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ABSTRACT

Single-cell foundation models (scFMs) are transforming computational biology by
enabling generalizable, task-agnostic representations for versatile single-cell analy-
sis. Despite their progress in facilitating rapid deployment for downstream tasks,
off-the-shelf scFMs still have some overlooked concerns: (I) (Pretraining Cost.)
Pretrain-based scFMs necessitate pretraining on a vast volume of cells, rendering
it draining resources in applications. (II) (Heterogeneous Gap.) Large Language
Models (LLM)-based scFMs ignore the tremendous heterogeneous gap between
LLM textual and raw cellular spaces, leading to insufficient capability when facing
downstream tasks. To this end, we introduce RAGCell, a versatile single-cell
analysis framework that achieves a double-win in both cost-effectiveness and
high performance. The success of RAGCell lies in two key aspects: ❶ Leverag-
ing LLMs to construct cell-level and feature-level knowledge databases, which
serve as supervision signals for training the cell model and significantly reduce
the training cost (>pretrain-based scFMs). ❷ Aligning cell representations with
text embeddings from the bi-level knowledge databases, enabling knowledge
transfer from textual spaces to cellular spaces and effectively mitigating the het-
erogeneous gap (>LLM-based scFMs). Through extensive experiments on six
downstream single-cell analysis tasks, we demonstrate that RAGCell achieves
outstanding performance compared to state-of-the-art scFMs while operating at
less than ∼1/10 the cost of pretrain-based scFMs. The source code is available at
https://anonymous.4open.science/r/RAGCell.

1 INTRODUCTION

Recent advances in machine learning and large language models (LLMs) (Devlin, 2018; Brown, 2020;
Ouyang et al., 2022; Achiam et al., 2023; Touvron et al., 2023) have greatly facilitated single-cell
analysis. Several single-cell foundation models (scFMs) have been proposed to obtain task-agnostic
cell representations that generalize well to specific downstream single-cell analysis tasks. These
scFMs can be broadly divided into two groups: pretrain-based scFMs and LLM-based scFMs.
Pretrain-based scFMs typically leverage a vast volume of single-cell RNA sequence (scRNA-seq)
data for large-scale pretraining, while LLM-based scFMs usually construct cell representations from
LLM embeddings. Although these scFMs have made significant progress for versatile single-cell
analysis, there are several limitations that cannot be neglected. Firstly, the success of pretrain-based
scFMs depends on the pretraining process over a large volume of cells, which is time-consuming
and resource-intensive in practice. To obtain scalable embeddings for single-cell data from different
resources, pretrain-based scFMs often define gene vocabularies for data tokenization, which requires
genomics knowledge from human experts. Despite their outstanding performance, the costs associated
with them are challenging to bear. Obtaining expert priors is difficult and demands labor-intensive
efforts, consequently leading to a decrease in training efficiency. Secondly, LLM-based scFMs
often ignore heterogeneity between raw cellular and LLM textual spaces. The LLM textual space
is constructed based on pretraining in natural language, whereas the cellular space is dedicated to
modeling biological data, leading to inherent significant gaps and heterogeneity. Although LLM-based
scFMs are cost-effective, their performance often falls short, especially in finetuning scenarios.

Inspired by the recent progress of LLM agents (Wang et al., 2024; Durante et al., 2024) and the
associated techniques like retrieval-augmented generation (RAG) (Lewis et al., 2020; Zhao et al.,
2024a), we present RAGCell, a versatile single-cell analysis framework that achieves a double-win
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in both cost-effectiveness and high performance. Different from existing LLM-based scFMs that
directly leverage LLM embeddings for single-cell data modeling, RAGCell firstly generates cell-
level and feature-level knowledge databases through LLMs. For cell-level text descriptions, the
omics and cell type information are included in a prompt template as queries, and corresponding
responses from LLMs are stored in the database. For feature-level text descriptions, the specific
functions of genes (Chen et al., 2019), peaks (Zeng et al., 2024), and proteins (Wu & Singh, 2012)
are preserved in another database. Then, we employ a patch-based light-weighted Transformer
(Vaswani, 2017) as the cell model to obtain cell representations. Afterward, the text descriptions from
these databases are retrieved and projected into a new space to perform cell-text alignment (Chen
et al., 2020a;b;c; 2021; Radford et al., 2021), which aims to provide supervision for the cell model
and align cell representations from the cellular space with knowledge from the well-defined LLM
textual space. After alignment, the cell model could be employed for various downstream single-
cell analysis tasks under both finetuning and zero-shot settings. Compared with existing scFMs,
RAGCell can model single-cell multi-omics data into a general framework and achieve superior
performance on downstream tasks free of the need for extensive pretraining on extra single-cell
data or any human expert priors. In comparison to pretrain-based scFMs such as scBERT (Yang
et al., 2022) and scGPT (Cui et al., 2024), RAGCell can achieve more than a tenfold reduction in
pretraining costs. In addition, since omics information is included in the cell-level database, RAGCell
is scalable to both single-omics and multi-omics data analysis tasks, such as cell type annotation,
batch effect correction, multi-omics data integration, rare cell type annotation, cell-text retrieval, and
drug sensitivity prediction. The superiority of RAGCell against a range of cutting-edge scFMs is
fully demonstrated through comprehensive experiments on many downstream single-cell analysis
tasks and datasets. To summarize, the main contributions of this paper are threefold:

1. Novel Perspective. We identify the key limitations of pretrain-based and LLM-based scFMs, and
then provide a novel perspective to reduce the training cost of single-cell analysis framework
while maintaining its capability by incorporating LLM priors as supervision signals.

2. Double-Win Framework. We present RAGCell, a versatile framework that is based on RAG and
empowered by LLMs. Leveraging LLM-generated information as supervision, RAGCell achieves
a double-win in high performance and cost-effectiveness for single-cell analysis.

3. Multifaceted Validation. We conduct comprehensive experiments on six downstream single-cell
analysis tasks and demonstrate the superiority of RAGCell against many state-of-the-art scFMs.

2 RELATED WORK

2.1 SINGLE-CELL ANALYSIS

Single-cell analysis seeks to characterize cellular states across various omics modalities, such as
RNA (Saliba et al., 2014; Kolodziejczyk et al., 2015), DNA (Karemaker & Vermeulen, 2018; Evrony
et al., 2021), and proteins (Wu & Singh, 2012; Suman et al., 2015). As a foundational technique in
computational biology, it has wide-ranging applications in healthcare (Hong et al., 2019; Rajewsky
et al., 2020) and medicine (Lim et al., 2020; Paik et al., 2020). For example, single-cell analysis
enables the identification of cellular heterogeneity, offering insights into the complexity of tissues and
organs. It also plays a key role in elucidating disease progression, thereby supporting the discovery
of novel therapeutic targets and advancing our understanding of disease mechanisms. Numerous
computational tasks have been developed for analyzing single-omics or multi-omics single-cell data,
such as cell type annotation (Jiang et al., 2023; Hou & Ji, 2024), batch effect correction (Tran et al.,
2020; Fei & Yu, 2020), and multi-omics data integration (Lance et al., 2022; Cao & Gao, 2022).

2.2 FOUNDATION MODELS FOR SINGLE-CELL BIOLOGY

With the rapid advancement of generative artificial intelligence (Devlin, 2018; Brown, 2020; Zhao
et al., 2024b) and LLMs (Touvron et al., 2023; Achiam et al., 2023), numerous FMs have been
proposed for single-cell biology. For instance, scBERT (Yang et al., 2022) applies a bag-of-words
strategy to discretize gene expression based on transcription frequencies and incorporates predefined
Gene2Vec embeddings to tokenize single cells. It utilizes a Performer encoder (Choromanski et al.,
2020) to learn cell representations and conducts self-supervised pretraining on over one million
scRNA-seq samples. scGPT (Cui et al., 2024) tokenizes data by incorporating gene expression
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Figure 1: An overview of RAGCell. RAGCell utilizes multi-source single-cell data to construct both
cell-level and feature-level knowledge databases. Subsequently, it retrieves bi-level knowledge as
supervision signals for training the cell model. Following alignment of cell representations with the
LLM textual space, the pretrained cell model can be applied to various single-cell analysis tasks.

values, gene tokens, and condition tokens. It employs a Transformer model trained autoregressively
with an attention masking mechanism. In parallel, models such as GenePT (Chen & Zou, 2023)
and scELMo (Liu et al., 2023b) leverage LLMs to generate gene-level embeddings, which are then
integrated with raw single-cell sequences to enhance representation learning and task performance.
LangCell (Zhao et al., 2024b) aims to enhance single-cell models by combining text descriptions and
pre-training. In comparison with these methods, our RAGCell utilizes RAG techniques to achieve
superior performance in versatile single-cell analysis with limited budgets.

3 THE RAGCell FRAMEWORK

The proposed framework RAGCell comprises a cell model and two associated knowledge databases.
For each sample, we first create text descriptions with rich external information at both the cell and
feature levels. These descriptions are then vectorized to obtain embeddings via embedding models
and stored in databases for future use. Subsequently, we retrieve the generated text embeddings to
perform cell-text alignment. In this stage, knowledge from LLM-based databases is utilized to guide
the training process of a cell model, with the objective of injecting priors from the LLM textual space
into the cellular space. Once the alignment is complete, the cell model can be employed to execute
various downstream single-cell analysis tasks. An overview of our framework is provided in Figure 1.

Cell Model. Since there is no need for extensive pretraining, we employ a lightweight Transformer
model (Dosovitskiy, 2020) as the cell model. For a cell sample X ∈ R1×Nf , we begin by splitting
it into M patches, and each patch is a P dimensional vector where Nf = M × P . Then we add a
classification token Xcls to learn global representations and a 1D positional encoding Epos to capture
the relative position information:

Xt = [Xcls;X
1
pE;X2

pE; ...;XM
p E] +Epos, (1)

where Xi
p and E represent patch embedding and linear transformation, respectively. Afterward, we

could employ a standard Transformer model (Vaswani, 2017) to capture the cell representations:
Zcell = Transformer(Xt). (2)

Then, Zcell can be utilized to perform cell-text alignment and downstream tasks.
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LLMs. LLMs are used to generate cell-level and feature-level text descriptions and to extract bi-
level text embeddings, which introduce prior knowledge into the entire framework and thus eliminate
the need for pretraining on large-scale data. In this paper, we opt for the GPT-4o mini model to
generate cell-level text descriptions and the ‘text-embedding-3-large’ model to extract embeddings.
For feature-level text descriptions, we use the GPT-3.5 model to obtain the specific function for each
gene or protein and the ‘text-embedding-ada-002’ model to extract embeddings.

Bi-level Knowledge Databases Construction. The core of our framework is to construct cell-
level and feature-level knowledge databases. For each cell sample, we consider multiple aspects of
information to be crucial for constructing high-quality representations, including omics information,
cell type information, and specific feature information (such as gene or protein). Therefore, it is
necessary to include all these types of information in the text descriptions. First, we apply a text
template: “This is a single-cell <omics> sequence sample with a cell type of <cell type>. Please
summarize its major function. Use academic language in one paragraph and think step by step.". We
then fill in the omics and cell type information for each cell into this template. Next, we utilize an
embedding model (EM) to obtain text embeddings. The entire process can be formulated as:

Zc
text = EM(LLM(Prompt(Qc))), (3)

where Qc denotes cell-level prompts and Zc
text ∈ R1×F1 represents the corresponding cell-level F1

dimensional text embeddings. Next, we follow previous works GenePT (Chen & Zou, 2023) and
scELMo (Liu et al., 2023b), to obtain feature-level text embeddings. There are generally two ways to
acquire feature-level text descriptions: using text descriptions from the NCBI database as prompts or
using human-designed prompts in a dialogue with an LLM. Here, we illustrate the second approach
as an example. We begin by using a prompt following (Liu et al., 2023a; Jia et al., 2022; Ekin, 2023)
to ask the LLM for specific feature information (using a gene as an example): “Please summarize the
major function of gene: <gene>. Use academic language in one paragraph and think step by step.".
Subsequently, we utilize the LLM’s response to this query as the feature-level text descriptions and
obtain its corresponding embeddings. This process can be formulated as:

Zfi
text = EM(LLM(Prompt(Qfi))), (4)

where Qfi denotes the query for each feature and Zfi
text ∈ R1×F2 represents the corresponding F2

dimensional text embeddings. For a cell sample with Nf features, we could stack Zfi
text ∈ R1×F2 for

each feature and obtain the final feature-level text embeddings Zf
text ∈ RNf×F2 . For each specific

dataset, we can store these cell-level and feature-level embeddings in two databases. During the
training process, the corresponding embeddings can be retrieved to provide supervision signals.

Cell-Text Alignment. After constructing bi-level knowledge databases, we then transfer knowledge
from the databases to the cell model by retrieving relevant information. To begin, we need to
concatenate the cell-level and feature-level text embeddings:

Zf ′

text = X× Zf
text, Ztext = Concat(Zc

text,Z
f ′

text), (5)

where Zf ′

text ∈ R1×F2 and Ztext ∈ R1×(F1+F2). Then, two separate multilayer perceptrons (MLPs)
are utilized to project cell representations and text embeddings into new low-dimensional spaces:

Hcell = MLP(Zcell), Htext = MLP(Ztext), (6)
where Hcell ∈ R1×D and Htext ∈ R1×D have same code length. Following prior works (Chen et al.,
2020a; He et al., 2020; Radford et al., 2021; Xiong et al., 2023), we set D = 128 by default. After
getting Hcell and Htext for each cell, we then perform cell-text alignment via instance-level matching:

LC2T = − 1

B

B∑
i

log
cos(Hi

cell,H
i
text)∑B

j=1 cos(H
i
cell,H

j
text)

, (7)

LT2C = − 1

B

B∑
i

log
cos(Hi

text,H
i
cell)∑B

j=1 cos(H
i
text,H

j
cell)

, (8)

where B denotes the number of samples within a mini-batch and cos(·) represents cosine similarity.
The final loss objective can be formulated as:

L =
1

2
(LC2T + LT2C). (9)
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Figure 2: Cell Type Annotation Results. a. UMAP plot of the embeddings finetuned by five methods
on CITE-seq data. b. UMAP plot of the embeddings finetuned by five methods on ASAP-seq data. c.
Precision, Recall, F1, and Accuracy comparisons of different methods on CITE-seq data. d. Precision,
Recall, F1, and Accuracy comparisons of different methods on ASAP-seq data. e. Cost comparisons.

The loss function ensures that the distance between cell-text pairs is minimized in the representation
space, while the distance between non-paired cell and text representations is maximized. Through
pretraining on specific datasets, we inject semantic knowledge from LLMs into the cell model. After
training, the cell model can be employed for many downstream single-cell analysis tasks.

Downstream Single-cell Analysis Tasks. We evaluate the performance of RAGCell on several
downstream single-cell data analysis tasks. For tasks like cell type annotation and drug sensitivity
prediction, we first leverage a classification head to obtain the predictions for each cell:

Pcell = MLP(Hcell). (10)

Then we finetune the cell model and classification head on specific datasets with cross-entropy loss:

Lcls = CE(Pcell, Ycell), (11)

where Ycell denotes the corresponding cell type labels or drug sensitivity labels. For batch effect
correction, multi-omics data integration, and cell-text retrieval tasks, we directly employ the cell
representations for evaluation, without the need for finetuning. For the rare cell type identification task,
we employ the SOTA method scCAD (Xu et al., 2024) as a baseline. Then we replace the original
cell embeddings with our cell representations. All other algorithm settings are kept consistent.

4 EXPERIMENT

4.1 CELL TYPE ANNOTATION

Cell type annotation (Cao et al., 2020a; Chen et al., 2022b; 2023; Shao et al., 2021) is known as a
crucial task in single-cell analysis. However, most existing scFMs focused exclusively on scRNA-seq
data and lacked validation across other omics modalities. To address this gap, we evaluated RAGCell

5
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b

c d

a

Figure 3: Batch Effect Correction Results on PBMC 10K under Zero-shot Settings. a. UMAP
plot of the embeddings by five methods across cell types. b. UMAP plot of the embeddings by five
methods across batches. c. Clustering performance comparisons among five methods. d. Heatmap
visualizations of similarity between cell and text embeddings on randomly selected 50 cells.

against other scFMs using CITE-seq (Stoeckius et al., 2017) and ASAP-seq (Mimitou et al., 2021)
data. For fair comparisons, we randomly partitioned each dataset into three subsets: 80% for training,
10% for validation, and 10% for testing. Fig. 2 (a) and (b) illustrate cell embeddings finetuned
by the five methods. The UMAP visualizations (McInnes et al., 2018) demonstrated that RAGCell
achieved superior separation of distinct cell types for both CITE-seq and ASAP-seq data, confirming
its effectiveness for multi-omics cell type annotation. We subsequently conducted comprehensive
quantitative comparisons using four evaluation metrics. As depicted in Fig. 2 (c) and (d), pretrain-
based scFMs (scBERT (Yang et al., 2022), scGPT (Cui et al., 2024)) outperform LLM-based scFMs
(GenePT (Chen & Zou, 2023), scELMo (Liu et al., 2023b)) by a large margin, consistent with
expectations given the computationally intensive pretraining required for Transformer-based models.
Remarkably, RAGCell consistently surpassed all other scFMs across every metric. It‘s worth noting
that RAGCell achieved this performance without requiring supplemental pretraining data (Fig. 2 (e)).
Its bi-level knowledge databases were constructed exclusively from training sets of the CITE-seq
and ASAP-seq datasets, contrasting sharply with pretrain-based scFMs (e.g., scBERT, scGPT) that
relied on massive pretraining corpora (millions to tens of millions of cells). These results indicate
that RAGCell effectively synthesized strengths from both paradigms: leveraging external knowledge
from LLM-based databases enabled state-of-the-art performance with manageable training costs.

4.2 BATCH EFFECT CORRECTION

Batch effect correction represents another fundamental challenge in single-cell analysis. To assess
whether RAGCell effectively addresses batch effect issues (Tran et al., 2020; Goh et al., 2017; Fei &
Yu, 2020), we conducted experiments on the PBMC 10K dataset (Gayoso et al., 2022) containing
samples from two distinct batches. Generalization capability was evaluated under zero-shot settings,
with RAGCell pretrained on around 65,000 cells from the NeurIPS 2021 Multimodal Single-Cell
Data Integration competition (Luecken et al., 2021). This approach demonstrates significantly higher
resource efficiency compared to scBERT and scGPT. The visualization results in Fig. 3 (a) reveal
that RAGCell generates more discriminative cell-type clusters than alternative scFMs. scBERT
exhibited the weakest performance among these scFMs, failing to form distinct clusters. This
limitation stems from its masked value reconstruction pretraining strategy, which is no help for

6
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c

a b

d

Figure 4: Multi-omics Data Integration Results on BMMC data under Zero-shot Settings.
a. UMAP plot of the embeddings by different methods across cell types. b. UMAP plot of the
embeddings by different methods across batches. c. Clustering performance comparisons. d.
Heatmap visualizations of similarity between cell and text embeddings on randomly selected 50 cells.

dealing with batch effects or forming discriminative clusters. While GenePT, scELMo, and scGPT
produced partial clusters, their cluster counts fell substantially below the true number of cell types.
In contrast, RAGCell generated clusters corresponding closely to the actual cell type count with
well-separated cluster centers, indicating superior batch integration capability. This enhancement
stems from integrating prior knowledge retrieved from LLM-based databases, effectively suppressing
batch-specific variations. The results in Fig. 3 (b) further confirm substantial overlap between batches
within RAGCell’s latent space. Collectively, these results demonstrate RAGCell’s effectiveness in
batch effect correction and clustering improvement for PBMC 10K data. Quantitative validation
results in Fig. 3 (c) using three standardized metrics (NMI, ARI, ASW (Luecken et al., 2022))
indicate that RAGCell consistently outperforms baseline methods in batch effect correction. Despite
a marginal ARI deficit, its dominant advantages in NMI and ASW substantiate its robust capabilities.
In Fig. 3 (d), we can observe that cell-text alignment induces high similarity between embeddings of
biologically similar cells, effectively disentangling biological signals from technical batch effects.

4.3 MULTI-OMICS DATA INTEGRATION

By leveraging an LLM to derive text embeddings capturing omic-specific information, the cell model
within RAGCell acquires inherent multi-omic representational capabilities during the alignment
process. Consequently, RAGCell excels at multi-omics data integration. To validate this capability,
we utilized RNA and protein modalities from the BMMC dataset (Luecken et al., 2021) to evaluate
zero-shot clustering performance, employing the same pretraining data as described in the previous
section’s batch effect correction experiment. Fig. 4 (a) visualizes cell embeddings from GenePT,
scELMo, scGPT, and RAGCell. While all methods distinguished CD14+ monocytes, other scFMs
proved unable to resolve CD8+ T cells. LLM-based scFMs (GenePT, scELMo) exhibited highly
overlapping embeddings for remaining cell types, suggesting insufficient discriminative power despite
underlying gene expression differences. scGPT showed marginal improvement by disambiguating
CD4+ T cells, yet remained incapable of distinguishing other cell populations. In contrast, RAGCell
successfully transferred semantic knowledge from the LLM to the cell model, yielding well-separated
clusters for nearly all cell types and superior visualization quality. Fig. 4 (b) demonstrates RAGCell’s
robust batch integration, evidenced by the highest degree of inter-batch embedding overlap. Con-
versely, GenePT, scELMo, and scGPT persistently exhibited batch-specific structures, indicating

7
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a BMMC PBMC

BMMC PBMCb c

Figure 5: Rare Cell Type Identification Results under Zero-shot Settings. a. UMAP plot of the
cell embeddings related to abundant and rare cell types. b. Quantitative performance comparison
between the original cell embeddings and ours using the scCAD algorithm. c. Heatmap visualizations
of similarity between average embeddings of rare cells and abundant cells.

inconsistent capture of biologically relevant features amidst technical noise. Quantitative validation
in Fig. 4 (c) using NMI, ARI, and ASW metrics revealed RAGCell’s dominant performance, with all
scores exceeding 0.8. The remaining methods consistently fell below this threshold (scores < 0.8),
further confirming RAGCell’s superiority in multi-omics integration. Finally, Fig. 4 (d) illustrates
elevated embedding similarity between biologically similar cells post-alignment. This correlation
demonstrates that text embeddings provide effective semantic regularization, enabling RAGCell to
seamlessly integrate both RNA and protein data while simultaneously mitigating batch effects.

4.4 RARE CELL TYPE IDENTIFICATION

Advances in sequencing technologies have yielded vast quantities of scRNA-seq data (Hwang
et al., 2018; Cao et al., 2020b), which frequently contain both abundant and rare cell populations.
Although rare cell types (Travaglini et al., 2020; Wu et al., 2019; Kiselev et al., 2019) exhibit low
abundance, they play pivotal roles in biological processes such as disease pathogenesis and drug
discovery. Consequently, rare cell identification has emerged as a critical challenge in single-cell
analysis (Jiang et al., 2016; Jindal et al., 2018; Dong & Yuan, 2020). By leveraging prior knowledge
from LLMs to derive high-quality cell representations, RAGCell provides an effective framework
for rare cell identification. We adopted the state-of-the-art scCAD algorithm (Xu et al., 2024) as our
baseline, which initially clusters cells via principal component analysis (PCA). To evaluate RAGCell’s
capability, we replaced scCAD’s original embeddings with RAGCell’s zero-shot representations.
Fig. 5 (a) (left) illustrates BMMC data visualizations. Whereas baseline results show abundant
cells clustered distantly from most rare cells (with partial overlap), RAGCell (right) achieves clear
separation between abundant and rare populations while enhancing discrimination among rare cell
subtypes. Similarly, for PBMC data (Fig. 5 (a) (right)), baseline embeddings exhibit substantial
mixing of rare and abundant cells, whereas RAGCell maintains distinct inter-group distances and
intra-group dispersion—significantly improving scCAD’s rare cell identification capacity. In Fig. 5
(b), we selected three metrics to quantitatively compare the effectiveness of RAGCell in enhancing
the identification of rare cell types. The results show that, compared to the original cell embeddings,
the embeddings obtained from our framework achieve improvements across all metrics on the BMMC
dataset. On the PBMC dataset, while our recall score is slightly lower than that of the original
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a

b

c Erlotinib Cisplatin

Cisplatin

Erlotinibd

Figure 6: Drug Sensitivity Prediction Results on Erlotinib and Cisplatin data. a. Quantitative
performance comparisons on Erlotinib data. b. Quantitative performance comparisons on Cisplatin
data. c. UMAP plot of the raw embeddings and ours. d. Confusion matrix results.

embeddings, our performance on the other two metrics is superior. Quantitative analysis in Fig. 5 (b)
using three metrics demonstrates RAGCell’s consistent improvement across all measures on BMMC
data. For PBMC data, while recall shows marginal reduction, RAGCell outperforms baselines in two
other metrics. Further validation in Fig. 5 (c) reveals substantially reduced cosine similarity between
abundant/rare cells and among distinct rare cell types, confirming RAGCell’s discriminative power.

4.5 DRUG SENSITIVITY PREDICTION

Accurate prediction of cellular drug sensitivity represents a critical challenge in precision biomedicine
(Cortes-Ciriano et al., 2016; Ahmed et al., 2020). To evaluate RAGCell’s capabilities, we conducted
experiments on the GSE149383-Erlotinib (Aissa et al., 2021) and GSE117872-Cisplatin (Sharma
et al., 2018; Ravasio et al., 2020; Suphavilai et al., 2021) datasets. Fig. 6 (a) and (b) demonstrates
RAGCell’s superior performance over both specialist models (Transformer (Vaswani, 2017), scDEAL
(Chen et al., 2022a)) and generalist foundation models (GPT-3.5-turbo). Across all four metrics,
comparator methods scored below 0.8, while RAGCell consistently exceeded 0.9, demonstrating
significant improvements. This enhancement stems from our framework’s ability to leverage inherent
biological patterns within knowledge databases, strengthening cell-drug sensitivity associations. The
visualization results in Fig. 6 (c) further substantiate this advantage. As it can be found, the raw
cell embeddings often tend to mix the drug sensitivity property to a specific drug. However, the cell
embeddings generated by our RAGCell illustrate the discernibility of cell sensitivity to various drugs.
Cells with similar sensitivities typically aggregate together, whereas cells with distinct sensitivities
are dispersed throughout. The confusion matrix results in Fig. 6 (d) reveal near-perfect sensitivity
prediction accuracy, with only minor degradation in resistance classification. Overall, RAGCell
significantly surpasses other specialist and generalist models in drug sensitivity prediction.

5 CONCLUSION

In this paper, we identify the shortcomings of both pretrain-based and LLM-based scFMs, and propose
a double-win framework termed RAGCell that excels in both cost-effectiveness and high-performance
for versatile single-cell analysis. The core of RAGCell is generating bi-level biological knowledge,
which is retrieved as additional supervision signals during the pretraining phase. Remarkably,
RAGCell outperforms cutting-edge scFMs across multiple downstream tasks while requiring only
minimal single-cell data for pretraining. In future work, we aim to further explore scaling laws for
single-cell foundation models, with the goal of developing a unified, all-in-one framework.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were not involved in the research ideation or the writing of this paper.

B ADDITIONAL EXPERIMENTS

B.1 CELL-TEXT RETRIEVAL

Assessing the alignment between cellular and LLM-derived textual spaces constitutes a critical
evaluation of our framework. We quantify alignment effectiveness through cell-text retrieval tasks.
Fig. 7 (a) presents UMAP embeddings from BMMC and PBMC datasets at three evaluation stages.
Column 1 reveals pronounced modality divergence prior to alignment. Column 2 demonstrates
substantial cross-modal convergence following RAGCell application, with emergent cell-type-specific
clustering. Column 3 confirms robust zero-shot generalization, where cell embeddings recapitulate
the clustering patterns of text embeddings, indicating successful knowledge transfer from LLM-
derived databases to cellular spaces. Fig. 7 (b) evaluates category-level retrieval using Mean Average
Precision (MAP). RAGCell outperforms existing LLM-based scFMs in all retrieval tasks (cell2text,
text2text, cell2cell). This superiority stems from our cell-type-informed text descriptions, which
during alignment cluster same-type cells while distancing different-type cells in embedding space.
Figs. 7 (c) and (d) quantify instance-level retrieval via Recall@k and Mean Reciprocal Rank (MRR).
RAGCell consistently surpasses baselines across both cell2text and text2cell tasks. From the results,
we can observe that current LLM-based scFMs (e.g., GenePT, scELMo) exhibit critical limitations:
(1) directly transplanting LLM embeddings ignores inherent cross-modal heterogeneity, and (2)
lacking explicit alignment mechanisms to bridge this divergence. Conversely, RAGCell’s dedicated
alignment strategy explicitly addresses modality gaps, enabling improved retrieval performance.

C ADDITIONAL RELATED WORK

C.1 LARGE LANGUAGE MODELS

Large language models have driven rapid advancements in natural language processing, continuously
evolving through innovations in architecture design and training methodologies. Early breakthroughs
include BERT (Devlin et al., 2019), which leverages bidirectional context mining via masked
language modeling on Transformer encoders (Vaswani, 2017), achieving state-of-the-art performance
on text understanding tasks. Shortly thereafter, the GPT series (Radford et al., 2018; 2019; Brown,
2020) pioneered autoregressive pretraining with Transformer decoders, demonstrating few-shot
learning capabilities that emerged as model sizes increased. These models laid the foundation
for the generative AI revolution, enabling powerful applications in text generation, reasoning, and
multimodal understanding. Following the trend of open-source LLMs, LLaMA (Touvron et al.,
2023) introduced a suite of efficient models trained on publicly available datasets, fostering a wave
of community-driven adaptations such as Alpaca (Taori et al., 2023) and Vicuna (Chiang et al.,
2023). Meanwhile, Chinese researchers contributed innovations such as DeepSeek LLM (Bi et al.,
2024), which combined mixture-of-experts (MoE) architectures with domain-specific data filtering to
enhance mathematical reasoning and coding proficiency while maintaining parameter efficiency.

D INTRODUCTION TO INCORPORATED DATASETS

CITE-seq and ASAP-seq PBMC dataset. The CITE-seq and ASAP-seq PBMC datasets contain
multimodal data from both control and stimulated conditions. After preprocessing, 4,644 CITE-
seq cells and 4,502 ASAP-seq cells associated with 17,441 genes are included in the experiments.
The CITE-seq data includes seven categories: B cells, Effector CD4+ T cells, Effector CD8+ T
cells, Monocytes cells, NK cells, Naive CD4+ T cells, and Naive CD8+ T cells. The ASAP-seq
data includes nine categories: B cells, DC cells, Effector CD4+ T cells, Effector CD8+ T cells,
Monocytes cells, NK cells, Naive CD4+ T cells, Naive CD8+ T cells, and others. This dataset can
be downloaded from GSE156478 (https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE156478).
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a b

c d

Figure 7: Cell-Text Retrieval Results on BMMC and PBMC data. a. UMAP plot of the
embeddings before cell-text alignment, after cell-text alignment, and under zero-shot settings. b.
Zero-shot category-level cell-text retrieval comparisons (MAP). c. Zero-shot instance-level cell-text
retrieval comparisons (Recall). d. Zero-shot instance-level cell-text retrieval comparisons (MRR).

PBMC 10K dataset. The PBMC 10K dataset includes two batches of scRNA-seq data from human
PBMCs of a healthy donor. After preprocessing, this dataset features 3,346 differentially expressed
genes. The first batch and the second batch comprise 7,982 cells and 4,008 cells, respectively.
Cell groups were labeled by Seurat (Satija et al., 2015) and categorized into nine types: B cells,
CD4+ T cells, CD8+ T cells, CD14+ monocytes, dendritic cells, NK cells, FCGR3A+ monocytes,
megakaryocytes, and others. This dataset can be downloaded from the scVI tools (Virshup et al., 2023;
Gayoso et al., 2022) (https://scvi-tools.org/) using the API scvi.data.pbmc_dataset.

BMMC dataset. The BMMC dataset uses the CITE-seq protocol and comprises paired mea-
surements of scRNA-seq and protein abundance in BMMCs. This dataset includes cells from
12 healthy human donors, organized into 12 batches. After preprocessing, the data encompass
90,261 cells and each cell contains 13,953 genes and 134 surface proteins. There are 45 dis-
tinct cell types in this dataset. This dataset can be downloaded from GSE194122 (https:
//www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE194122).

GSE149383-Erlotinib. The GSE149383 dataset comprises 2,739 human lung cancer cells and
8,380 associated genes, along with their respective sensitivity properties to the drug Erlotinib.
This dataset can be downloaded from GSE149383 (https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE149383).

GSE117872-Cisplatin. The GSE117872 dataset comprises 1,302 human oral squamous cancer
cells and 22,744 associated genes, along with their respective sensitivity properties to the drug
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Cisplatin. This dataset can be downloaded from GSE117872 (https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE117872).

E INTRODUCTION TO COMPARED METHODS

To evaluate the performance of RAGCell for downstream tasks, we benchmarked our method against
a range of state-of-the-art (SOTA) approaches. For tasks like cell type annotation, batch effect
correction, and multi-omics data integration, we compared RAGCell with four scFMs, including
scBERT, scGPT, GenePT, and scELMo. For the rare cell type identification task, we employed
scCAD as the framework and replaced the original cell embeddings with cell representations obtained
by our approach. For the drug sensitivity prediction task, we compared RAGCell with both specialist
models like vanilla Transformer, scDEAL, and generalist models like GPT-3.5.

scBERT (Yang et al., 2022). scBERT is a pretrain-based scFM that utilizes a Performer cell
encoder and employs masked gene modeling for pretraining on one million cells from the
Panglao dataset (Franzén et al., 2019). We used the pretrained model provided by the authors
from (https://drive.weixin.qq.com/s?k=AJEAIQdfAAoUxhXE7r#) and validated
downstream tasks according to their publicly available code from (https://github.com/
TencentAILabHealthcare/scBERT). All other settings were kept consistent with those pro-
vided by the authors.

scGPT (Cui et al., 2024). scGPT is another pretrain-based scFM that employs a decoder-
based architecture combined with attention mask for autoregressive pretraining on 33 million
cells. The authors provided several pretrained model weights, with pretraining data rang-
ing from 1.8 million heart cells to 33 million normal human cells. We utilized the model
pretrained on the largest dataset from (https://drive.google.com/drive/folders/
1oWh_-ZRdhtoGQ2Fw24HP41FgLoomVo-y) and conducted downstream task experiments
following the authors’ publicly available code from (https://github.com/bowang-lab/
scGPT). All other settings were kept consistent with those provided by the authors.

GenePT (Chen & Zou, 2023). GenePT is an LLM-based scFM that obtains text embeddings of
features (such as genes and proteins) from LLM using text descriptions from the NCBI database as
prompts. It then directly uses these LLM embeddings to construct cell embeddings. We employed
the GenePT-w method, as provided by the authors from (https://github.com/yiqunchen/
GenePT), to construct cell embeddings and validate them for downstream tasks. All other settings
were kept consistent with those provided by the authors.

scELMo (Liu et al., 2023b). scELMo is another LLM-based scFM, which can be considered as an
improved version of GenePT. It obtains embeddings through enhanced prompts to construct high-
quality cell embeddings. We utilized the code provided by the authors from (https://github.
com/HelloWorldLTY/scELMo) to build cell embeddings and validate them for downstream
tasks. All other settings were kept consistent with those provided by the authors.

scCAD (Xu et al., 2024). scCAD is a SOTA algorithm for rare cell type identification. It employs
the PCA method for clustering to obtain cell embeddings. We conducted experiments using the
publicly available code from (https://github.com/xuyp-csu/scCAD) and replaced the
original cell embeddings with representations from our framework. Experimental analysis was
performed using the cell embeddings generated by our approach. All other parameters of the
algorithm were kept consistent with the original implementation.

Transformer (Vaswani, 2017). Transformer is a famous architecture and was initially designed for
natural language processing tasks. It introduces self-attention mechanisms and provides standards for
many other fields, including vision, audio, and scientific research. For the drug sensitivity prediction
task, all settings and parameters were kept consistent with the standard implementation.

scDEAL (Chen et al., 2022a). scDEAL is a specialist model designed for the drug sensitivity
prediction task. It employs a neural network and tries to establish connections between genes
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and drug responses. The source code and implementation can be found at (https://github.
com/OSU-BMBL/scDEAL). All settings and parameters were kept consistent with the original
implementation.

GPT-3.5. GPT-3.5 is a SOTA generalist model developed by OpenAI. Based on the GPT-3 architec-
ture, GPT-3.5 can understand and generate human-liked texts, which could be employed for many
tasks and applications, including the drug sensitivity prediction task. The use of GPT-3.5 API can be
found at (https://platform.openai.com/docs/models/gpt-3.5-turbo).

F IMPLEMENTATION DETAILS

RAGCell employs the patch-based Transformer model as the cell model. Each cell is split into 128
patches for data tokenization. For cell-level knowledge databases, we employ the GPT-4o mini model
to generate function descriptions and use the ‘text-embedding-3-large’ model to extract embeddings,
with an embedding dimension of 3072. For feature-level knowledge databases, we leverage the
GPT-3.5 model to generate function descriptions and use the ‘text-embedding-ada-002’ model to
extract embeddings, with an embedding dimension of 1536. To map cell and text representations
into a shared space, we use two MLPs as projection layers, reducing both representations to a low-
dimensional space of 128 dimensions. All experiments are conducted using Pytorch with 80GB A100
GPUs as support. For cell-text alignment, we set the batch size to 256 and trained the cell model with
the AdamW optimizer for 100 epochs. For finetuning tasks, we randomly split the datasets into 80%
for training, 10% for validation, and 10% for testing. For zero-shot tasks, we ensure that there is no
data leakage or overlap during the pretraining phase. The learning rate is set to 1.5e-4 during the
pretraining stage and 1e-4 during the finetuning stage, respectively.

G EVALUATION METRICS

Cell Type Annotation. For the cell type annotation task, we evaluated the model’s performance
using four common metrics for classification tasks: Accuracy, Precision, Recall, and F1 score. The
calculation processes for each metric are as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
, (12)

Precision =
1

N

N∑
i=1

TPi

TPi + FPi
, (13)

Recall =
1

N

N∑
i=1

TPi

TPi + FNi
, (14)

F1 Score =
1

N

N∑
i=1

2× Precisioni × Recalli
Precisioni + Recalli

, (15)

where TP, TN, FP, and FN are short for true positives, true negatives, false positives, and false
negatives, respectively. N denotes the number of samples per cell type.

Batch Effect Correction. For the batch effect correction task, we evaluated the model’s perfor-
mance using several common cell clustering metrics, specifically normalized mutual information
(NMI), adjusted rand index (ARI), and average silhouette width (ASW). NMI can be calculated as:

I(U, V ) =

|U |∑
i=1

|V |∑
j=1

P (i, j) log

(
P (i, j)

P (i)P (j)

)
, (16)

NMI(U, V ) =
I(U, V )

mean(H(U),H(V ))
, (17)

where P (i, j) is the probability that the i-th cluster in clustering U and the j-th cluster in clustering
V occur simultaneously. P (i) and P (j) are the probabilities of the i-th cluster in U and the j-th
cluster in V , respectively.
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ARI can be calculated as:
RI =

TP + TN
TP + TN + FP + FN

, (18)

ARI =
RI − E[RI]

max(RI)− E[RI]
, (19)

where TP, TN, FP, and FN are short for true positives, true negatives, false positives, and false
negatives, respectively. E[RI] is the expected RI of random labeling.

The calculation process for ASW can be represented as follows:

a(i) =
1

|Ci| − 1

∑
j∈Ci,j ̸=i

d(i, j), (20)

b(i) = min
k ̸=i

1

|Ck|
∑
j∈Ck

d(i, j), (21)

s(i) =
b(i)− a(i)

max{a(i), b(i)}
, (22)

ASW =
1

N

N∑
i=1

s(i), (23)

where Ci and Ck are clusters containing sample points i and k, and d(i, j) is the distance between
sample points i and j. N denotes the number of cell samples.

Multi-omics Data Integration. For the multi-omics data integration task, we employed three
metrics, namely NMI, ARI, and ASW, to evaluate the performance of the models. The calculation
processes for these metrics have been previously described.

Rare Cell Type Identification. For the rare cell type identification task, we employed three metrics,
namely Precision, Recall, and F1 score, to evaluate the performance of the models. The calculation
processes for these metrics have been previously described.

Cell-Text Retrieval. For cell-text retrieval tasks, we leveraged multiple evaluation metrics for
different tasks, including instance-level retrieval and category-level retrieval. For instance-level
retrieval, we employed two metrics: recall@k and MRR, which can be calculated as:

Recall@k =
|{relevant samples} ∩ {retrieved samples}top k|

|{relevant samples}|
, (24)

MRR =
1

n

n∑
i=1

1

ri
, (25)

where |{relevant samples} ∩ {retrieved samples}top k| represents the number of relevant samples in
the top k retrieved results, |{relevant samples}| represents the total number of relevant samples, ri
represents the rank of the i-th query, n represents the total number of queries. In instance-level
retrieval, there is only one relevant text/cell sample for each query cell/text sample. Here we set
n = 1000.

For category-level retrieval, we employed MAP to evaluate the performance. The calculation process
for MAP can be formulated as follows:

MAP =
1

n

n∑
i=1

APi, (26)

AP =
1

|R|
∑
m∈R

number of relevant samples in top m
m

, (27)

where APi represents the average precision of the i-th query, |R| represents the number of relevant
samples, m represents the rank of the retrieved sample, and number of relevant samples in top m
represents the number of relevant samples in the top m retrieved results. In category-level retrieval,
samples from the same cell types are considered relevant samples for a given query. Here we set
m = n = 1000.
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Figure 8: Ablation study on CITE-seq and ASAP-seq data.

Drug Sensitivity Prediction. For the drug sensitivity prediction task, we employed four metrics,
namely Precision, Recall, F1 score, and Accuracy, to evaluate the performance of the models. The
calculation processes for these metrics have been previously described.

CITE-seq Data

ASAP-seq Data

Figure 9: Confusion matrix results on CITE-seq and ASAP-seq data.

H ADDITIONAL EXPERIMENTS

H.1 ABLATION STUDY

To verify the effectiveness of incorporating priors from LLMs, we also provide some model variants
by gradually removing text descriptions at each level, with results shown in Fig. 8. As illustrated in
the figure, ‘w/o feature-level’ signifies that only cell-level descriptions were included, whereas ‘w/o
feature&cell-level’ indicates the absence of all textual information. The results indicate performance
declines among various model variants, which suggests the need of both cell-level and feature-level
text descriptions in enhancing cell representations.

H.2 ADDITIONAL CELL TYPE ANNOTATION RESULTS

We also present the cell type annotation confusion matrix results in Fig. 9, which highlights the
superior performance of RAGCell compared to other scFMs. RAGCell achieves significantly higher
annotation accuracy consistently across diverse cell types.

I EXAMPLES OF TEXT DESCRIPTIONS

Here we provide some examples of cell-level and feature-level text descriptions on different datasets
in Fig. 10, Fig. 11, Fig. 12, Fig. 13, Fig. 14, and Fig. 15.
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CITE-seq Data

## Feature-level

Human: Please summarize the major function of gene: CDK11B. Use academic language in one paragraph and 
and think step by step.

LLM: The CDK11B gene encodes a member of the cyclin-dependent kinase (CDK) family, which is integral to the 
regulation of the cell cycle, particularly in the G2 and M phases. Specifically, CDK11B functions as a 
serine/threonine kinase that associates with cyclins to phosphorylate target proteins, thereby facilitating various 
cellular processes including transcription regulation, cell proliferation, and differentiation. Notably, CDK11B also 
plays a crucial role in mRNA processing and spliceosome assembly, underscoring its involvement not only in cell 
cycle progression but also in the post-transcriptional modification of RNA. Dysregulation of CDK11B activity has 
been implicated in various cancers, highlighting its potential as a therapeutic target.

## Cell-level

Human: This is a single cell CITE sequence sample with a cell type of B. Please summarize its major function. 
Use academic language in one paragraph and think step by step.

LLM: B cells, a critical component of the adaptive immune system, primarily function to mediate humoral immunity 
through the production of antibodies. Derived from hematopoietic stem cells in the bone marrow, these 
lymphocytes undergo a complex maturation process, during which they develop the ability to recognize and bind 
specific antigens presented by pathogens. Upon activation by antigenic stimulation, often facilitated by T helper 
cells, B cells differentiate into plasma cells, which are responsible for secreting large quantities of antibodies. 
These antibodies play an essential role in neutralizing toxins, opsonizing pathogens for enhanced phagocytosis, 
and activating the complement system, thereby orchestrating an effective immune response. Additionally, B cells 
contribute to immune memory, enabling a more rapid and robust response upon subsequent exposures to the 
same antigen through the generation of memory B cells. Overall, the primary function of B cells is to provide 
protection against infections and to maintain immunological memory.

Figure 10: Examples of cell-level and feature-level text descriptions on CITE-seq data.

ASAP-seq Data

## Feature-level

Human: Please summarize the major function of gene: SCNN1D. Use academic language in one paragraph and 
and think step by step.

LLM: The gene SCNN1D encodes the delta subunit of the epithelial sodium channel (ENaC), which plays a pivotal 
role in regulating sodium and fluid homeostasis in various epithelial tissues, particularly in the kidney and 
respiratory system. The major function of SCNN1D involves its contribution to the assembly and functional activity 
of the ENaC complex, which is essential for sodium absorption across epithelial cell membranes. This process is 
critical in maintaining extracellular fluid volume, blood pressure, and the overall electrolyte balance within the body. 
Dysregulation or mutations in SCNN1D can lead to pathophysiological conditions, such as 
pseudohypoaldosteronism type 1, characterized by impaired sodium reabsorption, hyperkalemia, and metabolic 
acidosis. Thus, SCNN1D is fundamentally important for cardiovascular and renal physiology, as well as overall 
homeostatic mechanisms.

## Cell-level

Human: This is a single cell ASAP sequence sample with a cell type of DC. Please summarize its major function. 
Use academic language in one paragraph and think step by step.

LLM: Dendritic cells (DCs) are pivotal antigen-presenting cells within the immune system, characterized primarily 
by their ability to capture, process, and present antigens to naïve T lymphocytes, thereby initiating and modulating 
adaptive immune responses. These cells reside in peripheral tissues and serve as sentinels, detecting pathogens 
and environmental changes. Upon encountering antigens, DCs undergo a maturation process that enhances their 
capacity to migrate to lymphoid tissues, where they express co-stimulatory molecules and major histocompatibility 
complex (MHC) molecules crucial for T cell activation. Additionally, DCs can secrete a variety of cytokines and 
chemokines, which not only fortify T cell responses but also influence the differentiation of other immune cells, 
such as B cells and natural killer cells. Importantly, the interaction between DCs and T cells is critical for 
establishing immune tolerance and preventing autoimmune reactions, highlighting the dual role of DCs in both 
instigating protective immunity and maintaining homeostasis within the immune landscape.

Figure 11: Examples of cell-level and feature-level text descriptions on ASAP-seq data.
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PBMC 10K Data

## Feature-level

Human: Please summarize the major function of gene: ISG15. Use academic language in one paragraph and and 
think step by step.

LLM: ISG15 (Interferon-Stimulated Gene 15) is an important ubiquitin-like protein that plays a crucial role in the 
innate immune response, primarily acting as a mediator of antiviral activity. Upon stimulation by interferons, ISG15 
is highly induced and subsequently conjugated to target proteins through a process known as ISGylation, which 
modulates their function and stability. This post-translational modification not only enhances the immune response 
against viral infections but also regulates various cellular processes, including protein degradation, gene 
expression, and inflammation. Furthermore, ISG15 has been implicated in the modulation of pathways leading to 
apoptosis and cell signaling, thereby influencing the overall cellular stress response. Collectively, the multifaceted 
functions of ISG15 position it as a critical player in the host defense mechanisms against pathogens and in the 
maintenance of cellular homeostasis.

## Cell-level

Human: This is a single cell RNA sequence sample with a cell type of Megakaryocytes. Please summarize its 
major function. Use academic language in one paragraph and think step by step.

LLM: Megakaryocytes are large, polyploid bone marrow-derived cells primarily responsible for the production of 
platelets, which are critical components of the hemostatic system. They originate from hematopoietic stem cells 
and undergo a process of endomitosis, resulting in an increase in nuclear DNA content without cell division, thus 
enhancing their functional capacity. The primary function of megakaryocytes is to synthesize and release platelets 
into the bloodstream, which is essential for the initiation and regulation of blood clotting, thereby preventing 
excessive bleeding during vascular injury. In addition to their role in hemostasis, megakaryocytes and platelets 
also participate in immune responses, inflammation, and wound healing, showcasing their multifaceted biological 
importance within the hematopoietic system. Furthermore, understanding megakaryocyte biology is crucial for the 
development of therapeutic strategies targeting platelet-related disorders and other hematological conditions.

Figure 12: Examples of cell-level and feature-level text descriptions on PBMC 10K data.

BMMC Data

## Feature-level

Human: Please summarize the major function of gene: FAM41C. Use academic language in one paragraph and 
and think step by step.

LLM: FAM41C (Family with Sequence Similarity 41 Member C) is a gene that encodes a protein implicated in 
various cellular processes, notably in the regulation of protein homeostasis and cellular stress responses. Its 
expression is noted to influence autophagy, a critical mechanism for maintaining cellular integrity through the 
degradation and recycling of damaged organelles and proteins. Additionally, FAM41C has been associated with 
the modulation of signaling pathways related to cell proliferation and apoptosis, suggesting a role in maintaining 
cellular health and viability. Recent research has also indicated its potential involvement in pathological conditions, 
including various cancers, where dysregulation of FAM41C expression may contribute to tumorigenesis and 
cancer progression. Overall, FAM41C serves as a pivotal factor in cellular maintenance and responses to stress, 
with implications for both normal physiological processes and disease states.

Human: Please summarize the major function of ADT: CD101. Use academic language in one paragraph and and 
think step by step.

LLM: CD101, a novel immunotherapy agent, is an antifungal compound that functions primarily by modulating the 
host immune response to enhance the clearance of fungal pathogens. It achieves this through the inhibition of the 
enzyme cytochrome P450 14α-demethylase, which plays a critical role in ergosterol biosynthesis, thereby 
disrupting fungal cell membrane integrity. By selectively targeting the fungal metabolic processes while minimizing 
toxicity to human cells, CD101 promotes a robust immune response against invasive fungal infections. 
Furthermore, its formulation allows for extended release, facilitating sustained therapeutic effects and improving 
patient outcomes. Overall, CD101 represents a significant advancement in the treatment of fungal infections, 
particularly in immunocompromised populations, by integrating antifungal activity with immune modulation to 
combat resistance and enhance efficacy.

## Cell-level

Human: This is a single cell sample with a cell type of B1 B IGKC+. Please summarize its major function. Use 
academic language in one paragraph and think step by step.

LLM: The B1 B IGKC+ cell type represents a subset of B lymphocytes characterized by the expression of 
immunoglobulin kappa chain (IGKC) and is primarily involved in the production of antibodies, particularly in the 
context of innate-like immune responses. These cells are known for their ability to rapidly produce immunoglobulin 
M (IgM) antibodies in response to polysaccharide antigens, which are often found on the surface of pathogens. 
This rapid antibody production is crucial for the early defense against infections, particularly in mucosal tissues. 
Furthermore, B1 B cells play a significant role in maintaining immune homeostasis and contribute to the regulation 
of immune responses through the secretion of cytokines and the modulation of other immune cell types. Their 
unique developmental origin and functional properties distinguish them from conventional B2 cells, highlighting 
their importance in both innate and adaptive immunity.

Figure 13: Examples of cell-level and feature-level text descriptions on BMMC data.
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## Feature-level

Human: Please summarize the major function of gene: AADAC. Use academic language in one paragraph and 
and think step by step.

LLM: The gene AADAC (aromatic-L-amino acid decarboxylase) encodes an enzyme that is primarily involved in 
the metabolism of aromatic L-amino acids, specifically in their decarboxylation processes, converting these 
substrates into biogenic amines. This enzymatic activity is crucial in the synthesis of neurotransmitters such as 
dopamine, serotonin, and norepinephrine, playing a significant role in regulating key physiological functions, 
including mood, cognition, and motor control. Furthermore, AADAC is implicated in the detoxification pathways of 
certain xenobiotics, as it contributes to the catabolism of various amines and lipid-derived substances. The gene's 
expression may be influenced by physiological and pathological conditions, highlighting its importance in 
homeostasis and potential involvement in metabolic disorders. Understanding AADAC's functions not only 
elucidates biochemical pathways relevant to neurotransmitter biosynthesis but also underscores its potential 
therapeutic implications in neuropharmacology and toxicology.

## Cell-level

Human: This is a single cell RNA sequence sample and its sensitivity to the drug Erlotinib is resistant. Please 
summarize its major function. Use academic language in one paragraph and think step by step.

LLM: The single-cell RNA sequencing analysis of the sample reveals a distinct transcriptional profile that underlies 
its resistance to the drug Erlotinib, an epidermal growth factor receptor (EGFR) inhibitor. This resistance may be 
attributed to several cellular mechanisms, including the aberrant activation of alternative signaling pathways, 
upregulation of efflux transporters, or mutations in the EGFR or downstream mediators that negate the therapeutic 
effects of Erlotinib. Furthermore, the expression of immune checkpoint molecules and inflammatory cytokines 
could indicate an adaptive immune response that counteracts the drug's efficacy. The identified gene expression 
patterns suggest that this cell type may play a critical role in tumor microenvironment dynamics, contributing to 
therapeutic failure through cell-autonomous survival strategies and modulation of local inflammation, thereby 
presenting significant implications for the development of alternative therapeutic strategies targeting resistance 
mechanisms in cancer treatment.

Figure 14: Examples of cell-level and feature-level text descriptions on GSE149383 data.

GSE117872_Cisplatin

## Feature-level

Human: Please summarize the major function of gene: DENND6B. Use academic language in one paragraph and 
and think step by step.

LLM: DENND6B (DENN domain-containing 6B) is a gene that encodes a protein characterized by the presence of 
a DENN domain, which is implicated in the regulation of small GTPases, particularly those within the Rab family 
that are critical for vesicular trafficking processes. The major function of DENND6B involves facilitating the 
activation and subsequent signaling pathways of specific Rab GTPases, which are essential for the transport of 
vesicles within cells. This process plays a pivotal role in mediating intracellular communication and the regulated 
secretion of molecules, influencing cellular response mechanisms to various stimuli. Furthermore, DENND6B has 
been associated with various physiological processes, including neuronal development and immune system 
function, highlighting its potential significance in health and disease states. Overall, the regulation of Rab GTPases 
by DENND6B underscores its fundamental role in maintaining cellular homeostasis and proper cellular 
functionality.

## Cell-level

Human: This is a single cell RNA sequence sample and its sensitivity to the drug Cisplatin is sensitive. Please 
summarize its major function. Use academic language in one paragraph and think step by step.

LLM: Cisplatin is a chemotherapeutic agent predominantly utilized in the treatment of various solid tumors, and its 
effectiveness hinges upon its ability to induce DNA damage, thereby triggering cellular apoptosis in cancerous 
cells. In the context of a single-cell RNA sequencing sample characterized by sensitivity to Cisplatin, several key 
functional pathways may be implicated. These include the activation of DNA repair mechanisms, regulation of 
apoptosis, and cellular stress response pathways. A sensitive response typically suggests an upregulation of 
intrinsic pro-apoptotic signals and downregulation of survival pathways, facilitating the eradication of malignant 
cells. Furthermore, gene expression profiling may reveal alterations in cell cycle regulation and metabolic 
pathways that enhance vulnerability to Cisplatin-induced cytotoxicity, thereby underscoring the complex interplay 
between pharmacological intervention and the molecular landscape of the tumor microenvironment. Overall, the 
major function of this sensitive sample can be framed within the context of promoting programmed cell death in 
response to genotoxic stress, thereby elucidating potential therapeutic targets for optimizing cancer treatment 
outcomes.

Figure 15: Examples of cell-level and feature-level text descriptions on GSE117872 data.
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