develop human-understandable behaviors. However, it might also introduce human biases
that constrain the model’s independent exploration of step skipping. This influence can be mitigated
in the subsequent iteration phase, where the model is given full freedom to develop and amplify its
own step-skipping behavior.

5.2 What do models learn from skipping steps?

Based on this new mixed data including both complete and skipped answers at each iteration, we
train the standard models to analyze the change of model’s performance — what models can learn
from the behavior of skipping steps.

Models learn to solve problems more effectively with fewer steps. We evaluate the standard
models on both in-domain and OOD data, with the results presented in Table 3. Detailed results
from each iteration of the evaluation can be found in Appendix B.3. Given the simplicity of the
tasks, the model is able to overfit on in-domain data, achieving nearly perfect performance. Further
iterations of skipping steps manage to guide the model to use fewer steps while maintaining the
performance. In two OOD scenarios, we find that the model trained with mixed data performs
comparably to the model trained with complete steps on the OOD test sets, and even exhibits superior
generalization abilities. Specifically, in Analog of Algebra, Llama2 models of iteration 5 achieves
4.76% gain on OOD-easy, while phi-3-mini achieves 7.08% gain on OOD-hard set. In the Multi-digit
Addition task, the Llama2 model demonstrates a 13.91% improvement in OOD-easy performance
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Table 3: Performance comparison of models from different phases. Avg steps denotes the average
number of steps taken in the prediction. With the skipped step data, models achieve even better
generalization performance with fewer steps.

Task Iteration In-domain OOD-easy OOD-hard
Acc Avg steps Acc Avg steps Acc Avg steps

Llama2-7B

Analog of
Algebra

Cold start 99.87 3.19 85.91 4.79 7.94 11.57
Iter 5 99.80 2.43 90.67 4.05 8.10 10.92

Multi-digit
Addition

Cold start 100.0 2.86 0.06 3.25 0.00 3.69
Warm start 99.53 2.72 0.14 3.02 0.11 3.49

Iter 5 99.17 1.46 13.97 1.49 4.75 2.06

Directional
Reasoning

Cold start 100.0 7.01 90.00 15.77 42.00 19.39
Warm start 99.97 6.28 87.20 14.65 42.33 18.02

Iter 5 100.0 6.45 89.33 14.87 51.80 19.49

phi-3-mini

Analog of
Algebra

Cold start 99.60 3.19 98.04 6.16 4.05 10.01
Iter 5 99.90 2.75 98.95 5.60 11.13 7.98

Multi-digit
Addition

Cold start 99.92 2.86 35.93 5.03 5.39 5.44
Warm start 99.97 2.62 39.08 3.80 5.11 4.06

Iter 5 99.93 2.08 46.61 2.31 14.98 2.59

Directional
Reasoning

Cold start 99.83 7.01 91.47 15.46 62.67 24.85
Warm start 99.80 6.82 93.67 15.19 71.80 24.61

Iter 5 99.70 6.12 93.73 14.44 73.87 23.77

(a) Analog of Algebra (b) Directional Reasoning
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Figure 4: Comparison of models across different phases relative to question length and complexity.
Models achieve near perfect performance on in-domain data but diverge on lengthy OOD data.

and a 4.75% increase in OOD-hard performance. In the OOD-hard dataset for Directional Reasoning,
Llama2’s performance improvs by 9.2%. These results suggest that not only is the model unaffected
by potential shortcut bias from the skipping steps, but it actually benefits from the mixed training
data to gain enhanced task solving abilities. The ablation analysis on various data-mixing approaches
are provided in Appendix B.5. Furthermore, we observe that the model uses fewer steps, thereby
increasing problem-solving efficiency.

5.3 Model Behavior Analysis

5.3.1 Analog of Algebra

Figure 4(a) presents the performance of Llama2 models across various iterations in the Analog of
Algebra task, differentiated by the number of steps required in the complete answers. The solid lines
represent the accuracy of final answers. We perform uniform evaluation on the union of all in-domain
and OOD test sets. Initially, all models maintain high accuracy for in-domain problems with up to five
steps, after which a significant drop is observed as the complexity increases. As the model undergoes
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iterations, there is a noticeable improvement in its ability to handle longer step lengths (green solid
line), particularly in the range of 6 to 10 steps where other models show significant weaknesses.
The dashed lines illustrate the proportion of data exhibiting step-skipping in model predictions. The
blue dashed line indicates models initially adopt step-skipping as problems extend in length. After
iterations, the green dashed line indicates the models consistently employ step skipping in shorter
questions, thereby improving the reasoning efficiency.

5.3.2 Directional Reasoning

Figure 4 (b) illustrates the comparison of Llama2 model’s performance across different question
lengths on Directional Reasoning task. We observe that the artificial skipped data has minimal impact
on the model, with negligible differences between the cold start and warm start phases. Upon entering
the iterative phase, the model’s performance notably declines during the first iteration, particularly in
handling longer problems. This downturn may reflect the model’s adjustment from manually injected
skipped data to its own step skipping ability. Subsequent iterations show that the model benefits
more significantly from data generated during the iteration process, as evidenced by the results in
Iteration 5. The model maintains consistency with the baseline in both in-domain and out-of-domain
performances, and exhibits a slight advantage in solving longer problems. Similar to the previous
task, the Iteration 5 Ratio curve (dashed green line) also shows a significant increase in step-skipping
behavior, suggesting an evolved efficiency in reasoning as the model opts to bypass steps while
maintaining or even improving accuracy.

5.3.3 Multi-digit Addition

In Figure 5, we show a finer-grained evaluation of multi-digit addition tasks on Llama2. The
horizontal and vertical axes of the matrices represent the number of digits in the two addends for each
question in the test set (both in-domain and OOD test data). We utilize the following three metrics:
Question-level accuracy assesses whether the final answer is correct for additions involving different
numbers of digits. Step-level distribution illustrates the distribution of the digit lengths used in
each individual step of the model’s stepwise reasoning process. Step-level accuracy measures the
accuracy of the single step calculations involving different numbers of digits.

In Figure 5(a), as iterations progress, the model demonstrates improved generalization performance
across all test datasets. When initialized with a cold start, the model can only learn from the training
data involving single-digit addition steps, resulting in overfitting to in-domain test data (digit ≤ 3).
When augmented with manually created skipped data for a warm start, the model begins to incorporate
multi-digit additions with skipped steps. However, the inconsistency between the manually injected
data and the model’s inherent behavior does not significantly enhance the question-level accuracy.
As the model is encouraged to explore during the iteration phase, it undertakes broader and bolder
attempts—often combining additions across more digits in skipped steps. With the integration of
these data, the model trained on this expanded iterative dataset also shows a more pronounced ability
to solve OOD problems. As seen in Figure 5(b), the model increasingly employs multi-digit additions
in single-step operations. Furthermore, as illustrated in Figure 5(c), there is an improvement in the
accuracy of these skipped single-step operations. We believe this may be due to the model-generated
data during self-iterations, which are more conducive to enhancing its capability to skip steps, thereby
benefiting from this process.

5.4 Accuracy of Step-Skipping Answers

Figure 6 shows the step skipping behavior and accuracy of the standard models at each iteration on
the Analog of Algebra task using Llama-2. The Skipping Ratio measures how often the model skips
steps in the test set, while Accuracy reflects the correctness of these skipping answers.

We observe that in the beginning models inherently struggle in OOD scenarios, often producing
reasoning steps that are incomplete or shorter than the problem complexity requires. In “cold start"
settings, where the model is trained solely with complete steps, it performs well with in-domain
questions but fails to maintain complete reasoning steps and tends to generate shorter responses on
OOD sets. Due to its limited generalizability, these skipping or missing steps negatively impact
the performance. However, as the model progressively adapts to step skipping over iterations, the
accuracy of the shorter responses improves, suggesting it gradually develops a more reliable ability
to skip steps when appropriate. Analysis across all tasks can be found in Appendix B.4.
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Cold start

(a) Question-level accuracy

(b) Step-level distribution

(c) Step-level accuracy

Warm start Iteration 1 Iteration 5

Figure 5: Model behavior analysis on the test set of multi-digit addition task. Initially constrained
to single-digit additions, the model progressively incorporates multi-digit calculations with skipped
steps through iterative learning, showing an enhancement in solving out-of-distribution problems and
executing more complex calculations with higher accuracy.
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Figure 6: Skipping ratio and the accuracy of the skipping responses on Analog of Algebra.

5.5 Analysis on the Influence of Training Steps

Throughout the iterations, as the model progressively generates more successful step skipping data,
the size and the quality of the resulting dataset also gradually increases. This can be considered
as a special form of augmentation for answer diversity. To investigate whether the performance
improvements are primarily due to the model learning from more training steps, we increase the
number of training epochs during the initialization phase to match the data volume after iterations.
The comparison results shown in Table 4 reveal that increasing the number of training epochs does
not always lead to performance enhancements; instead, it may cause a performance decline due
to overfitting. In contrast, mixing skip-step data from the iterative process not only maintains or
improves performance in in-domain and OOD-easy tasks but also achieves consistent gains in OOD-
hard setting. When the total number of training steps is similar, the integration of skipping data yields
better performance.
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Table 4: Performance comparison across different tasks with varying training steps.
Task Iteration # steps In-domain OOD-easy OOD-hard

Analog of Algebra
Cold start - ep4 2.9K 99.9 89.7 4.5
Cold start - ep5 3.6K 100 84.9 2.4
Iteration 5 - ep2 3.3K 99.8 90.5 14.3

Multi-digit Addition

Cold start - ep5 1.8K 100 0 0
Cold start - ep6 2.2K 100 0 0
Warm start - ep2 1.4K 99.9 0 0.1
Warm start - ep3 2.1K 100 0.1 0
Iteration 5 - ep2 2.0K 99.5 13.5 5.8

Directional Reasoning

Cold start - ep3 0.8K 100 91.2 43.2
Cold start - ep4 1.0K 100 91.0 34.8
Warm start - ep2 1.0K 100 90.6 43.4
Warm start - ep3 1.5K 100 84.6 34.4
Iteration 5 - ep2 1.0K 100 90.4 56.2

5.6 Extended Iterative Training

In this section, we extend the iterative process to allow the model to skip up to 4 steps, rather than
restricting it to less than 2 steps on Analog of Algebra. The process is continued for a total of 9
iterations, and the results are shown in Figure 7. The model continues to benefit from additional
iterations beyond Iteration 5, which serves as the default cutoff in our main results. Specifically,
the accuracy on the OOD-hard set improves steadily, reaching over 18% by the ninth iteration.
This increase suggests that even with a greater allowance for step-skipping, the model’s ability to
generalize to harder out-of-domain samples is enhanced with continued training.

Simultaneously, the average number of steps taken decreases across all test sets as iterations progress,
suggesting that the model is converging towards fewer steps and becoming increasingly efficient. By
the ninth iteration, the step count appears to plateau, indicating that the model has likely reached
a stable balance between accuracy and efficiency. We hope our work provides a fresh perspective
on exploring the connection between System 2 slow reasoning and System 1 fast thinking, and on
facilitating their transformation, paving the way for future research in this direction.
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Figure 7: Performance of phi-3-mini across 9 iterations with relaxed step-skipping constraints (up to
4 steps) on Analog of Algebra. The figures show the changes in average steps taken (left y-axis) and
accuracy (right y-axis). Continuous iteration improves OOD-hard accuracy and reduces the average
number of steps, converging towards stability.

6 Conclusion

In this work, we explore the human-like ability of step skipping in language models, providing initial
empirical evidence that models can skip steps and benefit from such cognitive behaviors. Addressing
the absence of intrinsic motivation for step skipping in models, we design an approach that not only
enables models to spontaneously develop the ability but also iteratively encourages models to actively
adopt and enhance this behavior. Through experiments on three tasks, we demonstrate that models
equipped with step-skipping capabilities can solve tasks more efficiently in fewer steps, without
sacrificing accuracy. Further empirical results suggest that training on easy data containing both full
steps and skipped reasoning steps can potentially help models generalize to harder scenarios. We
hope this work offers insights into the relationship and transition between System 1 and System 2
thinking and contributes to advancing easy-to-hard generalization in language model reasoning.
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[33] A. Meurer, C. P. Smith, M. Paprocki, O. Čertík, S. B. Kirpichev, M. Rocklin, A. Kumar,
S. Ivanov, J. K. Moore, S. Singh, T. Rathnayake, S. Vig, B. E. Granger, R. P. Muller, F. Bonazzi,
H. Gupta, S. Vats, F. Johansson, F. Pedregosa, M. J. Curry, A. R. Terrel, v. Roučka, A. Saboo,
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A Limitations

Our work serves as a preliminary exploration of human-like step skipping capabilities in models,
focusing solely on the expansion of problem types in terms of length and compositional complexity,
without extending to advanced problem difficulty generalization. We also recognize that ideally there
should be a clear criterion for determining when to terminate iterations. We observe that the model
can also perform better in intermediate rounds, which suggests the need for further adjustment of this
hyperparameter. Additionally, for the convenience in evaluation, our investigations were confined to
three simple yet representative tasks. While our designed method can be applied to practical tasks,
we leave the exploration of scalability to complex reasoning scenarios as future work.

B Appendix

B.1 Details of data creation

B.1.1 Training data creation

For the Analog of Algebra task, we ensure the quality of the auto-generated dataset by creating
full-step reasoning data using standard algebraic rules applied to operators. To further verify the
validity and consistency of the intermediate steps, we utilize the SymPy [33] library. Specifically,
we perform SymPy simplification for each intermediate step and ensure that the resulting equation
remains algebraically equivalent to the final simplified answer.

For the Multi-digit Addition task, the internal results are generated using Python’s built-in calculation
modules, ensuring accurate computations.

For the Directional Reasoning task, the clarity of the question formulation guarantees that all
intermediate steps are 100% correct. Each step is derived through rule-based decomposition, ensuring
the correctness of the intermediate steps.

B.1.2 Manual skipping data for warm start

We define several heuristic rules to create skipping data for warm start initialization. For the multi-
digit addition task, we randomly merge two single-digit addition steps to form a two-digit addition
step. For the directional reasoning task, we incorporate more human expertise by skipping steps
that involve two adjacent directions that result in no change. For example, adjacent actions such as
“right-left”, “left-right”, and “around-around” will not alter the final facing direction, so we manually
skip these steps. We only manually create one skipped step within a single data.

B.2 Skipping data accuracy trend in cold start
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Figure 8: Skipping data accuracy change during cold start in Analog of Algebra.

From Figure 8, the number of correct skipping data keeps increasing as the iterations progress. Higher
accuracy results in more valid data involved in the mixed dataset. This iterative approach allows the
model to gradually develop the step skipping ability and produce more valid data with fewer steps.
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B.3 Detailed results of each iteration

Table 5 and Table 6 show the detailed performance of standard finetuned models from each iteration
on Llama2-7B and phi-3-mini respectively. We report the average performance and the standard
deviation across three runs with different random seeds.

Analyzing the results from each iteration, we find that the final iteration does not consistently yield the
best performance, highlighting the importance of identifying an optimal stopping point as a direction
for future work. Additionally, significant fluctuations are observed in the test results, particularly in
the OOD settings. Therefore, developing a more stable approach for OOD generalization tasks is
another potential area for further exploration.

Table 5: Performance comparison of models from different iterations on Llama-7B. “Avg steps”
denotes the average number of steps taken in the prediction.

Task Iteration In-domain OOD-easy OOD-hard
Acc Avg steps Acc Avg steps Acc Avg steps

Analog of
Algebra

Cold start 99.870.12 3.190.00 85.911.65 4.790.04 7.944.91 11.571.37
Iter 1 99.770.15 3.130.01 86.721.60 4.650.06 8.653.81 11.051.31
Iter 2 99.770.06 3.040.02 88.932.16 4.690.11 5.881.58 16.441.29
Iter 3 99.900.17 2.890.05 88.471.22 4.500.09 6.032.78 12.322.38
Iter 4 99.930.12 2.530.07 90.770.30 4.190.12 8.575.15 11.391.47
Iter 5 99.800.10 2.430.13 90.671.88 4.050.17 8.101.26 10.920.89

Multi-digit
Addition

Cold start 100.00.00 2.860.00 0.060.10 3.250.04 0.000.00 3.690.06
Warm start 99.530.32 2.720.24 0.140.13 3.020.38 0.110.10 3.490.37

Iter 1 99.070.23 1.750.11 14.362.75 1.850.08 4.060.89 2.180.18
Iter 2 98.870.12 1.450.07 14.111.54 1.540.07 4.441.84 2.050.08
Iter 3 99.130.23 1.460.04 16.811.70 1.530.08 4.061.00 2.000.13
Iter 4 98.770.06 1.410.04 16.084.01 1.490.05 5.131.17 2.080.11
Iter 5 99.170.35 1.460.04 13.970.42 1.490.20 4.750.87 2.060.26

Directional
Reasoning

Cold start 100.00.00 7.010.00 90.000.53 15.770.46 42.006.24 19.390.29
Warm start 99.970.06 6.280.04 87.205.21 14.650.43 42.339.25 18.022.4

Iter 1 100.00.00 6.460.04 83.005.57 14.690.14 29.476.59 14.242.86
Iter 2 99.970.06 6.440.06 86.473.93 14.950.84 40.6713.30 17.423.23
Iter 3 100.00.00 6.490.13 88.601.64 14.930.44 41.537.30 17.600.68
Iter 4 99.900.10 6.360.06 89.202.03 14.660.30 44.336.99 17.791.31
Iter 5 100.00.00 6.450.06 89.331.36 14.870.12 51.804.21 19.490.79

Cold start vs. warm start In the Multi-digit Addition task, we observe that phi-3-mini achieves
satisfactory results with cold start training alone, allowing the model to enter the iteration phase
without relying on manually provided skipping data. Table 7 shows the model’s performance when
initialized with a cold start in Multi-digit Addition. Compared to the results in Table 6, where the
model begins with a warm start, the cold start approach enables the model to independently explore
and develop its skipping behaviors. This leads to a more pronounced improvement in the OOD
settings, with accuracy of 25.06% versus 14.98% in Iteration 5 on OOD-hard. Additionally, we
observe that while warm start enables a more immediate reduction in steps, cold start shows a more
gradual decrease in the number of steps taken.

B.4 Accuracy of step-skipping answers

In this section, we provide the ratio and the accuracy of the skipping responses across three tasks
using both base models. The results are shown in Figure 9 and Figure 10. In general, the models
demonstrate a progressively enhanced step skipping capability across various test settings for all
tasks. In most cases, the model increasingly favors adopting more skipped reasoning steps over
iterations, with the accuracy of skipped responses also improving correspondingly. However, we
observe that the proportion of skipped responses fluctuates across different stages of iteration, rather
than following a strictly monotonic trend. Given that the model autonomously decides whether to
employ skipping, this pattern may indicate the model’s attempt to find a balance between using step
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Table 6: Performance comparison of models from different iterations on phi-3-mini. “Avg steps”
denotes the average number of steps taken in the prediction.

Task Iteration In-domain OOD-easy OOD-hard
Acc Avg steps Acc Avg steps Acc Avg steps

Analog of
Algebra

Cold start 99.600.10 3.190.01 98.041.09 6.160.00 4.052.11 10.010.32
Iter 1 99.770.06 3.180.00 99.020.34 6.140.02 3.173.64 9.820.69
Iter 2 99.830.12 3.130.02 98.891.08 6.070.01 5.402.74 9.000.36
Iter 3 99.900.10 2.950.05 99.540.11 5.890.09 9.923.47 7.670.39
Iter 4 99.970.06 2.710.06 99.410.00 5.620.22 10.160.96 7.340.11
Iter 5 99.900.17 2.750.28 98.950.23 5.600.33 11.131.50 7.980.44

Multi-digit
Addition

Cold start 99.920.13 2.860.00 35.9312.29 5.030.22 5.391.90 5.440.17
Warm start 99.970.06 2.620.07 39.083.87 3.800.35 5.112.62 4.060.44

Iter 1 99.870.15 2.210.06 45.036.98 2.430.30 12.360.66 2.550.34
Iter 2 99.930.06 2.020.13 49.455.18 2.220.15 13.883.84 2.420.06
Iter 3 99.930.12 2.130.08 43.085.80 2.300.13 13.541.39 2.570.07
Iter 4 99.870.15 2.010.05 45.259.93 2.280.11 12.841.10 2.520.24
Iter 5 99.930.06 2.080.12 46.6112.70 2.310.11 14.983.19 2.590.12

Directional
Reasoning

Cold start 99.830.36 7.010.00 91.473.68 15.460.25 62.6718.21 24.850.43
Warm start 99.800.17 6.820.17 93.671.94 15.190.07 71.805.30 24.610.15

Iter 1 99.930.12 6.480.15 94.401.51 14.940.13 73.136.93 24.430.30
Iter 2 99.970.06 6.360.10 95.332.42 14.720.11 74.808.67 24.260.63
Iter 3 99.670.35 6.400.13 94.471.70 14.830.13 75.406.39 24.240.60
Iter 4 99.600.35 6.230.12 95.130.95 14.720.29 72.8711.43 24.200.59
Iter 5 99.700.17 6.120.06 93.730.70 14.440.04 73.874.17 23.770.18

Table 7: Performance across iterations in the Multi-digit Addition task with the phi-3-mini model,
initialized from a cold start rather than a warm start.

Task Iteration In-domain OOD-easy OOD-hard
Acc Avg steps Acc Avg steps Acc Avg steps

Multi-digit
Addition

Cold start 99.920.13 2.860.00 35.9312.29 5.030.22 5.391.90 5.440.17
Warm start 99.970.06 2.620.07 39.083.87 3.800.35 5.112.62 4.060.44

Iter 1 100.00.00 2.830.05 37.4412.73 5.030.18 5.210.72 5.280.17
Iter 2 100.00.00 2.780.15 38.5028.87 4.770.57 4.834.05 5.000.60
Iter 3 99.900.10 2.780.07 58.789.73 5.030.20 9.040.66 5.270.13
Iter 4 99.930.06 2.380.28 49.1916.52 4.180.78 25.3511.73 4.950.27
Iter 5 99.830.15 2.540.27 55.473.49 4.510.32 25.066.79 5.290.13

skipping and providing full-step solutions. Exclusively relying on skipping would not necessarily
be the optimal answering strategy. We also find that a warm start significantly boosts the model’s
skipping behavior. Consequently, in models with a warm start, the changes across iterations are less
pronounced, though overall accuracy still improves.

B.5 Data mixing choices for standard model training

Table 8: Ablation of different data mixing choices on Analog of Algebra.

Training data In-domain OOD-easy OOD-hard
Acc Avg steps Acc Avg steps Acc Avg steps

Skipping 98.70 1.94 93.66 4.97 7.86 7.44
Skipping w/ Cold start 99.90 2.75 98.95 5.60 11.13 7.98

In this section, we analyze the role of data mixture in iterative training and its effect on the performance
of standard models Mstandard. Specifically, we examine how the inclusion of both cold-start data and
generated skipping data enhances the model’s generalization ability and comprehension of complex
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Figure 9: Skipping ratio and accuracy at each iteration on Llama2-7B.

reasoning paths. Table 8 presents an ablation study comparing different data mixing strategies with
phi-3-mini model on the Analog of Algebra task. The “Skipping” setting utilizes only the generated
skipping data D′

k−1 for training the standard model Mk, while “w/ Cold Start” incorporates both
the original cold-start data and the skipping data, which serves as the default configuration in our
experiments. The analysis is based on data from Iteration 5, and we report average performance across
three runs with different random seeds. Our findings suggest that relying solely on skipping data
may limit the model’s capacity to address OOD scenarios. Although skipping data provides shorter
average steps, it lacks the complete reasoning steps essential for a comprehensive understanding of the
task, potentially leading the model to depend on shortcuts that harm generalization. By incorporating
a mixture of cold-start and skipping data, the model is able to learn from both complete and skipped
reasoning chains, which enables a more robust understanding, supporting stronger generalization
capabilities.

B.6 Cross-Domain Generalization of Step-Skipping Ability

Table 9: Cross-domain generalization of step-skipping capability in the phi-3-mini model. In the
specified “Withheld Task” setting, step-skipping data is excluded from one specific task, while the
“All” setting includes only full-step data across three tasks.

Evaluation Task Withheld Task In-domain OOD-easy OOD-hard
Acc Avg steps Acc Avg steps Acc Avg steps

Analog of Algebra All 51.3 2.65 44.5 5.58 1.9 10.68
Analog of Algebra 53.9 2.71 56.9 5.74 7.1 10.97

Multi-digit Addition All 100.0 2.86 22.4 4.71 4.2 5.39
Multi-digit Addition 95.7 2.59 34.3 4.75 2.4 5.35

Directional Reasoning All 100.0 7.01 96.0 15.46 75.8 25.03
Directional Reasoning 97.8 6.98 96.2 15.42 80.0 24.92
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Figure 10: Skipping ratio and accuracy at each iteration on phi-3-mini. On Multi-digit Addition, we
illustrate the analysis of the model that is initialized from Cold start.

To investigate the cross-domain generalization of step-skipping capabilities, we conduct a controlled
experiment to assess the impact of step-skipping training data from one task on the model’s per-
formance in others. Specifically, we sampled 2,000 training examples per dataset, including 1,600
step-skipping answers in which exactly one step was successfully skipped from these samples, all
from Iteration 5. This setup ensures an equal balance of full-step and step-skipping data across all
three tasks.

We use the phi-3-mini model across three tasks, with the “withheld task” representing the task that
lacks step-skipping data during training. The “All” setting contains only full-step answers for all
tasks, with no step-skipping data included. The configurations are as follows:

• All setting: task1-full + task2-full + task3-full

• Withheld setting: task1-full + task1-skip + task2-full + task2-skip + task3-full

Table 9 summarizes the model’s performance on each evaluation task. The withheld task’s results
are compared to those from the “All” setting, where all tasks are trained with only full-step answers.
Our findings reveal that step-skipping data in one or more tasks positively affects the performance
of the withheld task. In most cases, models trained with step-skipping data from other tasks exhibit
improved accuracy and step-skipping performance across datasets, maintaining a comparable number
of steps to the “All” setting. For example, in the Analog of Algebra task, the average steps remain
similar, yet accuracy improvements are observed in OOD settings, indicating that training with
step-skipping data promotes a transferable ability to reason efficiently across domains. The overall
accuracy increase suggests that inclusion of step-skipping data in some tasks enables the model
to generalize this ability, even when explicit step-skipping examples are unavailable in the target
task. These results suggest that the step-skipping capability learned in one domain can generalize
across different tasks, underscoring the potential for enhancing model efficiency through strategic
data composition.
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B.7 Experiments on GSM8K

In addition to the synthetic datasets analyzed in the main body of the paper, we conduct experiments
on GSM8K [8] to evaluate the applicability of our method to more complicated tasks. To create a
controlled experimental setting, we classify data requiring no more than 4 steps in the annotated
answers as in-domain data and the remaining as out-of-domain data. Table 10 provides an overview
of the dataset splits.

Table 10: Dataset split for GSM8K.
Splits In-domain Out-of-domain Total
Train 6,235 1,238 7,473
Test 1,094 225 1,319

The results across different iterations is presented in Table 11. We observe that while the average
number of reasoning steps per iteration progressively declines, the accuracy remains stable across
iterations. Several factors may explain the limited improvement in accuracy. Analysis of the model’s
step-skipping behavior reveals that intermediate steps frequently contain errors, indicating limitations
in the model’s ability for effective step reduction. Throughout the iterations, the model struggles to
generate responses in fewer steps, as the complexity of the questions often necessitates a complete
reasoning chain to reach a solution. This aligns with findings by Yu et al. [49], which suggest that
CoT reasoning is difficult to distill into System 1. We consider further exploration of the gradual
transition between System 1 and System 2 thinking, particularly for complex tasks, as a promising
direction for future research.

Table 11: Performance comparison across different iterations. The table shows accuracy and average
steps for various test and training datasets.

Iteration Test-ID Test-OOD Train-OOD
Acc Steps Acc Steps Acc Steps

Cold start 79.89 4.23 61.33 6.5 63.33 5.99
Iter1 78.06 4.24 59.56 5.9 64.62 5.96
Iter2 78.52 4.15 57.78 5.84 63.33 6.02
Iter3 79.16 4.19 52.44 5.86 63.57 5.90
Iter4 75.69 4.16 56.44 5.78 63.97 5.88
Iter5 78.43 4.08 60.44 5.77 61.55 5.72

B.8 Case study

x + C + F = B - D – A
x + F = B - D – A – C
x = B - D – A – C - F

B / A / x = C + D 
B / x = (C + D) * A
x = B / ((C + D) * A)
x = B / A / (C + D)

Figure 11: Frequent skipping pattern in Analog of Algebra (translated into standard algebra).

Figure 11 shows two frequent cases where models spontaneously develop to skip certain steps in
iterations. Note that in Analog of Algebra, we employ the cold start setting in initialization. The
behaviors shown in the figure emerge solely from the model itself, which indicates the model has
developed its own step skipping preference. In addition, we show two cases in Figure 12 from Analog
of Algebra and Multi-digit Addition tasks. In these examples, the full step answers exhibit errors in
their reasoning processes. In contrast, the skipped step answers choose to skip steps and arrive at the
correct answer in fewer steps.
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Analog of Algebra

Q: D / G + I + B = A + C * H * F / x

Full-step answer:
A + C * H * F / x = D / G + I + B
C * H * F / x = D / G + I + B - A
H * F / x = D / G / C + I / C + B - A / C
F / x = D / G / C / H + I / C / H + B - A / C / H
x = F / ( D / G / C / H + I / C / H + B - A / C / H )

Skipped-step answer:
A + C * H * F / x = D / G + I + B
C * H * F / x = D / G + I + B - A
C * F / x = D / G / H + I / H + B / H - A / H
x = C * F / ( D / G / H + I / H + B / H - A / H )

Multi-digit Addition

Q: 3909 + 641

Full-step answer:
1. 0 + 1 (plus carry 0) = 1 (write down 1, no carry over).
2. 9 + 4 (plus carry 0) = 13 (write down 3, carry over 1).
3. 3 + 6 (plus carry 1) = 10 (write down 0, carry over 1).
4. Carry the final carry over 1 to the next place.
Thus, the answer is 1031.

Skipped-step answer:
1. 9 + 1 (plus carry 0) = 10 (write down 0, carry over 1).
2. 90 + 64 (plus carry 1) = 155 (write down 55, carry over 1).
3. 3 + 0 (plus carry 1) = 4 (write down 4, no carry over).
Thus, the answer is 4550.

Figure 12: Case study of skipped-step answers in Analog of Algebra and Multi-digit Addition.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We made clear descriptions and clarifications of our contributions. They are
well supported by the experiment results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We explicitly discuss the limitations of our paper in Section A.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This work does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
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• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
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• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We describe the necessary implementation details in Section 4.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]

Justification: While currently we have not released our code and data, we will make them
publicly available in online repository upon acceptance of this work.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe all the details of datasets and implementations in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the average results and the standard deviation in our experiments 3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We describe the compute resources for our experiments in Section 4.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This work conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work investigates the human-like behaviors of language models. There is
no necessary societal impact of this work that should be specified.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We mainly evaluate model behaviors on simple and well developed reasoning
tasks. This work does not pose such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We use Llama2 models: https://ai.meta.com/llama/license/
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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