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Abstract

Interactive and embodied tasks pose at least
two fundamental challenges to existing Vision
& Language (VL) models, including 1) ground-
ing language in trajectories of actions and ob-
servations, and 2) referential disambiguation.
To tackle these challenges, we propose an Em-
bodied MultiModal Agent (EMMA): a unified
encoder-decoder model that reasons over im-
ages and trajectories, and casts action predic-
tion as multimodal text generation. By unify-
ing all tasks as text generation, EMMA learns
a language of actions which facilitates trans-
fer across tasks. Different to previous mod-
ular approaches with independently trained
components, we use a single multitask model
where each task contributes to goal completion.
EMMA performs on par with similar models
on several VL benchmarks and sets a new state-
of-the-art performance (36.81% success rate)
on the Dialog-guided Task Completion (DTC),
a benchmark to evaluate dialog-guided agents
in the Alexa Arena (Gao et al., 2023).1

1 Introduction

Embodied AI aims to develop agents that interact
with the environment, reason over natural language
instructions and visual observations, and plan fu-
ture actions. Recently, Vision & Language pretrain-
ing (VLP) has established new standards across
image-based tasks (Bao et al., 2022; Wang et al.,
2022a,b; Yang et al., 2021; Zhang et al., 2021) by
aligning visual and textual input to generate image
captions, answer visual questions, and reason over
images. As a result, VLP promotes learning of
important skills transferable to embodied tasks.

Interactive and embodied tasks present signif-
icant challenges for VLP models including 1)
grounding language in environments where the
interpretation of instructions depends not just on
static images, but on trajectories of actions and

*Now at Google DeepMind
1Code available on this link

observations, and 2) referential disambiguation,
where agents must interact with users — often as
clarifications — to successfully disambiguate refer-
ents. In contrast to language-only planners (Huang
et al., 2022a; Min et al., 2021), which cannot gener-
ate feasible plans without prompts that encode all
the visual nuances — colors, attributes, relational
information, inter alia — as text; instead VLP mod-
els can ground language directly to images. How-
ever, to enable grounded decision-making, VLP
models must generalize from static images to tra-
jectories that express how a situation evolves over
time (McClelland et al., 2020). Additionally, in
language-guided collaborative tasks, referents for
target objects may be ambiguous, depending on
the complexity of the visual scene. Therefore, clar-
ifications must be adopted to resolve uncertainty
between referents and act upon the correct target
object (Madureira and Schlangen, 2023).

To address both of these challenges, we develop
EMMA: a unified approach which casts several
VL and embodied tasks, such as image captioning
and action execution, as text generation inspired by
Cho et al. (2021). By doing so, EMMA is able to
learn a language of actions which facilitates trans-
fer across tasks. Concretely, EMMA is a multitask
encoder-decoder model, which encodes language
and pairs of object-centric representations with sen-
tinel tokens. As a result, EMMA can encode both
trajectories and clarifications to reference individ-
ual frames and objects across an entire trajectory.

We focus on dialog-enabled task completion,
which requires an agent to follow natural language
instructions, perform navigation and object manip-
ulation actions, and utilize dialog interactions to
disambiguate visual observations. Similar to pre-
vious modular approaches (Min et al., 2021), we
break down the embodied task into separate pro-
cesses for search and action execution. The search
process combines exploration with visual ground-
ing. Differently to prior work that only uses object
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labels from object detectors directly (Min et al.,
2021; Pashevich et al., 2021), EMMA uses both
language and visual representations to discriminate
between objects of the same class (e.g., discerning
between a ‘red’ and a ‘green’ desk). Separately,
the action execution process predicts the naviga-
tion and object interaction actions as textual tokens.
Notably, a key distinction in our approach is that
we perform all tasks using a single VL model.

We evaluate our approach on the Dialog-guided
Task Completion (DTC) benchmark (Gao et al.,
2023). Our experiments show the benefits of the
multitask VLP, and the importance of data augmen-
tations for completing multi-step instructions. By
exploiting clarifications, EMMA improves the suc-
cess rate by 3.55%. Finally, when fine-tuned on
DTC, EMMA can transfer the downstream action
execution task back to real-world images, showcas-
ing how using text tokens to represent actions in the
environment enables cross-domain generalization.

2 Related Work

Vision & Language Pretraining Early methods
for developing VLP models rely on multimodal en-
coders with object-centric or patch representations
(Chen et al., 2020; Kim et al., 2021; Li et al., 2021,
2020; Lu et al., 2019; Singh et al., 2022a; Tan and
Bansal, 2019). While effective, these methods in-
troduce task-specific heads for each downstream
task. Generative and unified architectures repre-
sent an alternative approach for tackling VL tasks
with a single model. Previous work on unified
models explores region proposals (Cho et al., 2021;
Gupta et al., 2022), or patch features (Wang et al.,
2022a,b; Yang et al., 2022). More recently, the
paradigm of connecting vision-only and language-
only experts allows leveraging unimodal pretrain-
ing for generative and multimodal models (Alayrac
et al., 2022; Driess et al., 2023; Li et al., 2023;
Liu et al., 2023; Tsimpoukelli et al., 2021; Zhu
et al., 2023). By casting every task as a text gen-
eration task, unified VLP models are transitioning
from specialized to generalist models. Therefore,
adopting a similar multitask pretraining approach
enables EMMA to learn a language that describes
actions conditioned on visual observations.

Embodied AI Approaches Previous approaches
on interactive task completion (Shridhar et al.,
2020) involve both end-to-end (Pashevich et al.,
2021; Suglia et al., 2021) and modular architec-
tures (Blukis et al., 2022; Kim and Lee, 2023; Liu

et al., 2022; Min et al., 2021; Singh et al., 2021).
State-of-the-art works employ a modular architec-
ture that incrementally builds a semantic map of the
environment used by symbolic planners. However,
these methods often make strong domain-specific
assumptions, or they are typically trained from
scratch, underutilizing recent progress in VLP.

An exciting direction is leveraging large-scale
pretrained models. Recent works (Ahn et al., 2022;
Driess et al., 2023; Huang et al., 2022a; Singh et al.,
2022b; Zeng et al., 2022) use a large language
model or a mixture of pretrained models for object
manipulation. Additionally, Huang et al. (2022b);
Shridhar et al. (2021) use text to describe the en-
vironment state and employ a language model for
planning. Different to previous work, we use a
VLP model to ground instructions on visual scenes.
For example, given the instruction ‘Get the milk
from the fridge’, EMMA executes the correct ac-
tion sequence by inferring whether the fridge door
is open or not from its visual observations.

Dialog-enabled interactive task completion in-
troduces an additional layer of complexity as the
agent often needs to incorporate clarification con-
text before acting on the environment (Gao et al.,
2023, 2022; Padmakumar et al., 2022). Both end-
to-end and modular architectures underperform in
these tasks, which Min et al. (2022) argues is due
this is due imitation learning using few and sub-
optimal demonstrations. EMMA is trained using
expert demonstrations and interactions in the form
of question-answer pairs about the visual scene.
These clarifications do not involve complex dia-
log phenomena (e.g., repair), yet are sufficiently
informative to disambiguate target objects.

3 Task Description

The DTC benchmark evaluates dialog-enabled
agents to complete missions in the Alexa Arena,
a simulated environment with multi-room layouts
(Gao et al., 2023). Each example corresponds to
a mission completed by an expert planner and an-
notated by three humans. Each instruction is op-
tionally accompanied by a clarification question-
answer pair. Navigation is performed with primi-
tive actions, but also with the GoTo action, which al-
lows moving to different rooms, or objects. Along
with the GoTo action, the agent needs to predict
the name of the room or an object mask within the
current observation. Each room also contains a set
of viewpoints that differ between layouts and can
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Figure 1: Overview of the EMMA architecture. EMMA encodes vision and language inputs with modality-specific
layers before providing the input to the bidirectional multimodal encoder. Scene embeddings act as global features
for a frame. Object embeddings correspond to a combination of region features, object coordinates, and their
identities within the frame sequence. Language input is concatenated with task-specific prompts. The shared
autoregressive language decoder treats every task as a text generation task.

be visited by the agent to explore the room. To per-
form an action on an object, the agent needs to pro-
vide the action type and the mask of the object. The
set of supported actions for an object is determined
by its affordances such as openable, toggleable,
inter alia (see Appendix C for details).

4 EMMA

EMMA is an encoder-decoder model following the
architecture of BART-base (Lewis et al., 2020). As
shown in Figure 1, both vision and language inputs
are embedded through modality-specific projec-
tion layers, concatenated into a sequence of em-
beddings, and fed into a single-stream encoder.
EMMA uses a shared decoder across all pretraining
tasks with sentinel tokens in the vocabulary to al-
low referencing specific image frames and regions.

Text Embedding For the language input, we ap-
ply sub-word byte-pair encoding (Sennrich et al.,
2016) with a vocabulary of 10K tokens extracted
from our pretraining data. Each token is repre-
sented by the sum of its word and absolute posi-
tional embedding (Lewis et al., 2020). Similar to
Sanh et al. (2022), we use natural language prompts
as task prefixes to prompt the model for each task.

Scene and Object Embeddings EMMA is ca-
pable of encoding sequences of images. For each
frame of the visual input, we extract global scene
features representing the entire frame and a max-
imum of n = 36 region features. To reference a
frame or an object within it, the language vocabu-
lary is extended with sentinel tokens in the form of
<frame_token_i> and <visual_token_j>. After
projecting the visual features to the encoder’s di-
mensionality, we add spatial, temporal, and visual

sentinel token embeddings. Spatial embeddings en-
code the 2D position of the region within the frame
by its normalized bounding box coordinates, while
temporal embeddings encode the temporal order
within the sequence using a frame sentinel token.

The choice between object-centric and patch rep-
resentations for embodied tasks remains an open
question. Although patch representations contain
explicit information about the semantic segmenta-
tion of an image (Caron et al., 2021), their static
grid structure has not been proven beneficial in pre-
vious embodied tasks (Driess et al., 2023; Jiang
et al., 2023). Furthermore, patch representations
lead to an increase in both input length, as more
visual tokens are required to represent a frame, and
output length, as the model must generate coordi-
nate tokens instead of a single sentinel token to
reference an object. For these reasons, we opted
for object-centric representations.

4.1 Pretraining Setup

We formulate seven VL tasks in a text-to-text frame-
work motivated by established pretraining tasks
(Cho et al., 2021; Wang et al., 2022b). Pretraining
details are provided in Appendix A. Below we give
a brief description of each task:
Masked Language Modeling: Given an image de-
scription, we mask each word with probability 0.3.
The model must learn to reconstruct the original
input by predicting the masked words.
Image-Text Matching: Determine if a pair of
visual-text inputs match by predicting true/false
after we randomly combine the visual input with
either the correct caption or a sampled caption.
Visual Question Answering: Answer a question
about the input image.



Input: get the cereal 
from the refrigerator
Q: What does the 
refrigerator look like?
A: the refrigerator grey 
and with double doors
CR: <act><no_match> 
fridge

VG: <frame_token 1> 
<vis_token_7>

AE: open fridge 
<frame_token_1> 
<vis_token_5>.

AE: pickup  cereal box 
<frame_token_2> 
<vis_token_9>.

AE: close fridge 
<frame_token_3> 
<vis_token_4> <stop>.

Input: find the bowl on 
the table
CR: 
<search><no_match> 
bowl

VG: <frame_token 1> 
<vis_token_1>

Input: pour cereal into 
it
CR: <act><one_match> 
bowl
AE: pour bowl 
<frame_token_1> 
<vis_token_1> <stop>.

Subgoal 1: Grab the cereal from the fridge Subgoal 2: Find the bowl Subgoal 3: Pour cereal

Figure 2: Example trajectory where the objective is to pour cereal into the bowl. The user instructions and our agent
response are shown on the left and right of each frame respectively. At each timestep the agent is provided with the
current view, a user instruction (Input), and optionally a clarification question (Q) and answer (A). The Contextual
Routing task (CR) determines whether the agent is going to use the Action Execution task (AE) to interact with the
environment, or the Visual Grounding task (VG) to search for an object in the scene.

(Dense) Captioning: Produce a textual description
of the overall image or a specified region denoted
by a visual sentinel token.
Visual Grounding: Given a description of an im-
age region, the model must predict the visual token
for the region that matches this description.
Relationship Prediction: Describe the relation-
ship between two regions of an image. The output
follows the format: Subject Attributes, Subject, Re-
lationship Predicate, Object Attributes, Object.

4.2 Interactive Task Completion

Our agent uses three distinct yet complementary
tasks to complete the DTC missions: Contextual
Routing (CR), Action Execution (AE), and Visual
Grounding (VG). As shown by Figure 2, we use
a single model to tackle all three tasks. Since CR
& AE are downstream-specific tasks, we introduce
new prompts when fine-tuning.

Contextual Routing (CR) Given the current in-
struction and observation, the CR task determines
whether the agent should act or search for an object,
disentangling the decision of what to do next from
how to achieve it. The output of the model follows
a structured hierarchical scheme (Figure 3). The
first token determines whether the instruction refers
to an action or to search for an object. The sec-
ond token indicates if there are no objects present,
one object present, or multiple matches of the ob-
ject mentioned in the instruction. Finally, for non-
navigation actions, the model generates the name
of the target object.

Action Execution (AE) The agent acts on
the environment if the output of the CR
task is <act><one match> or <act><multiple

matches>. The input to the model consists of the
current frame, the instruction, and the clarification
pair. We use the <follower> and <commander>
tokens as prefixes to each dialog turn. The model
predicts the action type, the name of the object,
and, for manipulation actions, the frame and visual
token id that correspond to the object (Figure 1).
Each action yields a new observation concatenated
with the previous visual context to make a new
prediction. The period character (‘.’) delimits ac-
tions, and the <stop> token marks the end of the
trajectory for that instruction.

Visual Grounding (VG) For <search> and
<act><no match> predictions, the agent tries to
find the object outputted by the CR task. We iter-
ate over viewpoints in a room to collect panoramic
views and use the pretraining visual grounding pre-
fix with the instruction as input to the model (Ap-
pendix D). If the instruction matches with a visual
token, the model outputs that token; else, the model
outputs ‘no OBJECT’. For <act><no match>, once
the object has been found, we invoke the AE task.

5 Data Augmentations

Since the trajectories have been generated by
an expert planner, the predictions <search> and
<act><no match> used by the CR task are under-
represented in the training data. Training for VG
is unsupported as DTC instances only contain the
ground-truth object mask for each action but not for
all other objects in a scene. Furthermore, prelimi-
nary experiments revealed that, when trained solely
on instances from the DTC benchmark, our agent
struggled to learn associations between frame and
visual tokens. For example, when interacting with a
fridge across multiple frames, the agent sometimes



find the laser computer

turn on the computer

<search> <one match> laser monitor

<act> <multiple matches> computer

<act> <no match> time machine

<act> <one match>

turn on the time machine

go to the breakroom

turn on the red computer <act> <one match> laser monitor
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Figure 3: Example outputs for the Contextual Routing (CR) task. The first token determines whether the agent will
search or act on the environment. The second token determines if the instruction matches an entity in the scene.
Finally, for instructions that require manipulation of objects, the model generates the name of the object.

predicted visual tokens that matched the fridge in
a previous rather than the current frame. Finally,
there is a mismatch between how the trajectories
were annotated and the data the agent is being ex-
posed to. While annotators observed interpolated
trajectories, the agent only perceives the state be-
fore and after an action. This discrepancy adds sig-
nificant language variability and complexity, pos-
ing challenges to the agent’s comprehension.

To address these challenges, we use the vision
dataset provided by Gao et al. (2023) to create syn-
thetic instruction data. Additionally, we deploy an
early version of our agent to collect mini-episodes
of successful trajectories within the Alexa Arena.
Supplementary material regarding the data genera-
tion process is provided in Appendix E.

Visual Augmentations Starting from the images
within the vision dataset, we create an additional
180k for training and 88k instances for validation,
where each instance is an (image, instruction, ac-
tion) triplet. When generating target actions, we
used the ground truth positions of the agent and the
object to ensure the agent was in proximity. For
synthetic instructions, we used ChatGPT (OpenAI,
2022) as a starting point to create templates. To
select diverse visual scenes, we used CLIP (Rad-
ford et al., 2021) to embed the images. We then
applied k-means clustering, where the number of
clusters is determined by the maximum number of
action-object instances. Finally, we selected the
image that is closest to each centroid.

CDF Augmentations While the visual augmen-
tations are useful for single-step interactions, they
cannot help the model on longer trajectories requir-
ing consecutive interaction with the environment.
To address this challenge, we use one of the early
variants of EMMA to collect more training trajec-
tories. For each mission, we provide the agent with
step-by-step instructions and only include success-
ful trajectories in our training data. We refer to

these trajectories as CDF augmentations follow-
ing the challenge definition format of the Alexa
Arena (Gao et al., 2023). Overall, we sampled 38k
missions for training and 15k for validation. These
missions include: 1) picking up and placing objects
from receptacles or containers; 2) picking up ob-
jects under the presence of objects acting as distrac-
tors (i.e., the same object but with a different color,
or the same object placed in a different position);
3) cleaning and filling objects in the sink; and 4)
interacting with domain-specific objects (e.g., the
color changer and the time machine).

6 Experiments & Results

6.1 VLP Evaluation

We evaluate EMMA on four image-based down-
stream tasks including image captioning, visual
question answering, referring expression compre-
hension, and natural language for visual reasoning.
We treat all tasks as language generation and fine-
tune EMMA separately on each downstream task
without introducing any task-specific parameters.

To evaluate the ability of our model to generate
image captions, we use the MS-COCO dataset (Lin
et al., 2014) and report evaluation results on the
Karpathy test split (Karpathy and Fei-Fei, 2015)
for BLEU-4 (Papineni et al., 2002), METEOR
(Lavie and Agarwal, 2007), CIDEr (Vedantam
et al., 2015), and SPICE (Anderson et al., 2016).
For visual question answering, we report the VQA
accuracy (Antol et al., 2015) on the test-std set of
the VQA-v2 dataset (Goyal et al., 2017).

We also evaluate referring expressions compre-
hension on RefCOCOg (Mao et al., 2016) — a
visual grounding task that requires selecting the
region described by a given phrase. We use the
visual grounding prompts from our pretraining and
ask the model to generate the visual token id that
matches the given phrase in the image. A predicted
region is correct if the intersection over union with



# Pretrain
Samples # Params

COCO Captioning VQA-v2 RefCOCOg NLVR2

BLEU-4 METEOR CIDEr SPICE Accuracy Accuracy@0.5 Accuracy

VL-T5 (Cho et al., 2021) 7.6M 172M 34.5 28.7 116.5 21.9 70.3 71.3 73.6
VL-BART (Cho et al., 2021) 7.6M 172M 25.1 28.7 116.6 21.5 71.3 22.4 70.3
UniTAB (Yang et al., 2022) 8.1M 211M 36.1 28.6 119.8 21.7 71.0 84.5 —

OFA-base (Wang et al., 2022b) 21.3M 182M 41.0 30.9 138.2 24.2 78.1 82.3 —

EMMA 10.2M 133M 36.5 29.7 122.3 22.5 73.2 80.3 70.3

Table 1: Performance of the pretrained model on downstream image-based tasks. We report the number of
pretraining samples as the number of image-text pairs. OFA uses additional vision-only and language-only data.

the ground truth region is larger than 0.5.
In the NLVR2 dataset (Suhr et al., 2019), given

a caption and two images, the model must predict
whether the caption matches both images. We pro-
vide the two images directly to the model and prefix
the caption with the image-text matching prompt.
The model then predicts either true or false.

Table 1 illustrates the results of our model. We
compare EMMA against similar VL models —
i.e., single-stream encoder-decoder models like
VL-T5 and VL-BART (Cho et al., 2021), UniTab
(Yang et al., 2022), and OFA (Wang et al., 2022b).
Among these models OFA-base achieves state-of-
the-art performance, however, it has 1.37× more
parameters than EMMA and is pretrained with
nearly double the amount of data. On RefCOCOg,
our model achieves competitive performance with
UniTAB, even though it is almost half the size.
Cho et al. (2021) hypothesize that the reason for
the poor performance of VL-BART on RefCOCOg
is that the use of absolute positional embeddings
leads to memorization during training. However,
EMMA achieves competitive performance despite
using absolute positional embeddings. We believe
this is due to our sampling procedure that takes into
account the dataset imbalance in pretraining (see
Appendix A for details).

6.2 Interactive Task Completion

We compare two variants of EMMA: a modular
agent with two experts that are each fine-tuned on
the downstream-specific tasks (i.e., CR & AE), and
a unified model fine-tuned with all the tasks. As
shown in Table 2, both agent variants outperform
the baseline models. Additionally, the modular
agent performs on par with the best-performing
models on the leaderboard, while the unified agent
slightly outperforms the state-of-the-art. We be-
lieve that the synergy between tasks provides an
advantage to the unified model.

MSR (↑) NRA (↓) QA

Leaderboard:
GauchoAI 36.47 — —
SEAGULL 30.98 — —
Kingfisher 22.37 — —

Baseline:
NS (Gao et al., 2023) 19.32 11.73 ✗

NS (Gao et al., 2023) 22.80 12.73 ✓

VL (Gao et al., 2023) 18.19 11.82 ✗

VL (Gao et al., 2023) 34.20 8.82 ✓

EMMA:
EMMA-modular 33.76 8.91 ✗

EMMA-modular 33.95 9.05 CR
EMMA-modular 35.16 8.92 ✓

EMMA-unified 33.26 8.79 ✗

EMMA-unified 33.59 8.89 CR
EMMA-unified 36.81 8.69 ✓

Table 2: Mission Success Rate (MSR) and the Num-
ber of Robot Actions (NRA) of EMMA against top-3
leaderboard and baseline models. CR denotes QA based
on the CR task (<act><multiple matches>).

We also compare the success rate under three
conditions for the inclusion of clarifications: 1)
no clarifications, 2) clarifications whenever they
are available for an instruction, 3) clarifications
whenever they are available, and the CR predicts
an ambiguous referent, that is <act><multiple
matches> is predicted. We observe that both ver-
sions of EMMA improve when clarification ex-
changes are added to the input. Performance gains
are marginal in the CR case, however, the agents
benefit substantially when clarifications are always
provided. Note that the role of the CR task is not
to decide when to clarify but to drive the agent to
either act or search the environment. On top of
that, during training, the agent learns to rely on all
available clarification types.

Performance per Mission Type Table 3 shows
the performance of the modular and the unified
agents in every mission category along with the
average number of ground-truth actions required

https://eval.ai/web/challenges/challenge-page/1903/leaderboard/4491


EMMA-modular EMMA-unified Average #
of ground

truth actionsQA ✗ QA ✓ QA ✗ QA ✓

breakObject 32.22 35.56 33.33 41.11 8.43
clean&deliver 9.20 13.79 18.39 20.69 12.65
color&deliver 0.00 0.00 0.00 0.00 14.00
fill&deliver 29.17 29.17 27.08 27.08 12.87
freeze&deliver 12.50 16.67 20.83 20.83 15.75
heat&deliver 5.13 7.69 10.26 10.26 16.92
insertInDevice 37.29 38.42 39.55 45.76 7.44
pickup&deliver 18.95 21.75 18.25 21.40 7.57
pourContainer 18.95 47.86 41.03 46.15 8.33
repair&deliver 11.11 20.37 12.96 22.22 17.05
scanObject 69.37 63.06 63.96 62.16 3.91
toggleDevice 67.62 68.57 62.86 65.71 3.94

Table 3: MSR of EMMA for each mission category.
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Figure 4: MSR against data ablations. The DTC line is
the performance of the model after training exclusively
on the DTC data, without any augmentations. Since
the visual grounding task is not modeled by the DTC
benchmark, we keep the grounding instances and only
downsample the action execution instances.

by the expert planner to solve the mission. Both
agents perform well on small trajectories, whereas
for longer trajectories the unified approach yields
better performance. Clarifications play a key role
across all mission types with the exception of
scanObject missions, a behavior which is also
shown in baseline models (Gao et al., 2023). Inter-
estingly, both agents are completely unable to solve
color&deliver missions. Based on the predictions
of the model, the main challenge is finding the cor-
rect receptacle at the end of the trajectory, which
can be easily confused with other similar objects.

Impact of Clarification Type Next, we are in-
terested in identifying which clarifications help the
model disambiguate object referents. Similarly to
Chiyah-Garcia et al. (2022), we compare the ob-
ject localization performance of the model with

EMMA-modular EMMA-unified

QA ✗ QA ✓ Gain QA ✗ QA ✓ Gain

Description 59.05 66.40 +7.35 62.84 67.98 +5.14
Direction 73.43 76.56 +3.13 79.41 83.82 +4.41
Location 62.27 66.45 +4.18 64.27 66.66 +2.39
Reference 59.05 64.09 +5.04 62.02 66.56 +4.54
Other 75.00 75.00 +0.00 79.41 79.41 +0.00

Table 4: Object localization accuracy per question type
for the modular and unified model. QA ✗ columns refer
to the performance of the model on the same instructions
but without clarification.

and without clarification. Table 4 illustrates the
localization accuracy for the modular and the uni-
fied model across question types. We use the same
taxonomy as Gao et al. (2023) with the addition
of ‘other’, which refers to out-of-scope clarifica-
tions (e.g, ‘What should I deliver’, while the agent
already holds the mug and is instructed to place
it on the desk). Both models benefit the most
from description clarifications (e.g., ‘What does
the cartridge look like?’, ‘It is black with a white
label’). The modular agent benefits more from
reference and location clarifications, while the uni-
fied agent benefits from reference and direction
clarifications. We hypothesize that the transfer be-
tween tasks enables the unified agent to perform
well on instructions even without the location clar-
ifications, thereby the clarifications provide only
small improvements.

Data Ablations We also provide ablations in the
dataset that showcase the effectiveness of our aug-
mentations by ablating the visual as well as the
CDF augmentations. Figure 4 depicts the perfor-
mance of the unified model for both ablations. We
observe that the model benefits from both aug-
mentations. Vision augmentations provide perfor-
mance gains from very early stages since they en-
able certain properties of the agent (e.g., <act><no
match>). On the other hand, CDF augmentations
provide a steady boost as they enable the agent
to solve missions that require longer trajectories.
Note that our pretraining consists of image-caption
objectives that enable the model to learn to ground
text in singular frames. Learning frame-visual to-
ken associations is obtained during fine-tuning only.
Future work could explore agents pretrained on
tasks that favor learning this ability as well.



Instruction: Put some coffee in the cup.
Output: pour mug <frame_token_1> 
<vis_token_17> <stop>.

Instruction: Lift the plate with the bread 
on it.
Output: pickup plate <frame_token_1> 
<vis_token_2> <stop>.

Instruction: Can you put the spoon into 
the bowl?
Output: place bowl <frame_token_1> 
<vis_token_1> <stop>.

Instruction: open up the metallic 
container.
Output: open jar <frame_token_1> 
<vis_token_6> <stop>.

Figure 5: Example transfer of the action prediction task to the visual domain of real images.

7 Performance Analysis

DTC Error Analysis We inspected the trajecto-
ries of our unified model for 120 unsuccessful tra-
jectories (ten per mission type). Overall, the main
source of errors stems from the output of the contex-
tual routing component. This task plays a key role
in our model since an incorrect <act><one match>
prediction triggers the action execution task. In the
follow-up timestep, the agent is positioned differ-
ently from what is expected and it is forced to act
on the environment, which likely leads to an unre-
coverable situation. For instance, the agent may be
facing an empty desk while being asked to pick up a
mug. Consequently, the agent acts in unpredictable
ways, resulting in a state from which the agent can-
not recover. The incorrect predictions affect mostly
<x>&deliver missions, where the agent completed
the <x> subgoal, however, failed on the deliver
subgoal as it was unable to disambiguate between
multiple receptacles.

Furthermore, the output of the action execution
task is also susceptible to errors. In long trajec-
tories, we observed a few cases where the model
seems to lack temporal understanding. For exam-
ple, when interacting with objects on consecutive
timesteps the model used a visual token to refer-
ence the object that matched one of the previous
frames in the trajectory. We also noticed a few er-
ror cases due to a lack of commonsense reasoning.
Some instructions describe properties of an object,
like its color and shape without explicit reference
to the object but our agent could not make the asso-
ciations between an object and its properties.

Visual Domain Transfer We inspect the model’s
ability to transfer the action prediction task to real
images. We observe qualitatively that after fine-
tuning the object detector struggles to detect objects
from classes that are not present in the Alexa Arena.
However, after reverting back to the base object

Object Detector Arena Classes Non-Arena Classes Overall

Fine-tuned 42.65 32.13 33.88
Base 67.85 58.85 60.35

Table 5: Action prediction accuracy for real images
from Visual Genome (Krishna et al., 2017).

detector, the EMMA-unified model is able to make
reasonable predictions as shown in Figure 5. To
quantify the improvement of using the base object
detector, we use scene graph annotations of GQA
(Hudson and Manning, 2019) by creating synthetic
instructions, as described in the Appendix H.

Table 5 shows the accuracy for single-step in-
structions using real images where the target ob-
ject can be from any class or the subset of classes
that appear in the Alexa Arena. Although EMMA-
unified has been fine-tuned on the action predic-
tion task with image inputs from the fine-tuned
object detector, we see 26.48% absolute improve-
ment when switching to the base object detector.
We leave further exploration of the potential for
Sim2Real transfer as future work.

8 Conclusion & Future Work

We described EMMA, a unified and multitask
model for embodied task completion. EMMA
performs on par with VLP models of comparable
size in VL benchmarks, and also achieves a new
state-of-the-art performance on the DTC bench-
mark (Gao et al., 2023). We decouple the down-
stream embodied task into three complementary
tasks all solved by the same unified model. Finally,
EMMA benefits from interaction with users in the
form of clarifications that are crucial for the agent’s
success, particularly for referential disambiguation.

In terms of future work, our experiments show
that trajectory augmentations are required in order
to learn frame and visual token associations. How-
ever, acquiring additional data might be prohibitive



for target applications where an environment sim-
ulator is not available. This requirement could be
alleviated by introducing the concept of trajectories
in the pretraining. Furthermore, given our visual
domain transfer analysis, it would be interesting
to explore if visual encoders specialized to vari-
ous target domains can be plugged into the same
multimodal model to allow cross-domain transfer.

Limitations

We focused on the development of a dialog-enabled
agent within an embodied environment. Our design
aimed at creating an agent that is as autonomous as
possible without relying on external components
to support it. We took one step away from modu-
lar agents with individual components to a single
model that facilitates all tasks. Nevertheless, the
search routine is an external component that our
agent depends upon. In theory, an agent could
learn low-level actions in order to search for an
object. However, this is a challenging problem that
would require an excessive amount of demonstra-
tions even for simple instructions. Consider the
case where the model has to search within mul-
tiple containers (e.g., cabinets) for the required
object (e.g., a spoon). This would require the agent
to learn to summarize the state from the context
of history and recognize which cabinets it has al-
ready visited before opening the next cabinet. Fi-
nally, as shown by our results, our agent does not
fully model dialog actions. We used the output of
the contextual routing task to request clarifications,
however, we did not emphasize on the type of clar-
ifications when making a request. An interesting
follow-up work would be to explore how an agent
can further incorporate dialog actions similar to
the ones supported in the environment and pose
clarification requests when necessary.

Ethics Statement

Embodied AI and physical robots have some well-
known ethical trade-offs. On the one hand, they
can generate a positive impact, e.g. as part of
care settings or helping in disaster zones. On the
other hand, they can also lead to negative socio-
technical consequences, such as job displacement
or dis-empowerment of individuals (Müller, 2021).

Embodied agents based on large-scale VLP in-
herit additional challenges – some of which they
share with large language models, including hallu-
cinations, discrimination and exclusion, malicious

uses, and environmental harms (Bender et al., 2021;
Dinan et al., 2022; Weidinger et al., 2022).

Furthermore, their multimodal nature creates ad-
ditional privacy concerns, especially when devel-
oping systems for assistive home settings, as is the
case in EMMA. In order to address the need for
large amounts of in-domain data, EMMA is de-
veloped using simulated environments. However,
transferring the learned behavior to real-world en-
vironments is still an open challenge. For example,
VLP models can be prone to distribution shifts,
e.g. through naturally occurring noise (Yu et al.,
2023), or targeted attacks (Yu and Rieser, 2023).
Consequently, embodied agents based on VLP may
exhibit unintended behaviors when operating in
complex real-world environments. These failures
are especially grave when interacting with vulnera-
ble groups, as is the case for care assistants.

It is therefore paramount that these models are re-
leased in a responsible way (Bergman et al., 2022),
developed, and tested in ecologically valid setups
in order to anticipate real-world impact (De Vries
et al., 2020). Addressing these issues responsibly
and proactively is essential to maximize the bene-
fits while minimizing the potential negative impacts
on individuals and society as a whole.
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A Pretraining Details

Vision Encoder For encoding images, we use
VinVL (Zhang et al., 2021), as it has showed strong
performance on established VL benchmarks, keep-
ing it frozen for pretraining and only fine-tuning it
on the Alexa Arena.

Pretraining Dataset We pretrain our model on
publicly available VL datasets including COCO
captions (Lin et al., 2014), Conceptual Captions
3M (Sharma et al., 2018), GQA (Hudson and Man-
ning, 2019), VQA (Goyal et al., 2017), and Visual
Genome (Krishna et al., 2017). Table 6 shows
the statistics for our compiled pretraining corpus.
Overall we used 10.4M examples on 3.3M different
images. We used custom task-specific prefixes for
each task. Table 7 illustrates example input-output
pairs for each pretraining task, while Table 8 illus-
trates the prompts used for each task.

Model Pretraining Strategy During pretraining,
we apply teacher forcing and compute the cross-
entropy loss between the predicted and target token.
As the typical length of the target prediction varies
per task, we ensure the losses across tasks are com-
parable in scale by averaging the loss by the target
sequence length first and then by the number of
samples in the batch.

We employ a ‘mixed batches’ pretraining
scheme where each batch contains examples sam-
pled from any task. Assuming that task i has ni

examples, the probability of sampling an example
from task i from all j tasks is pi = ni/

∑
j nj .

However, as shown in Table 6, the pretraining
tasks have a large variance in the number of avail-
able examples, which can lead to poor perfor-
mance on low-resource tasks. Therefore, simi-
lar to Raffel et al. (2020), we re-adjust the prob-
ability pi by limiting the maximum number of
examples allowed per task. The limit is con-
trolled by a ratio R, which defines how many
more samples are included in training task i ver-
sus the task with the smallest quantity of exam-
ples nmin. Therefore, ∀j tasks, the final probabil-
ity of sampling an example from task i becomes
p̄i = min(ni, R×nmin)/

∑
j min(nj , R×nmin).

In our experiments we set R = 3.

B Implementation Details

Pretraining Setup We pretrain our model for
100k steps using a batch size of 2048 and the
AdamW optimizer with weight decay of 0.01. We

apply a linear learning rate schedule with warm-up
for 10K steps and a maximum learning rate of 1e-4.
The pretrained model was trained on 8 NVIDIA
Tesla V100 GPUs.

Vision Encoder For the Alexa Arena, we fine-
tune the VinVL pretrained checkpoint for 300K
steps with a batch size of 4. We set the base learn-
ing rate to 10−4 and weight decay to 10−5 with an
SGD optimizer, decaying the learning rate by 0.1
after steps 55K and 75K steps. During training, we
use the default preprocessing and image transfor-
mations (Han et al., 2021). The model is trained on
4 RTX 2080 Ti GPUs.

Fine-tuning EMMA on VL downstream tasks
For all tasks, we fine-tune the pretrained model
using LM loss for up to 20 epochs.

Fine-tuning EMMA on Alexa Arena A key fea-
ture of EMMA is the ability to predict a ‘negative’
output for the contextual routing and the visual
grounding task. For example, the agent can output
<act><no match> apple or no apple when try-
ing to pick up or find an apple. Since the DTC data
do not include these types of outputs, we use visual
and CDF augmentations to simulate these instances.
In particular, with a probability 50% we convert a
‘positive’ instance (an instance that the synthetic
instruction matches with the visual scene), into a
‘negative’ one by selecting an image from the train
set where the target object is missing.

For the modular and unified models, we fine-tune
our pretrained model for 10K steps, using cross-
entropy loss and teacher-forcing. We use a batch
size of 256 and the AdamW optimizer with learn-
ing rate 10−4, weight decay 0.01, a linear learning
rate schedule with 1K warmup steps, and 0.1 label
smoothing. We shuffle the identities of the visual
tokens for each frame. The model is trained on a
single RTX 2080 Ti GPUs.

C DTC Benchmark

The DTC benchmark contains 2661 missions in
training and 383 in validation. Each mission is an-
notated by three separate annotators. Each human
annotation corresponds to a single episode, mean-
ing that there are 7983 training episodes and 1149
validation episodes.

Primitive navigation actions include
MoveForward, MoveBackward, RotateLeft, and
RotateRight. To collect panoramic views from
its position, the agent can perform the LookAround



Dataset # Images # Samples Tasks

VQA-v2 (Goyal et al., 2017) 83K 443K VQA
GQA (Hudson and Manning, 2019) 86K 987K VQA
COCO Captioning (Lin et al., 2014) 118K 592K MLM, ITM, Captioning
Conceptual Captions (Sharma et al., 2018) 3M 3M MLM, ITM, Captioning

Visual Genome (Krishna et al., 2017) 108K 5.4M
MLM, Dense Captioning, Visual
Grounding, Relationship Detection

Total 3.3M 10.4M

Table 6: Dataset statistics for pretraining.

Task Example input Example target output

MLM Denoise: Fridge <MASK> is open Fridge door is open
ITM Assess the statement: Fridge door is open True
Captioning Describe the image Food inside a refrigerator with its door open
Dense Captioning Describe object <visual_token_5> Silver fridge
Visual Grounding Locate the milk carton <visual_token_3>

VQA What color are the cabinets? White
Relationship Detection Explain how <visual_token_3> relates to <visual_token_5> Milk inside of fridge

Table 7: Example input and output formats used for the pretrained tasks.

action. The agent also performs manipulation
actions on each object which include PickUp,
Place, Open, Close, Toggle, Fill, Clean, Pour,
Break, and Scan. The set of supported actions
for each object are determined based on its
affordances. In total, there are 14 affordances:
pickupable, openable, breakable, receptacle,
toggleable, powerable, dirtyable, heatable,
eatable, chillable, fillable, cookable,
decor, and infectable.

D Search Routine

We focused on the development of a dialogue-
enabled agent within an embodied environment.
Our design aimed at creating an agent that is as
autonomous as possible without relying on exter-
nal components to support it. Nevertheless, the
search routine is an external component that our
agent depends upon. Learning how to search for an
object is a challenging problem that would require
an excessive amount of demonstrations.

The search pipeline is triggered when the output
of the contextual routing task requires the agent to
search for an object or to interact with an object
that is not in the agent’s view. The agent searches
the current room by iterating through selected view-
points – including the agent’s original position. At
each viewpoint, we collect a panoramic view by
rotating left by 90 degrees three times.

Since each room has a maximum of eight view-
points, the search routine could amount to a large

number of redundant steps. To mitigate this, the
agent selects a subset of viewpoints. We assume
that the original agent position and each viewpoint
can cover an area of a fixed radius. This way, we
create a graph where each candidate position is a
node and add edges between nodes whose areas
overlap. As a result, we turn the viewpoint selec-
tion into the Maximum Vertex Coverage problem
and apply a greedy algorithm. We empirically set
the radius to four, which leads to selecting up to
two viewpoints depending on the room size. After
preparing the search plan, the agent starts executing
it step-by-step. We use the visual grounding task to
localize a referenced object within each new frame.
The agent continues to execute the search plan until
the object is found or the plan is exhausted.

To minimize the number of search steps, we
also keep track of the objects observed at each
position. If any of the object labels from the vision
model is not present in the memory, we create a
new entry that stores the object label, its bounding
box area, and the closest viewpoint. Since we are
not using depth estimation, we used the area as an
approximation of distance. The memory is queried
at the beginning of the search routine. If the target
object is in memory for the current room, the agent
will consider the retrieved viewpoint as the starting
position for the search.

A limitation of our setup is that our routine does
not keep track of the spatial positions of an object.
Some objects may be inside containers like a fridge,



Task Prompts

MLM "Denoise: {caption}"
"Denoise the statement: {caption}"
"Denoise the description: {caption}"
"Reconstruct: {caption}"
"Reconstruct the description: {caption}"
"Reconstruct the statement: {caption}"

ITM "Assess the statement: {statement}"
"Assess the description: {statement}"
"Evaluate the statement: {statement}"
"Evaluate the description: {statement}"

Captioning "Caption this"
"Caption the image"
"Caption this image"
"Describe this"
"Describe the image"
"Describe this image"

Dense Captioning "Caption {region}"
"Caption object {region}"
"Describe {region}"
"Describe object {region}"

Visual Grounding "Find the object: {caption}"
"Locate the object: {caption}"
"Pick the object: {caption}"
"Select the object: {caption}"

VQA "Answer: {question}"
"Answer the question: {question}"
"What is the answer to: {question}"
"What is the answer to the question: {question}"

Relation Detection "Explain the relationship between: {subject} and {object}"
"Explain how {subject} relates to {object}"
"Describe the relationship between {subject} and {object}"
"Describe how {subject} relates to {object}"

Action Execution "Act according to the instruction: {instruction}"
"Execute the instruction: {instruction}"
"Follow the instruction: {instruction}"

Countextual Routing "Predict the system act: instruction"

Table 8: Task prompts used for each pretraining and downstream task.

or a cabinet. If the search routine is triggered after
the object has been observed inside a container
then the agent would need first to interact with
the container before retrieving the object. A more
sophisticated semantic search policy (Blukis et al.,
2018a,b, 2022; Chaplot et al., 2020; Min et al.,
2021) would likely translate to better performance.

E Data Augmentations

Visual Augmentations We leveraged the images
used to fine-tune the object detector to create syn-
thetic instances. Figure 6 shows a comparison be-
tween the distribution of objects from the DTC
and our synthetic dataset. Our synthetic dataset
includes objects that are not used within the DTC
benchmark. To prevent overpopulation of the syn-
thetic dataset with objects that occur frequently
(tables and desks), we set a maximum number of
objects for each action. Table 9 shows the maxi-

Train Validation

Break 750 400
Clean 400 200
Close 750 400
Fill 750 400
Goto 750 400
Open 750 400
Pickup 750 400
Place 750 400
Pour 750 400
Scan 400 200
Search 750 500
Toggle 750 400

Table 9: Maximum number per object for each action.
Search instances are used for multimodal grounding
which is not supported by the DTC benchmark.

mum number of each object used for every action
used for train and validation.
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Figure 6: Distribution of objects used in our visual augmentations and the DTC benchmark.

Each image contains ground truth information
regarding the position of the agent, the position of
the objects as well as their current states. We used
the ground truth metadata to ensure the credibility
of the synthetic instances. First, we used the dis-
tance between the agent and the object to be less
than the minimum interaction distance defined by
the Alexa Arena. For search instances, we omit this
requirement since we want the agent to be able to
find any object that is visible from the current view
but arbitrarily far away from its position. Second,
we used the states of the objects to determine if an
action can be executed on an object. For example,
the close action on a fridge cannot be performed
if the fridge is already closed. The goto and scan
actions are executable regardless of the state of the
object. In these cases, we ignore the preconditions
regarding the state of the object.

CDF Augmentations The objective of the CDF
augmentations is to help the agent learn frame and
visual token associations. The DTC benchmark
includes long trajectories but from our preliminary
experiments, we found that the model was not learn-
ing these associations, particularly as the number
of steps for a single instruction increased.

In order to create CDF augmentations we de-
ployed one of the earliest versions of EMMA in
the Alexa Arena. We created missions similar to
those in the DTC benchmark and manually wrote
low-level instructions so that the model could com-
plete the missions with one or few-shot interactions
without having to perform long trajectories. When
creating a mission we randomly sampled objects
equipped with the affordances that we are inter-
ested in for the specific mission. To ensure variety
within the missions, we randomized the layout of
the room, the position and the color of objects in

the layout, as well as the position of the agent at
the start of the mission.

We collected successful mini-episodes and used
them to train the model. Note that these mini-
episodes were hard for the initial version of EMMA
and were only feasible due to external guidance,
such as the search routine.

Paraphrazable Instructions To create instruc-
tions for both visual and CDF augmentations we
used ChatGPT as a starting point. Examples of in-
teractions with the ChatGPT are shown in Figure 7.
To create the high-level instruction for each CDF
trajectory, we merged the low-level instructions and
asked ChatGPT to provide a high-level one. We did
not use any sophisticated prompt engineering tech-
niques. We only provided introductory sentences
along with a few examples of semantically similar
instructions and asked the model to provide para-
phrases. Some of the generated paraphrases do not
match the target domain. For example, to clean the
bowl in the sink, the agent does not require soap.
We manually filtered these out before compiling
our set of instructions.

F Experiments

Object category Baseline Ours

Small (0–1.3k) 37.63 51.90
Medium (1.3k–9.2k) 60.41 89.60
Large (9.2k–90k) 64.72 91.90

All 46.03 56.70

Table 10: Object detection results for small, medium
and large objects. The allowed area of an object in each
category is shown in parentheses.



Imagine you are responsible for paraphrasing certain instructions. Here are a few 
examples to get you started:

Instruction: fill the pot with water from the sink
Paraphrase: fill the pot on the kitchen sink

Instruction: fill the pot with water from the sink
Paraphrase: fill the pot with water

Write 5 more paraphrases of the instruction fill the pot with water from the sink

Sure, here are 5 paraphrases of the instruction fill the pot with water from the sink:

1. Add water to the pot from the sink
2. Use the sink to fill the pot with water
3. Take water from the sink and put it in the pot
4. Pour water from the sink into the pot
5. Put water in the pot using the kitchen sink

You are responsible for instructing a robot to clean a plate in the sink. You need to come 
up with a few instructions that are creative, simple, and straightforward.

Here are a few examples:
1. clean the plate on the sink
2. rinse the plate on the sink
3. wash the plate on the sink
4. use the sink to clean up the plate

Write 5 instructions that have the same meaning. The instructions must be different from 
each other

Sure, here are 5 different instructions to  clean a plate in the sink:

1. Rinse the plate thoroughly in the sink to remove any food debris.
2. Clean the plate using the sink's water and cleaning solution.
3. Crush the mug with the hammer.
4. Use the sink to remove any dirt or food particles from the plate.
5. Use soap and water to clean the plate in the sink.

Imagine a special machine that can be used to turn an object into another object. You 
need to come up with creative ways of instructions, where somebody must follow to 
repair a broken bowl. 

Here are a few examples:
1. use the time machine to repair the bowl
2. use the time machine to repair the broken bowl
3. fix the bowl using the time machine
4. use the time machine to restore the bowl
5. repair the broken bowl

Write 5 instructions that have the same meaning. The instructions must be different from 
each other

Sure, here are 5 additional instructions for repairing a broken bowl using the time machine:

1. Bring the bowl back to its original state with the time machine.
2. Take the bowl back in time to restore it with the time machine.
3. Transport the bowl through time to mend it with the time machine.
4. Activate the time machine to fix the broken bowl.
5. Repair the bowl using the time machine's temporal capabilities.

Imagine you are verbally instructing somebody to break a mug with hammer in a cartoon 
game. You need to come up with creative and succinct ways to instruct them.

Here are a couple of examples:
1. break the mug
2. smash the mug
3. destroy the mug
4. use the hammer to break the mug
5. smash the mug by using the hammer

Write 5 instructions for that scenario. The instructions must be different from each other

Sure, here are 5 different instructions to break a mug with a hammer in a cartoon game:

1. Pound the mug into pieces with the hammer.
2. Strike the mug with the hammer to break it.
3. Crush the mug with the hammer.
4. Break the mug by hitting it with the hammer.
5. Take the hammer and smash the mug.

Figure 7: Examples of using ChatGPT as a starting point for paraphrasing goals and subgoals within the Alexa
Arena.

place

20.7%

pickup

37.6%

pickup&ambiguous

5.6%

clean
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fill

7.2%
interact

24.4%

Figure 8: Distribution of CDF augmentations during
training.

Model Accuracy F1

EMMA-modular 0.96 83.33
EMMA-unified 0.97 84.67

Table 11: Offline evaluation of the CR task.

Task-specific Prefixes Previous approaches have
shown that variations in the text prompt can affect
the results on downstream performance (Cho et al.,
2021; Gao et al., 2021; Radford et al., 2021). We
initially experimented with two types of prefixes:
task-specific special tokens and natural language
prompts. Task-specific special tokens are single-
word descriptors (Cho et al., 2021), while natural
language prompts are longer, varied descriptions
similar to the approach proposed by Sanh et al.
(2022). For example, the image captioning task
is denoted either by the single token [Cap] or by
prompts such as ‘Describe this’ or ‘Caption the
image’. Before pretraining our EMMA-base we
explored this design choice using an EMMA-small
variant following BART architecture (Lewis et al.,
2020). In particular, we observed the validation
loss of the model with tag and text prefixes after
pretraining for 75K steps. The model using tex-
tual prefixes was slightly outperforming the model
using tags (0.818 vs 0.824) which aligns with pre-
vious findings (Cho et al., 2021). For this reason,



we chose to use natural language prompts but also
they allow for a more flexible interface with the
model which is especially useful if the downstream
task involves language variety and complexity.

Data Ablations When training solely on the
DTC data, the baseline model outperforms EMMA.
To verify that our approach scales better in terms
of the data, we also experiment with applying our
augmentations to the existing baseline. We train
the baseline model using the same set of hyperpa-
rameters as in (Gao et al., 2023) on the DTC data
and vision augmentations. Then, we compare it
against our model trained on the same data (see red
curve in Figure 4). The baseline model achieves
a 34.42% success rate, a small performance boost
as opposed to training with only the DTC data,
while our model benefits substantially from these
augmentations achieving a success rate of 34.72%.

Model Scaling We also experiment with a small
variant of our model (3 encoder layers, 3 decoder
layers, 8 attention heads, 368 hidden size, 512 feed-
forward size) with a total of 20M parameters and
the base model trained from scratch on the entire
dataset. The performance of the small variant is
32.11%, while the base model trained from scratch
performed poorly with a success rate of 5.2%. Our
results indicate that scaling the model’s size up
provides a substantial performance increase and
highlights the necessity of pretraining.

Object Detector Comparison We validate the
performance of our vision encoder by comparing it
against the baseline (Gao et al., 2023). We evalu-
ate our object detection model using the standard
COCO evaluation metric, the Mean Average Preci-
sion (mAP), calculated by averaging the precision
at IoU thresholds ranging from 0.5 to 0.95 in steps
of 0.05. Similar to Gao et al. (2023), we set the
maximum detection proposals to 100 for evalua-
tion. Table 10 compares our vision encoder with
the baseline across different object sizes as defined
in (Gao et al., 2023). Our model achieves strong
performance with approximately 40% relative im-
provement for all object sizes. We note, however,
that our vision encoder is not directly comparable
to the baseline since the baseline model is trained
on fewer classes (86 vs 133) and also performs
segmentation instead of object detection.

Offline Contextual Routing Performance Sec-
tion 7 concludes that CR is one of the main sources

of errors because as the first step in completing
an instruction, an error will have cascading effects.
We evaluate offline the model performance on the
CR task using the validation set of DTC. Table 11
shows the accuracy and macro-average F1 score
for the model predictions of the CR-specific to-
kens. Both the modular and unified models achieve
high scores. However, assuming that action execu-
tion and search are performed without errors, the
probability of mission success for a mission with 5
instructions is (1− 0.03)5 = 0.85.

G Examples of trajectories

In Section 7 we highlighted the main source of er-
rors; the output of the contextual routing task and
often the lack of temporal understanding when our
model acts on the environment. We observed that
when performing the contextual routing task the
model can be confused when there are multiple ob-
ject candidates in the scene that could be suitable
candidates for an instruction. When performing
multiple actions over the same object, the model
may use a token to reference the object in a pre-
vious timestep as opposed to the current one. We
show two examples of such errors in Figure 9.

H Visual Domain Transfer

We create a synthetic dataset based on scene graphs
from the validation set of GQA (Hudson and Man-
ning, 2019), which provides a cleaned version of
Visual Genome scene graphs (Krishna et al., 2017).
This toy dataset is created to estimate the model’s
ability to transfer the downstream task of action
execution to the pretraining visual domain, and
quantify the impact of using the base or fine-tune
object decoder. We generate synthetic instructions
by populating templates for the action types: go to,
pick up, place, open, close. The templates are in
the form of ‘{action verb synonym} the {optional
attribute} {target object}’, e.g. ‘head towards the
wooden table’. We generate go to instructions for
all objects, and use the affordances from Alexa
Arena to determine if the object class is compati-
ble with the remaining action types. We want to
avoid cluttered images and ambiguous instructions.
Therefore, we keep images with up to 10 objects
and skip objects whenever multiple objects of that
class appear in the image. We create a total of
57740 instructions.

We also investigate the ability of the fine-tuned
model to perform the pretraining tasks in the down-



Input: approach the desk near the 
exit and pick up the apple. 
<<driver>> which desk are you 
referring to? <<commander>> the 
green desk with the apple, monitor 
and keyboard on it.
VAD:  <act><one_match>
AE: goto green desk 
<frame_token_1> <vis_token_17>.
VG: 

Input: pick up the apple
VAD:  <act><one_match>
AE: pickup apple <frame_token_2> 
<vis_token_30> <stop>.
VG: -

Input: go to the quantum lab.
VAD:  <act><one_match>
AE: goto lab2 <stop>.
VG: -

Input: approach the color changer 
station and put the apple on it.
VAD:  <act><one_match>
AE: goto color changer 
<frame_token_1> <vis_token_4>.
VG: -

Input: approach the color changer 
station and put the apple on it.
VAD:  <act><one_match>
AE: place color changer 
<frame_token_2> <vis_token_3> 
<stop>.
VG: -

Input: push the red button.
VAD:  -
AE: toggle red button 
<frame_token_1> <vis_token_6> 
<stop>.
VG: -

Input: pick up the red apple.
VAD:  -
AE: pickup apple <frame_token_1> 
<vis_token_10> <stop>.
VG: -

Input: go to the main office.
VAD:  <act><one_match>
AE: goto mainoffice <stop>.
VG: -

Input: turn left, approach the desk 
and place the apple on the desk
VAD:  <act><one_match>
AE: goto green desk 
<frame_token_1> <vis_token_17>.
VG: -

Input: turn left, approach the desk 
and place the apple on the desk
VAD:  <act><one_match>
AE: place green desk 
<frame_token_2> <vis_token_4> 
<stop>.
VG: -

Input: find cake
VAD:  <search><one_match>
AE: -
VG: <frame_token_1> <vis_token_1>

Input: pick up the cake
VAD:  <act><one_match>
AE: pickup cake <frame_token_1> 
<vis_token_1> <stop>.
VG: -

Input: go to the break room
VAD:  <act><one_match>
AE: goto breakroom <stop>.
VG: -

Input: find upper fridge
VAD:  <search><one_match>
AE: -
VG: <frame_token_1> <vis_token_8>

Input: freeze cake in upper fridge.
VAD:  <act><one_match>
AE: open freezer <frame_token_1> 
<vis_token_1>.
VG: -

Input: freeze cake in upper fridge.
VAD:  -
AE: place freezer <frame_token_2> 
<vis_token_6>.
VG: -

Input: freeze cake in upper fridge.
VAD:  -
AE: close freezer <frame_token_3> 
<vis_token_8>.
VG: -

Input: freeze cake in upper fridge.
VAD:  -
AE: open freezer <frame_token_4> 
<vis_token_8>.
VG: -

Figure 9: Example of two unsuccessful trajectories. The objective of the top mission is to use the color changer on
the apple and deliver it to the red desk. The instruction at the second to last timestep requires the agent to place
the apple on the red desk. In the bottom mission, the objective is to freeze the cake in the freezer and deliver it to
the desk. The agent at the last time step tried to open the vending machine (visual token 8) which is the token to
reference the freezer in the previous timestep.



stream visual domain through qualitative examples.
This requires the model not to forget the pretraining
tasks and to demonstrate generalization to the vi-
sual domain of the downstream tasks. To improve
model outputs, we prohibit the generation of added
special tokens (frame, visual, stop and CR tokens).
The examples in Figure 10 show that the fine-tuned
model retrains VQA, dense captioning and relation-
ship detection capabilities and transfers them to the
simulated environment domain. Figure 11 shows
some additional examples of the action prediction
task on real images.



Input: What type of fruit is on the 
counter? 
Output: pear

Input: What color is the desk on 
the left? 
Output: red desk

Input: Describe the relationship 
between <vis_token_13> and 
<vis_token_4>?
Output: apple on table

Input: How many computers are 
in the office? 
Output: one

Input: What color is the desk on 
the right?
Output: green desk

Input: Explain how <vis_token_1> 
relates to <vis_token_6>.
Output: banana to the left of 
cereal box

Input: Caption object <vis_token_1>
Output: a banana

Input: Describe <vis_token_2>
Output: bowl

Figure 10: Examples of transfer of pretraining tasks to the downstream domain after finetuning the pretrained model.

Instruction: Collect the banana 
Output: pickup banana<frame_token_1>
<vis_token_1> <stop>.

Instruction: Get the orange on your right. 
Output: pickup carrot <frame_token_1> 
<vis_token_4> <stop>.

Instruction: Turn on the microwave. 
Output: toggle microwave 
<frame_token_1> <vis_token_4> <stop>.

Instruction: Get in front of the refrigerator.
Output: goto fridge <frame_token_1> 
<vis_token_2> <stop>.

Instruction: Turn off the white computer 
monitor. 
Output: toggle computer <frame_token_1> 
<vis_token_10> <stop>.

Instruction: Leave the bowl in the sink.
Output: place sink <frame_token_1>
<vis_token_1> <stop>.

Instruction: Place the spoon in the blue 
ceramic mug.
Output: place bowl <frame_token_1> 
<vis_token_10> <stop>.

Instruction: Approach the cabinet below 
the sink.
Output: goto cabinet <frame_token_1>
<vis_token_27> <stop>.

Figure 11: Additional examples of the action prediction task on the visual domain of real images.


