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Abstract

Deep neural networks (DNNs) have achieved significant success in various applications with
large-scale and balanced data. However, data in real-world visual recognition are usually
long-tailed, bringing challenges to efficient training and deployment of DNNs. Information
bottleneck (IB) is an elegant approach for representation learning. In this paper, we propose
a balanced information bottleneck (BIB) approach, in which loss function re-balancing and
self-distillation techniques are integrated into the original IB network. BIB is thus capable
of learning a sufficient representation with essential label-related information fully preserved
for long-tailed visual recognition. To further enhance the representation learning capability,
we also propose a novel structure of mixture of multiple balanced information bottlenecks
(MBIB), where different BIBs are responsible for combining knowledge from different net-
work layers. MBIB facilitates an end-to-end learning strategy that trains representation and
classification simultaneously from an information theory perspective. We conduct experi-
ments on commonly used long-tailed datasets, including CIFAR100-LT, ImageNet-LT, and
iNaturalist 2018. Both BIB and MBIB reach state-of-the-art performance for long-tailed
visual recognition.

1 Introduction

With the emergence of ImageNet, COCO, and other datasets, deep neural networks (DNNs) have achieved
great success in various computer vision tasks such as image classification, object detection, and image
segmentation. The success of deep learning is largely due to the large-scale and balanced data in these tasks.
However, real-world data are usually long-tailed Buda et al. (2018), which means that a few classes (head
classes) occupy most instances in the data, while most classes (tail classes) occupy only a few instances.
When using standard training methods (using cross entropy as the loss function and instance balanced
sampling) to train a model on a long-tailed training set, the model usually performs well for the head classes
but poorly for the tail classes, which brings a great challenge to the training and deployment of DNNs Buda
et al. (2018).

Recently, many methods have been proposed to solve the problem of imbalanced data distribution. Among
these methods, re-sampling and loss function re-balancing are the two most commonly used techniques.
Re-sampling makes an imbalanced dataset balanced by over-sampling or under-sampling Buda et al. (2018);
Ando & Huang (2017). Re-balancing methods include re-weighting Buda et al. (2018) and the logits adjust-
ment Ren et al. (2020). Kang et al. (2019) found that although the classification performance of a model
trained by standard methods is worse than that of re-balancing methods, the obtained feature space is bet-
ter. They proposed to decouple the training process into two stages: learning representation and learning
classifier. The decoupling training method leads to good results Peifeng et al. (2023); Zhou et al. (2023);
Zhang et al. (2021). Zhong et al. (2021) showed that partial network parameters obtained in the learning
representation stage, such as parameters of Batch Normalization (BN), are not suitable for the second stage
of learning classifier directly, which suggests that learning representation and learning classifier should not be
regarded as two completely independent stages. Mixture-of-Experts (MoE) techniques involve the training
of multiple neural networks, each specializing in handling distinct segments of a long-tailed dataset. BBN
Wang et al. (2020), RIDE Zhou et al. (2020b) and SADE Zhang et al. (2022) serve as representations of MoE
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methods. However, the enhanced capabilities of MoE come at the cost of increased computational loads.
Recently, Laurent et al. (2022) highlighted that, for long-tailed visual recognition, the key is not just the
classification rule but the ability to learn and identify correct features.

The Information Bottleneck (IB) is an elegant approach for representation learning. It originates from the
rate-distortion theory Tishby (1999); Tishby & Zaslavsky (2015), and has made extraordinary progress in
many tasks, such as image classification Alemi et al. (2017), image segmentation Luo et al. (2019), multi-view
learning Wang et al. (2021b), reinforcement learning Goyal et al. (2019) and so on. IB rethinks what a “good”
representation is: for a given task, the best representation should contain sufficient and minimal amount
of information. In the IB theory, sufficiency is achieved by maximizing the mutual information between
the representation z and the label y, and minimality is achieved by minimizing the mutual information
between the input x and the representation z. By introducing a Lagrange multiplier β, the IB method can
be optimized by minimizing

RIB = −I(z; y) + βI(x; z), (1)

where I(a; b) represents the mutual information between a and b. IB provides a new learning paradigm
that naturally avoids over-fitting and enhances model robustness. To optimize the IB objective in problems
involving high-dimensional variables, variants such as VIB Alemi et al. (2017), Drop-IB Kim et al. (2021),
and Nonlinear-IB Kolchinsky et al. (2019) are proposed. VIB is the first to indirectly optimize the variational
upper bound of IB, and has become one of the most widely used IB variants for its simplicity and effectiveness.

Although IB has made a lot of progress on balanced datasets, I(z; y) is still affected by label distribution when
applied to long-tailed datasets. This limitation arises from the scarcity of tail class samples, making it difficult
for DNNs to learn a sufficient representation z. Besides, the mutual information is difficult to estimate in
DNNs. To solve these problems, we propose a novel balanced information bottleneck (BIB) method in this
study. We use the loss function re-balancing technique to alleviate challenges posed by label distribution.
Concurrently, we implicitly optimize the information bottleneck objective by self-distillation to reserve as
much information related to labels as possible in the process of information flow. To further enhance the
representation learning ability, we introduce a novel framework of a mixture of multiple balanced information
bottlenecks (MBIB). MBIB is the first network to leverage multiple balanced information bottlenecks, each
responsible for extracting knowledge from different network layers. By optimizing multiple IB objectives
simultaneously, MBIB ensures a comprehensive and effective representation learning process, leading to
improved performance. We conduct experiments on benchmark datasets, including CIFAR100-LT, ImageNet-
LT, and iNaturalist 2018.

The contributions of this study are summarized as follows:

1) Firstly, we propose a novel balanced information bottleneck (BIB) method to handle long-tailed data
for real-word visual recognition.

2) Secondly, to the best of our knowledge, we propose the first network with a mixture of multiple bal-
anced information bottleneck (MBIB), optimizing diverse IB objectives simultaneously to effectively
learn representation and classifier in an end-to-end fashion.

3) Finally, our methods achieve state-of-the-art performance according to the average classification ac-
curacy across multiple benchmark datasets.

2 Related Work

2.1 Long-Tailed Visual Recognition

Re-sampling and loss function re-balancing are the most widely studied approaches in imbalanced classifica-
tion. Re-sampling aims to construct a balanced training set, including over-sampling and under-sampling.
Due to the low diversity of tail classes, over-sampling often results in models over-fitting tail classes. Under-
sampling discards part of samples in head classes, which damages the diversity of head classes and decreases
model generalization performance. Kang et al. (2019) proposed a progressive sampling algorithm combin-
ing over- and under-sampling to transition the distribution from an imbalanced distribution to a balanced
distribution. However, the problem of re-sampling still exists.
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Loss function re-balancing gives different weights to different classes or instances to re-balance the model at
the level of the loss function. This strategy mainly includes re-weighting Cui et al. (2019); Byrd & Lipton
(2019) and logits adjustment Ren et al. (2020); Menon et al. (2021). Cui et al. (2019) proposed re-weighting
the loss function with the number of effective samples. Lin et al. (2020) suggested that the model should pay
more attention to hard samples by giving hard samples a large weight. On the other hand, Ren et al. (2020)
and Menon et al. (2021) adjusted logits to make gradients more balanced during training. Kang et al. (2019)
found that although re-balancing and re-sampling can improve the performance of imbalanced classification,
they result in worse representation. Kang et al. (2019) proposed to decouple the training process into two
stages. The first stage uses standard training methods to learn a good representation. In the second stage,
strategies such as re-sampling, re-weighting and so on are used to fine-tune the classifier to learn a good
classifier. The decoupling training approach provides a new training paradigm for long-tailed recognition.
Many studies have focused on how to obtain better representation Kang et al. (2021); Liu et al. (2021);
Zhong et al. (2022) or learn a better classifier Wang et al. (2021d;a); Zhong et al. (2021). MoE methods
also have achieved a great success by effectively combining the knowledge from multiple experts. BBN Zhou
et al. (2020b) introduces a two-branches network to address long-tailed recognition. RIDE Wang et al.
(2020) trains multiple experts with the softmax loss respectively and enforces a KL-divergence based loss to
enhance the diversity among various experts. SADE Zhang et al. (2022) pioneers a novel spectrum-spanned
multi-expert framework and introduces an innovative expert training scheme. Distillation strategy like DiVE
He et al. (2021) and contrastive learnig like PaCo Cui et al. (2021) have also achieved successes.

2.2 Information Bottleneck

IB divides the model into two parts: an encoder and a decoder. The encoder codes a random variable x into
a random variable z, and the decoder decodes the random variable z into a random variable y. IB assumes
that variables x, z, y follow a Markov chain y ↔ x ↔ z, and z is the bottleneck of information flow. IB
expects z to retain information from x to y as much as possible while forgetting information unrelated to y.
It means that for a given task, z is the best representation in the perspective of rate-distortion. However,
despite the beauty of the IB theory, the calculation of the mutual information in IB is complicated, especially
in deep learning Slonim (2006). To tackle this problem, Variational Information Bottleneck (VIB) Alemi
et al. (2017) optimizes the IB objective by using its upper bound. According to VIB, −I(z; y) and I(x; z)
are bounded as

−I(z; y) ≤ Ep(z,y) − log q(y|z) = LCE(z, y),
I(x; z) ≤ Ep(x,z) log p(z|x) − Ep(z) log r(z)

= Epdata(x)[KL(q(z|x)||r(z))], (2)

where q(y|z), q(z|x), r(z) are the variational approximations to p(y|z), p(z|x), p(z), respectively. VIB is
widely used for its simplicity and effectiveness. However, IB is essentially a compromise between represen-
tation and classification, and obtaining an optimal compromise point is difficult. To avoid this compromise,
Tian et al. (2021) proposed a method to implicitly optimize the information bottleneck objective through
self-distillation.

3 Method

3.1 Preliminaries

Let D = {(xi, yi)}N
i=1 be a training set, where yi is the label for data xi and K is the number of classes.

Without loss of generality, let n1 > n2 > · · · > nK , where ni is the number of training samples for class
i, hence the total number of training samples is N =

∑K
i=1 ni. Unlike the long-tailed distribution of the

training set, the test set follows a uniform distribution, ensuring an equal number of samples across all classes
for a balanced evaluation of the model’s performance in each class.
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Figure 1: The network structure of BIB. FC means the Fully Connected layer and GAP means Global
Average Pooling, f(v; θ) and g(z; θ) are classifiers. BSCLoss means the balanced softmax cross entropy loss
(Loss1 and Loss2), and VSDloss means variational self-distillation loss (Loss3). The output is the mean of
the outputs from f(v; θ) and g(z; θ).

3.2 Balanced Information Bottleneck (BIB)

The information bottleneck theory aims to obtain a sufficient and minimal representation of the input, in
the sense of effectively characterizing the output. Let v be an observation of the input x extracted from
an encoder such as a CNN, and z be a representation encoded from v by a fully connected layer, as shown
in Figure 1. Considering CNNs’ powerful feature extraction capability, it’s reasonable to assume that v
may retain all label information from the input x. Therefore, our problem is translated into how to find a
representation z that preserves the sufficient and minimal information of the observation v to the label y.
To address this, we decompose I(v; z) to two terms Tian et al. (2021):

I(v; z) = I(z; y) + I(v; z|y), (3)

where the first term represents the information in z that is related to the label, and the second term
represents information that is not related to the label. To optimize the IB objective, we should maximize
I(z; y) while minimizing I(v; z|y). Minimizing I(v; z|y) is equivalent to minimizing |I(v; y) − I(z; y)| Tian
et al. (2021). Therefore, we can decompose the objective into three sub-optimization objectives: maximizing
I(v; y), maximizing I(z; y) and forcing I(z; y) to approximate I(v; y).

To handle long-tailed data, we propose a balanced information bottleneck (BIB), in which loss function re-
balancing and self-distillation class weighting techniques are integrated into the original IB network. We
start with maximizing I(v; y) and I(z; y). According to VIB Alemi et al. (2017), −I(v; y) and −I(z; y) are
bounded as Ep(v,y) − log q(y|v) and Ep(z,y) − log q(y|z). For a long-tailed dataset, we apply a re-balance
technique over I(v; y):

ps(yi|v) ≈ qs(yi|v) = nie
fi(v;θ)

K∑
j=1

njefj(v;θ)
, (4)

where the subscript s represents the training set distribution, f(v; θ) represents the classifier following v.
The proof can be found in Appendix A. The loss corresponding to maximizing I(v; y) becomes:

Loss1 = Ep(v,y) − log qs(y|v). (5)

Similarly, to maximize I(z; y), we get the loss as:

Loss2 = Ep(z,y) − log qs(y|z). (6)

Loss1 and Loss2 are cross entropy losses. We introduce a classes weighting factor inversely proportional to
the label frequency to strengthen the learning of the minority class and re-balance the losses better. The
weighting factor is:

wi = K · (1/di)m∑K
i=1(1/di)m

, (7)
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where di is the i-th class frequency of the training dataset, and m is a hyperparameter. Therefore, Loss1
and Loss2 are regarded as balanced softmax cross entropy losses (BSCLoss).

Then, to force I(z; y) to approximate I(v; y), we only need to ensure that H(y|v) approximates H(y|z). Tian
et al. (2021) proved that making q(y|v) approximate q(y|z), i.e., minimizing the KL-divergence between q(y|z)
and q(y|v), can effectively make H(y|v) approximate H(y|z). Therefore, our third loss is to minimize the
DKL[q(y|v)||q(y|z)]:

Loss3 = Eq(v|x)[DKL[q(y|v)||q(y|z)]]
= Eq(v|x)[Eq(z|v)[q(y|v)[log q(y|v) − log q(y|z)]]]
= Eq(v|x)[Eq(z|v)[−H(y|v) − q(y|v) log q(y|z)]]. (8)

Note that this is like the method of self-distillation. To stabilize the optimization, we don’t optimize q(y|v);
instead, we detach it from the backward propagation process. We call Loss3 the variational self-distillation
loss (VSDLoss). Furthermore, to mitigate the effect of the long-tailed distribution, we use class-dependent
self-distillation temperatures: q(yi|v) = efi(v;θ)/Ti

K∑
j=1

efj (v;θ)/Tj

and q(yi|z) = egi(z;θ)/Ti

K∑
j=1

egj z;θ)/Tj

, where Ti = ( nmax

ni
)γ , γ is a

hyperparameter, g(v; θ) represents the classifier following v.

The overall loss is given by
LossBIB(v,z) = Loss1 + Loss2 + β · Loss3, (9)

where β is a hyperparameter. To sum up, Loss1 and Loss2 are balanced cross entropy losses (BSCLoss)
to maximize I(v; y) and I(z; y). Loss3 is the variational self-distillation loss (VSDLoss) to force I(z; y) to
approximate I(v; y). Therefore, we can optimize the IB objective implicitly by minimizing LossBIB(v,z).

3.3 Mixture of Balanced Information Bottleneck (MBIB)

In BIB, v serves as the observation derived from CNN on the input x, and it is assumed that I(v; y) = I(x; y),
implying that v retains all mutual information between x and the label y. However, this assumption encoun-
ters limitations due to the inherent data processing inequality Cover & Thomas (1991) in the information
processing chain. Specifically, during the feature extraction process of a CNN network with three parts
(CNN1, CNN2 and CNN3), as illustrated in Figure 2, there is a diminishing trend in mutual information:

I(v3; y) ≤ I(v2; y) ≤ I(v1; y). (10)

Here, v1 and v2 represent intermediate observations from the partial CNNs, and v3 is the observation of the
entire CNN on x (i.e., v in BIB in Section 3.2). Hence, the assumption that I(v; y) = I(x; y) in BIB doesn’t
always hold; instead, I(v; y) ≤ I(x; y) due to information loss. Therefore, v (v3 in Figure 2) is not a sufficient
observation containing all mutual information between x and the label y. Consequently, solely applying BIB
between v and z may not fully utilize the label-related information.

One promising model enhancement strategy is leveraging information retained in v1 and v2, given that they
contain more mutual information with y than v3. By applying BIB between v1 and z (BIB(v1, z)), as well
as between v2 and z (BIB(v2, z)), we are able to conserve a more substantial portion of mutual information
relating to label y in v1 and v2, thereby making feature z a sufficient and comprehensive representation of
v1, v2, and v3 simultaneously.

Hence, we propose a novel network structure, which consists of the mixture of multiple balanced information
bottleneck (i.e., MBIB), as shown in Figure 2. MBIB is a network capable of simultaneously optimizing
diverse information bottleneck. The overall loss function is:

LossMBIB = a · LossBIB(v1,z) + b · LossBIB(v2,z) + LossBIB(v3,z), (11)

where a and b are hyperparameters to adjust the proportions of different BIBs. Specifically, when a = 0 and
b = 0, MBIB degrades to the BIB proposed in Section 3.2. As the values of a and b increase, the model
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Figure 2: The network structure of MBIB. CNN1, CNN2 and CNN3 are different parts of the CNN network.
FC means the Fully Connected layer, and GAP means Global Average Pooling. h(v1; θ), u(v2; θ), f(v3; θ)
and g(z; θ) are classifiers. The output is the mean of the outputs from f(v3; θ) and g(z; θ).

emphasizes information from v1 and v2 more. Each LossBIB is composed of three losses as below:

LossBIB = BSCLoss1 + BSCLoss2 + β · V SDLoss, (12)

where there are two balanced cross entropy losses and one variational self-distillation loss.

From the perspective of self-distillation, we can further explore the effectiveness of MBIB. VSDLosses in
Eqs. equation 9 and equation 12 facilitate self-distillation processes among layers at different depths and the
output layer. For example, the VSDLoss in BIB(v1, z) is optimized in the following form:

minV SDLossBIB(v1,z) ⇔ minEq(v1|x)[DKL[q(y|v1)||q(y|z)]]. (13)

To optimize this objective, we minimize the KL-divergence between q(y|z) and q(y|v1), thereby performing
distillation between v1 and z. This process effectively integrates knowledge from v1 and z.

Previous studies Jin et al. (2023) have underscored that shallow parts of the deep model are able to perform
better on certain tail classes, and layers of different depths excel at recognizing different classes in long-tailed
data. This suggests that fusing knowledge from shallow and deep layers can better fit the long-tailed data,
and VSDLosses achieve this through self-distillation.

Therefore, MBIB enables a more comprehensive output that integrates the knowledge of different shallow
layers. At the same time, this approach allows shallow layers to learn from deeper ones. Consequently, this
strategy can enhance the representation learning capability of the network by integrating knowledge form
different depths.

4 Experiments

4.1 Datasets and Setup

Long-Tailed CIFAR-100. CIFAR-100 includes 60K images, of which 50K images are for training and
10K for verification. There are 100 classes in total. We use the same long-tailed version of the CIFAR-100
dataset as in Cao et al. (2019) for a fair comparison. The imbalance degree of the dataset is controlled by
the Imbalanced Factor (IF = Nmax/Nmin, where Nmax represents the highest frequency and Nmin represents
the lowest frequency). We conduct experiments on CIFAR-100-LT with IF of 100, 50, and 10.

ImageNet-LT. ImageNet-LT is a subset of long-tailed distribution sampled from ImageNet through Pareto
distribution. The ImageNet-LT training set contains 115.8K images, and a total of 1000 classes. The highest
frequency is 1280, and the lowest frequency is 5. There are 20 images of each class in the validation set, and
50 images in each class of the test set.

iNaturalist 2018. iNaturalist 2018 is a large-scale, long-tailed fine-grained dataset. iNaturalist 2018
includes 437.5K images and 8142 classes in total, with 1000 samples for the class with the highest frequency
and 2 samples for the class with the lowest frequency.
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Table 1: Top-1 accuracy(%) of ResNet32 on CIFAR-100-LT with 200 epochs. Data in bold is the overall
accuracy of our methods, while underlined data indicates overall performances superior to ours. This for-
matting is consistent in other tables.

Method Imbalanced Factor
100 50 10

One-Stage
CE 38.3 43.9 55.7

Focal Loss 38.4 44.3 55.8
LDAM-DRW 42.0 46.6 58.7

BBN 42.6 47.0 59.1
CDT 44.3 - 58.9
BSCE 42.7 47.2 58.5

BIB(Ours) 44.9 49.8 60.4
MBIB(Ours) 47.5 51.2 60.9
Two-Stage

cRT 41.2 46.8 57.9
τ -norm 41.1 46.7 57.1
KCL 42.8 46.3 57.6
TSC 43.8 47.4 59.0
SSP 43.4 47.1 58.9
MoE
BBN 42.6 47.0 59.1

RIDE(2E) 47.0 - -
RIDE(3E) 48.0 - -

SADE 49.8 53.9 63.6
Others
DiVE 45.4 51.1 62.0

According to the setting in Liu et al. (2019), we divide the dataset into three subsets according to the number
of samples: Many shot (more than 100 samples), Medium shot (between 20 and 100 samples), and Few shot
(less than 20 samples).

4.2 Implementation Details

Training details on CIFAR-100-LT. For CIFAR-100-LT, we process samples in the same way as in Cao
et al. (2019); Zhou et al. (2020a). We use ResNet32 as the backbone network. To keep consistent with the
previous settings Cao et al. (2019), we use the SGD optimizer with a momentum of 0.9 and weight decay of
0.0003. We train 200 epochs for each model. The initial learning rate is set to 0.1, and the first five epochs
use the linear warm-up. The learning rate decays by 0.01 at 160th and 180th epoch. The batch size of all
experiments is set to 128.

Training details on ImageNet-LT. For ImageNet-LT, we report the results of two backbone networks:
ResNet10 and ResNeXt50. We train 90 epochs for all models, using the SGD optimizer with a momentum
of 0.9 and weight decay of 0.0005. For ResNet10, we use a cosine learning rate schedule decaying from 0.05
to 0 with batch size of 128. For ResNeXt50, we use a cosine learning rate schedule decaying from 0.025 to 0
with batch size of 64.

Training details on iNaturalist 2018. For the iNaturalist 2018, we use ResNet50 as the backbone
network. The model trained 90 or 200 epochs using the SGD optimizer with a momentum of 0.9 and weight
decay of 0.0001. The batch size is set to 64, and we use a cosine learning rate schedule decaying from 0.025
to 0.
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For the setting of hyperparameters, we take β in {0, 1, 2, 3, 4, 5} according to different datasets. For all of
the datasets, we use a = 0.1, b = 0.3 and m = 0.1. For CIFAR100-LT, we use γ = 0, and for ImageNet-LT
and iNaturalist 2018, we use γ = 0.5. To make the results more robust, we use the mean of f(v; θ) and
g(z; θ) as the final result of the test sample.

4.3 Main Results

Baseline. We compared four mainstream approaches, including one-stage, two-stage, MoE and other ap-
proaches such as distillation and contrastive learning. The one-stage approach includes Focal loss Lin et al.
(2020), LDAM Cao et al. (2019), CDT Ye et al. (2020), BSCE Ren et al. (2020), weight balancingAlshammari
et al. (2022), RBLPeifeng et al. (2023), etc. The two-stage approach includes cRT Kang et al. (2019), τ -norm
Kang et al. (2019), KCL Kang et al. (2021), TSC Li et al. (2021), SSP Yang & Xu (2020), WCDASHan
(2023), CC-SAMZhou et al. (2023), etc. The MoE approach includes BBNZhou et al. (2020b), RIDEWang
et al. (2020), SADEZhang et al. (2022). The distillation approach is DiVEHe et al. (2021). The con-
trastive learning method is PaCoCui et al. (2021). Especially, if only the results of the v are concerned, BIB
degenerates to BSCE.

CIFAR-100-LT. Table 1 compares BIB and MBIB with baseline methods on CIFAR-100-LT. As the results
show, BIB achieves improvements on all imbalanced factors. MBIB is higher than most of the methods and
even outperforms some MoE models. Although some MoE methods outperform MBIB, they incur much
larger computational costs than our methods.

ImageNet-LT. Table 2 compares BIB and MBIB with baseline methods on ImageNet-LT. We conduct
experiments on two backbones networks: ResNet10 and ResNeXt50. The results of RIDE, SADE and PaCo
are from Zhang et al. (2023). The experimental results show that BIB and MBIB can achieve consistent
performance improvement on both small and large neural networks. The overall accuracy of MBIB is higher
than all of the baseline methods except SADE.

iNaturalist 2018. Table 3 compares BIB with baseline methods on iNaturalist 2018. Notably, MBIB
achieves the best performance for 200 training epochs among all of the baseline methods including MoE
models.

4.4 Ablation Study

How the value of β affects our methods? β is a hyperparameter in the loss function, which affects the
degree of information compression by the network. Figure 3 shows the impact of different β on the overall
accuracy of the CIFAR100-LT dataset. The results show that the optimal β may be different for different
imbalanced factors and different methods, and we can make more fine adjustments if necessary. However,
we think this may not be necessary, because simple search in {0, 1, 2, 3, 4, 5} can already obtain satisfactory
results.

How the the value of a and b affects our methods? a and b are hyperparameters that adjust the
proportions of different BIB components within the MBIB framework. Figure 4 shows the heatmap of
accuracy on the CIFAR100-LT dataset with respect to different a and b. The results show that the values
of a and b significantly influence the overall accuracy. Similar to the β, we can fine-tune a and b to get the
models having better performances.

How the the quantity of observation v affects our methods? We utilize three observation v in our
methods. Ablations on a and b show that when a or b is zero, 3-MBIB (three-observation MBIB) degenerates
to 2-MBIB and accuracy often lowers. We also investigated 4-MBIB, with results shown in Table 4. We
found the quantity of observation v affects MBIB’s performance, improving with more v. However, once v
exceeds 3, the performance improvement diminishes as the v quantity continues to increase. We attribute
this to the fact that 3-MBIB has fully utilized the useful information in intermediate observations, thereby
limiting the additional information gained by further increasing v, resulting in a smaller improvement for
4-MBIB.
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Table 2: Top-1 accuracy(%) of ResNet10 and ResNeXt50 on ImageNet-LT with 90 epochs. A ‡ or † indicates
training extended to 180 or 200 epochs.

Method ResNet10/ResNext50
Many Medium Few All

One-Stage
CE 57.0/65.9 25.7/37.5 3.5/7.7 34.8/44.4

Focal Loss 36.4/64.3 29.9/37.1 16.0/8.2 30.5/43.7
LDAM-DRS -/63.7 -/47.6 -/30.0 36.0/51.4

LADE -/62.3 -/49.3 -/31.2 -/51.9
BSCE 53.4/62.2 38.5/48.8 17.0/29.7 41.3/51.4

weight balancing† -/62.0 -/49.7 -/41.0 -/53.3
RBL† -/64.8 -/49.6 -/34.2 -/53.3

BIB(Ours) 54.7/64.7 40.0/51.2 21.7/32.7 43.2/53.9
MBIB(Ours) 56.4/67.0 41.8/52.8 23.2/33.5 44.9/55.7
Two-Stage

cRT -/61.8 -/46.2 -/27.4 41.8/49.6
τ -norm -/59.1 -/46.9 -/30.7 40.6/49.4

DisAlign -/61.5 -/50.7 -/33.1 -/52.6
WCDAS 53.8/- 41.7/- 25.3/- 44.1/-
CC-SAM -/63.1 -/53.4 -/41.4 -/55.4
SRepr‡ -/- -/- -/- -/54.6
MoE
BBN -/40.0 -/43.3 -/40.8 -/41.2

RIDE(3E) -/66.9 -/52.3 -/34.5 44.3/55.5
SADE -/65.3 -/55.2 -/42.0 -/57.3
Others
DiVE -/64.1 -/50.4 -/31.5 -/53.1
PaCo -/59.7 -/51.7 -/36.6 -/52.7
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Figure 3: The impact of different β on the overall accuracy of CIFAR-100-LT (we fixed a = 0.1 and b = 0.3).
The solid lines show the results of MBIB and the dashed lines correspond to BIB.

Due to the page limit, the impact of different parts of BIB, as well as comparisons between BIB and BSCE
are provided in Appendix B and C.

4.5 Analysis of the Posterior Probability Distribution

Ideally, the mean positive posterior probability of per class should be equal to 1:

q(yi|x) = 1
ni

ni∑
j=1

q(yi|xj) = 1. (14)
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Table 3: Top-1 accuracy(%) of ResNet50 on iNaturalist 2018.

Method Epoch Many Medium Few All
One-Stage

CE 90/200 72.2/75.7 63.0/66.9 57.2/61.7 61.7/65.8
ResLT Cui et al. (2022) 200 68.5 69.9 70.4 70.2

LADE Hong et al. (2021) 200 - - - 70.0
BSCE Ren et al. (2020) 90/200 67.2/69.6 66.5/69.8 67.4/69.7 66.9/69.8

weight balancing Alshammari et al. (2022) 200 71.0 70.3 69.4 70.0
BIB(Ours) 90/200 70.9/73.9 69.9/72.9 69.6/72.1 69.9/72.7

MBIB(Ours) 90/200 70.7/72.6 70.6/73.6 70.2/73.1 70.4/73.3
Two-Stage

cRT Kang et al. (2019) 90/200+10 69.0/73.2 66.0/68.8 63.2/66.1 65.2/68.2
τ -norm Kang et al. (2019) 90/200+10 65.6/71.1 65.3/68.9 65.9/69.3 65.6/69.3
KCL Kang et al. (2021) 200+30 - - - 68.6

TSC Li et al. (2021) 400+30 72.6 70.6 67.8 69.7
DisAlign Zhang et al. (2021) 90/200+30 64.1/69.0 68.5/71.1 67.9/70.2 67.8/70.6

WCDAS Han (2023) 200+30 75.5 72.3 69.8 71.8
CC-SAM Zhou et al. (2023) 200+30 65.4 70.9 72.2 70.9

SRepr Nam et al. (2023) 200+20 - - - 70.8
MoE

BBN Zhou et al. (2020b) 90/180 49.4/- 70.8/- 65.3/- 66.3/69.6
RIDE(4E) Wang et al. (2020) 100/200 70.9/70.5 72.4/73.7 73.1/73.3 72.6/73.2

SADE Zhang et al. (2022) 200+5 74.5 72.5 73.0 72.9
Others

DiVE He et al. (2021) 90/200 -/- -/- -/- 69.1/71.7
PaCo Cui et al. (2021) 200 68.5 72.0 71.8 71.6

Table 4: Accuracy of MBIB with different quantities of observation v. We set a = 0 in 2-MBIB and
a = 0.3, b = 0.3 in the others. 4-MBIB(x) denotes the introduction of BIB(x, z) to 3-MBIB.

Quantity of v 2-MBIB 3-MBIB 4-MBIB(x) 4-MBIB
Accuracy(%) 45.2 46.6 46.8 46.9

This means that the closer q(yi|x) is to 1, the better. The experiment results reveal BIB’s superiority in
most classes compared to BSCE and MBIB behaves better than BIB in the tail classes. The detailed results
and analysis are shown in Appendix D.

4.6 Analysis of the Learned Representation

A good representation should have the following characteristics: the representations of the same class are
very close, and the representations between different classes are far away Wang et al. (2021c). We can
evaluate the quality of the representation by the mean of the average intra-class distance (DIntra), the mean

Table 5: The value of ρ of different methods on the CIFAR-100-LT (IF=100) testing set.

Metric Methods Many Medium Few All

ρ

BSCE 1.26 1.30 1.48 1.34
BSCE_MLP 0.85 0.98 1.29 0.99

BIB_v 0.94 1.06 1.37 1.06
BIB_z 0.80 0.91 1.15 0.91

MBIB_v 1.01 1.04 1.31 1.09
MBIB_z 0.78 0.86 1.02 0.86
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Figure 4: The impact of different a and b on the overall MBIB accuracy of CIFAR-100-LT (we fixed β = 5).

inter-class distance (DInter), and the ratio (ρ) between them. DIntra, DInter and ρ are calculated as follows:

DIntra = 1
K

K∑
i=1

1
|Ri|2

∑
rj ,rk∈Ri

∥ rj − rk∥2, (15)

DInter = 1
K(K − 1)

K∑
i=1

K∑
j=1,j ̸=i

∥ ci − cj∥2, (16)

ρ = DIntra

DInter
, (17)

where Ri is the representation set of class i, and ci is the class center of class i, i.e. ci = 1
|Ri|

∑
rj∈Ri

rj . The

better the representation, the smaller the value of ρ.

Table 5 compares ρ obtained by different methods on the testing set. The value of ρ obtained by BIB and
MBIB is smaller than that of BSCE and BSCE_MLP (BSCE_MLP indicates that the network structure is
the same as branch z in BSDIB, and the loss function is BSCE). In addition, We visualize the representation
of the test set obtained by different models using t-SNE van der Maaten & Hinton (2008). The visualization
and its analysis are shown in Appendix E.

Table 6: Efficiency comparisons (test on size 3 × 640 × 640)

Method MBIB SADE RIDE(4E)
Params(k) 486.02 783.86 1018.00
FLOPs(G) 27.93 40.69 50.98

4.7 The efficiency compared with MoE

MoE methods are often the state-of-the-art approaches in long-tailed recognition. Although they can achieve
higher accuracy on some datasets compared to our methods, they always demand much larger computational
resources. Therefore, MoE methods are less practical than our methods in scenarios with limited compu-
tational resources. We compare the efficiency of MBIB with MoE methods (RIDE and SADE) in Table
6.

5 Discussion

We have empirically observed a significant enhancement in network performance upon the introduction
of BIB. Additionally, we undertook an exploration of two alternative mixture of BIB structures, as de-
picted in Figure 5. One structure applied sequential BIB connections between layer pairs (e.g., BIB(v1, v2),
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Figure 5: Two alternative multi-BIB structures.

BIB(v2, v3), and BIB(v3, z)), as shown in Figure 5(a), while the other integrated BIB connections among
all feature representations as shown in Figure 5(b). We named them respectively as se-MBIB and all-MBIB.
However, experiments on the CIFAR100-LT dataset have revealed that both se-MBIB and all-MBIB often
exhibit worse performance compared to our MBIB method, as shown in Appendix F. The original inten-
tion to introduce sequential BIB connections was to propagate the optimal representation throughout the
network in a cascading manner, where v2 is considered a sufficient representation of v1, v3 is a sufficient
representation of v2, and z is a sufficient representation of v3. This would ultimately result in z serving as a
sufficient representation of v1, consequently increasing the mutual information I(z; y). However, this notion
is inherently less rigorous, as even if v2 is a sufficient representation of v1 and v3 is a sufficient representa-
tion of v2, v3 does not necessarily constitute a sufficient representation of v1. While each individual BIB
operation guarantees the output as an optimal and sufficient representation of the input, the sequential BIB
connections do not inherently ensure that the global output is an optimal and sufficient representation of
the initial input. In other words, the representation may deviate from the initial inputs and fall into local
optima instead of global optima during the sequential propagation. Thus, se-MBIB with the sequential BIB
connections appears to be less justifiable. The second structure all-MBIB, which introduces the improper
sequential BIB connections on top of MBIB, is found to be detrimental to performance.

While our proposed methods demonstrate performance that falls slightly short of some state-of-the-art
mixture of experts (MoE) models for long-tailed datasets, this presents a rich avenue for future research
in BIB application. MoE methods involve the integration of multiple expert networks, each specialized in
the recognition of distinct data segments. Our MBIB method could potentially be integrated into MoE
frameworks. For example, MBIB may be incorporated into each expert network, enhancing the feature
learning effectiveness of each expert, and thereby improving the overall performance. Inspired by two-stage
methods, our network could explore staged training strategies, such as decoupling the training of the feature
extractor and classifier, to optimize both components and ultimately achieve superior performance.

6 Conclusion

This paper proposes end-to-end learning methods named BIB and MBIB for long-tailed visual recognition
from the perspective of information bottleneck. BIB uses self-distillation to implicitly optimize the objective
and re-balance the classes to prevent poor performance in the optimization process due to the lack of
tail class samples. Therefore, BIB can improve tail classes’ performance without damaging head classes’
performance. MBIB optimizes diverse information bottleneck within a single network simultaneously to
utilize more information related to labels. Moreover, MBIB can fuse knowledge from different depths of
the network to better fit the long-tailed data, further improving the model performance. Our experiments
show that the quality of the feature spaces learned by BIB and MBIB is better than that of the re-balancing
method like BSCE. We conducted experiments on commonly used long-tailed datasets, including CIFAR100-
LT, ImageNet-LT, and iNaturalist 2018. The experimental results show that both BIB and MBIB perform
well, even better than several recently proposed two-stage decoupling methods and MoE methods.
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A Proof of the Re-Balance Technique

According to VIB, −I(v, y) and −I(z, y) are bounded as Ep(v,y) −log q(y|v) and Ep(z,y) −log q(y|z). However,
when the labels are long-tailed, we need to re-balance them. Our purpose is to train an end-to-end model,
that is, the output of the model is pt(y|v). According to the properties of the conditional probability, we
have

ps(yi|v)ps(v) = ps(v|yi)ps(yi), (18)

pt(yi|v)pt(v) = pt(v|yi)pt(yi), (19)

where the subscript s represents the training set distribution, and the subscript t represents the test set
distribution. Since the training set and the testing set come from the same image domain, it can be assumed
that ps(v) = pt(v) and ps(v|yi) = pt(v|yi). We have

ps(yi|v)
ps(yi)

= pt(yi|v)
pt(yi)

. (20)
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Due to ps(yi) = ni
K∑

j=1

nj

= ni

N and pt(yi) = 1
K , we have ps(yi|v) ∝ nipt(yi|v). By normalizing ps(yi|v), we get

ps(yi|v) = nipt(yi|v)
K∑

j=1
njpt(yj |v)

. (21)

We can obtain pt(yi|v) by the output of model, so that

pt(yi|v) ≈ qt(yi|v) = efi(v;θ)

K∑
j=1

efj(v;θ)
. (22)

We can rewrite Eq. (21) as

ps(yi|v) ≈ qs(yi|v) = nie
fi(v;θ)

K∑
j=1

njefj(v;θ)
. (23)

Therefore, we get the first loss as
Loss1 = Ep(v,y) − log qs(y|v). (24)

Similarly, for maximizing I(z, y), we get the second loss as

Loss2 = Ep(z,y) − log qs(y|z). (25)

B Impact of different components of BIB

In order to further understand the influence of different components of the BIB loss function on the experi-
mental results, we conducted ablation experiments on the loss function of BIB. As shown in Figure 6, when
the β is not 0, the performance of the model can be improved, which indicates that information compression
by information bottleneck is conducive to long-tailed visual recognition. On the other hand, if the use of
Loss1 and Loss2 has not been re-balanced, even if the information bottleneck is used, it will not achieve
satisfactory results.

Method Balanced β = 0
CE_2branch ✗ ✓

SDIB ✗ ✗

BSCE_2branch ✓ ✓

BIB ✓ ✗
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Figure 6: Ablation results of loss function. The Balanced option is ✗ means that the method uses cross
entropy loss for Loss1 and Loss2. The β is 0 means that v and z are independent.

C Comparison between BIB and BSCE

From the form perspective, Loss1 and Loss2 are consistent with BSCE. In order to better understand our
proposed BIB, we conducted extensive experiments on the ImageNet-LT with ResNet10. Table 7 shows
the comparison results between BIB and BSCE. BSCE indicates that the network structure is the same as
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branch v in BIB, and the loss function is BSCE. BSCE_MLP indicates that the network structure is the
same as branch z in BIB, and the loss function is BSCE. BIB_v and BIB_z indicates the result obtained
by directly using the output of f(v; θ) and g(z; θ). BIB_ensemble indicates the result obtained by the
mean of f(v; θ) and g(z; θ), that is, the result we finally use. Table 7 shows that adding MLP only may
hurt the performance of the model consistent with findings in Kang et al. (2019). Since IB can remove
label-independent information from the representation as much as possible, the head classes performance of
BIB_z has been significantly improved. At the same time, the tail classes performance has declined due
to the limited number of tail class samples. However, the average performance has been greatly improved.
We assume that v can retain all the information in x, but the information will still be lost from x to v.
v is upstream of z in the information flow, and the improvement of the quality of z will also lead to the
improvement of the quality of v, so the performance of BIB_v has also been greatly improved. At the same
time, the mean of f(v; θ) and g(z; θ) can achieve the best performance.

Table 7: Comparison between BIB and BSCE on ImageNet-LT with ResNet10.

Method Many Medium Few All
BSCE 53.4 38.5 17.0 41.3

BSCE_MLP 51.7 36.6 18.2 39.9
BIB_v 53.8 40.2 23.1 43.1
BIB_z 54.6 38.5 19.2 42.1

BIB_ensemble 54.7 40.0 21.7 43.2

D Analysis of the Posterior Probability Distribution

From equation 14, we can infer that the closer the mean positive posterior probability of per class is to 1,
the better. Figure 7 (a) shows the mean positive posterior probability q(yi|x) of BIB. Figure 7 (b) presents
the diff (diff= q1(yi|x) − q2(yi|x)) between the posterior probability obtained by BIB and CE. The results
show that CE is severely over-fitting to the head class and under-fitting to the tail class. Figure 7 (c)
presents the diff between the posterior probability obtained by BIB and BSCE, revealing BIB’s superiority
in most classes. (d) shows the mean positive posterior probability of MBIB. (e) presents the diff between
the posterior probability obtained by MBIB and BIB, which shows that MBIB behaves better than BIB in
the tail classes.

E Analysis of the Learned Representations Showed by t-SNE

We visualize the representation of the test set obtained by different models using t-SNE, as shown in Figure
8. The visualization results show that the separability of inter-class obtained by BIB and MBIB increases,
and the representations within a class are more aggregated. Both quantitative analysis and visualization
results show that the quality of representations obtained by BIB and MBIB are better than others. It
indicates that BIB and MBIB get better classification performance, and the representation spaces become
better simultaneously, which is consistent with our expectations.

F Experiments on Two Other Mixture of BIB Networks

We discussed two other Mixture of BIB network in the paper: one structure applied sequential BIB connec-
tions between layer pairs (se-MBIB), while the other integrated BIB connections among all feature represen-
tations (all-MBIB). In this section, we present the experiment results of the two alternative MBIB network.
Figure 9 shows the performances of MBIB, se-MBIB and all-MBIB on CIFAR-100-LT (IF=100). It is evident
that both se-MBIB and all-MBIB exhibit inferior performances compared to MBIB. The analysis can be
found in the discussion section of the paper.
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(a) (b) (c)

(d) (e)

Figure 7: The mean Positive Posterior probability on ImageNet-LT with ResNet10. (a) The mean Positive
Posterior probability per class of BIB. (b) Diff of the mean Positive Posterior probability per class between
BIB and CE. (c) Diff of the mean Positive Posterior probability per class between BIB and BSCE.(d) The
mean Positive Posterior probability per class of MBIB.(e) Diff of the mean Positive Posterior probability per
class between MBIB and BIB.
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Figure 8: Visualization analysis. The t-SNE is used to visualize the test set feature space on CIFAR-100-LT
(IF=100) and 10 classes are selected. The lower left corner shows the number of samples for each class
during training.
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Figure 9: Overall accuracy of the three MBIB networks on CIFAR-100-LT (IF=100).

19


	Introduction
	Related Work
	Long-Tailed Visual Recognition
	Information Bottleneck

	Method
	Preliminaries
	Balanced Information Bottleneck (BIB)
	Mixture of Balanced Information Bottleneck (MBIB)

	Experiments
	Datasets and Setup
	Implementation Details
	Main Results
	Ablation Study
	Analysis of the Posterior Probability Distribution
	Analysis of the Learned Representation
	The efficiency compared with MoE

	Discussion
	Conclusion
	Proof of the Re-Balance Technique
	Impact of different components of BIB
	Comparison between BIB and BSCE
	Analysis of the Posterior Probability Distribution
	Analysis of the Learned Representations Showed by t-SNE
	Experiments on Two Other Mixture of BIB Networks

