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Abstract
Federated learning (FL) has enabled distributed
learning of a model across multiple clients in
a privacy-preserving manner. One of the main
challenges of FL is to accommodate clients with
varying hardware capacities; clients have dif-
fering compute and memory requirements. To
tackle this challenge, recent state-of-the-art ap-
proaches leverage the use of early exits. Nonethe-
less, these approaches fall short of mitigating the
challenges of joint learning multiple exit classi-
fiers, often relying on hand-picked heuristic solu-
tions for knowledge distillation among classifiers
and/or utilizing additional layers for weaker clas-
sifiers. In this work, instead of utilizing multiple
classifiers, we propose a recurrent early exit ap-
proach named ReeFL that fuses features from dif-
ferent sub-models into a single shared classifier.
Specifically, we use a transformer-based early-
exit module shared among sub-models to i) bet-
ter exploit multi-layer feature representations for
task-specific prediction and ii) modulate the fea-
ture representation of the backbone model for
subsequent predictions. We additionally present
a per-client self-distillation approach where the
best sub-model is automatically selected as the
teacher of the other sub-models at each client.
Our experiments on standard image and speech
classification benchmarks across various emerg-
ing federated fine-tuning baselines demonstrate
ReeFL’s effectiveness over previous works.

1. Introduction
Federated Learning (FL) has become an indispensable tool
to train machine learning models collaboratively without
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exchanging raw data from clients’ edge devices. In many
practical scenarios, especially in the cross-device setting,
these devices often differ in computational resources and
may not have sufficient compute and/or memory resources
to participate in federated training. This may yield conver-
gence and fairness issues, especially if the least capable
devices are consistently excluded from training. Hence, a
key challenge of FL is to divide the global model into het-
erogeneous sub-models to fit into a wide range of diverse
devices while maintaining high performance of the global
model. To this end, various existing works split the global
model by pruning its channels, also known as width-based
scaling (Diao et al., 2021; Horvath et al., 2021; Mei et al.,
2022; Hong et al., 2022), and/or utilizing early exits, also
known as depth-based scaling (Liu et al., 2022; Kim et al.,
2023; Ilhan et al., 2023; Kang et al., 2023).

Recently, approaches that use depth-based scaling, some
of which, in addition to width-based scaling, showed sig-
nificantly better performance compared to approaches us-
ing width-based scaling solely. These depth-based works
split the global model based on depth and deploy additional
classifiers, allowing each sub-model to exit early. Hav-
ing individual classifiers in a network, however, has been
previously observed to degrade performance due to the com-
peting optimization criteria across sub-models, leading to
the accumulation of conflicting gradients from these classi-
fiers (Huang et al., 2018; Song & Chai, 2018; Li et al., 2019;
Laskaridis et al., 2020). Another limitation of depth-based
scaling is that shallower sub-models are trained more often
than their deeper counterparts as these deep sub-models are
not trained with data from clients with lower resource bud-
gets (Kim et al., 2023). In addition, training with more data
does not necessarily translate to performance gains as these
shallower sub-models might not have sufficient parameters
to learn good representations (Liu et al., 2022).

To counteract these limitations, existing FL works use
knowledge distillation among either classifiers or layers
in the backbone model and/or add additional layers to im-
prove the representation capacity of shallower sub-models
at a cost of additional resources. These approaches often
require manual selection of which layers to distill from/to,
e.g. the largest sub-model acts as a teacher for the other
sub-models. However, the optimal choice of which layers
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to distill differs greatly for different FL scenarios; the best-
performing sub-model is dependent on the client’s dataset.
For instance, the largest sub-model might not be the best
performing as it is only trained with a subset of data and
the smallest sub-model might be insufficiently large to learn
good representations of the dataset.

This paper proposes a different depth-based scaling early
exit approach to counteract existing limitations better. Un-
like previous works, we use a lightweight transformer-based
recurrent early exit module ReeFL which is shared across
all sub-models. ReeFL is trained to 1) exploit and fuse
features from multiple sub-models for task-based predic-
tion, allowing us to use a single shared classifier, and 2)
modulate the features for deeper sub-models to yield better
representations. Learning to perform task-based prediction
using a shared classifier on aggregated features of multi-
ple sub-models allows deeper sub-models to leverage ear-
lier sub-models’ features. Additionally, as the classifier is
trained on the full dataset, it overcomes previous limitations
where deeper classifiers are trained on partial data. To pick
the right teacher sub-model for knowledge distillation, we
propose using the estimated best-performing sub-model per
client to distil knowledge to the other sub-models. This
adaptive best exit selection can also potentially induce com-
putation savings during inference as each client picks its
best-performing exit rather than its deepest exit. Our contri-
butions are summarized as follows:

• We present a novel approach to tackle heterogeneous
clients in FL where representations of different sub-
models are implicitly leveraged for both early exiting
and feature learning for deeper sub-models.

• We propose a dynamic way to select the best-performing
sub-model as the teacher model for knowledge distillation
for each client.

• Through our experiments, we show that our approach,
ReeFL, is scalable by accommodating a diverse range of
client resources while consistently outperforming state-of-
the-art baselines in both full federated fine-tuning (Qu
et al., 2022; Nguyen et al., 2023; Chen et al., 2023)
and emerging federated parameter-efficient fine-tuning
(PEFT) (Sun et al., 2022; Zhang et al., 2023; Zhao et al.,
2024) scenarios on standard image and speech bench-
marks. Lastly, our comprehensive ablation studies help to
elucidate the contributions of knowledge distillation and
different federated aggregation strategies.

2. Related Work
Federated Learning. FL research spans a wide range of
problems and challenges such as privacy, fairness, commu-
nication, personalization, and many more. More details can
be found in surveys (Kairouz et al., 2021; Zhang et al., 2021;
Wen et al., 2023). In this paper, we focus on the learning

of a global model, first proposed in FedSGD (Shokri &
Shmatikov, 2015) and made popular when FedAvg (McMa-
han et al., 2017) was introduced. Subsequent works aim to
optimize the global model performance by better handling
the data heterogeneity among clients. For instance, exist-
ing works finetune the global model with IID data (Zhao
et al., 2018), use regularizers to minimize the Euclidean
distance (Li et al., 2020) or maximize the agreement (Li
et al., 2021) between the global and local models, shift
the local models to alleviate its divergence with the global
model (Karimireddy et al., 2020), or perform exact mini-
mization such that local models converge to a stationary
point of the global loss (Acar et al., 2021).

Transformers. Besides algorithmic changes, researchers
also found that self-attention-based architectures such
as Transformers (Vaswani et al., 2017) are better than
convolution-based models at handling data heterogene-
ity (Qu et al., 2022). Additionally, starting from pre-trained
models as opposed to random model initialization plays
a key role in stabilizing federated training and improv-
ing performance (Nguyen et al., 2023; Chen et al., 2023).
More recently, recent FL works utilize Parameter-Efficient
Fine-Tuning (PEFT) methods to substantially reduce the
communication cost with little or no degradation in perfor-
mance (Sun et al., 2022; Zhang et al., 2023; Zhao et al.,
2024). We thus extend the conventional FL experiments to
incorporate the PEFT training in our evaluation.

System Heterogeneity in FL. Towards handling client het-
erogeneity, where participants have different hardware re-
sources, researchers have leveraged various techniques such
as quantization (Yoon et al., 2022), pruning (Caldas et al.,
2018b; Jiang et al., 2022), low-rank decomposition (Yao
et al., 2021), neural architecture search (Dudziak et al.,
2022), client selection (Lai et al., 2021), asynchronous ag-
gregation (Huba et al., 2022), or simply varying the number
of local epochs (Nguyen et al., 2023; Wang et al., 2020b;
Lee et al., 2023). Orthogonal to these approaches, but more
closely to our setting, many works proposed to partition
the global model by width (Diao et al., 2021; Horvath et al.,
2021; Hong et al., 2022; Mei et al., 2022) or depth (Kim
et al., 2023; Liu et al., 2022) or both width and depth (Kang
et al., 2023; Ilhan et al., 2023). These approaches underper-
form due to the joint training of several classifiers, which
are often competing with one another, along with a par-
tial view over the dataset and selection of a sub-optimal
teacher sub-model for knowledge distillation (Hinton et al.,
2015; Zhang et al., 2019; Phuong & Lampert, 2019). In
contrast, our method, ReeFL, learns to leverage represen-
tations across sub-models for task-based prediction on a
single shared classifier. The use of a shared classifier also
allows us to overcome the limitation of previous depth-
based scaling works where deeper classifiers are trained
with insufficient data. Additionally, we dynamically define
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the teacher-student combination, based on their per-client
performance on the downstream task.

3. Proposed Method
3.1. Preliminaries

Transformers with Early Exits. We primarily focus on the
classical Transformers (Vaswani et al., 2017; Dosovitskiy
et al., 2020) due to their surge in popularity and also growing
evidence of their capacity to better handle heterogeneous
data in FL (Qu et al., 2022). A Transformer model typically
consists of:

• A tokenizer that maps each element of the input sequence
to a d-dimensional vector (aka token).

• A learnable positional embedding for each position i is
added to the outcome of tokenization, which yields the
i-th token denoted by z0i .

• A learnable class token: z0cls ∈ Rd, where the superscript
0 indicates it is located at the entrance.

• A stack of architecturally identical blocks that apply multi-
head self-attention (MSA), layer normalization (LN) and
feed-forward multilayer perceptron (MLP) transforma-
tions on the initial sequence of tokens z0.

The forward pass of each Transformer block, for l = 1 · · ·L,
takes the form:

zl = z̄+ MLPl(LNl
2(z̄))

z̄ = zl−1 + MSAl(LNl
1(z

l−1)) (1)

where zl := [zlcls, z
l
1, . . . , z

l
n] is the output from block l,

yielding the l-th transformation of z0. Since none of the
transformations change the shape of the intermediate repre-
sentation zl, it can be fed into a classifier for early exiting.

Federated Learning with Heterogeneous Clients. We con-
sider a centralized setting of FL where the central server
holds a global transformer model θg with sub-models θg[: l],
for l = 1 · · ·L, representing L early exits. Each client, i,
has a device with a maximum resource budget of ri and Ni
private training examples {(xj , yj)}Ni

j=1 with xj the input
sample and yj the target label. For each round, c participat-
ing clients are randomly sampled from a pool of C clients
and the corresponding sub-models θi := θg[: ri] are se-
lected to fit into each client’s budget. These sub-models are
then sent to the respective clients for training (i.e., one or
few sub-model updating steps) and the updated sub-models
are sent back to the server for central aggregation. Exist-
ing aggregation strategies such as FedAvg (McMahan et al.,
2017), FedAdam (Reddi et al., 2021), FedDyn (Acar et al.,
2021) can be naturally adapted for the early-exit setting.

3.2. Recurrent Early Exits

Given the heterogeneous setting, there are two main chal-
lenges for learning early-exiting sub-models: i) shallow

sub-models face a dilemma of choosing between modu-
lating subsequent features for later predictions or exploit-
ing current features for prediction at early exits; ii) deeper
sub-models are likely overfitted because they are only af-
fordable on high-capacity clients. Prior work attempts to
mitigate these issues via knowledge distillation, typically
hand-picking the largest sub-model as the teacher (Ilhan
et al., 2023) or utilizing deep mutual learning (Zhang et al.,
2018) where each sub-model learned from one another (Kim
et al., 2023) to counteract these limitations.

Architecture of ReeFL. We propose a single Transformer-
based block module, named recurrent early exits (Ree) with
parameters ϕ, to facilitate fine-tuning of early-exiting sub-
models based on a pre-trained backbone transformer. As
suggested by its name, Ree is applied recurrently at each
early exit to simultaneously achieve feature exploration and
exploitation of the class token.

Specifically, as illustrated in Fig 1, if the client is required to
early exit at block l, Ree appends the class token zlcls to the
queue of the class tokens qcls[: l] := [zmeta, z

1
cls, . . . , z

l
cls],

and then transform it to obtain the “exploitation” and “ex-
ploration” versions of class token zlcls:

ml = Reeϕ(qcls[: l] + p[: l]). (2)

The outputs ml := [ml
0, . . . ,m

l
l] are considered as mod-

ulated class tokens, where zmeta and p are learnable pa-
rameters analogous to the class token and the positional
embedding of the backbone transformer.

There are numerous ways to parse the output ml. Empiri-
cally, we find that it is important to make the most of the
foundation model and use the modulated meta-class token,
ml

0, as an additive modification to enhance the discrimina-
tive power of zlcls. Thus, we build the shared classifier (with
parameters ψ) among all early-exit blocks as follows:

ŷl = Classifierψ(ml
0 + zlcls). (3)

To improve the feature representation of deeper layers for
subsequent prediction, Ree modulates the features of the
backbone transformer by simply replacing

zlcls ← ml
l. (4)

As such, the input to the next transformer block of
the backbone is slightly changed: [zlcls, z

l
1, . . . , z

l
n] →

[ml
l, z

l
1, . . . , z

l
n]. We show in Fig 1(b) an example of the

modulated feature development process, which alternates
between the original backbone transformer blocks and Ree.

Federated Training of ReeFL. In each federated round,
for each client, we train θi which consists of both ϕ and
ψ on the local train dataset using SGD. Note that in the
case where the backbone model is frozen, then the learnable
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Ree
Transformer Block  

eq.(1)
l

zl := [zl
cls, zl1, …, zl

n]

[ml−1
l−1 , zl−11 , …, zl−1

n ]

z1
clszmeta

ml0 ml
l

Classifier

⨁

zl−1
cls

(a) ReeFL Architecture (b) Feature Development Process

attn(ml
l , zl1:n)

attn(zl
cls, zl1:n)

zl
cls

for l = 1,…, L

m00 = z0
cls × L

Figure 1. Overview of ReeFL. (a) Early exiting of block l: Ree takes as input the meta class token zmeta, the history of class tokens,
[z1cls . . . z

l−1
cls ], and the most recent class token, zlcls, and produces two tokens: 1) the modulated meta-class token ml

0 which participates in
early-exit classification and 2) the modulated latest class token ml

l which is used to replace zlcls as a part of input to block l+ 1. Assuming
the case where there is an early exit after every block, the forward pass involves running the shown architecture L times with shared Ree
module. We assume m0

0 ≡ z0cls to be the starting point. (b) We visualize Ree’s feature modulation during the forward pass of a CIFAR-100
image by showing a sequence of attention maps. Starting from block l = 1, we show the attention map between zlcls vs. zl1:n (in blue) and
the attention map between ml

l and zl1:n (in pink) alternatively. In this particular example of an image of a baby, the distinctive feature is
the face, as learnt by later layers. In the earlier layers, particularly the 2nd, 3rd, and 4th layers, the modulated class token shown in pink
aids the backbone model to focus more on the distinguishing parts of the image as compared to the use of the unmodulated class token
shown in blue. The figure hence offers some interpretability as to how Ree’s feature modulation affects the self-attention module in the
backbone model especially in the earlier layers.

parameters of θi will be exactly ϕ andψ. Following previous
works (Kim et al., 2023; Ilhan et al., 2023), each client, i,
aims to minimize the following loss:

Li =
Eri∑
e=1

Lcee + ηLkl (5)

where Eri is the maximum exit within the client’s bud-
get, Lcee = 1

Ni

∑Ni

j=1 Lce(ŷej , yj) is the cross-entropy (CE)
loss of the e-th exit, Lkl is the Kullback–Leibler (KL) loss
denoting knowledge transfer between sub-models with its
corresponding hyperparameter η. At the end of each round,
participated clients send their locally trained parameters
back to the server where these parameters will be aggre-
gated using FedAvg (McMahan et al., 2017). As the clients
have different resource budgets, we weight the overlapping
parameters accordingly to the number of data samples used
to train each parameter.

ReeFL’s Knowledge Distillation. In many prior works, the
teacher and student sub-models in Lkl are manually defined,
e.g. from a bigger model to a smaller model (Horvath et al.,

2021; Ilhan et al., 2023) or the use of deep mutual learn-
ing (Zhang et al., 2018) where all sub-models learn from
one another (Kim et al., 2023). A major limitation of these
approaches is that the teacher sub-model selected might
be under-performing, especially in depth-scaling methods
where the deepest sub-model is trained with partial data and
the shallowest sub-model might not be sufficiently parame-
terized to learn good representations. The best-performing
sub-model is hence dependent on the client, the sub-model,
and the dataset on which it is optimized. Hence, instead of
manually picking a teacher sub-model, ReeFL uses the best
training loss per-client to select the teacher sub-model and
compute the KL loss as follows:

Lkl = 1

Ni

Eri∑
e ̸=ẽ

Ni∑
j=1

(σ(
ŷẽj
τ
) log

σ(
ŷẽj
τ )

σ(
ŷej
τ )

)τ2 (6)

where ẽ = argmin L̄ce = argmin[Lce1 , . . . ,LceEri
] is the

exit with the lowest training CE loss, σ is the softmax func-
tion and τ is the temperature. In practice, as the training loss
per mini-batch of data is noisy, we take the running estimate
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of the training loss per client: L̄ce = (1−ζ)∗L̄ce+ζ∗ ¯Lcenew
where ζ is a hyperparameter and ¯Lcenew is the training CE
loss of all exits within budget computed on a new mini-batch
of data.

4. Evaluation
4.1. Experimental Setup

4.1.1. DATASETS

We conduct experiments on classification tasks using stan-
dard FL vision & speech benchmarks of differing degree of
data heterogeneity in both feature and label distributions1.

CIFAR-100 (Krizhevsky et al., 2009). We use the default
partitions for train and test. Following prior works (Karim-
ireddy et al., 2020; Wang et al., 2020a), we set the number of
clients to 100 and partition the data using the latent Dirich-
let allocation (LDA) method: y ∼ Dir(α) for each client.
Hence, the lower the α, the greater the degree of data het-
erogeneity in label distributions.

FEMNIST (Caldas et al., 2018a). We use the LEAF bench-
mark (Caldas et al., 2018a)’s natural partition, each client
corresponds to its own handwriting, hence non-IID in both
feature and label distributions. We use a total of 381 clients.

SpeechCommandV2 (Warden, 2018). We adopt the setup
from Lee et al. (2023), sample 250 speakers from the train-
ing set, and split each speaker’s data into 80%/20% train/test
sets. However, instead of adopting the simpler 12-classes
version, we use the full version comprising of 35 classes.
Each speaker corresponds to its own voice, resulting in a
challenging setup with both non-IID features and labels.

4.1.2. MODEL & CLIENT HETEROGENEITY

Recent works showed that starting with a pre-trained model
as opposed to a randomly initialized model leads to better
stability and performance (Nguyen et al., 2023; Chen et al.,
2023). Hence, we start with a pre-trained model, using
the smaller variant of DeiT (Touvron et al., 2021), DeiT-S2,
which is pre-trained on ImageNet (Russakovsky et al., 2015).
Besides training the entire model (Full), we also include
freezing the backbone (Frozen) and training with a wide
range of popular PEFT methods, namely Serial Adapter
(SA) (Houlsby et al., 2019), Parallel Adapter (PA) (He et al.,
2022), LoRA (Hu et al., 2022), and SSF (Lian et al., 2022).
We use LN followed by a linear layer for all classifiers.

As previous works (Diao et al., 2021; Horvath et al., 2021;
Kang et al., 2023; Liu et al., 2022; Ilhan et al., 2023) typ-
ically divide the model into 3-5 submodels, we evaluate

1Code is available at https://github.com/royson/reefl.
2Experiments with other pre-trained models can be found in

Appendix Section. F

on 4 submodels, an exit every 3 DeiT-S blocks apart from
ScaleFL which selects where to place the exits via a grid
search. Additionally, we also adopt a more challenging
scenario where we evaluate on 12 submodels, an exit ev-
ery block, in order to accommodate a wider range of end-
devices. The same number of clients is allocated to each
submodel, e.g. for 4 exits, 25 clients out of a total of 100
are given a max budget corresponding to each exit.

4.1.3. BASELINES

We compare with recent depth-based FL approaches:
DepthFL (Kim et al., 2023) and InclusiveFL (Liu et al.,
2022), a recent width & depth-based approach ScaleFL (Il-
han et al., 2023), as well as a popular naive baseline, Exclu-
siveFL, where clients with insufficient budget to train the
full model are excluded during training. For fair compar-
isons, we use the same classifier architecture in all baselines.
Details of each baseline can be found in Appendix Sec-
tion. B.

4.1.4. HYPERPARAMETERS

We run each experiment 3 times for 1k rounds, sampling
10% of the total number of clients per round, and report
the mean performance of each exit, as well as the mean
and standard deviation (SD) of the mean performance of
all exits3, on the full test dataset. Each sampled client in a
FL round trains its local parameters with its local dataset
using SGD for a single epoch using batch size of 32. We ran
a simple grid search to pick the highest performing learn-
ing rate (LR) [1e−1, 5e−2, 1e−2, 5e−3, 1e−3], weight decay
[0, 1e−2, 1e−3, 1e−4], minimum LR after LR decay using a
cosine annealing LR schedule [1e−2, 1e−3, 1e−4, 1e−5], for
each baseline. More details, along with the hyperparameters
of different baselines, aggregation, and PEFT methods, can
be found in Appendix Section A.

4.2. Comparison with Baselines

Performance Evaluation. Tables 1 & 2 show the mean and
SD of the mean test accuracy of all 4 & 12 exits respec-
tively across 3 runs. ReeFL outperforms all baselines in all
scenarios except one particular scenario where we use SA
for finetuning with the CIFAR-100 dataset on clients with
IID data (α = 1000) for 4 exits. ReeFL also outperforms
baselines in most exits as shown in Fig. 2 and Appendix
Fig. 10 & 8 where we show the accuracy for each exit for
both 4 and 12 exits scenarios.

We also observe that ScaleFL, although being highly ef-
ficient, often struggles to beat the naive baseline Exclu-
siveFL, especially for Frozen and PEFT scenarios. With

3We also include the ensemble performance in Appendix Sec-
tion. H.
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Table 1. Mean and standard deviation (SD) of the mean performance of all 4 exits across 3 runs and the mean communication cost per
round for each approach.

Finetuning Approach CIFAR-100 FEMNIST SpeechCmds Comm.
Cost (MB)α=1000 α=1.0 α=0.1

Full

ExclusiveFL 67.29±0.06 66.66±0.18 60.91±0.11 84.07±0.09 73.69±0.05 53.31
InclusiveFL 61.04±0.03 60.92±0.26 54.97±0.41 84.3±0.05 77.87±1.0 52.33
ScaleFL 57.84±0.1 56.83±0.06 48.35±0.05 82.56±0.09 71.96±0.09 34.91
DepthFL 57.52±0.4 55.25±0.03 45.79±0.27 81.24±0.37 78.44±0.38 53.31
ReeFL (ours) 76.42±0.12 75.69±0.17 72.58±0.33 86.13±0.08 84.47±0.26 53.98

Frozen

ExclusiveFL 48.02±0.03 47.04±0.08 41.2±0.08 48.09±0.03 17.26±0.19 1.12
InclusiveFL 53.99±0.03 53.23±0.02 49.08±0.01 63.0±0.02 26.53±0.03 0.15
ScaleFL 28.5±0.04 27.9±0.01 25.18±0.04 28.51±0.03 10.8±0.1 0.89
DepthFL 51.27±0.01 49.07±0.05 28.63±0.54 45.49±0.84 24.37±0.09 1.12
ReeFL (ours) 67.52±0.1 66.48±0.03 61.36±0.12 82.33±0.04 66.09±0.08 1.79

LoRA

ExclusiveFL 67.46±0.03 66.4±0.03 58.78±0.06 82.98±0.09 69.93±0.1 2.53
InclusiveFL 69.37±0.02 69.03±0.07 63.55±0.13 83.76±0.09 76.79±0.1 1.56
ScaleFL 45.68±0.04 44.6±0.07 37.02±0.02 70.69±0.02 43.04±0.2 2.00
DepthFL 71.56±0.29 70.18±0.27 64.33±0.05 82.35±0.21 77.15±0.13 2.53
ReeFL (ours) 73.9±0.03 73.37±0.07 69.29±0.1 84.69±0.03 79.91±0.08 3.20

PA

ExclusiveFL 67.42±0.13 66.48±0.19 59.0±0.04 82.35±0.16 69.82±0.02 2.55
InclusiveFL 66.81±0.04 66.57±0.11 61.2±0.31 83.12±0.0 76.47±0.08 1.58
ScaleFL 46.48±0.01 45.16±0.06 38.02±0.08 72.83±0.04 43.53±0.24 2.01
DepthFL 72.01±0.05 70.79±0.08 64.92±0.23 82.54±0.17 74.46±0.24 2.55
ReeFL (ours) 72.33±0.08 71.44±0.05 66.92±0.04 84.2±0.04 78.51±0.34 3.22

SA

ExclusiveFL 68.2±0.02 67.39±0.07 59.71±0.09 82.07±0.04 68.98±0.2 2.55
InclusiveFL 67.5±0.18 67.01±0.14 61.88±0.27 82.57±0.11 75.01±0.15 1.58
ScaleFL 41.88±0.01 40.48±0.01 33.6±0.15 58.51±0.03 26.62±0.03 2.01
DepthFL 72.63±0.18 71.3±0.02 64.73±0.04 81.92±0.17 74.7±0.23 2.55
ReeFL (ours) 72.15±0.07 71.48±0.1 66.52±0.25 84.07±0.09 78.39±0.25 3.22

SSF

ExclusiveFL 66.06±0.02 65.29±0.01 57.94±0.04 79.27±0.07 57.03±0.46 1.39
InclusiveFL 67.6±0.04 67.35±0.02 62.23±0.1 82.11±0.02 71.43±0.04 0.40
ScaleFL 40.12±0.09 39.3±0.04 33.4±0.06 52.68±0.06 27.01±0.14 1.10
DepthFL 45.61±0.03 42.87±0.11 28.38±0.42 74.66±0.22 66.22±0.12 1.39
ReeFL (ours) 70.12±0.07 69.54±0.02 64.77±0.11 83.42±0.04 73.6±0.04 2.04

Figure 2. Mean accuracy of each exit across 3 runs on SpeechCommands. More results can be found in the Appendix.

full fine-tuning and PEFT, ScaleFL often performs better
than ExclusiveFL and InclusiveFL at lower compute and
memory bounds as shown in Figure. 4 and the Appendix
Section. D. However, their performance is inferior in deeper
layers, resulting in the low average performance shown in
Tables 1 & 2. As observed in many previous works such
as DepthFL and InclusiveFL, width-based scaling requires
adequate retraining of these pruned channels. Since deeper
layers are fine-tuned with fewer data, ScaleFL fails to beat
the other baselines in most higher compute and memory
regimes. This observation can also be seen with a frozen
backbone, where ScaleFL fails to outperform all baselines
in the accuracy and memory trade-off.

Lastly, for both 4 and 12 exits scenarios, full finetuning of
the backbone model along with DepthFL or InclusiveFL led
to worse performance than using a PEFT method on CIFAR-
100 and FEMNIST datasets. Although PEFT outperforming
full finetuning is a common phenomenon (Hu et al., 2022;
Zhang et al., 2023; Zhao et al., 2024; Basu et al., 2023),

its cause has not been thoroughly investigated. We hypoth-
esize that since the model is pre-trained with ImageNet,
the domain gap is smaller as compared to domain gap to
SpeechCommands, hence, the model can easily overfit on
the clients’ small local dataset and lose its generalizability.

ReeFL’s Consistent Performance. The baselines in Ta-
bles 1 & 2 show different performance depending on the
finetuning method. For instance, DepthFL, in most cases,
is the second best-performing baseline. Nonetheless, it per-
forms poorly on the SSF PEFT method and fails to converge
on more challenging scenarios, e.g. 12 exits with high data
heterogeneity on some PEFT methods including SA, PA,
and SSF. ReeFL, on the other hand, is more consistent across
different fine-tuning methods. This is due to four main rea-
sons: 1) Ree is shared and trained on the full dataset, 2) Ree
utilizes features from multi-layers, 3) ReeFL’s knowledge
distillation is dynamic, and 4) ReeFL uses FedAvg which
is more robust than FedDyn in highly heterogeneous data
and resource scenarios. In existing baselines, classifiers rely
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Table 2. Mean and standard deviation (SD) of the mean performance of all 12 exits across 3 runs and the mean communication cost per
round for each approach.

Finetuning Approach CIFAR-100 FEMNIST SpeechCmds Comm.
Cost (MB)α=1000 α=1.0 α=0.1

Full

ExclusiveFL 39.47±0.48 38.26±0.21 31.11±0.08 77.07±0.06 64.71±0.18 46.39
InclusiveFL 42.35±2.18 44.05±0.13 33.42±0.43 80.33±0.01 70.93±0.25 45.57
ScaleFL 35.63±0.09 34.29±1.33 23.41±0.17 74.68±0.05 61.57±0.25 26.40
DepthFL 46.66±0.05 43.6±0.52 33.69±0.4 78.34±0.23 71.23±0.34 46.39
ReeFL (ours) 66.83±0.24 65.89±0.19 57.55±0.78 82.98±0.03 82.34±0.27 47.21

Frozen

ExclusiveFL 39.19±0.01 37.6±0.02 28.95±0.02 42.1±0.12 14.75±0.06 0.97
InclusiveFL 43.53±0.03 41.6±0.04 32.28±0.05 53.35±0.03 20.22±0.05 0.15
ScaleFL 16.66±0.02 15.4±0.01 11.77±0.01 20.98±0.05 7.32±0.1 0.70
DepthFL 45.22±0.06 42.93±0.18 25.2±1.89 41.29±0.1 21.3±0.02 0.97
ReeFL (ours) 58.74±0.05 58.1±0.09 51.33±0.36 75.36±0.02 59.5±0.5 1.79

LoRA

ExclusiveFL 48.04±0.05 46.22±0.13 36.34±0.18 74.9±0.11 59.1±0.08 2.19
InclusiveFL 55.9±0.08 54.54±0.15 41.53±0.15 78.21±0.15 66.18±0.58 1.37
ScaleFL 35.14±0.09 33.05±0.02 22.62±0.1 59.57±0.05 44.23±0.14 1.58
DepthFL 62.74±0.09 61.3±0.11 51.9±0.15 78.97±0.15 70.66±0.07 2.19
ReeFL (ours) 65.7±0.09 65.01±0.03 58.85±0.05 81.06±0.06 75.96±0.18 3.01

PA

ExclusiveFL 45.63±0.14 43.57±0.27 32.94±2.19 73.1±0.02 59.06±0.12 2.21
InclusiveFL 52.27±0.12 50.97±0.06 39.41±0.03 73.04±0.03 63.05±0.23 1.39
ScaleFL 33.38±0.1 31.48±0.04 21.72±0.22 62.0±0.05 44.08±0.07 1.60
DepthFL 61.23±0.23 59.8±0.07 6.88±5.88 4.95±0.2 65.69±0.41 2.21
ReeFL (ours) 62.35±0.07 61.47±0.12 55.67±0.14 77.62±0.04 72.37±0.02 3.03

SA

ExclusiveFL 47.69±0.04 46.18±0.19 31.54±0.53 73.06±0.05 58.93±0.13 2.21
InclusiveFL 53.37±0.11 52.02±0.06 40.06±0.1 72.54±0.07 61.8±0.19 1.39
ScaleFL 31.33±0.07 28.97±0.05 19.27±0.02 53.08±0.01 31.65±0.11 1.60
DepthFL 62.66±0.09 60.79±0.11 1.02±0.01 4.82±0.27 65.68±0.59 2.21
ReeFL (ours) 63.28±0.13 61.94±0.2 54.99±0.1 77.43±0.04 71.52±0.13 3.03

SSF

ExclusiveFL 49.09±0.02 47.69±0.08 18.66±1.7 69.43±0.03 54.94±0.22 1.21
InclusiveFL 54.43±0.04 52.92±0.07 40.63±0.01 74.48±0.02 59.6±0.09 0.37
ScaleFL 30.01±0.01 27.99±0.05 19.24±0.03 46.63±0.02 25.17±0.12 0.87
DepthFL 47.31±0.2 44.01±0.14 1.82±0.71 5.01±0.19 3.72±0.44 1.21
ReeFL (ours) 61.85±0.02 61.25±0.17 54.42±0.13 78.05±0.03 67.44±0.24 2.01

Table 3. Ablation study on proposed aggregation strategies and knowledge distillation of depth-based scaling methods on 4 exits. Results
on 12 exits can be found in the Appendix.

Finetuning Approach Distillation Aggregation CIFAR-100 FEMNIST SpeechCmds
α=1000 α=1.0 α=0.1

Frozen

InclusiveFL - FedAvg 47.58±0.04 46.47±0.1 41.79±0.07 49.5±0.03 16.95±0.21
InclusiveFL - FedAdam 53.99±0.03 53.23±0.02 49.08±0.01 63.0±0.02 26.53±0.03
DepthFL ✗ FedAvg 48.88±0.04 48.15±0.07 45.01±0.27 49.22±0.03 17.16±0.34
DepthFL ✗ FedDyn 51.42±0.04 49.31±0.25 38.27±4.84 53.26±0.08 24.57±0.45
DepthFL ✓ FedAvg 49.38±0.03 48.57±0.01 44.88±0.07 49.19±0.07 18.45±0.11
DepthFL ✓ FedDyn 51.27±0.01 49.07±0.05 28.63±0.54 45.49±0.84 24.37±0.09
ReeFL ✗ FedAvg 67.04±0.09 66.32±0.11 61.14±0.18 81.86±0.05 65.9±0.03
ReeFL ✓ FedAvg 67.52±0.1 66.48±0.03 61.36±0.12 82.33±0.04 66.09±0.08

LoRA

InclusiveFL ✗ FedAvg 65.78±0.01 65.34±0.04 58.8±0.04 81.19±0.03 67.24±0.06
InclusiveFL ✗ FedAdam 68.04±0.12 67.97±0.0 61.89±0.29 84.12±0.19 77.81±0.1
InclusiveFL ✓ FedAvg 68.18±0.04 67.99±0.09 61.05±0.2 82.26±0.05 69.0±0.15
InclusiveFL ✓ FedAdam 69.37±0.02 69.03±0.07 63.55±0.13 83.76±0.09 76.79±0.1
DepthFL ✗ FedAvg 71.22±0.02 70.8±0.11 66.35±0.14 83.76±0.02 74.78±0.14
DepthFL ✗ FedDyn 72.89±0.1 71.83±0.08 66.53±0.26 82.2±0.02 77.49±0.29
DepthFL ✓ FedAvg 69.84±0.1 69.28±0.02 63.31±0.07 83.67±0.06 74.88±0.02
DepthFL ✓ FedDyn 71.56±0.29 70.18±0.27 64.33±0.05 82.35±0.21 77.15±0.13
ReeFL ✗ FedAvg 73.47±0.01 72.76±0.07 68.61±0.2 84.53±0.09 79.21±0.21
ReeFL ✓ FedAvg 73.9±0.03 73.37±0.07 69.29±0.1 84.69±0.03 79.91±0.08

Table 4. Mean Accuracy with and without ReeFL’s feature modula-
tion on 4 exits. Results on 12 exits can be found in the Appendix.

Finetuning Modulation CIFAR-100 FEMNIST SpeechCmds
α=1000 α=1.0 α=0.1

Frozen ✗ 53.89±0.0 53.24±0.02 44.85±0.49 61.01±0.02 20.14±0.21
✓ 67.52±0.1 66.48±0.03 61.36±0.12 82.33±0.04 66.09±0.08

LoRA ✗ 73.69±0.07 72.98±0.14 69.14±0.12 84.51±0.07 79.72±0.02
✓ 73.9±0.03 73.37±0.07 69.29±0.1 84.69±0.03 79.91±0.08

PA ✗ 71.53±0.1 70.83±0.11 66.1±0.05 84.03±0.03 77.42±0.04
✓ 72.33±0.08 71.44±0.05 66.92±0.04 84.2±0.04 78.51±0.34

SA ✗ 71.6±0.01 71.04±0.02 66.44±0.02 83.73±0.01 75.96±0.08
✓ 72.15±0.07 71.48±0.1 66.52±0.25 84.07±0.09 78.39±0.25

SSF ✗ 67.32±0.02 66.88±0.02 62.49±0.08 81.94±0.03 71.01±0.18
✓ 70.12±0.07 69.54±0.02 64.77±0.11 83.42±0.04 73.6±0.04

on features from a single layer, deep classifiers are trained
on partial data, and exits are manually selected as teacher
exits for knowledge distillation. The performance of these

baselines is more dependent on the given scenario and is
hence less consistent.

For instance, due to the low data regime at deeper exits,
these exits are more sensitive to the fine-tuning method used,
e.g. full full-tuning leads to overfitting. ReeFL counteracts
this drawback by 1) utilizing features from earlier exits in
addition to the features of the current exit and 2) learning
the fusion, through Ree, and classification of these features
on the full dataset. As another example, as different fine-
tuning methods result in different performance for each exit,
manually picking the teacher exits is only advantageous
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Table 5. Injecting Ree only at exit layers as opposed to all layers leads to similar or worse performance.
Finetuning CIFAR-100 FEMNIST SpeechCmds

α=1000 α=1.0 α=0.1
Frozen 60.63±0.02 (-6.89) 59.82±0.06 (-6.66) 54.58±0.02 (-6.78) 68.93±0.03 (-13.4) 45.42±0.07 (-20.67)
LoRA 73.86±0.04 (-0.04) 73.21±0.0 (-0.16) 69.30±0.09 (0.01) 84.54±0.03 (-0.15) 79.98±0.02 (0.07)
PA 71.89±0.13 (-0.44) 71.2±0.01 (-0.24) 66.17±0.06 (-0.75) 84.19±0.01 (-0.01) 77.93±0.01 (-0.58)
SA 71.66±0.02 (-0.49) 71.22±0.07 (-0.26) 66.4±0.13 (-0.12) 83.82±0.03 (-0.25) 76.79±0.05 (-1.6)
SSF 68.75±0.1 (-1.37) 68.09±0.03 (-1.45) 63.06±0.04 (-1.71) 82.89±0.01 (-0.53) 73.05±0.16 (-0.55)

Figure 3. Impact of ReeFL’s proposed knowledge distillation on FEMNIST (4 exits). See Appendix for more results.

in scenarios where the teacher exits are high-performing.
Ree, on the other hand, dynamically selects this teacher exit,
resulting in more consistent gains.

Lastly, in the case of DepthFL, FedDyn is the recommended
choice for parameter aggregation. FedDyn dynamically
modifies the local loss functions such that local models con-
verge to a consensus that is consistent with a stationary point
of the global loss. While FedDyn often leads to performance
gains over FedAvg as seen in Table. 3 as well as other ex-
isting works that adopt FedDyn, we observe that in highly
heterogeneous scenarios, e.g. CIFAR-100 α = 0.1, this
consensus either leads to a sub-optimal stationary point or is
not found, leading to divergence, as seen in Table. 2. A more
detailed discussion on the performance gap among these
methods can be found in our ablation study (Section. 4.3)
and in Appendix Section. G.

Training Costs. A comparison between different FL al-
gorithms remains incomplete unless metrics accounting for
communication, compute, and memory costs undergone by
the clients during training are collected. To this end, we
measure the average communication cost per round shown
in Tables. 1 & 2 for 4 & 12 exits respectively. Additionally,
we measure MACs (multiply-accumulate), using a single
224×224 input, as proxy metric of the amount of compute
needed to train a model; and, we measure the memory peak
at training time, using a batch size of 32, to quantify the
minimum amount of memory needed by a client to train the
largest sub-model within its resource budget.

As seen in Fig. 4, ReeFL outperforms existing baselines in
most cases, achieving the best accuracy given similar MACs
and peak memory constraints. Regarding communication
costs, ReeFL incurs, on average, an additional ∼1MB more
than the second best performing baseline, DepthFL. Al-
though ReeFL has marginally fewer number of parameters,
∼2K parameters fewer, in the max resource budget scenario

compared to the other depth-based scaling baselines, includ-
ing InclusiveFL, DepthFL, and ExclusiveFL, its communi-
cation cost is constant and does not scale with the number
of exits. As a result, every client has to send the shared
Ree & classifier every round, leading to the slight increase
in communication costs. However, we argue that this addi-
tional cost is marginal in most real-world scenarios, taking
a small fraction of the average bandwidth supported by both
broadband and mobile networks globally (Cisco Systems,
2020). Moreover, in realistic FL deployment scenarios, the
eligible clients are connected to power and to an unmetered
connection (i.e. WiFi), hence the main bottleneck is no
longer the upstream communication, but the device resource
capacity (Bonawitz et al., 2019). Hence, we place a greater
emphasis on the benefit-cost ratio of on-device training.

4.3. Ablation

Aggregation & Knowledge Distillation. We weight the
contribution of the aggregation strategy and knowledge dis-
tillation proposed in existing depth-based scaling works,
namely DepthFL and InclusiveFL, as well as in our ap-
proach, ReeFL. We show results for Frozen and the best-
performing PEFT approach, LoRA, in Table. 3 and Ap-
pendix Table. 10 for 4 and 12 exits respectively.

InclusiveFL proposed distilling from deeper backbone trans-
former blocks to shallower backbone blocks and hence not
applicable for a frozen backbone; this distillation leads to a
boost in performance in most cases for 4 exits but often lead
to a drop in performance in the more challenging setup of 12
exits. Their proposed aggregation, FedAdam (Reddi et al.,
2021), outperforms InclusiveFL+FedAvg by a considerable
margin in all cases. DepthFL’s proposed aggregation, Fed-
Dyn (Acar et al., 2021), on the other hand, boosts DepthFL’s
performance in most cases for 4 exits and some cases for
12 exits. Their proposed distillation, deep mutual distilla-
tion, however, often leads to a slight drop in performance as
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Figure 4. Quantifying training costs for each exit for CIFAR-100, α = 1.0 for 12 exits, where each dot along each line represents an exit.
Similar results on other datasets and scenarios can be found in the Appendix.

weaker sub-models are also selected as teacher models. In
contrast, ReeFL distillation approach often picks the better
performing sub-models as the teacher (Appendix Section C),
resulting in a slight performance boost in most scenarios
- also illustrated per-exit in Fig. 3. Most importantly, our
approach still outperforms both DepthFL and InclusiveFL
by a significant margin when all three approaches forgo
knowledge distillation and use the same aggregation strat-
egy, FedAvg.

ReeFL Feature Modulation. In Section 3.2, we detail that
ReeFL aids feature learning through modulating the feature
representations of the backbone model using the modulated
class tokens (Eq. 4). In this ablation, we further elucidate its
benefits by comparing to its unmodulated counterpart where
each block in the backbone model uses the class token from
the previous block. In Fig. 1(b), we illustrate the effects of
feature modulation through visualizing the attention maps
between the class token and other tokens before and after ap-
plying Ree. We observe that this helps the backbone model
to build visually sensible feature representation especially in
early layers. In Table. 4 and Appendix Table. 11, we show
that using the modulated class tokens as inputs to the back-
bone model helps to boost performance. This observation
is especially evident in the scenario where the backbone
model is frozen on the SpeechCommands dataset where
the pretrained model fails to reuse pretrained image fea-
tures for speech-based prediction without ReeFL’s feature
modulation. The contribution of ReeFL’s feature modula-
tion is smaller when using PEFT methods as these methods

explicitly learns new features to adapt to the new domain.
Nonetheless, our feature modulation technique aids feature
learning in most scenarios without additional costs.

Injecting Ree Only at Exit Layers. Instead of recurrently
sharing Ree among all layers, we inject Ree only at the exits
and present results for 4 exits, including the mean perfor-
mance difference with sharing Ree in all layers, in Table. 5.
As shown in the table above, sharing Ree only at exit layers
leads to either similar performance or a drop in performance.
Notably, if we freeze the backbone model, there is a con-
siderable drop in accuracy, showing that Ree benefits from
utilizing feature representations from all layers.

5. Conclusion
In this paper, we propose ReeFL, a radically distinct ap-
proach that leverages recurrent early exits to better handle
client heterogeneity, offering superior performance, train-
ing efficiency and scalability in federated fine-tuning. By
learning to weight and fuse feature representations from
sub-models of varying depth, we can utilize a single shared
classifier for all clients. Additionally, we show that these
fused feature respresentations can modulate the backbone
model to improve feature learning and subsequent predic-
tions. Coupled with our best-teacher distillation, we are
able to boost the accuracy of underperforming sub-models.
As a future work, our approach can be extended to differ-
ent modalities (e.g. language) and/or to include differential
privacy noise for efficient private learning.
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A. Training & Implementation Details
In Section 4.1, we provide a summary of our experimental
setup. In this section, we detail all hyperparameters and
configurations used in all our experiments. Code is available
at https://github.com/royson/reefl.

Baseline Hyperparameters Following the original works,
we set β = 0.2 for InclusiveFL’s momentum distilla-
tion. For DepthFL, we consistently ramp up the weight
of the KL loss, η, for 300 rounds till η = 1.0. For
ScaleFL, we use η = 0.05 and set the softmax tempera-
ture, τ = 3.0 - τ = 1.0 for all other works. For 4 exits,
we follow ScaleFL’s depth-scaling of adding classifiers to
the 4-th, 6-th, 9-th and last transformer block and width-
scaling ratios of [0.4, 0.55, 0.75, 1]. For 12 exits, we add
a classifier for every block and scale the width ratio with
[0.25,0.3,0.35,0.4,0.48,0.55,0.61,0.69,0.75,0.84,0.92,1.].

ReeFL Hyperparameters We scale ReeFL to be similar
in parameters than baselines for a fair comparison. The
number of multi-attention heads in Ree is set to 8. The
number of bottleneck features for MSA is set to 16 and the
number of hidden features in the MLP is set to 1.35× the
input features. Following DepthFL, we consistently ramp
up η for 300 rounds. Our running estimate hyperparameter
ζ is set to 0.2.

Local Training Hyperparameters Each client trains
its local parameter using SGD with momentum set to
0, batch size set to 32, for a single epoch. The
other hyperparameters are selected using a simple
grid search to pick the highest performing learning
rate (LR) [1e−1, 5e−2, 1e−2, 5e−3, 1e−3], weight decay
[0, 1e−2, 1e−3, 1e−4], minimum LR after LR decay using
a cosine annealing LR schedule [1e−2, 1e−3, 1e−4, 1e−5].
For FedAvg and FedAdam, we pick 5e−2 as the initial LR
with a minimum LR of 1e−3 after the aforementioned LR
decay. For FedDyn, we pick 1e−1 as the initial LR with a
minimum LR of 1e−2 and a weight decay value of 1e−3.
We also clip gradients by value [−1, 1] for all experiments
for better stability.

Server & Aggregation Hyperparameters We set the total
number of rounds to 1K, sampling 10% of the total number
of clients for each round. Following recommended settings,
we set FedDyn’s α = 0.1, not to be confused with α in the
Dirichlet Distribution used in the main paper. For FedAdam,
we set β1 = 0.9, β2 = 0.999, and the learning rate to 1e−3.

Backbone Model Hyperparameters We use a vision trans-
former model, pre-trained DeiT-S, as our backbone for all
experiments. Our backbone, hence, has 12 blocks, a hidden
dimension of 384, 6 multi-attention heads, and divides the
input image into 16 × 16 patches. Instead of experiment-
ing with different models, we experiment with different
PEFT fine-tuning methods which inserts different learnable

adapters to the backbone model.

PEFT Hyperparameters Rank of LoRA, Parallel Adapter
(PA), Serial Adapter (SA) is set to 32. LoRA’s α, not to be
confused with α in the Dirichlet Distribution used in the
main paper, is set to 64. Following their original works,
LoRA is applied to the query and value projection matrices,
PA & SA are inserted in each MSA and MLP block, and
SSF is inserted to every learnable parameter except the last
Linear layer in each classifier.

Data Hyperparameters To utilize the pretrained backbone
model, we resize all inputs to 224× 224 using bilinear in-
terpolation. During training, we augment CIFAR-100 and
FEMNIST images by randomly cropping and randomly flip-
ping the images horizontally. Following best practices, we
normalize all images with the mean and SD of the respective
dataset.

B. Baseline Details.
In this section, we present further details of each baseline
that we compare with. ExclusiveFL is a standard baseline
commonly used in existing works where clients with in-
sufficient compute or memory are left out. InclusiveFL
and DepthFL are depth-based approaches, which prune
the deeper layers of the model to accommodate resource-
constrained clients, showing considerable gains over previ-
ous width-based scaling methods. As the model is pruned
by depth, these methods deploy a separate classifier at each
exit.

Two key differences between InclusiveFL and DepthFL in-
clude how local optimization is performed and how knowl-
edge transfer is utilized. In InclusiveFL, each client trains
its transformer-based sub-model and the sub-model’s deep-
est classifier. On the server, InclusiveFL distills knowledge
from deeper transformer layers to earlier transformer layers
by injecting a gradient momentum distillation term that ap-
plies an extent of the average gradients of the deeper layers
to the earlier layers. In contrast, each client in DepthFL
trains all classifiers in its sub-model, along with the sub-
model itself, and employ mutual self-distillation where each
classifier acts as a teacher for the other classifiers. DepthFL
also manually hand-picked different classifiers for different
exits, with earlier exits having larger classifiers. As men-
tioned in Section. 4.1.3, we keep the classifier architecture
fixed for all exits in ReeFL and the considered baselines for
fair comparisons; the number of parameters of the global
model for ReeFL, DepthFL, and InclusiveFL is similar.

ScaleFL, on the other hand, does both width-based and
depth-based scaling, often resulting in models that are more
efficient than depth-based scaling approaches. Besides addi-
tionally pruning channels, ScaleFL employs a grid-search to
decide where to prune the global model for each sub-model
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as opposed to pruning the global model uniformly in ReeFL,
DepthFL, and InclusiveFL.

C. Teacher Sub-model Selection
In ReeFL, we select the best performing teacher sub-model
to distill from per client based on the running estimate of
the training loss of the respective client (Section. 3.2). In
Figure. 7, we show the average test performance of ReeFL
for each exit and the number of times each exit is selected
as the teacher sub-model across all max budget clients for
a single round using the running estimate of the training
loss versus using the training loss of each mini-batch. We
observe that 1) the best performing exit gets selected the
most often across clients and 2) utilizing the training loss
without the running estimate often leads to picking sub-
optimal teacher sub-models.

D. Extended Results
The following figures and tables extend the results in the
main paper: Fig. 5 & 6 show the accuracy and cost compar-
isons on CIFAR-100 α = 1000 and α = 0.1 respectively.
Fig. 10 & 8 show the mean accuracy per exit for 4 & 12
exits respectively. Fig. 9 shows the impact of our proposed
knowledge distillation for 12 exits. Lastly, Table. 10 shows
an ablation on the aggregation strategies and knowledge dis-
tillation, comparing our ReeFL with previous depth-based
scaling methods for 12 exits, and Table. 11 highlights the
benefits of ReeFL’s feature modulation for 12 exits.

E. Attention Map Visualization
To understand the “exploration” and “exploitation” impact
of Ree on class tokens, zlcls, for l = 1, . . . , L, we compare
three attention maps:

attnlx := attentionMapl(zl−1
cls , zl−1

1:n ) (7)

attnlm := attentionMapl(ml
l, z

l−1
1:n ) (8)

attnlc := attentionMapl(ml
0 + zlcls, z

l−1
1:n ) (9)

where attentionMapl(a, b1:n) is the first row without the first
element (i.e., attention between a and a) of the attention
map of MSAl(LNl1([a, b1, . . . , bn])) of shape (n + 1, n +
1,#heads) after taking a mean operation over the multi-
head dimension. We show a few examples for CIFAR-100
images in Fig 11.

F. Different Pretrained Models
In this section, we further run experiments on the much
larger DeiT-B model (Touvron et al., 2021) and some ad-
ditional preliminary experiments with a recent state space
model (SSM), Vision Mamba (Vim) (Zhu et al., 2024). We

then discuss the extendibility, limitation, and potential di-
rections of applying Ree to other architectures.

DeiT-B. We show results for 4 exits for Frozen and the best
performing PEFT approach, LoRA, across 3 runs, in Ta-
ble. 8. Comparing Table. 8 and Table. 1, utilizing the bigger
DeiT-B results in a drop in performance compared with
DeiT-S. This is primarily due to overfitting, fitting a much
larger model on each client’s small dataset. Nonetheless, the
relative performance ranking among these approaches stays
the same across benchmarks for both DeiT-S and DeiT-B.

Vim. Besides transformers, we adopt pretrained Vim-T,
the tiny variant of Vim which is much smaller than DeiT-
S. As this is a different architecture, we run the same grid
search detailed in Appendix Section. A and pick the best
performing hyperparameters for each baseline. We show
results for 4 exits comparing ReeFL with the second best-
performing baseline, DepthFL, on both a frozen backbone
and full fine-tuning in Table. 9.

Comparing the Table. 9 with Table. 1, utilizing features from
a smaller frozen backbone model leads to a considerable
drop in performance in all cases. Notably, for SpeechCom-
mands, both ReeFL and DepthFL fail to utilize the pre-
trained features. For full fine-tuning, we observe that using
the smaller Vim-T mitigates the overfitting issue in DeiT-
S+DepthFL, resulting in a gain in performance. Nonethe-
less, ReeFL still outperforms DepthFL and the performance
gap between Vim-T and DeiT-S for ReeFL is consistent
with the results shown in (Zhu et al., 2024). Note that as
vision SSMs are a new addition to the literature, there is
no consensus on how to effectively apply existing PEFT
approaches to it. We leave the exploration of PEFT methods
on SSM as a potential future work.

In general, ReeFL can be applied, out-of-the-box, to any
model that has a uniform state size at every layer. Extending
to architectures with a non-uniform state size, for example
ResNets, however, is non-trivial as Ree’s feature modulation
requires this state size to be uniform across layers. One
possible future direction is to generate scaling and shifting
parameters for feature modulation.

G. Additional Discussion

In this section, we supplement existing insights found in
Section 4 by further discussing the performance gap found
between ReeFL and the second best-performing baseline
DepthFL. In Section. 4.3, we show that both knowledge
distillation and feature modulation can help improve per-
formance in ReeFL. Nonetheless, in some cases, removing
knowledge distillation and feature modulation in ReeFL still
leads to a better performance than the second best perform-
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ing baseline, DepthFL. This performance gap comes with
the use of the Ree which fuses features from multiple layers
for each exit and is trained on the full dataset in contrast
with DepthFL which uses separate classifiers for each exit,
where deeper classifiers are trained on partial data.

To elucidate this, we focus on the same parameter aggre-
gation (FedAvg) without knowledge distillation for both
ReeFL and DepthFL given a particular scenario (CIFAR-100
α = 1000, LoRA, 4 exits). In this scenario, DepthFL has a
mean accuracy of 71.22 and ReeFL has a mean accuracy of
73.47 as shown in Table. 3. We remove 1) both the knowl-
edge distillation and modulation of ReeFL which results in
a mean accuracy of 73.21 and 2) remove the Ree module
entirely and use a single shared classifier for different exits
which results in a mean accuracy of 70.74. DepthFL outper-
forms the use of a single shared classifier (71.22 vs 70.74) as
it uses multiple classifiers per exit, despite deeper classifiers
being partially trained, to better handle the different feature
representations of different layers. With the inclusion of
the Ree module, these multi-layer features are learnt to be
aggregated to improve downstream classification, outper-
forming DepthFL (73.21 vs 71.22). We hypothesize that
using FedDyn with ReeFL may potentially lead to higher
accuracy gains in some cases as it did with DepthFL and we
leave that as a possible direction for future work.

We would also like to point out that in this scenario, simply
using a shared classifier outperforms training with 25% of
the whole dataset: ExclusiveFL (70.74 vs 67.46). It also
outperforms the case where each classifier is trained with
separate subsets of the dataset: InclusiveFL (70.74 vs 69.37).
This is not only because the shared classifier is trained on
the full dataset but also because the features of the backbone
model are fine-tuned jointly with the classifier via LoRA.
If we, instead, consider a frozen backbone (CIFAR-100
α = 1000, Frozen, 4 exits), using a shared classifier results
in a mean accuracy of 41.74 which is significantly lower
than ExclusiveFL (48.02) and InclusiveFL (53.99), as well
as DepthFL, due to the differences in features among layers.
Including the Ree module can better handle these differ-
ences, achieving better performance over these baselines.

H. Ensemble Performance
We adopt the same ensemble method used in DepthFL: tak-
ing the average logits of all exits. Specifically, we pick the
best performing run in Table. 1 and Table. 2, for 4 and 12
exits respectively, and compute the ensemble performance
for both DepthFL and ReeFL (Table. 6 and Table. 7). Unsur-
prisingly, ensembles lead to an improvement in performance
in most cases, with a drop in performance only in the case
where the majority of the exits has poor performance.
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Figure 5. Quantifying training costs for each exit for CIFAR-100, α = 1000 for 12 exits, where each dot along each line represents an
exit.
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Figure 6. Quantifying training costs for each exit for CIFAR-100, α = 0.1 for 12 exits, where each dot along each line represents an exit.
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Table 6. 4 exits ensemble performance for both DepthFL and ReeFL.

Finetuning Approach CIFAR-100 FEMNIST SpeechCmds
α=1000 α=1.0 α=0.1

Full DepthFL 56.74 54.66 46.13 81.77 78.33
ReeFL (ours) 81.16 80.69 79 86.71 85.06

Frozen DepthFL 66.67 61.97 21.73 53.53 24.65
ReeFL (ours) 74.86 73.58 69.66 83.69 66.16

LoRA DepthFL 73.53 72.08 66.37 81.61 76.66
ReeFL (ours) 80.32 79.75 76.05 85.38 79.97

PA DepthFL 75.21 73.81 69.02 82.26 73.64
ReeFL (ours) 80.35 79.34 75.35 84.15 78.72

SA DepthFL 71.46 73.61 67.16 82.52 74.66
ReeFL (ours) 72.25 78.51 73.86 84.6 78.12

SSF DepthFL 44.53 41.94 31.36 74.88 65.04
ReeFL (ours) 70.17 76.72 72.4 84.37 74.36

Table 7. 12 exits ensemble performance for both DepthFL and ReeFL.

Finetuning Approach CIFAR-100 FEMNIST SpeechCmds
α=1000 α=1.0 α=0.1

Full DepthFL 47.26 45.96 35.3 80.53 70.18
ReeFL (ours) 74.9 73.8 66.08 85.75 81.95

Frozen DepthFL 65.74 61.75 23.15 53.35 21.32
ReeFL (ours) 71.72 71.5 63.58 84.35 60.01

LoRA DepthFL 69.26 67.82 56 79.53 69.83
ReeFL (ours) 76.03 75.63 69.01 85.12 75.48

PA DepthFL 71.26 70.49 1.02 5.01 65.21
ReeFL (ours) 75.91 75.44 68.56 77.66 72.32

SA DepthFL 73.88 71.92 1 4.11 65.44
ReeFL (ours) 76.52 74.86 68.04 85.25 71.86

SSF DepthFL 52.5 48.62 1.02 5.21 3.11
ReeFL (ours) 72.65 72.49 65.81 84.54 67.24

(a) 4 Exits (b) 12 Exits

Figure 7. LoRA finetuning on FEMNIST with ReeFL mean accuracy per exit (left), number of times each exit is selected as the teacher
sub-model for knowledge distillation across max resource budget clients while taking the running estimate of the training loss for a
single round (middle), and selecting the teacher sub-model by simply using the training loss of each mini-batch (right).
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Table 8. Experiments on DeiT-B. Mean and standard deviation (SD) of the mean performance of all 4 exits across 3 runs.

Finetuning Approach CIFAR-100 FEMNIST SpeechCmds
α=1000 α=1.0 α=0.1

Frozen

ExclusiveFL 46.36±0.03 45.56±0.05 40.92±0.03 49.03±0.01 19.62±0.05
InclusiveFL 52.97±0.11 51.97±0.01 48.24±0.04 64.37±0.03 30.14±0.01
ScaleFL 29.96±0.0 28.92±0.0 26.43±0.0 29.5±0.01 11.95±0.01
DepthFL 46.67±0.21 42.75±0.37 28.41±0.1 35.2±1.0 24.68±0.33
ReeFL (ours) 67.6±0.03 66.47±0.08 62.36±0.14 81.06±0.03 65.37±0.24

LoRA

ExclusiveFL 65.24±0.06 64.22±0.04 57.23±0.08 81.68±0.06 67.04±0.06
InclusiveFL 66.77±0.01 66.32±0.01 61.23±0.04 83.3±0.01 76.04±0.13
ScaleFL 51.11±0.03 50.27±0.06 43.49±0.12 66.74±0.04 39.25±0.11
DepthFL 70.4±0.11 69.04±0.14 61.85±0.05 80.78±0.71 76.38±0.19
ReeFL (ours) 71.92±0.01 71.29±0.1 66.94±0.01 83.85±0.16 77.07±0.05

Table 9. Experiments on Vim comparing ReeFL with DepthFL. Mean and standard deviation (SD) of the mean performance of all 4 exits
across 3 runs.

Finetuning Approach CIFAR-100 FEMNIST SpeechCmds
α=1000 α=1.0 α=0.1

Frozen DepthFL 37.23±0.01 36.53±0.08 27.82±0.42 45.41±0.65 18.92±0.02
ReeFL (ours) 46.63±0.48 45.43±1.28 38.53±0.3 74.17±0.37 11.95±1.45

Full DepthFL 64.36±0.11 63.87±0.1 56.93±0.18 80.0±0.25 70.07±0.68
ReeFL (ours) 74.08±0.1 73.79±0.1 70.68±0.23 85.42±0.0 81.87±0.28

Figure 8. Fig 2’s extended results. Mean accuracy of each exit across 3 runs.
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Figure 9. Impact of ReeFL’s proposed knowledge distillation on FEMNIST and SpeechCommands (4 & 12 exits).

Figure 10. Fig 2’s extended results. Mean accuracy of each exit across 3 runs.
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Table 10. Ablation study on different aggregation strategies and knowledge distillation of depth-based scaling methods on 12 exits.

Finetuning Approach Distillation Aggregation CIFAR-100 FEMNIST SpeechCmds
α=1000 α=1.0 α=0.1

Frozen

InclusiveFL - FedAvg 36.98±0.01 34.59±0.02 26.44±0.02 40.88±0.03 13.93±0.05
InclusiveFL - FedAdam 43.53±0.03 41.6±0.04 32.28±0.05 53.35±0.03 20.22±0.05
DepthFL ✗ FedAvg 42.6±0.02 41.87±0.02 36.62±0.01 43.11±0.17 15.47±0.03
DepthFL ✗ FedDyn 45.12±0.02 43.4±0.16 36.09±0.39 48.52±0.23 21.19±0.17
DepthFL ✓ FedAvg 43.31±0.0 42.55±0.0 36.75±0.13 43.25±0.01 16.01±0.2
DepthFL ✓ FedDyn 45.22±0.06 42.93±0.18 25.2±1.89 41.29±0.1 21.3±0.02
ReeFL (ours) ✗ FedAvg 58.28±0.03 57.7±0.03 51.6±0.32 74.87±0.15 59.69±0.57
ReeFL (ours) ✓ FedAvg 58.74±0.05 58.1±0.09 51.33±0.36 75.36±0.02 59.5±0.5

LoRA

InclusiveFL ✗ FedAvg 55.79±0.03 54.17±0.01 40.35±0.06 73.24±0.01 55.01±0.14
InclusiveFL ✗ FedAdam 55.9±0.08 54.54±0.15 41.53±0.15 78.21±0.15 66.18±0.58
InclusiveFL ✓ FedAvg 52.17±0.01 50.24±0.07 37.61±0.05 69.22±0.07 53.53±0.01
InclusiveFL ✓ FedAdam 54.13±0.19 52.69±0.1 39.32±0.09 78.32±0.14 67.49±0.03
DepthFL ✗ FedAvg 63.13±0.08 62.79±0.07 56.69±0.23 77.55±0.1 67.47±0.23
DepthFL ✗ FedDyn 62.79±0.11 61.55±0.17 53.5±0.15 78.87±0.27 70.91±0.2
DepthFL ✓ FedAvg 62.73±0.0 62.17±0.01 54.9±0.01 77.54±0.0 66.62±0.08
DepthFL ✓ FedDyn 62.74±0.09 61.3±0.11 51.9±0.15 78.97±0.15 70.66±0.07
ReeFL (ours) ✗ FedAvg 65.16±0.04 64.2±0.09 58.69±0.09 79.68±0.19 74.18±0.25
ReeFL (ours) ✓ FedAvg 65.7±0.09 65.01±0.03 58.85±0.05 81.06±0.06 75.96±0.18

Table 11. Mean Accuracy with and without ReeFL’s feature modulation on 12 exits.

Finetuning Modulation CIFAR-100 FEMNIST SpeechCmds
α=1000 α=1.0 α=0.1

Frozen ✗ 43.4±0.1 41.88±0.29 25.6±17.4 49.59±0.37 17.52±0.07
✓ 58.74±0.05 58.1±0.09 51.33±0.36 75.36±0.02 59.5±0.5

LoRA ✗ 64.99±0.12 64.68±0.1 58.69±0.15 80.75±0.07 76.5±0.27
✓ 65.7±0.09 65.01±0.03 58.85±0.05 81.06±0.06 75.96±0.18

PA ✗ 60.5±0.14 60.28±0.07 53.97±0.1 77.01±0.05 71.13±0.08
✓ 62.35±0.07 61.47±0.12 55.67±0.14 77.62±0.04 72.37±0.02

SA ✗ 61.83±0.05 60.95±0.12 55.19±0.12 76.75±0.06 70.69±0.23
✓ 63.28±0.13 61.94±0.2 54.99±0.1 77.43±0.04 71.52±0.13

SSF ✗ 58.18±0.09 57.46±0.13 51.33±0.64 75.79±0.08 65.02±0.23
✓ 61.85±0.02 61.25±0.17 54.42±0.13 78.05±0.03 67.44±0.24
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Figure 11. Attention map comparison between attnl
x, attnl

m and attnl
c. We select to visualize the earliest block whose classification is

correct.
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