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Abstract

One of the most well-studied and highly performing planning approaches used
in Model-Based Reinforcement Learning (MBRL) is Monte-Carlo Tree Search
(MCTS). Key challenges of MCTS-based MBRL methods remain dedicated deep
exploration and reliability in the face of the unknown, and both challenges can be
alleviated through principled epistemic uncertainty estimation in the predictions
of MCTS. We present two main contributions: First, we develop methodology to
propagate epistemic uncertainty in MCTS, enabling agents to estimate the epistemic
uncertainty in their predictions. Second, we utilize the propagated uncertainty for a
novel deep exploration algorithm by explicitly planning to explore. We incorporate
our approach into variations of MCTS-based MBRL approaches with learned
and provided dynamics models, and empirically show deep exploration through
successful epistemic uncertainty estimation achieved by our approach. We compare
to a non-planning-based deep-exploration baseline, and demonstrate that planning
with epistemic MCTS significantly outperforms non-planning based exploration in
the investigated deep exploration benchmark.

1 Introduction
Model-based reinforcement learning (MBRL) has shown tremendous achievements in recent years,
from super-human performance in games [Schrittwieser et al., 2020, Silver et al., 2018], to outper-
forming human designers in tasks that previously relied on intricate human engineering [Mandhane
et al., 2022]. MBRL algorithms most commonly leverage their model (whether it is dynamically
learned as part of the RL task, or pre-specified to the agent) for planning [Moerland et al., 2023]. Some
of the best performing planning-based MBRL approaches, Mu/AlphaZero [Schrittwieser et al., 2020,
Silver et al., 2018] rely on Monte-Carlo Tree Search (MCTS), a structured, extensively researched
and commonly used planning approach. While the final performance that has been demonstrated
with these algorithms is record-breaking, they are notoriously expensive to train, in compute as
well as in samples. They are also unable to estimate the epistemic uncertainty in their predictions,
preventing them from being reliable in the face of the unknown. A common approach for improving
sample efficiency is through improved exploration. Exploration approaches range from uninformed
random-action-selection based (such as employed by Alpha/MuZero) to more advanced approaches,
such as exploration bonuses based on epistemic uncertainty1, which incentivize future visitations to
states and actions that are expected to result in new knowledge.

1Epistemic uncertainty is usually defined as being reducible with more observations. Planning with models
and interaction with the environment yield therefore different epistemic uncertainties. In this paper we only refer
to uncertainty that can be reduced by more exploration, i.e., the epistemic uncertainty of learned models.
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Effective epistemic uncertainty estimation in the predictions of the agent can be used to improve in
both areas of challenge: reliability in the face of the unknown and advanced exploration. Further,
planning for exploration promises to harness the benefits of planning (such as improved value
estimation and better action selection) explicitly for exploration, an idea which was previously
explored by Sekar et al. [2020] with promising results.

In this work, we develop methodology to 1) incorporate epistemic uncertainty into MCTS, enabling
agents to estimate the epistemic uncertainty associated with predictions at the root of the MCTS
planning tree (Epistemic-MCTS) and 2) leverage the uncertainty for deep exploration that capitalizes
on the strengths of planning, by modifying the MCTS objective to an exploratory objective. We
evaluate our agent on the benchmark hard-exploration task of Deep Sea [Osband et al., 2020] against
exploration baselines that do not leverage planning. In our experiments, our agent demonstrates deep
exploration and significantly outperforms both naive and sophisticated exploration baselines.

The remainder of this paper is organized as follows: Section 2 provides relevant background for
MBRL, MCTS and epistemic uncertainty estimation in deep RL. Section 3 describes our contributions,
starting with distinguishing between epistemic and non-epistemic sources in MCTS, followed by the
framework for uncertainty propagation in MCTS (E-MCTS), our approach for harnessing E-MCTS
to achieve deep exploration and finally a discussion regarding the challenges and limitations in
estimating epistemic uncertainty in planning with an abstracted, learned model of the environment.
Section 4 discusses related work. Section 5 evaluates our method with different dynamics models
against a hard-exploration benchmark and compares to standard exploration baselines. Finally,
Section 6 concludes the paper and discusses future work.

2 Background
In RL, an agent learns a behavior policy π(a|s) through interactions with an environment, by
observing states (or observations), executing actions and receiving rewards. The environment is
represented with a Markov Decision Process [MDP, Bellman, 1957] , or a partially-observable
MDP [POMDP, Åström, 1965]. An MDPM is a tuple: M = ⟨S,A, ρ, P,R⟩, where S is a set
of states, A a set of actions, ρ the initial state distribution, R : S × A × S → R a bounded
reward function, and P : S × A × S → [0, 1] is a transition function, where P (st+1|st, at)
specifies the probability of transitioning from state st to state st+1 after executing action at at
time t. In a POMDP M′ = ⟨S,A, ρ, P,R,Ω, O⟩, the agent observes observations ot ∈ Ω. O :
S × A × Ω→ [0, 1] specifies the probability O(o|st, at) of observing o. In MBRL the agent uses
a model of the environment to optimize its policy, often through planning. The model is either
learned from interactions, or provided. In Deep MBRL (DMBRL) the agent utilizes deep neural
networks as function approximators. Many RL approaches rely on learning a state-action Q-value
function Qπ(s, a) = E[R(s, a, s′) + γV π(s′)| s′∼P (·|s,a)] or the corresponding state value function
V π(s) = E[Qπ(s, a)| a∼π(·|s)], which represents the expected return from starting in state s (and
possibly action a) and then following a policy π(at|st) which specifies the probability of selecting
the action at in state st. The discount factor 0 < γ < 1 is used in infinite-horizon (PO)MDPs to
guarantee that the values remain bounded, and is commonly used in RL for learning stability.

2.1 Monte Carlo Tree Search
MCTS is a planning algorithm that constructs a planning tree with the current state st at its root
to estimate the objective: argmaxa maxπ Q

π(st, a). The algorithm iteratively performs trajectory
selection, expansion, simulation and backup to arrive at better estimates at the root of the tree. At
each planning step i, starting from the root node sit,0 ≡ ŝ0, the algorithm selects a trajectory in the
existing tree based on the averaged returns q(ŝk, a) experienced in past trajectories selecting the
action a in the same node ŝk, and a search heuristic, such as an Upper Confidence Bound for Trees
[UCT, Kocsis and Szepesvári, 2006]:

ak = argmax
a∈A

q(ŝk, a) + 2Cp

√
2 log(

∑
a′N(ŝk,a′))

N(ŝk,a)
, (1)

where N(ŝk, a) denotes the number of times action a has been executed in node ŝk, and Cp > 0
trades off exploration of new nodes with maximizing observed return. When the the trajectory
selection arrives at a leaf node ŝT MCTS expands the node and estimates its initial value as the
average of Monte-Carlo rollouts using a random policy. Recent DMBRL algorithms that use MCTS
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such as Alpha/MuZero [Silver et al., 2016, 2017, 2018, Schrittwieser et al., 2020] replace the rollouts
with a value function v(ŝT ) that is approximated by a neural network and use the PUCT [Rosin,
2011] search heuristic instead of UCT:

ak = argmax
a∈A

q(ŝk, a) + π(a|ŝk)Cp

√∑
a′N(ŝk,a′)

1+N(ŝk,a)
. (2)

Where π(a|ŝk) is either given, or learned by imitating the MCTS policy πMCTS, to incorporate prior
knowledge into the search. MCTS propagates the return (discounted reward for visited nodes plus
leaf’s value) back along the planning trajectory. At the root of the tree, the optimal value maxπ V

π(st)
of current state st is estimated based on the averaged returns experienced through every action a, and
averaged over the actions:

max
π

V π(st) ≈
∑
a∈A

N(ŝ0,a)∑
a′∈A N(ŝ0,a′) q(ŝ0, a) =:

∑
a∈A

πMCTS(a|st) q(ŝ0, a) =: vMCTS
t . (3)

2.2 MCTS-Based MBRL

MCTS requires access to three core functions. Those are: (i) a representation function g(st) = ŝ0 ∈ Ŝ
that encodes the current state at the root of the tree into a latent space, in which (ii) a transition
function f(ŝk, ak) = ŝk+1 predicts the next latent state and (iii) a function r(ŝk, ak) = E[rk|ŝk, ak]
that predicts the corresponding average reward. Such models in an latent state space Ŝ ̸= S do
not have to distinguish between different true states s, s′ ∈ S, i.e., g(s) = g(s′), s ̸= s′, if such a
distinction does not benefit value and reward prediction, and are commonly called value-equivalent
or abstracted models. Note that for an identity function g(st) = st all models, functions and policies
would be defined in the true state space S , and that in a POMDP g can encode the current observation
ot or the entire action-observation history ⟨o0, a0, o1, a1, . . . , ot⟩. As in Mu/AlphaZero [Schrittwieser
et al., 2020, Silver et al., 2018], a value function v(ŝT ) can be learned for replacing rollouts, and a
policy function π(a|ŝk) imitates the MCTS policy to bias planning towards promising actions based
on prior knowledge. In deep MBRL (DMBRL) these functions are learned with deep neural networks.

Five common learning signals are used to train the transition model f with varying horizons k:
1) A reconstruction loss Lk

re

(
h(ŝk), st+k

)
, training a decoder h to reconstruct true states st+k from

latent representations ŝk that have been predicted from ŝ0 = g(st), shaping both g and f .
2) A consistency loss Lk

co

(
ŝk, g(st+k)

)
, training the model that predicted states should align with

latent representation of states st (or observations/histories in POMDP). Critically, Lk
co is not used to

train g, only f . When the representation function g is an identity, Lk
re and Lk

co can be thought of as
providing the same learning signal. Otherwise, they can be used independently or in combination.
3) A reward loss Lk

r

(
r(ŝk, ak), rt+k

)
, where the model is trained to predict representations that

enable predictions of, and are aligned with, the true rewards observed in the environment rt.
4) A value loss Lk

v

(
v(ŝk), vMCTS

t+k

)
that similarly trains the model to predict states that enable value

learning.
5) A policy loss Lk

π

(
π(·|ŝk), πMCTS(·|st+k)

)
that trains prior policy π to predict the MCTS policy.

These losses are described in more detail in Appendix B.2.

2.3 Estimating Epistemic Uncertainty in Deep Reinforcement Learning

Predictive epistemic uncertainty refers to any uncertainty that is associated with a prediction and is
sourced in lack-of-information. For example, prior to repeated tosses of a coin, there can be high
uncertainty whether the coin is fair or not. The more the coin has been tossed, the more certain we can
be about the coin’s fairness, even if we will always retain uncertainty in the exact prediction of heads
or tails, without access to a precise simulation of the physics of the coin toss (referred to as aleatoric
uncertainty, or the inherent uncertainty in the way we choose to model a coin). Defining, quantifying
and estimating predictive epistemic uncertainty is an active field of research that encompasses many
approaches and many methods (see [Hüllermeier and Waegeman, 2021, Lockwood and Si, 2022]). In
this work, we take the common approach for quantifying epistemic uncertainty as the variance in a
probability distribution of predictions that are consistent with observations VarX(X|st) = V[X|st].
As for estimating epistemic uncertainty, two standard approaches are the distributional approach and
the proxy-based approach. The distributional approach approximates a probability distribution over
possible predictions with respect to the agent’s experiences, while the proxy-based approach aims
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to directly predict a measure for novelty of experiences. Two reliable and lightweight methods for
novelty-based epistemic uncertainty estimation are Random Network Distillation (RND) [Burda et al.,
2019] and state-visitation counting. RND evaluates novelty as the difference between the prediction
of a randomly initialized untrained target network ψ′ and a to-be trained network ψ with a similar
architecture. The network ψ is trained to match the predictions of the target network for the observed
states (or state-action pairs) with MSE loss Lrnd

(
ψ(st, at), ψ

′(st, at)
)
= ||ψ(st, at)− ψ′(st, at)||2.

Novel observations are expected to produce unpredictable outputs from the target network, and
thus the difference between the prediction of the target network and the trained network serves as a
proxy-measure for novelty. These methods encapsulate the epistemic uncertainty in a local prediction:
for example, uncertainty in prediction of reward or next state. Estimating epistemic uncertainty in
value predictions that contain the uncertainty that propagates from future decisions made by a policy
is a different matter. One method to estimate value uncertainty is the Uncertainty Bellman Equation
[UBE, O’Donoghue et al., 2018]. UBE approximates an upper bound on the epistemic uncertainty in
value (here interpreted as variance of the Q-value) as the sum of local uncertainties σ2(st, at) that
are associated with the decisions at at states st:

Uπ(st) := Eπ

[ ∞∑
i=0

γ2iσ2(st+i, a
π
t+i)

]
= Eπ

[
n−1∑
i=0

γ2iσ2(st+i, a
π
t+i) + γ2nUπ(st+n)

]
.

In other words, UBE proposes to approximate the value uncertainty as the sum of twice-discounted
local uncertainties and learn it with (possibly n-step) TD targets in a similar manner to value learning.

3 Deep Exploration by Epistemic MCTS
We begin by identifying different sources of uncertainty in MCTS with function approximation
(section 3.1). We follow with our method to propagate epistemic uncertainty while circumventing the
use of stochastic models (E-MCTS, section 3.2). We proceed to harness the propagated uncertainty
for an optimistic planning objective to achieve deep exploration (section 3.3). Finally, we discuss
challenges with estimating epistemic uncertainty when planning with latent models and possible
solutions.

3.1 Sources of Uncertainty in MCTS
In this work we are concerned with estimating and leveraging the magnitude of epistemic uncertainty,
to drive exploration in the environment. We begin by distinguishing between epistemic and non-
epistemic sources of uncertainty in MCTS. In standard MCTS, the uncertainty in value prediction
at each node stems from stochasticity in the environment and in the rollout policy (aleatoric).
There are no learned quantities, and as such, there is no epistemic uncertainty. When a function
approximator v(st) is used to replace rollouts [such as in AlphaZero, Silver et al., 2018] the aleatoric
uncertainty from MC rollout is replaced by uncertainty in the value prediction v(st). We distinguish
between two sources of uncertainty about v(st): 1. Epistemic sources: errors resulting from
evaluating v(st) on unobserved states st. 2. Non-epistemic sources: approximation errors, TD-errors,
stochasticity of the environment, stochasticity of the policy, model-class errors, and every other
source of uncertainty that will not reduce directly by training on additional unique interactions with
the environment. MCTS addresses non-epistemic uncertainty by averaging over node values, but
does not address epistemic uncertainty. When function approximators are used to learn a model of the
environment transition f(st, at) and/or reward dynamics r(st, at) [such as in MuZero, Schrittwieser
et al., 2020] the uncertainty in value prediction will contain the uncertainty in the learned dynamics
f, r. The same separation between epistemic and non-epistemic sources of uncertainty in f, r can
be made. Distinguishing between epistemic and non-epistemic uncertainty allows us to concentrate
on propagating only epistemic uncertainty, which can help the agent to find unobserved states that
are worth exploring. In the following section we 1) investigate how to estimate and 2) develop a
method to propagate the epistemic component of the uncertainty, and in the later sections we show
how the epistemic uncertainty can be leveraged in MCTS for deep exploration following the principle
of optimism in the face of uncertainty.

3.2 Propagating Uncertainty in MCTS
At planning step i, selecting a path of length T through a decision tree is equivalent to choosing a
sequence of T actions ai0:T−1 that start at node ŝi0 = g(st) and end up in a leaf node ŝiT . Deterministic
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models f, r predict the transitioned to nodes ŝik and the encountered rewards rik in nodes ŝik, 0 ≤ k <
T , respectively. The value viT at leaf ŝiT is predicted by Monte-Carlo rollouts with f or directly with
a neural network v. The values and rewards are used to update the n-step discounted return νik of
each node ŝik on the selected path:

νik :=
T−1∑
j=k

γj−krij + γT−kviT = rik + γνik+1 , 0 ≤ k < T , νiT = viT , (4)

where γj−k is the discount factor to the power of j − k and the superscript i is indexing the planning
step. Our following analysis is done per planning step i and we will drop the index i for the sake
of readability. If (any of) f, r, v are assumed to be inexact rk and vT can be modelled as random
variables in a Markov chain that is connected by random state-variables. The stochasticity in the chain
captures the uncertainty in f, r, v’s predictions. To clarify notation, we will refer to these as random
states Ŝk, rewards Rk, values Vk and returns Vk. In line with the optimistic exploration literature, we
aim to incentivize choosing actions in the environment associated with paths in the planning tree that
have epistemically uncertain returns V0 in order to seek new high-reward interactions. For this we
need to estimate the epistemic variance (variance from epistemic sources) V[V0|st, a0:T−1] ≡ V[V0]
of the return along a selected path a0:T−1, starting with state st. To circumvent having to replace
f, r, v with an explicitly stochastic model to propagate the uncertainty, we instead develop a direct
and computationally efficient approximation for V[V0].
We will begin by deriving the mean and variance of the distribution of state-variables in the Markov
chain for a given sequence of actions a0:T−1. Let us assume we are given a differentiable transition
function f(Ŝk, ak) := EŜk+1

[Ŝk+1|Ŝk, ak] ∈ R|Ŝ|, which predicts the conditional expectation over

the next state, and a differentiable uncertainty function Σ(Ŝk, ak) := VŜk+1
[Ŝk+1|Ŝk, ak] ∈ R|Ŝ|×|Ŝ|

that yields the conditional-covariance matrix of the distribution. In DMBRL the assumption that
models are differentiable is standard (see Section 2.2). We assume that the mean ŝ0 of the first
state-variable Ŝ0 is given as an encoding function ŝ0 = E[Ŝ0|st] = g(st), like in MuZero. The mean
ŝk+1 of a later state-variable Ŝk+1 can be approximated with a first order Taylor expansion around
the previous mean ŝk := E[Ŝk]:

ŝk+1 := E[Ŝk+1] = EŜk
[EŜk+1

[Ŝk+1|Ŝk, ak]] = E[f(Ŝk, ak)] (5)

≈ E[f(ŝk, ak) + (Ŝk − ŝk)⊤∇̂sf(Ŝ, ak)|Ŝ=ŝk
] = f(ŝk, ak) .

In other words, under the assumption that the model f predicts the expected next state we reinterpret
the original latent state ŝk as the mean of the uncertain state E[Ŝk].

To approximate the covariance Σk+1 := V[Ŝk+1] or the total uncertainty associated with state
variable Ŝk+1 we need the law of total variance. The law of total variance states that for two random
variables X and Y holds V[Y ] = EX

[
VY [Y |X]

]
+ VX

[
EY [Y |X]

]
(see Appendix A for a proof in

our notation). Using the law of total variance and again a first order Taylor approximation around the
previous mean state ŝk:

Σk+1 := V[Ŝk+1] = EŜk

[
VŜk+1

[Ŝk+1|Ŝk, ak]
]︸ ︷︷ ︸ + VŜk

[
EŜk+1

[Ŝk+1|Ŝk, ak]
]︸ ︷︷ ︸ (6)

≈ Σ(ŝk, ak) + Jf (ŝk, ak)Σk Jf (ŝk, ak)
⊤ .

Note that f(Ŝk, ak) − E[f(Ŝk, ak)] ≈ (Ŝk − ŝk)⊤∇Ŝf(Ŝ, ak)|Ŝ=ŝk
=: (Ŝk − ŝk)⊤Jf (ŝk, ak)

⊤,
where Jf (ŝk, ak) denotes the Jacobian matrix of function f at mean state ŝk and action ak. Using
these state statistics, we can derive the means and variances of causally connected variables like
rewards Rk and values VT . We assume that the conditional reward distribution has conditional mean
r(Ŝk, ak) := ERk

[Rk|Ŝk, ak] and conditional variance σ2
R(Ŝk, ak) := VRk

[Rk|Ŝk, ak], and that the
conditional value distribution has conditional mean v(ŜT ) := EVT

[VT |ŜT ] and conditional variance
σ2
V (ŜT ) := VVT

[VT |ŜT ]. Analogous to above we can derive:

rk := E[Rk] ≈ r(ŝk, ak) , V[Rk] ≈ σ2
R(ŝk, ak) + Jr(ŝk, ak)Σk Jr(ŝk, ak)

⊤ , (7)

vT := E[VT ] ≈ v(ŝT ) , V[VT ] ≈ σ2
V (ŝT ) + Jv(ŝT )ΣT Jv(ŝT )

⊤ . (8)
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If we assume that Rk and the n-step return Vk+1 from Equation 4 are independent, we can compute
E[Vk] = ERk,Vk+1

[Rk + γVk+1] = E[Rk] + γ E[Vk+1] , E[VT ] = E[VT ] (9)

V[Vk] = VRk,Vk+1
[Rk + γVk+1] = V[Rk] + γ2 V[Vk+1] , V[VT ] = V[VT ] (10)

We can therefore approximate the variance V[V0|st, a0:T−1] using one (E-)MCTS search, expan-
sion and back-propagation steps through the selected path a0:T−1, similar to the value-estimation
E [V0|st, a0:T−1] that is being done by standard MCTS (see pseudo-code in Algorithm 1). When
applying this approach to model-learning algorithms such as MuZero, we interpret the representation
g, dynamics f , value v and reward r functions as outputting the conditional means ŝ0, ŝk, vT , rk
respectively. When applying this approach to methods that learn only some of f, r, v (for example
AlphaZero Silver et al. [2018] which learns only v) the predictions from unlearned components will
be associated with epistemic uncertainty = 0. E-MCTS will propagate the epistemic uncertainty in
the learned components according to the remaining nonzero terms in Equations 6, 7, 8, 10. Finally
we note that while E-MCTS is designed with epistemic uncertainty of the learned models in mind,
any source of uncertainty can be propagated with E-MCTS, so long as it is interpreted as the local
variances in state, reward and value predictions (Equations 6, 7 and 8 respectively).

3.3 Planning for Exploration with MCTS

The UCT operator of MCTS takes into account uncertainty about a node’s subtree via the visitation
count (see Equation 1) to drive exploration inside the planning tree. To drive exploration in the
environment, we add the environmental epistemic uncertainty into the UCT formula in a similar
manner, as the averaged standard deviation:

ak := argmax
a

q(ŝk, a) + β
√
σ2
q (ŝk, ak) + 2C

√
2 log(

∑
a′N(ŝk,a′))

N(ŝk,ak)
, (11)

where β ≥ 0 is a constant that can be tuned per task to encourage more or less exploration. The term

σ2
q (ŝk, ak) := V[Rk] +

1
N(ŝk,ak)

N(ŝk,ak)∑
i=1

V[Vi
k+1] (12)

sums the variances computed individually at every backup step i through the node that is reached by
executing action ak in latent state ŝk using equations 7 and 10. At each backup step i, with actions
aik, state means ŝ i

k and covariances Σi
k, the variance V[Vi

k] is approximated based on equations 10
and 7: V[Vi

k] ≈ σ2
R(ŝ

i
k, a

i
k) + Jr(ŝ

i
k, a

i
k)Σ

i
kJr(ŝ

i
k, a

i
k)

⊤ + γ2V[Vi
k+1] . (13)

At every backup step we compute the variance at the leaf node (equation 8), which is then used to
update the parent’s variance along the trajectory iteratively using equation 13. Pseudo-code can be
found in Algorithm 1, where the modifications introduced to MCTS are marked in blue.

When using other search heuristics such as PUCT or the extension of PUCT used in Gumbel MuZero
[Danihelka et al., 2022, Grill et al., 2020] we propose to view the term q(ŝk, a) + β

√
σ2
q (ŝk, ak) as

an exploratory-Q-value-estimate (or epistemically-optimistic-Q-value estimate) and use it in place
of q(ŝk, a) to modify the planning objective into the exploratory objective. Once the MCTS-based
search with respect to the exploratory Q-value has completed, action selection in the environment can
be done in the same manner as for exploitation. For example, by sampling actions with respect to the
visitation counts of each action at the root of the tree as done by the original MuZero.

3.4 Limitations in Estimating Epistemic Uncertainty in Planning

Epistemic uncertainty estimation techniques in RL are designed to evaluate uncertainty on predictions
in the true observations from the environment [Osband et al., 2018, Burda et al., 2019]. These
methods translate naturally into planning with transition models that operate over the true state space
of the environment f : S × A → S (such as AlphaZero). When the latent state space Ŝ is not
identical to the true state space S, however, novelty estimated in latent space may not reflect the
novelty in the true state space. Specifically, value-equivalent models (such as used by MuZero, or
any otherwise abstracted models) in sparse-reward environments may suffer from representation
collapse by abstracting all states into one constant representation. As a result, all latent states may be
associated with the same novelty of zero. To the best of our knowledge, no uncertainty estimation
method exists that can reliably estimate the novelty of s based on such abstracted representations
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Algorithm 1 E-MCTS, requires functions g, f, r, v and uncertainty estimators Σ, σ2
R, σ

2
V

1: function EMCTS(state st, β) ▷ β = 0 for unmodified MCTS exploitation episodes
2: while within computation budget do
3: SELECT(g(st), β) ▷ traverses tree from root ŝ0 = g(st) and adds new leaf
4: return action a drawn from π(a|st) = N(ŝ0,a)∑

a′ N(ŝ0,a′) ▷ MCTS action selection

5: function SELECT(node ŝk, β)
6: ak ← argmaxa q(ŝk, a) + β

√
σ2
q (ŝk, a) +

√
2 log(

∑
a′N(ŝk,a′))

N(ŝk,a)
▷ Equation 11

7: if ak already expanded then SELECT(f(ŝk, ak), β) ▷ traverses tree
8: else EXPAND(ŝk, ak) ▷ adds new leaf

9: function EXPAND(node ŝk, not yet expanded action ak)
10: ŝk+1,E[Vk+1]← Execute unmodified MCTS expansion that creates a new leaf ŝk+1

11: Σk+1 ← Σ(ŝk, ak) + Jf (ŝk, ak)Σk Jf (ŝk, ak)
⊤ ▷ node attribute of ŝk+1, Equation 6

12: V[Rk]← σ2
R(ŝk, ak) + Jr(ŝk, ak)Σk Jr(ŝk, ak)

⊤ ▷ node attribute of ŝk+1, Equation 7
13: V[Vk+1]← σ2

V (ŝk+1) + Jv(ŝk+1)Σk+1 Jv(ŝk+1)
⊤ ▷ Equation 8

14: BACKUP(ŝk+1,E[Vk+1],V[Vk+1]) ▷ updates the tree values & variances

15: function BACKUP(node ŝk+1, return-mean E[Vk+1], return-uncertainty V[Vk+1])
16: ŝk, ak,E[Vk]← Execute unmodified MCTS backup step (updates q(ŝk, ak) and N(ŝk, ak))
17: V[Vk]← V[Rk] + γ2V[Vk+1] ▷ uses node-attribute V[Rk], Equation 10

18: σ2
q (ŝk, ak)← σ2

q (ŝk, ak) +
V[Vk]−σ2

q(ŝk,ak)

N(ŝk,ak)
▷ node attribute of ŝk+1, Equation 12

19: if k > 0 then BACKUP(ŝk,E[Vk],V[Vk]) ▷ updates the tree values & variances

ŝ. This problem can be circumvented however by driving reconstruction losses through the model,
incentivizing the learned model to distinguish between unique states. Alternatively, an auxiliary
dynamics model can be learned which does not need to be accurate or robust but only distinguish
between novel states and observed states based on starting states and subsequently executed action
sequences.

To benefit from the fact that E-MCTS does not require the epistemic uncertainty to be captured in a
probabilistic model, when Ŝ ≈ S we use the lightweight novelty estimator RND (see Section 2.3).
RND is used over latent state action pair (ŝk, ak) as a proxy for the local variance σ2

R(ŝk, ak). As
RND does not explicitly model covariance matrices, we estimate the uncertainty in latent state Σk

and the uncertainty in the predictions based on latent state σR together (see Appendix B.3). We show
that this choice is sufficient for E-MCTS to significantly improve over a comparable non-planning
deep exploration baseline in Section 5. For the value-equivalent dynamics model of MuZero we
provide the agent with reliable (but unrealistic) transition uncertainty in the form of state-action
visitation counts in the true state space S , and use it in a similar manner, to evaluate E-MCTS in the
presence of reliably uncertainty and abstracted models.

To estimate the value uncertainty at the leaf σ2
V (ŝT ) we use UBE (see Section 2.3) for all three

model cases. UBE is natural to use in the anchored and true model cases, by simply adding a
UBE prediction head u to the Mu/AlphaZero architecture, which approximates u(ŝk) ≈ Uπ(sk). A
possible alternative to UBE is to train an ensemble of value functions and verify that the value targets
for each ensemble member i is a target network based on the same ensemble member i (i.e., not use
the mean of the ensemble, or the value of the root of an MCTS tree as target). This choice is important
to retain diversity in the ensemble predictions for uncertain states even after value-bootstrapping in
TD learning. In the abstracted model case training the model to enable UBE predictions (similar to
the way in which the model is trained to enable value predictions, see Section 2.2), enables the agent
to estimate value-uncertainty in planning (see Section 5).

4 Related Work
Different faces of the idea of leveraging planning with learned dynamics models for exploration have
been investigated by a range of previous works, such as Yi et al. [2011], Hester and Stone [2012],
Shyam et al. [2019], Sekar et al. [2020], Lambert et al. [2022] and Henaff [2019]. Among a range of
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differences, these methods are not tailored for MCTS or deterministic dynamics’s models MCTS
algorithms, which are a very strong class of MBRL algorithms. We add to this line of work E-MCTS:
tailored for MCTS (and planning trees in general), lightweight and applicable to deterministic models
by approximating and propagating the variance directly resulting only in a constant increase in
computation cost to MCTS. Moerland et al. [2020] identify that the further a state is from a terminal
state in the MCTS planning tree, the more uncertainty should be associated with it in planning, and
utilizes this uncertainty to bias search in MCTS. POMCP [Silver and Veness, 2010], POMCPOW
[Sunberg and Kochenderfer, 2018] and BOMCP [Mern et al., 2021] extend MCTS to POMDPs
with a probabilisticly modelled Bayesian belief state at the nodes using a probabilistic model,
while Stochastic MuZero Antonoglou et al. [2021] extended MuZero to the stochastic setting by
replacing f with a Vector Quantised Variational AutoEncoder [van den Oord et al., 2017]. Epistemic
uncertainty is not distinguished explicitly or used for exploration. A common uncertainty / novelty
estimation alternative to RND Burda et al. [2019] are ensembles Lakshminarayanan et al. [2016],
Ramesh et al. [2022]. The uncertainty measure is usually the disagreement between the ensemble’s
predictions. Bootstrapped DQN [BDQN, Osband et al., 2016, 2018] is an effective model-free deep
exploration approach that relies on the epistemic uncertainty estimated by an ensemble to drive
exploration. Wasserstein Temporal Difference [WTD, Metelli et al., 2019] offers an alternative
to UBE O’Donoghue et al. [2018] for propagating epistemic uncertainty in TD-learning, using
Wasserstein Barycenters Agueh and Carlier [2011] to update a posterior over Q functions in place
of a standard Bayesian update. In addition, UBE was criticized by Janz et al. [2019] for having
unnecessary properties as well as being insufficient for deep exploration with posterior-sampling
based RL [PSRL, Osband et al., 2013]. These shortcomings however do not influence UCB-based
exploration algorithms which E-MCTS can be classified as. Pairing with UBE thus enables E-MCTS
to benef from the beneficial properties of UBE (such as uncertainty propagation, as discussed by Janz
et al. [2019]) while avoiding the shortcomings identified by Janz et al. [2019].

5 Experiments
We evaluate the following hypotheses: 1. E-MCTS successfully propagates epistemic uncertainty in
planning. 2. Planning in MCTS with an optimistic objective (Equation 11) is able to achieve deep
exploration. 3. Planning can be leveraged for uncertainty estimation that improves over non-planning-
based uncertainty estimation, even with learned dynamics models. We use BSUITE’s [Osband
et al., 2020] hard exploration benchmark Deep Sea of size 40 by 40. The Deep Sea environment
encapsulates some of the hardest challenges associated with exploration: there is only one optimal
action trajectory. The probability of finding the optimal trajectory through random action selection
decays exponentially with the size of the environment. Every transition in the direction of the goal
receives a negative reward that is negligible in comparison to the goal reward, but is otherwise the
only reward the agent sees discouraging exploration in the direction that leads to the goal. Finally, the
action mappings are randomized such that the effect of the same action is not the same in every state,
preventing the agent from generalizing across actions. Three variations of the transition model f are
investigated: (i) A true transition model (as in AlphaZero). The local uncertainty is estimated using
RND. (ii) A value-equivalent (abstracted) transition model, where g, f are trained as in MuZero
and a UBE loss. The local uncertainty is estimated using state-counts. (iii) An anchored transition
model trained only to predict the true transition dynamics of the environment through a reconstruction

Table 1: Number of environment steps until the first visitation to the goal transition.

Exploration Average steps to goal transition for
seeds that discovered goal ± STD % seeds that discovered goal

True
Model
+ RND

E-MCTS 10539± 9006 94% of 35 seeds
UBE 22801± 7514 91% of 35 seeds

Uninformed - 0% of 20 seeds
Abstracted
Model
+ Counts

E-MCTS 14339± 6845 100% of 23 seeds
UBE 29945± 8113 57% of 21 seeds

Uninformed - 0% of 20 seeds
Anchored
Model
+ RND

E-MCTS 15241± 3236 95% of 20 seeds
UBE 22497± 6645 85% of 20 seeds

Uninformed - 0% of 20 seeds
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Figure 1: Mean and standard error for 20 seeds of different agents. Rows: Different transition
models for the E-MCTS and UBE agents. Left: learning behavior presented as episodic return
vs. environment steps. Right: exploration behavior presented as number of discovered states vs.
environment steps.

loss Lk
re. The local uncertainty is estimated using RND. In all three transition model variations the

reward r, value v and policy π functions are trained in the MuZero manner. Our implementation of
the agents builds on the framework of MuZero as extended in EfficientZero Ye et al. [2021]. For
implementation details see Appendices B.2 and B.4. For each model we compare four exploration
methods: (i) E-MCTS (our method). (ii) An MCTS agent that plans without uncertainty and uses
UBE for action selection over the predictions of the root (see Appendix B.7 for details). (iii) The
MuZero exploration baseline which is uninformed with respect to epistemic uncertainty, relying on
random action selection and Dirichlet noise. (iv) Bootstrapped DQN [BDQN, Osband et al., 2016] is
a very strong model-free exploration approach on Deep Sea [Osband et al., 2020], and is included in
the comparison for reference. The results are presented in Figures 1 and 2.

In Figure 1, E-MCTS demonstrates successful uncertainty propagation through successful deep
exploration with all three transition model classes, supporting hypotheses 1 & 2. In addition, E-
MCTS outperforms the UBE baseline in all 3 model classes, demonstrating improvement from
planning with propagated uncertainty, supporting hypotheses 3. E-MCTS compares very well to
the reference baseline BDQN, both in learning speed (Figure 1) as well as in scaling to larger
environments (Figure 2, left), unlike the UBE baseline, which further points to performance gains
from planning with epistemic uncertainty. Figure 3 shows how the estimated uncertainty about the
value at the root node compares with ground-truth local uncertainty. Note that visited states that are
close to terminal are associated with less epistemic root uncertainty, all states are explored, and the
estimated uncertainty at the root node diminishes over training. Finally, we include an investigation
of the sensitivity of E-MCTS to the exploration parameter β (Figure 2, right). Since exploitation and
exploration episodes alternate, β need only be large enough to induce sufficient exploration to solve
Deep Sea, resulting in low average regret across a wide range of values of β.
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Figure 2: Left: Scaling to growing Deep Sea sizes [similar to Osband et al., 2020]. Mean of 5 seeds
with standard error of the mean. Right: The effect of the exploration hyperparameter β, as average
cumulative regret of 1000 episodes, for Deep Sea 30 by 30. Mean of 3 seeds with standard error.

6 Conclusions and Future Work
In this work we present E-MCTS, a novel method for incorporating epistemic uncertainty into
MCTS. We use E-MCTS to modify the planning objective of MCTS to an exploratory objective
to achieve deep exploration with MCTS-based MBRL agents. We evaluate E-MCTS on the Deep
Sea benchmark, which is designed to be a hard exploration challenge, where our method yields
significant improvements in state space exploration and uncertainty estimation. In addition, E-MCTS
demonstrates the benefits of planning for exploration by empirically outperforming non-planning deep
exploration baselines. The framework of E-MCTS provides a backbone for propagating uncertainty
in other tree-based planning methods, as well as for the development of additional approaches
to harnessing epistemic uncertainty. For example: (i) With E-MCTS, it is possible to plan with
a conservative objective by discouraging uncertain decisions to improve reliability in the face of
the unknown, which is paramount in the offline-RL setting. (ii) E-MCTS can be used to avoid
planning into trajectories that increase epistemic uncertainty in value prediction, with the aim of
achieving more reliable planning. (iii) Down-scaling of epistemically-uncertain targets has been
used by Lee et al. [2021] and Wu et al. [2021] to improve the learning process of online and offline
RL agents respectively. Given the advantages in exploration, it stands to reason that the improved
value-uncertainty estimates from E-MCTS can benefit those approaches as well.
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Figure 3: Heat maps of all states in the DeepSea environment of size 40 by 40 (lower triangle) at
different times (columns) during an example training run of E-MCTS with true transition model and
RND. Upper row: value uncertainty at the E-MCTS root node. Lower row: inverse visitation counts
as reliable local uncertainty. Score of 2.0 represents unvisited.
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A Law of Total Variance

The law of total variance for two continuous random variables X and Y can be derived as follows:

VY [Y ] =

∫
(Y − EY [Y ])2 p(Y ) dY =

∫∫
(Y − EY [Y ])2 p(X,Y ) dX dY

=

∫∫
(Y − EY [Y ])2 p(Y |X) p(X) dX dY = EX

[
EY

[
(Y − EY [Y ])2

∣∣X]]
= EX

[
EY

[
(Y − EY [Y |X] + EY [Y |X]− EY [Y ])2

∣∣X]]
= EX

[
EY

[
(Y − EY [Y |X])2

∣∣X]︸ ︷︷ ︸
VY [Y |X]

]
+ 2EX

[(
EY [Y |X]− EY [Y |X]︸ ︷︷ ︸

0

)(
EY [Y |X]− EY [Y ]

)]

+EX

[
(EY [Y |X]− EY [Y ])2

]
︸ ︷︷ ︸

VX [EY [Y |X]]

= VX
[
EY [Y |X]

]
+ EX

[
VY [Y |X]

]
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B Implementation Details
B.1 Targets

In MuZero, the value targets vMCTS
t+k for the prediction of value of latent state ŝkt that matches true

state st+k are computed as an n-step TD target:

vMCTS
t+k =

n−1∑
i=0

γirt+k+i + γnvMCTS
t+k+n

Where vMCTS
t+k+n can be computed in one of two ways:

(i) The value of the root of an MCTS tree computed for state st+k+n.
(ii) A prediction of the value network v for latent state ŝ0t+k+n.

Method (i) is expected to result in better value targets, but is more expensive computationally. Method
(ii) is significantly cheaper computationally, but might hinder learning through the lack of value
improvement (a max operator) on the value bootstrap. We refer to (i) as root-based targets.

The UBE target utarget
t+k for the prediction of value-uncertainty from the UBE head u(ŝkt ) is computed

a similar manner:

utarget
t+k =

n−1∑
i=0

γ2iσ2(ŝ0t+k+i, at+k+i) + γ2nut+k+n

Analogous to the value target, the bootstrap ut+k+n can be computed in two different ways:

(i) When E-MCTS is used, the target can be computed similarly to the MuZero value target, as
the epistemic uncertainty of the root of an E-MCTS tree computed for state st+k+n. This tree
can plan for an exploitatory objective (equation 1) to estimate the uncertainty of the value
V π(st+k+n), an exploratory objective (equation 11) to estimate the uncertainty of the value
associated with the exploration policy, or even an uncertainty-maximizing objective:

ak := argmax
ak

√
σ2
q (ŝk, ak) + 2C

√
2 log(

∑
a′N(ŝk,a′))

N(ŝk,ak)

Where the q term has been dropped entirely as an optimistic bound over the uncertainty to
encourage exploration. Similarly, we refer to using as target the E-MCTS uncertainty prediction
at the root as a root-based target. In our experiments, when UBE root-based target were used,
we have used the uncertainty-maximizing objective.

(ii) When E-MCTS is not used, the UBE bootstrap ut+k+n is computed as the maximum UBE over
possible actions from state st+k+n:

ut+k+n = max
at+k+n

σ2(ŝ0t+k+n, at+k+n) + γ2u(f(ŝ0t+k+n, at+k+n))

These targets were used for all UBE-only agents, and for the E-MCTS agents that did not use
root-based targets.

In all experiments we have used n = 1 (one-step targets) for the UBE targets.

In MuZero, the reward and value predictions r(ŝkt , at+k), v(ŝ
k
t ) are represented as a discrete proba-

bility distribution over a range of discrete values [−M,M ], M ∈ N. To transform the scalar value
and reward targets to a categorical representation of the same representation format, a transformation
function ϕ(x) is used, transforming a real number x into a categorical representation through a linear
interpolation between its adjacent integers.

B.2 Losses
The original MuZero algorithm uses three loss functions:

Lr := 1
|B|

∑
t∈B

l−1∑
k=0

ϕ(rt+k)
⊤ log r(ŝkt , at+k)

Lv := 1
|B|

∑
t∈B

l−1∑
k=0

ϕ(vMCTS
t+k )⊤ log v(ŝkt )

Lπ := 1
|B|

∑
t∈B

l−1∑
k=0

πMCTS(st+k)
⊤ log π(ŝkt )
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Where B ≡ {st, at, rt, st+1, at+1, . . . , st+l}t∈B is a training batch containing b trajectories of
length l sampled from different episodes, rt+k is the true reward observed in the environment,
r(ŝkt , ak), v(ŝ

k
t ), π(ŝ

k
t ) are respectively the reward value and policy predictions for latent state ŝkt

(and action at+k when appropriate). πMCTS(st+k) is a discrete probability distribution computed
based on the normalized visitation counts to the children of an MCTS root computed at state st+k

(see Equation 3).

In MuZero the gradient from the losses Lr,Lv,Lπ propagates through the transition model f and are
the only learning signal that is used to train the model. For the anchored model (see Section 5) we
use an additional reconstruction loss:

Lre :=
1
|B|

∑
t∈B

l−1∑
k=0

||ŝkt − st+k||2

Which can alternatively be thought of as a consistency loss, where g is the identity function. The
mean squared error loss is denoted with LMSE. To estimate value-uncertainty at the leaves, we train a
UBE function u with a UBE loss Lu:

Lu := 1
|B|

∑
t∈B

l−1∑
k=0

ϕ(utarget
t+k )T log ûkt

The final loss is computed as:
L := λrLr + λvLv + λπLπ + λuLu

Where the coefficients λr, λv, λπ, λu are used to weigh the relative effects the individual components
of the loss have on the learned transition model f . When Lre was used (the anchored model in
Section 5), the model parameters of f were affected only by Lre, through a second backwards pass.

B.3 Planning with Random Network Distillation Based Epistemic Uncertainty

We use RND to evaluate the transition uncertainty σ2(st, at) in planning with the true and anchored
models. When the planning is done with a true model, the agent has access to the true states st+k

and using RND to evaluate transition uncertainty over the state action pair (st+k, at+k) is natural.
When the planning is done with the anchored model, the latent states outputted by the transition
model ŝkt approximate the true states st+k which allows us to use RND over (ŝkt , at+k). In both
cases, RND is trained only over the observed transitions (st+k, at+k), not latent state representations
(ŝkt , at+k), to achieve the objective of yielding large RND prediction errors the further the latent state
prediction ŝkt is from observed state st+k. As discussed in Section 3.4, we do not separate between
state uncertainty and value / reward prediction uncertainty directly with RND and instead use Σk = 0

and σV (ŝk) = max
(
Lrnd(ŝk−1, ak−1), u

(
f(ŝk−1, ak−1)

))
.

B.4 Planning with Visitation-Counts Based Epistemic Uncertainty

When planning with the abstracted model, we provide the agent with access to two additional
mechanisms that are used only for local uncertainty estimation: the true model F (st, at) of the
environment and a state-action visitation counter C(st, at). During planning, the true transition
model follows the planning decisions at:t+k and keeps track of the true state st+k. When the agent
evaluates the local uncertainty with transition (ŝkt , at+k) the true model provides the matching true
state st+k to the visitation counter, which produces the local uncertainty based on the following
computation:

σ2(st+k, at+k) =
1

C(st+k, at+k) + ϵ

Where 0 < ϵ ≤ 1 is a constant and C(st+k, at+k) counts the number of times the state action pair
(st+k, at+k) has been observed in the environment. This allows us to evaluate the abstracted-model
agent in the presence of a reliable source of local uncertainty. The leaf-value uncertainty u(ŝkt )
(which is the dominating factor in visited areas of the state space, as σ2(st+k, at+k)→ 0 quickly in
observed transitions) relies entirely on the learned UBE function u which operates directly on latent
states ŝkt .
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B.5 Separating Exploration from Exploitation

Acting in the environment with a dedicated exploration policy can be expected to result in samples that
are very off-exploitation-policy. Learning from very off-policy data is known for causing instability
in training even in off-policy agents. To mitigate that, the E-MCTS and only-UBE agents (see section
5) alternate between two types of training episodes: exploratory episodes that follow an exploration
policy throughout the episode (such as a policy generated by E-MCTS with an exploratory planning
objective), and exploitatory episodes that follow the standard MuZero exploitation policy throughout
the episode. This enables us to provide the agent with quality exploitation targets to evaluate and train
the value and policy functions reliably, while also providing a large amount of exploratory samples
that explore the environment much more effectively and are more likely to efficiently search for
high-reward interactions.

In practice, rather than alternate between exploration and exploitation episodes we run a certain
number of episodes in parallel, a certain portion of which are exploitatory and the rest are exploratory.
In our experiments the ratio was 50/50. During exploration episodes, we do not wish to bias the search
in the tree with respect to previously tried actions, but rather only with respect to the combination of
value and uncertainty (equation 11). We set the policy prediction π(ŝkt ) (see Equation 2) to uniform
over all actions, for all ŝkt during exploration episodes. In addition, Dirichlet noise was not used to
drive exploration in MCTS with the UBE and E-MCTS agents.

B.6 Environment Adaptation

To maintain the exploration difficulty of Deep Sea while reducing numerical challenges, we amplify
the goal reward from 1 to 10. To limit the challenge of learning a model that can distinguish between
approximately N2 unique states when learning the true dynamics of the environment, while retaining
the exploration challenge of searching for one trajectory in a total of 2N trajectories, we choose
environment size N = 40, for a (40, 40) grid. To further simplify model learning with the anchored
model, the representation function g that was used for the anchored model transforms the observations
from 2 dimensional (N,N) one-hot representations to 1 dimensional (2N) representations where
the first N entries are a 1-hot vector representing the row and following N entries are a 1-hot vector
representing the column. From this perspective, we can view the Lre loss that was used to train the
anchored model as a consistency loss between the representation and the state prediction rather than
a reconstruction loss. The loss itself is the same loss specified in Appendix B.2.

B.7 UBE Baseline

The UBE baseline agent uses MCTS to evaluate the value of actions using MCTS in the same
manner as Alpha/MuZero, and explores by taking the action at that maximizes the combination of
the Q-values approximated by MCTS q, local uncertainty σ2 and UBE u:

at = argmax
a

q(ŝ0, at) + β
√
σ2(ŝ0, at) + γ2u(f(ŝ0, at)). (14)

B.8 Compute

The experiments were run on the Delft Blue and DAIC computation clusters, using any of the
following GPU architectures: NVIDIA Quadro K2200, Tesla P100, GeForce GTX 1080 Ti, GeForce
RTX 2080 Ti, Tesla V100S and Nvidia A-40. Each seed was ran on one GPU, and was given access
to 100 GB of RAM and 16 CPU cores. Total training time was in the range of 12 to 65 hours per
seed, depending on GPU architecture and whether root-based targets (see Appendix B.1) which
significantly increased training time were used or not.

C Network Architecture & Hyperparameters
C.1 Hyperparameter Search

Due to the large number of hyperparameters in the MuZero framework, our optimization process
consisted of manual modifications to the hyperparameters used by Ye et al. [2021] with the objective
of achieving learning stability on the target environment with the simplest network architectures
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Table 2: Network architecture hyperparameters

True Model
Function Hidden Layers Sizes Output Layer Size

f - -
g - -
r [256, 256] 21
v [256, 256] 21
u [256, 256] 21
π [256, 256] 2

Anchored Model
Function Hidden Layers Sizes Output Layer Size

f [1024, 1024, 1024] 80
g - -
r [256, 256] 21
v [256, 256] 21
u [256, 256] 21
π [256, 256] 2

Abstracted Model
Function Hidden Layers Sizes Output Layer Size

f [1024, 1024, 1024] 100
g [512, 512] 100
r [128, 128] 21
v [128, 128] 21
u [128, 128, 128] 21
π [128, 128] 2

RND network architecture
Function Hidden Layers Sizes Output Layer Size

ψ [1024, 1024] 512
ψ′ [512] 512

possible. Two exceptions to this statement are the RND network architecture and scale, and the
exploration parameter β.

The RND architecture was designed with the objective of reliably achieving small RND predictions
over observed state-action pairs and large predictions over unobserved state-action pairs. The RND
scale was tuned with the objective of achieving local uncertainty measures for unobserved state-action
pairs that are significantly larger than the minimum reward of Deep Sea.

The β parameter was tuned with the objective that the E-MCTS and only-UBE agents will prioritize
exploration of the environment over exploitation until the entire environment has been searched, and
was tuned separately for every model.

C.2 Network Architecture

The functions f, g, r, v, u, π, ψ, ψ′ used fully connected DNNs of varying sizes. The sizes of the
hidden layers and output layers are specified in Table 2.

C.3 Hyperparameter Configuration

We detail the full set of hyperparameters in Tables 3 and 4. For the BDQN baseline, we used
the default implementation in https://github.com/deepmind/bsuite, with ensemble size of
10 and matching batch size to E-MCTS: number of unroll steps times batch size 5 · 256 = 1230.
Otherwise, the default hyper parameters were used.
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Table 3: Shared across all models and agents

Parameter Setting Comment
Stacked Observations 1

γ 0.995
Number of simulations in MCTS 50

Dirichlet noise ratio (ξ) 0.3
Root exploration fraction 0

Batch size 256
Learning rate 0.0005

Optimizer Adam [Kingma and Ba, 2015]
Unroll steps l 5

Value target TD steps (nv) 5
UBE target TD steps (nu) 1

value support size 21
UBE support size 21

Reward support size 21
Reanalyzed policy ratio 0.99 See [Ye et al., 2021]

Prioritized sampling from the replay True See [Schrittwieser et al., 2020]
Appendix G

Priority exponent (α) 0.6 See [Schrittwieser et al., 2020]
Appendix G

Priority correction (βp) 0.4 → 1
See [Schrittwieser et al., 2020]

Appendix G
Evaluation episodes 8

Min replay size for sampling 300
Self-play network updating inerval 5
Target network updating interval 10

Table 4: Specific for models and agents

Parameter
Setting

True Model Abstracted Model Anchored Model
E-MCTS UBE Uninf. E-MCTS UBE Uninf. E-MCTS UBE Uninf.

Training steps /
environment
interactions

45K 45K 45K 35K 35K 35K 45K 45K 45K

Reward loss
weight λr

1 1 1 1 1 1 1 1 1

Value-loss
weight λv

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Policy-loss
weight λπ

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

UBE-loss
weight λu

0.125 0.125 - 0.25 0.25 - 0.125 0.125 -

RND scale 1.0 1.0 - - - - 0.001 0.001 -
Root based

targets False False False True True True False False False

Disabled
policy

in exploration
True True False True True False True True False

Number of
parallel
episodes

2 2 2 2 2 2 2 2 2

Out of are
exploration

episodes
1 1 - 1 1 - 1 1 -

Exploration
coefficient β 10 10 - 1 1 - 10 10 -

Dirichlet noise
magnitude ρ

0 0 0.25 0 0 0.25 0 0 0.25
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