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Abstract

Inhomogeneities in real-world data, e.g., due to changes in the observation noise level or
variations in the structural complexity of the source function, pose a unique set of challenges
for statistical inference. Accounting for them can greatly improve predictive power when
physical resources or computation time is limited. In this paper, we draw on recent theoretical
results on the estimation of local function complexity (LFC), derived from the domain of
local polynomial smoothing (LPS), to establish a notion of local structural complexity, which
is used to develop a model-agnostic active learning (AL) framework. Due to its reliance on
pointwise estimates, the LPS model class is not robust and scalable concerning large input
space dimensions that typically come along with real-world problems. Here, we derive and
estimate the Gaussian process regression (GPR)-based analog of the LPS-based LFC and
use it as a substitute in the above framework to make it robust and scalable. We assess the
effectiveness of our LFC estimate in an AL application on a prototypical low-dimensional
synthetic dataset, before taking on the challenging real-world task of reconstructing a
quantum chemical force field for a small organic molecule and demonstrating state-of-the-art
performance with a significantly reduced training demand.

1 Introduction

Inference problems from real-world data often exhibit inhomogeneities, e.g., the noise level, the density of the
data distribution, or the complexity of the target function may change over the input space. There exist
different approaches from various domains that treat specific kinds of inhomogeneities. For example, Kersting
et al. (2007); Cawley et al. (2006) deal with heteroscedasticity by reconstructing a local noise variance
function that is used to adapt the regularization of the model locally. Some approaches adjust bandwidths
locally with respect to the input density (Wang & Wang, 2007; Mackenzie & Tieu, 2004; Moody & Darken,
1989; Benoudjit et al., 2002). Inhomogeneous complexity can also be captured using a combination of several
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kernel-linear models with different bandwidths, either learned jointly (Zheng et al., 2006; Guigue et al., 2005)
or hierarchically (Ferrari et al., 2010; Bellocchio et al., 2012). The most widely applicable models treat all
types of aforementioned inhomogeneities in a unified way (Tresp, 2001; Panknin et al., 2021). Namely, they
locally adapt bandwidths or regularization according to the inhomogeneities in noise, complexity, and data
density. While this is the path we will pursue, the focus in this work will be on inhomogeneous complexity
under the assumption of homoscedastic noise. In addition, we will investigate our proposed estimates in a
heteroscedastic setting to demonstrate negligible practical limitations.

Exposing inhomogeneities sheds light on the informativeness of certain locations of the input space, which
subsequently can be used to guide the sampling process during training—also known as active learning (AL).
AL (Kiefer, 1959; MacKay, 1992; Seung et al., 1992; Seo et al., 2000) is a powerful tool to enhance the
training process of a model when the acquisition of labeled training data is expensive. It has been successfully
implemented in various regression applications like reinforcement learning (Teytaud et al., 2007), wind speed
forecasting (Douak et al., 2013), and optimal control (Wu et al., 2020).

Nowadays, machine learning (ML) methods are increasingly deployed in physical modeling applications across
various disciplines. In that setting, the labels that are necessary for model training are typically expensive
as they stem, e.g., from computationally expensive first-principles calculations (Chmiela et al., 2017) or
even laboratory experiments. Due to the need for effective training datasets, AL has become an integral
part of ever-growing importance in real-world applications, e.g., in the domains of pharmaceutics (Warmuth
et al., 2003) and quantum chemistry (Gubaev et al., 2018; Tang & de Jong, 2019; Huang & von Lilienfeld,
2020)—which raises the demand for AL solutions and the importance of AL research in general.

Through the advance of ML in scientific fields that hold the potential for significant impact, new regression
problems emerge, for which there is initially only scarce domain knowledge while they simultaneously require
thousands to tens of thousands of training samples for ML models to operate at an acceptable performance
level. Regarding AL, these two characteristics of regression problems are hard to reconcile:
Due to insufficient domain knowledge on the one hand, a suitable AL approach shall be robust, since unjustified
assumptions may result in a training performance that is even worse than random test sampling. By random
test sampling, we refer to the naive training data construction that draws samples i.i.d. according to the test
distribution. Additionally, the AL approach shall be model-agnostic since the state-of-the-art is ever-evolving
for this particular kind of regression problem. For these reasons, practitioners prefer model-free AL approaches
for regression (Wu, 2019) over sophisticated, model-based AL approaches with strong assumptions as the
former are inherently robust and model-agnostic by ignoring label information.

On the other hand, it is preferable that an AL approach outperforms random test sampling even at large
training sizes. In the following, we will measure the AL performance by the relative required sample size
ϱ > 0, which asymptotically equates the performance of n ·ϱ active training samples to n random test samples
(see Definition 2). Accordingly, we call an AL approach asymptotically superior to random test sampling, if
ϱ < 1. Unfortunately, the performance gain of model-free AL approaches that we observe at small training
sizes over random test sampling eventually diminishes completely (ϱ = 1) with growing training size.

For the described learning task, we therefore require an AL approach that is model-based but comes with
mild regularity assumptions at the same time to feature robustness and model-agnosticity to a certain extent.

Recently, Panknin et al. (2021) addressed the outlined AL scenario, where the fundamental idea is to analyze
the distribution of the optimal training set of a model in the asymptotic limit of the sample size.

Assuming that this limiting distribution exists, they then propose to sample training data in a top-down manner
from this very distribution, knowing that with growing sample size the training set will eventually become
optimal. By a top-down AL approach, we mean an (infinite) training data refinement process x′

1, x′
2, . . . such

that—when optimizing an AL criterion with respect to {x1, . . . , xn}—{x′
1, . . . , x′

n} asymptotically becomes
a respective optimizer as n→∞. They have shown for the local polynomial smoothing (LPS) model class
(Cleveland & Devlin, 1988) that the asymptotically optimal distribution exists, whose density furthermore
factorizes into contributions of the test density, heteroscedastic noise, and local function complexity (LFC)—a
measure of the local structural complexity of the regression function. Intuitively, LFC scales with the local
amount of variation of the regression function. It is essentially estimated as the reciprocal determinant of the
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locally optimal kernel bandwidth (LOB) of the LPS model, calibrated for the local effects of the training input
density and noise level. Given a small but sufficient training set, these factors can be estimated, allowing the
construction of the optimal training density and subsequently enabling the refinement of the training data
towards asymptotic optimality.

While the previous work by Panknin et al. (2021) provides a theoretically sound solution to our considered
AL scenario, the required pointwise estimates that are inherent to the LPS model class prevent scalability
with regard to the input space dimension d. The goal of our work is to extend the above approach in a
scalable way. The key idea is to build the required estimate of LFC based on the LOB of the related Gaussian
process (GP) model class that can naturally deal with high input space dimensions. Subsequently, we plug
our scalable LFC estimate into the AL framework of the existing method, whose functioning is justified by
the method’s model-agnostic nature.

It is particularly the almost assumption-free nature of LPS that made the results of Panknin et al. (2021)
model-agnostic. To that effect, we base our results on the nonparametric, adaptive bandwidth Gaussian
process regression (GPR) model to preserve this property. While we lose the strict asymptotic sampling
optimality this way, we expect it to be reasonably close due to the model-agnosticity nevertheless. We refer
to the resulting training density as the superior training density for locally adaptive models, by which we
refer to models that adapt to the considered inhomogeneities, namely heteroscedasticity and inhomogeneous
complexity. Note that it is first and foremost superior for our adaptive bandwidth GPR model.

Fig. 1 summarizes all steps of our contribution and shows how they are interlinked and in which sections
they will be discussed. Specifically, we contribute in two ways:
Theoretical contribution Assuming homoscedastic data, we propose a GPR-based LFC estimate which is
inspired by the design of the LPS-based LFC estimate. Here, we need to respect the scaling behavior of LOB
of GPR that differs from the LPS case, where we use asymptotic results on the scaling of optimal bandwidths
for GPR, as described in Sec. 3.3. Making use of the model-agnosticity of the optimal training density of
LPS, we replace the herein contained LPS-based LFC estimate for our GPR-based LFC estimate to obtain a
superior training density for locally adaptive models. From this point, we can implement the AL framework
by Panknin et al. (2021), for which we propose a novel pool-based formulation. Both, our LFC and density
estimate will inherit the scalability of the deployed GPR-based LOB estimate.

Methodological contribution We propose a scalable LOB estimate for GPR as the weighted average of
bandwidth candidates, where the weights are given by the gate function of a sparse mixture of GPs model—a
special case of a mixture of experts (MoE) model (Jacobs et al., 1991; Jordan & Jacobs, 1994; Pawelzik et al.,
1996). Here, each expert of the MoE is a GPR model that holds an individual, fixed bandwidth candidate.
We construct the MoE in PyTorch (Paszke et al., 2019) out of well-established components from the related
work and design a training objective that is regularized with respect to small bandwidth choices to obtain a
robust and reasonable LOB estimate in the end. In addition, we provide an implementation1 of both, the
AL framework and our model. Finally, we propose a novel model-agnostic way of choosing inducing points
(IPs) of sparse GPR models: Respecting LFC, we place additional basis functions of a kernel method in more
complex regions while removing basis functions in simpler regions of the input space.

Sec. 4.3 Sec. 4.1

Sec. 4.2

Figure 1: An overview of the steps of our contribution and how they are interlinked. We will elaborate on
the main steps in the specified sections.

1https://github.com/DPanknin/modelagnostic_superior_training
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To show the capabilities of our approach, we consider two inhomogeneously complex regression problems:
The Doppler function In a controlled setting of 1-dimensional synthetic data, we will first analyze our
MoE model and the proposed estimates of LFC and the superior training density, where we will demonstrate
the asymptotic superior performance of our superior sampling scheme and compare to related work. By the
superior sampling scheme, we refer to i.i.d. sampling from the superior training density.

Force field reconstruction Quantum interactions exhibit multi-scale behavior due to the complex electronic
interactions that give rise to any observable property of interest, like the total energy or atomic forces of a
system (Bereau et al., 2018; Yao et al., 2018; Grisafi & Ceriotti, 2019; Ko et al., 2021; Unke et al., 2021a). To
demonstrate the scalability of our approach, we consider a force field reconstruction problem of a molecule
with 27 dimensions, where the application of the LPS-based AL framework by Panknin et al. (2021) is
intractable. Besides the asymptotic superior AL performance, we gain insights into the local structural
complexity of this high-dimensional molecular configuration space through visualizations of the scalar-valued
LFC function.

We begin by discussing our work in the context of related work in Sec. 2. Next, we give a formal definition of
the considered regression problem and the asymptotic AL task, and review asymptotic results for LPS and
GPR in Sec. 3. In Sec. 4, we describe our MoE model and derive the GPR-based LFC and superior training
density estimates. In Sec. 5, we then describe our experiments and results, which will be further discussed in
Sec. 6. We finally conclude in Sec. 7.

2 Related work

Choice of MoE, experts and the gate The common assumption of MoE approaches is that the overall
problem to infer is too complex for a single, comparably simple expert. This is the case, for example in
regression of nonstationary or piecewise continuous data, and naturally in classification where each cluster
shape may follow its own pattern. In such a scenario each expert of the MoE model can specialize in modeling
an individual, (through the lens of a single expert) incompatible subset of the data, where the gate learns a
soft assignment of data to the experts. Under these assumptions, the hyperparameters of each expert can be
tuned individually on the respective assigned data subset. In the light of this paradigm, there exist several
instances of mixture of GPs, for example, Tresp (2001); Meeds & Osindero (2006); Yuan & Neubauer (2009);
Yang & Ma (2011); Chen et al. (2014).

In our work, we aim to infer a single regression problem, where there is no such segmentation as described above:
Each individual (reasonably specified) expert of our mixture model is eventually capable of modeling the whole
problem on its own. Yet, if the problem possesses an inhomogeneous structure, the prediction performance
can be increased by allowing for a local individual bandwidth choice. Therefore, we deviate from the common
MoE paradigm, sharing all those parameters across the experts that describe the regression function. This
less common assumption was also made by Pawelzik et al. (1996), where—locally dependent—some experts
are expected to perform superior compared to the others.

For the expert and gate components of our MoE model, we focus on the sparse, variational GPR model (see,
e.g., Hensman et al. (2015)) trained by stochastic gradient descent. However, there exist other (sparse) GPR
approaches that could be considered for the gate or the experts of our MoE model. Some are computationally
appealing as they solve for the inducing value distribution analytically (Seeger et al., 2003; Snelson &
Ghahramani, 2005; Titsias, 2009) or do not require inducing points in the first place in the case of a full
GPR model (see, e.g. Williams & Rasmussen (1996)).

Particularly the expert models of our MoE model can be exchanged for arbitrary sparse and full formulations
of GPR, as long as we can access the posterior predictive distribution. We give a short summary of these
model alternatives in Appendix B.1 and B.2, which are also included in our provided implementation.

For the gate, however, analytic approaches come with complications as they require labels. Such labels do
not exist for the gate, and so we would need to train the MoE in an expectation maximization loop, where
the likelihood of an expert to have produced a training label functions as a pseudo-label to the gate.
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Alternative nonstationary GPs As opposed to a standard GP that features a stationary covariance
structure, our MoE model with GP experts of individual bandwidths can be interpreted as a nonstationary
GP. Apart from MoE model architectures, there exist other approaches to construct a nonstationary GP:
Closely related to the MoE model, (Rullière et al., 2018) proposed to aggregate individual expert model
outputs through a nested GP. Note that this approach is not well-suited for our purpose as the aggregation
weights lack the interpretation of a hidden classifier, leaving the subsequent LOB estimation (as in (24))
open. (Gramacy & Lee, 2008) deploy individual stationary GPs on local patches of the input space that are
given by an input space partitioning of a tree.

(Gramacy & Apley, 2015) identify subsets of the training data that are necessary to resemble the GP
covariance structure at each individual evaluation point. Careful bandwidth choice for each subset then yields
a nonstationary GP as well as local bandwidths. Roininen et al. (2019) obtain local bandwidths by imposing
a hyperprior on the bandwidth of a GP. Note that our work intends to elaborate the estimation of LFC and
model-agnostic superior training, given any estimate of LOB of GPR. We deployed an MoE approach as
a simple means to obtain these estimates. The MoE component in our LFC and superior training density
estimates may be readily replaced by the approaches of Gramacy & Apley (2015) or Roininen et al. (2019).

In deep Gaussian process (DGP) regression (Damianou & Lawrence, 2013), the inputs are mapped through
one or more hidden (stationary) GPs. This warping of the input space yields a nonstationary covariance
structure of DGP. An approximate DGP model through random feature expansions was exercised by Roininen
et al. (2019). Sauer et al. (2023b) discuss active learning for DGP regression. We will implement the DGP
model as well as the AL scheme of Sauer et al. (2023b) and compare the AL performance of our superior AL
scheme on this very model to demonstrate the model-agnosticity of our work in Sec. 5.1.

IP selection In our work (see Sec. 4.5), we choose the IP locations of the gate and the experts of our MoE
model in a diverse and representative way but also in alignment with the structural complexity of the target
function, interpreting this choice as a nested AL problem. There are a variety of IP selection approaches in
the literature. Zhang et al. (2008) interpreted the choice of IP locations from a geometric view that is similar
to ours: They derived a bound on the reconstruction error of a full kernel matrix by a Nyström low-rank
approximation in terms of the sum of distances of all training points to their nearest IP. This exposes a
local minimum by letting the IP locations be the result of k-Means clustering. This choice of IP locations
is representative and diverse, while it solely considers input space information. In this sense, our approach
extends their work by additionally considering label information. This and our approach draw a fixed number
of IPs at once. There are also a lot of Nyström method based IP selection approaches that select columns
of the full kernel matrix according to a fixed distribution (Drineas et al., 2005) or one-by-one in a greedy,
adaptive way (Smola & Schölkopf, 2000; Fine & Scheinberg, 2001; Seeger et al., 2003). An intensive overview
of Nyström method based IP selection methods was given by Kumar et al. (2012), where they also analyzed
ensembles of low-rank approximations. We compare our proposed IP choice (29) to the greedy fast forward
IP selection approach by Seeger et al. (2003) in Sec. 5.1.

Moss et al. (2023) incorporate a quality function into a diverse IP selection process that can be specified flexibly.
They consider Bayesian optimization rather than regression, they exercise a quality function proportional to
the label. However, other measures of informativeness that are better suited for regression could be deployed.
Note that LFC would be a possible candidate for this purpose.

The AL scenario In this work, we consider model-agnostic AL with persistent performance at large (or
even asymptotic) training size as opposed to the common AL paradigm that is concerned with small sample
sizes. In this sense, we delimit ourselves from AL approaches that are tied to a model, e.g., when they are
based on a parametric model (Kiefer, 1959; MacKay, 1992; He, 2010; Sugiyama & Nakajima, 2009; Gubaev
et al., 2018), or which refine training data bottom-up in a greedy way to maximize its information content at
small sample size, where the information is either based on the inputs only (Seo et al., 2000; Teytaud et al.,
2007; Yu & Kim, 2010; Wu, 2019; Liu et al., 2021) or also incorporates the labels (Burbidge et al., 2007; Cai
et al., 2013). By a bottom-up AL approach, we mean a training data refinement process that is constructed
by choosing the nth input xn as the optimizer of an AL criterion with respect to {x1, . . . , xn}, when keeping
the previously drawn inputs {x1, . . . , xn−1} (with labels {y1, . . . , yn−1}) fixed.
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Our work is therefore complementary to the latter kind of approaches which can be better suited in another
AL scenario. For example, if there is enough domain knowledge such that we can deduce a reasonable
parametric model without the need for a model change in hindsight, an active sampling scheme based on this
model will be best. Our category of interest is for the other case, when domain knowledge is scarce, where we
have no idea about the regularity or structure of the problem to decide on a terminal model. Here, for small
training sizes (and particularly from scratch), input space geometric arguments (Teytaud et al., 2007; Yu &
Kim, 2010; Wu, 2019; Liu et al., 2021) are applied in practice. However, as already noted in the introduction,
their benefit is limited to this small sample size regime, which we will demonstrate on our synthetic dataset.
They serve reasonably for the initialization of supervised AL approaches, including ours, nevertheless.

Regarding our considered AL scenario, Panknin et al. (2021) have recently proposed an AL framework based
on the LPS model class, where training samples are added so as to minimize the mean integrated squared
error (MISE) in the asymptotic limit. This approach is therefore provably asymptotically superior to random
test sampling. Additionally, it is robust since the LPS model is almost free of regularity assumptions. Finally,
their LPS-based solution then showed to be model-agnostic: On the one hand, this is indicated theoretically
by the fact that the LPS model has only indirect influence on the asymptotic form of LFC and the optimal
training density since the predictor is asymptotically not involved (see, e.g., Eq. (8)); On the other hand,
this is validated empirically by assessing the performance of their LPS-based training dataset construction
under reasonable model change in hindsight. This model change is restricted to locally adaptive models. Here,
Panknin et al. (2021) observed a consistent performance superior to random test sampling when training
a random forest model and a radial basis function (RBF)-network (Moody & Darken, 1989), using their
proposed training dataset.

AL for classification Note that the outlined AL scenario can be solved more easily for classification:
Here, AL is intuitively about the identification and rendering of the decision boundaries, which is inherently
a model-agnostic task. In addition, since the decision boundaries are a submanifold of the input space X , a
substantial part of X can be spared when selecting training samples. Therefore, AL for classification leverages
the decay of the generalization error from a polynomial to an exponential law (Seung et al., 1992) over
random test sampling. For the above reasons, AL for classification has been applied successfully in practice
(Lewis & Gale, 1994; Roy & McCallum, 2001; Goudjil et al., 2018; Warmuth et al., 2003; Pasolli & Melgani,
2010; Saito et al., 2015; Bressan et al., 2019; Sener & Savarese, 2018; Beluch et al., 2018; Haut et al., 2018;
Tong & Chang, 2001; He, 2010). In contrast, the performance gain of AL for regression is more limited in the
sense that, under weak assumptions, we are tied to the decay law of the generalization error of random test
sampling (Györfi et al., 2002; Willett et al., 2005).

GP uncertainty sampling There exists a lot of research on AL for GPR (Seo et al., 2000; Pasolli &
Melgani, 2011; Schreiter et al., 2015; Yue et al., 2020), which is typically based on minimizing prediction
uncertainties of the model. With our proposed AL approach being based on GPR models, this research area
is the most related competitor to our work.

For a standard GPR model, the prediction uncertainty is the higher the farther away we move from
training inputs. In this way, GP uncertainty sampling samples (pseudo-)uniformly from the input space
which makes up for a low-dispersion sequence (Niederreiter, 1988) (see Definition 5). Note that standard
GP uncertainty sampling is an input space geometric argument since it does not depend on the regression
function to infer. As already indicated in the introduction and as we will show in Sec. 5.1, input space
geometric arguments feature no benefit regarding asymptotic AL performance.

Since our model is a mixture of GPR experts, it is straightforward to derive its uncertainty as a mixture of
Gaussian process uncertainties (MoGPU) by simply weighting the predictive variances of all experts with
respect to the gate output (see (32) for a definition). As opposed to GP uncertainty sampling, MoGPU can
cope with structural inhomogeneities. Therefore, we consider MoGPU as a fair baseline competitor to our
superior sampling scheme and compare both in Sec. 5.1.
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3 Preliminaries

We will now give a formal definition of the regression task, the AL objective and LOB, and a short review
of the asymptotic results on LFC and the optimal training distribution of the LPS model in Sec. 3.1 and
3.2. Then we recap asymptotic results on the optimal bandwidth of GPR in Sec. 3.3 and known models in
Sec. 3.4 that will serve as building blocks of our proposed adaptive bandwidth MoE model later on.

In the following, we denote by diag(z) ∈ Rd×d the diagonal matrix with the entries of the vector z ∈ Rd on
its diagonal and by Id = diag(1d) the identity matrix, where 1d is the vector of ones in Rd.

3.1 Formal definition of the regression task and AL objective

Let f be the target regression function defined on an input space X ⊂ Rd that we want to infer from noisy
observations yi = f(xi) + εi, where xi ∈ X are the training inputs and εi is independently drawn noise
from a distribution with mean E[εi] = 0 and local noise variance V[εi] = v(xi). We denote a training set
by (Xn, Yn), where Xn = (x1, . . . , xn) ∈ Xn and Yn = (y1, . . . , yn) ∈ Rn. For a given model class f̂ that
returns a predictor f̂Xn,Yn

for a training set (Xn, Yn), we can define the pointwise conditional mean squared
error of f̂ in x ∈ X , given Xn, by

MSE
(

x, f̂ |Xn

)
= EYn

[
(f̂Xn,Yn

(x)− f(x))2
]

= Eεn

[
(f̂Xn,f(Xn)+εn

(x)− f(x))2
]

. (1)

Note that via marginalization the conditional mean squared error is no function of the training labels Yn.
Given a test probability density q ∈ C0 (

X ,R+

)
such that

∫
X

q(x)dx = 1, the conditional mean integrated
squared error of the model under the given training set is then defined as

MISE
(

q, f̂ |Xn

)
=

∫
X

MSE
(

x, f̂ |Xn

)
q(x)dx. (2)

With these preparations, the AL task is to construct a training dataset (X ′
n, Y ′

n) such that

X ′
n ≈ argminXn∈X n MISE

(
q, f̂ |Xn

)
. (3)

3.2 Locally optimal bandwidths, function complexity, and optimal training

Let f̂Σ be a family of kernel machines which is characterized by a positive definite bandwidth matrix
parameter Σ ∈ Sd

++ of an RBF kernel kΣ(x, x′) := |Σ|−1
ϕ(∥Σ−1(x − x′)∥) for a monotonically decreasing

function ϕ : R+ → R+. The well known Gaussian kernel is for example implemented by ϕ(z) = exp{− 1
2 z2}.

Given a bandwidth space S ⊆ Sd
++ we define the LOB function of f̂ by

Σn

f̂
(x) = argminΣ∈S MSE

(
x, f̂Σ|Xn

)
, (4)

assuming that this minimizer uniquely exists for all x ∈ X .

Denote by mΣ
Q the predictor of the LPS model of order Q under bandwidth Σ and by Σn

Q := Σn
m

Q
the

LOB function (4) of LPS, if it is well-defined. This is the case, e.g., for the isotropic bandwidths space
S = {σId | σ > 0} under mild assumptions2, where we particularly can write Σn

Q(x) = σn
Q(x)Id. We refer to

Appendix A for details on the LPS model and asymptotic results. For the optimal predictor

f̂Q
LPS := m

Σn
Q(x)

Q (x) (5)

2For LOB being well-defined in the isotropic case, we generally require a non-vanishing bias and variance in terms of a
bias-variance-decomposition of the MSE of the predictor in x, for all x ∈ X . See, e.g., Eq. (36) for the LPS predictor mQ, or
Silverman (1986); Wand & Jones (1994) in more general.
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of LPS, letting f̂ = f̂Q
LPS in Eq. (3), Panknin et al. (2021) have shown that there exists an optimal training

density pQ,n
Opt that allows the optimal training inputs in Eq. (3) to be asymptotically obtained by independently

and identically sampling X ′
n ∼ pQ,n

Opt . They have also shown that this density exhibits a closed-form

pQ,n
Opt (x) ∝

[
Cn

Q(x)q(x)
] 2(Q+1)+d

4(Q+1)+d v(x)
2(Q+1)

4(Q+1)+d (1 + o(1)), (6)

where for an arbitrary training dataset (Xn, Yn) with Xn ∼ p, the LFC of LPS is defined by

Cn
Q(x) :=

[
v(x)

p(x)n

] d
2(Q+1)+d ∣∣Σn

Q(x)
∣∣−1 =

[
v(x)

p(x)n

] d
2(Q+1)+d

σn
Q(x)−d. (7)

The LFC in (7) asymptotically solely depends on the behavior of f as opposed to p, v, and n: It scales with
the local variation of f in the vicinity of x. For example,

Cn
1 (x) ∝ trace(D2

f (x))
2d

2(Q+1)+d (1 + o(1)) (8)

is a function of the trace of the Hessian of f (Fan et al., 1997).

The optimal density pQ,n
Opt in (6) implies that we require more training data where the problem is locally

more complex (large Cn
Q) or noisy (large v), or where test instances are more likely (large q). As already

noted in the introduction, the results to LFC and the optimal training density of LPS indicate their problem
intrinsic nature, as they reflect no direct dependence on the LPS model except for the order Q. Note that
for f ∈ Cα (X ,R), there is a canonical choice Q = ⌈α⌉ − 1 of the LPS model order. When deriving LFC
under this canonical-order model, we consider the dependence of the associated LFC and the optimal training
density on Q negligible, as its choice is driven by the problem intrinsic regularity.

In practice, we obtain X ′
n ∼ pQ,n

Opt by estimating Eq. (6) and (7) from (Xn′ , Yn′) with Xn′ ∼ p for an arbitrary
training density p, where n′ < n, followed by adding the remaining n− n′ inputs appropriately (see Sec. 4.2).

The construction of pQ,n
Opt crucially depends on reliable estimates of LOB as the key ingredient for the estimation

of LFC. While Panknin et al. (2021) provide such an estimate based on Lepski’s method (Lepski, 1991;
Lepski & Spokoiny, 1997), it does not scale well with increasing input space dimension d. This is because
pointwise estimates suffer from the curse of dimensionality regarding robustness and computational feasibility.
The goal of this work is to implement the above AL framework but based on a functional LOB estimate in
the domain of GPR instead of LPS, since the GPR model class can naturally deal with high input space
dimensions (Williams & Rasmussen, 1996). Relying on the model-agnosticity, we expect that LOB estimates
based on LPS can be exchanged for LOB estimates based on GPR in the formulation of LFC and pQ,n

Opt when
matching the degree Q to the smoothness of the regression function appropriately.

3.3 On the scaling of GPR bandwidths

The major difference between LPS and GPR is that we keep a fixed model complexity—in the sense of the
number of basis functions—in the former while there is varying model complexity in the latter as we add
further training instances. E.g., under the Gaussian kernel the model complexity of GPR grows infinitely.
When the regularity of the kernel and the target function f match, then, as soon as the training size n
becomes large enough, there is no need for further shrinkage of the bandwidth to reproduce f with GPR in
the asymptotic limit. In particular, given enough samples, there is no need for local bandwidth adaption.

However, there is a mismatch if f ∈ Cα (X ,R) is α-times continuously differentiable since the Gaussian kernel
is infinitely often continuously differentiable. As shown by Van der Vaart et al. (2007; 2009), in order to
obtain optimal minimax-convergence of the predictor (except for logarithmic factors), the associated (global)
bandwidth has to follow the asymptotic law

Σn
GPR ∝ n− 1

2α+d . (9)

Note that for f ∈ Cα (X ,R), where the theoretical results of LPS apply, the scaling factor n− 1
2α+d of LOB

in sample size matches exactly for both classes, LPS and GPR. In our work, we will use (9) to deduce a
GPR-based LFC estimate in analogy to the LPS-based LFC estimate (7) by Panknin et al. (2021).
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3.4 Preliminaries on the applied models

We will now introduce the models that we implement in this work. For the RBF-kernel k, we define the kernel
matrix between X ∈ Xn and X ′ ∈ Xm as KΣ(X, X ′) =

[
kΣ(x, x′)

]
x∈X,x′∈X′ . As a shorthand notation we

furthermore define KΣ(X) := KΣ(X, X).

3.4.1 Sparse variational Gaussian processes

We define the sparse GPR model ŷ ∼ SVGP(θ) (see, e.g. Williams & Rasmussen (1996); Hensman et al.
(2015)) as follows: The sparse GP is described by the (hyper-) parameters θ = (µ, λ, v̂, Σ, X†, µ†, S†), which
are the global constant prior mean µ, the regularization parameter λ, the label noise variance function v̂, the
bandwidth matrix Σ of the kernel and the prior distribution, given by the IP locations X† ∈ Xm as well as
their inducing value distribution, characterized by the moments µ† and S†. That is, for the inducing values
Y† of X† we assume Y† = ŷ(X†) ∼ N (·; µ†, S†). Here, the degree of sparsity is described by m IPs: This
number can be fixed in advance or gradually increased with training size n, where the increase mn = o[n] is
typically much slower than n. If we can assume homoscedastic noise, we let v̂(x) ≡ σ2

ε .

The sparse GP then outputs

ŷ(X∗) ∼ N (·; µ∗(X∗), C∗(X∗)|θe) (10)

for the mean function

µ∗(X∗) = K∗†K
−1/2
† (µ̃† −K

−1/2
† µ(X†)) + µ(X∗), (11)

and the covariance function

C∗(X∗) = λ
[
K∗ + K∗†K

−1/2
† (S̃† − Im)K−1/2

† K⊤
∗†

]
+ diag(v̂(X∗)), (12)

where µ̃† = K
−1/2
† µ† and S̃† = K

−1/2
† S†K

−1/2
† are the whitened moments of the inducing value distribution

(Pleiss et al. (2020), Sec. 5.1), and we have defined K∗ = KΣ(X∗), K† = KΣ(X†) and K∗† = KΣ(X∗, X†).

We choose µ to be the constant mean function, i.e., µ(X) = µ1n for X ∈ Xn, noting that other mean
functions are possible. Note that test predictions f̂GP(x) = µ∗(x) are given by Eq. (11).

The training objective Let P denote the prior distribution of the inducing function values Y† of the
IPs X† and let Q denote a tractable variational distribution intended to approximate P (·) ≈ Q(·|Xn, Yn).
In variational inference, we want to minimize the Kullback-Leibler divergence KL [Q∥P ] between Q and P ,
which is equivalent to maximizing the data log-evidence log(P (Xn, Yn)). As a tractable approximation, we
maximize the evidence lower bound (ELBO), given by

Eu∼Q(·|Xn,Yn) log(P (Xn, Yn|u))−KL [Q(·|Xn, Yn)∥P ]

≈ 1
n

∑n

b=1
Pb −KL [Q(·|Xn, Yn)∥P ] , (13)

where Pb is the predictive log-likelihood in xb, marginalized over the variational distribution Q, that is,

Pb := Eu∼Q(·|Xn,Yn) log
∫

P (yb|f)P (f |u, xb)df. (14)

3.4.2 Sparse mixture of experts

Given a finite set of expert models ŷl that are parameterized by θel
, the MoE model is given by

f̂MoE(x) =
∑L

l=1
G(x)lŷl(x), (15)

where the gate G : X → [0, 1]L is a probability assignment of an input x to the experts. In particular, it
holds

∑L

l=1
G(x)l ≡ 1 and G(x)i ≥ 0,∀x ∈ X and 1 ≤ i ≤ L.

9
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We implement the approach of Shazeer et al. (2017) to model the gate G as follows: For the softmax function

softmax(a)i := exp{ai}
/ ∑L

l=1
exp{al}, (16)

where a ∈ RL, Shazeer et al. (2017) propose to set

G(x) = softmax(h̃1(x), . . . , h̃L(x)), where h̃il
(x) =

{
hil

(x) , l < κ

−∞ , l ≥ κ + 1
(17)

for an adequate permutation (i1, . . . , iL) of {1, . . . , L} such that hil
(x) > hil+1(x) are ordered decreasingly.

Here, hl(x) = gl(x) +N (0, s2
l ) is a noisy version of single-channel gating models gl with parameters θgl

. Note
that these models can be chosen freely and may also deviate from the choice of expert models ŷl.

The cutoff value 1 ≤ κ ≤ L controls the sparsity of the MoE, as it enforces the minor mixture weights to
strictly equal zero. For stability reasons, during the training, we give each expert a chance to become an
element of the top-κ components by adding independent Gaussian noise N (0, s2

l ) before thresholding, where
s ∈ RL

++ is another hyperparameter to set or learn. This noisy gating prevents a premature discarding of
initially underperforming experts.

The overall MoE hyperparameter set is thus given by

Θ = ({θel
}L

l=1, {θgl
}L

l=1, κ, s). (18)

4 Estimating locally optimal bandwidths via mixture of Gaussian processes

In this section, we derive our main contribution, namely the GPR-based AL framework, which we summarized
in Fig. 2. We first derive our GPR-based estimates of LFC and the superior training density in Sec. 4.1
(Fig. 2, B). Combining this estimate with the AL framework from Panknin et al. (2021), we obtain a GPR-
based, model-agnostic superior sampling scheme in Sec. 4.2 (Fig. 2, C). Next, we describe our GPR-based
MoE model in Sec. 4.3 (Fig. 2, A) of which we obtain the required LOB estimate of GPR for the estimation
of superior training density. The scalability of this estimate enables the application of our superior sampling
scheme to problems of high input space dimensions. We then give details on the training of the MoE in
Sec. 4.4 and finally propose an LFC-based IP selection method in Sec. 4.5. We summarize the pseudo-code of
our superior sampling scheme in Algorithm 1.

4.1 GPR-based LFC and the superior training density

Let Σn
GPR(x) denote the LOB function (4) of GPR. Inspired by the results to LFC and the superior training

density of LPS in Eq. (7) and (6), we are able to deduce their GPR-based analog. Here, we need to take
into account that GPR adapts universally3 to functions f ∈ Cα (X ,R), as opposed to LPS, whose decay
rate is determined by the specified polynomial order Q. The idea of the LFC estimate was to adjust LOB
appropriately so that it becomes invariant under the influence of the training density, heteroscedasticity, and
its global decay with respect to the training size n.

Combining the local effective sample size p(x)n with the scaling result of the global Σn
GPR in (9) from Sec. 3.3,

we propose an LFC estimate for GPR as follows (see Appendix C for proof details).
Theorem 1 (LFC of GPR). For f ∈ Cα (X ,R), Xn ∼ p and homoscedastic noise, the GPR-based LFC
estimate of f in x ∈ X is asymptotically given by

Cn
GPR(x) :=

[
1

p(x)n

] d
2α+d

|Σn
GPR(x)|−1

. (19)

In analogy to Eq. (7), Cn
GPR measures the structural complexity of f , as it asymptotically does not depend

on p, v and n. Note that the LPS model provides no explicit way to adapt to the local noise variance v(x),
3That is, the MISE decays at the minimax-rate n

− 2α
2α+d of nonparametric models.
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Figure 2: The proposed AL framework.

such that the LOB of LPS scales with respect to v to address heteroscedasticity (see (36) in Appendix A).
For GPR, we have made the restriction of homoscedastic noise in the definition of Cn

GPR in Theorem 1,
since we are not aware of a theory on the scaling of GPR-based LOB with respect to heteroscedasticity.
However, as opposed to LPS, a heteroscedastic GPR model provides an explicit way to adapt to the local
noise variance v(x) via regularization. As a result, we observe only very little influence of heteroscedasticity
on LOB function, which we will demonstrate in Sec. 5.1. Thus, Cn

GPR will be sufficiently calibrated in a
heteroscedastic scenario, making it a reasonable estimate of LFC in practice without further restrictions.

Now, when putting Cn
GPR into Eq. (6) with Q = α− 1, we obtain the superior training density

pGPR,n
Sup (x) ∝ [Cn

GPR(x)q(x)]
2α+d
4α+d v(x) 2α

4α+d (1 + o(1)). (20)

For even α ∈ N with Q = α− 1 and Cn
GPR ≡ Cn

Q, pGPR,n
Sup and pQ,n

Opt coincide, which proved to be optimal for
LPS. In this sense, (20) generalizes (6) to the general case of α ∈ R+, where we expect that the true optimal
training density for f ∈ Cα (X ) will not deviate by a lot from pGPR,n

Sup . Since LPS and GPR are related models,
we furthermore expect Cn

GPR to be similar to Cn
Q for the appropriate order Q.

Note that for f ∈ C∞ (X ), we let α→∞ in Eq. (19) and (20) to obtain

Cn
GPR(x) = |Σn

GPR(x)|−1 and pGPR,n
Sup (x) ∝ [Cn

GPR(x)q(x)v(x)]
1
2 . (21)

While Xn ∼ pGPR,n
Sup will not be optimal for our model, we expect it to be asymptotically superior to the

naive random test sampling, i.e., Xn ∼ q, due to the model-agnosticity of the LPS-based result. To assess
the asymptotic performance of a training density p (such as pGPR,n

Sup ), let us first observe the following:
For regression problems and under weak assumptions the law of the MISE does not change with respect
to p, except for a constant multiple (Györfi et al., 2002; Willett et al., 2005). Accordingly, the number of
actively selected training samples (∼ p) that are required to achieve the same level of accuracy of random
test sampling is given by a constant ϱ > 0. Formally, we can define ϱ as follows.
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Algorithm 1: Superior training data process (Xn, Yn)n∈N with labels Yn of training inputs Xn
d→ pGPR,n

Sup

Input
1: Intermediate training sizes (nk)k∈N0

with nk < nk+1,∀k ∈ N0 for reestimation
2: A labeled validation set Xval, Yval
3: An input generating process Xpool ∈ X

N with Xpool ∼ pX
4: The label oracle y : X → R

5: (optional) The test density q
6: (optional) The intrinsic dimension δ ≤ d of the input space X
7: (optional) The regularity α of the target function f ∈ Cα (X ,R)
Output
8: (Infinite) training data process (Xn, Yn) with labels Yn of training inputs Xn ∼ pGPR,n

Sup

Procedure
9: ▷ Initialization

10: Estimate pool density p̂X based on Xpool ▷ e.g., using kernel density estimation
11: if q is not specified then
12: Set q ← p̂X
13: if δ is not specified then
14: Estimate δ based on Xpool ▷ e.g., following the work of Facco et al. (2017)
15: if α is not specified then
16: Set α←∞ ▷ as discussed in Sec. 6
17: Set p0 ← q
18: Draw initial training inputs Xn0 ∼ p0
19: Query labels Yn0 ← y(Xn0 ) from the oracle
20: Set (ΘH , ΣE)← hyper_init(Xn0 , Yn0 , p0, Xval, Yval) ▷ see Algorithm 2 in Appendix D
21: ▷ Sample Process
22: for k ∈ N0 do
23: if k > 0 then

24: Update IP locations XE
† , XG

† ∈ ΘH , where XE
† , XG

† ∼
√

pk · Ĉ
n

k−1
GPR ▷ see (29) in Sec. 4.5

25: if k == 1 then
26: Gradually decrease mE =

∣∣XE
†

∣∣ and mG =
∣∣XG

†

∣∣ as long as the validation performance of f̂MoE does not degrade
as discussed in Sec. 4.4.3

27: Train the model f̂MoE from Sec. 4.3 with hyperparameters ΘH on (Xnk
, Ynk

) as described in Sec. 4.4
28: Estimate the LOB Σ̂nk

GPR of GPR according to (24)

29: Estimate the LFC Ĉ
n

k
GPR ←

[
1
/

pk(x)
] 1

2α+d
∣∣Σ̂n

k
GPR(x)

∣∣−1
according to (22)

30: Estimate the superior training density p̂
GPR,n

k
Sup ←

[
Ĉ

n
k

GPR(x)q(x)
] 2α+d

4α+d v̂(x)
2α

4α+d according to (23)

31: Set γ1 = maxx∈X pk(x)
/

p̂
GPR,n

k
Sup (x) and γ2 = max

{
0, (0.5− γ−1

1 )
/

(1− γ−1
1 )

}
▷ see Sec. 4.2

32: Set pk+1 ← γ2pk + (1− γ2)p̂GPR,n
k

Sup

33: Set p̃k+1 ← 2pk+1 − pk ▷ see Sec. 4.2
34: Draw Xnk+1, . . . , Xnk+1 ∼ p̃k+1 via importance sampling from Xpool as described in Sec. 4.2
35: Query labels ynk+1, . . . , ynk+1 ← y(Xnk+1, . . . , Xnk+1 ) from the oracle
36: Set Xnk+1 ← Xnk

∪ {Xnk+1, . . . , Xnk+1} and Ynk+1 ← Ynk
∪ {ynk+1, . . . , ynk+1} ▷ Then Xnk+1 ∼ pk+1

Definition 2. Over the space of square-integrable functions f ∈ L2 (X ), for a nonparametric regression
model f̂ and a training density p, we define by ϱ(f̂ , p) > 0 the relative required sample size such that for
n′ = ϱ(f̂ , p)n, X ′

n′ ∼ p and Xn ∼ q it holds that

MISE
(

q, f̂ |Xn

)
= MISE

(
q, f̂ |X ′

n′

)
(1 + o(1)).

Thus, a training density p is asymptotically superior to random test sampling, if ϱ(f̂ , p) < 1, since we achieve
the same performance as random test sampling with only a fraction of the number of training samples. In
Sec. 5 we will demonstrate the superiority of the training density pGPR,n

Sup for our GPR-based MoE model.

Respecting the intrinsic dimension in high-dimensional input spaces In Eq. (19), (20) and (21) we
assume the input space X to have full degrees of freedom d, which in practice is particularly not the case
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in high-dimensional feature spaces. For an intrinsic dimension δ < d of X , we adjust as follows: For the
space S = {σΣ | σ > 0} of bandwidth candidates that are essentially isotropic up to a fixed, shared positive
definite factor Σ ∈ Sd

++ that is, e.g., calculated in a pre-processing step, let Σn
GPR(x) = σn

GPR(x)Σ be the LOB
function of GPR with respect to S. Then we replace all occurrences of d for δ and |Σn

GPR(x)| for σn
GPR(x)δ

in Eq. (19), (20) and (21).

Besides being an ingredient to AL, LFC can also be used to reduce the required model complexity. For
example, in an RBF-network or a sparse GPR model, we can coarsen or refine the model resolution by placing
an adequate amount of basis functions or IPs, respecting LFC. We will discuss this choice in Sec. 4.5 and
demonstrate its ability to reduce the overall model complexity in Sec. 5.1. Finally, LFC can be inspected
to obtain deeper insights into the research field of the regression problem, which is particularly hard for
high-dimensional data (see Sec. 5.2).

4.2 The active learning framework

Starting with an initial training set Xn0
, Yn0

of size n0 with Xn0
∼ p0 for some initial training distribution

such as p0 ≡ q, we implement the online sampling procedure as described in Panknin et al. (2021), such that
Xn ∼ pGPR,n

Sup as n→∞. We grow the training set as follows:

Given the current training set Xnk
, Ynk

we estimate Σ̂nk

GPR as described in Sec. 4.3. Using (19), (20), it is

Ĉ
nk

GPR(x) ∝
[
1
/

pk(x)
] 1

2α+d

∣∣∣Σ̂nk

GPR(x)
∣∣∣−1

, and (22)

p̂
GPR,nk
Sup (x) ∝

[
Ĉ

nk

GPR(x)q(x)
] 2α+d

4α+d

v̂(x) 2α
4α+d . (23)

Letting the next sample size be nk+1 = 2nk, we have already drawn half the samples of nk+1 according to a
potentially different distribution pk than the new proposed p̂

GPR,nk
Sup . The closest we can get in distribution to

p̂
GPR,nk
Sup is given by Xnk+1

∼ pk+1, where pk+1 := γ2pk+(1−γ2)p̂GPR,nk
Sup , for γ2 = max

{
0,

0.5− γ−1
1

1− γ−1
1

}
∈ [0, 0.5)

and γ1 = max
x∈X

pk(x)
p̂

GPR,n
k

Sup (x)
. This is achieved by sampling xnk+1, . . . , xnk+1 ∼ p̃k+1 for p̃k+1 = 2pk+1 − pk,

which is a valid probability density (Panknin et al., 2021).

Adaptions in the pool-based active learning scenario In the AL framework described above, we
deal with properly normalized probability densities. But in the pool-based AL scenario such normalization
is usually impossible since our information about the input space X is restricted to a large, unlabeled pool
of samples Xpool ∈ XN . This pool follows a distribution Xpool ∼ pX , for which it is common to assume an
(unnormalized) density estimate p̂X to be given: Unlabeled inputs are considered cheaply accessible, whereas
querying labels is expensive.

For our AL framework to be applicable, it suffices to keep all considered densities such as p̂
GPR,nk
Sup at equal

norm, which we can enforce via normalizing a density p by p̄ = p/norm(p), where

norm(p) =
∣∣Xpool

∣∣−1 ∑
x∈X

pool

p(x)/p̂X (x).

To see this, note that first of all p̂X is an unnormalized estimate of pX such that we can write p̂X ≈ c · pX for
some unknown constant c > 0. On the one hand, it is

∫
X

p̂X (x)dx = c by definition. On the other hand, it is

norm(p) ≈
∫

X

p(x)
p̂X (x)pX (x)dx = 1

c

∫
X

p(x)dx,

such that also
∫

X
p̄(x)dx = 1

norm(p)

∫
X

p(x)dx ≈ c holds for any unnormalized density p.

Subsequently, the required samples xnk+1, . . . , xnk+1 ∼ p̃k+1 are obtained via importance sampling from the
pool with importance weights P(xi = x) ∝ p̃k+1(x)/[norm(p̃k+1)p̂X (x)] for x ∈Xpool and nk + 1 ≤ i ≤ nk+1.
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4.3 Sparse mixture of Gaussian processes

Recall the sparse MoE model (15) from Sec. 3.4.2, given by

f̂MoE(x) =
∑L

l=1
G(x)lŷl(x),

where the gate G : X → [0, 1]L is a probability assignment of an input x to the expert models ŷl. In particular,
it holds

∑L

l=1
G(x)l ≡ 1 and G(x)i ≥ 0,∀x ∈ X and 1 ≤ i ≤ L. According to (18), besides the expert and

gate model parameters {θel
}L

l=1 and {θgl
}L

l=1, this MoE approach has two hyperparameters, κ and s, for
controlling the sparsity of the gate and adding noise to the gate responses during the training to escape local
optima.

We choose the expert models as well as the single channel gating models to be sparse variational GPs
(Williams & Rasmussen, 1996; Hensman et al., 2015), that is, ŷl ∼ SVGP(θel

) and gl ∼ SVGP(θgl
), which

are parameterized by θel
and θgl

, as described in Sec. 3.4.1. The overall MoE hyperparameter set is thus
given by Θ = ({θel

}L
l=1, {θgl

}L
l=1, κ, s).

We will keep certain hyperparameters of Θ constant after initialization, and share some hyperparameters
across experts and the channels of the gate: While the covariances of the inducing value distributions
S† ∈ θ, θ ∈ Θ could be full positive definite matrices, we apply S† = 0 throughout, giving favorable stability
and computational efficiency. For the same reasons, we fix the inducing point (IP) locations X† ∈ θ, θ ∈ Θ
after initialization. Furthermore, we share the IP locations among the experts, respectively the gate channels,
such that for X† ∈ θel

we apply X† = XE
† and for X† ∈ θgl

we apply X† = XG
† , for all 1 ≤ l ≤ L.

In this work, our goal is to fit a single, coherent regression problem by a MoE approach. Therefore, we
propose to share all the parameters across the experts that characterize the regression function rather than
the expert model. That is, we share the mean µE , the regularization parameter λE , and the noise variance
function v̂, respectively the global noise variance σ2

ε with v̂(x) ≡ σ2
ε in case of homoscedasticity. Furthermore,

we apply a fixed, logarithmically spaced set of individual expert bandwidth scaling factors σ1 < . . . < σL

that are multiplied by a fixed, shared bandwidth matrix ΣE . Our expert parameters therefore reduce to

θel
= (µE , λE , v̂, σlΣE , XE

† , µel

† , 0).

Remark 3. Recall from Sec. 2 that it is possible to replace the variational GPR expert models for full as
well as sparse analytic GPR formulations (see Appendix B). With slight abuse of notation, these cases are
subsumed by setting µel

† = ∅ or XE
† = µel

† = ∅ for sparse, respectively full analytic GPR.

Since our objective does not incorporate any likelihood about the gate’s output, there is no noise function to
fit for the gate, such that we set v̂ ≡ 0 for v̂ ∈ θgl

and all 1 ≤ l ≤ L. Each output channel of the gate poses
its own classification problem, which is why we do not share the means. Yet, we share the regularization
parameter and the bandwidth, as the individual channels should be structurally similar. Our gate parameters
therefore reduce to

θgl
= (µgl

, λG, 0, σGId, XG
† , µgl

† , 0).

After training as described in Sec. 4.4, this MoE can cope with a varying structural complexity through
the individual bandwidth scaling factors σl of the experts and heteroscedastic noise through the adaptive
regularization. Additionally, we can now use the gate of our MoE to propose an LOB estimate of GPR.

A GPR-based LOB estimate After training of the MoE, we use the learned gate G from (15) to predict
Σn

GPR(x) as

Σ̂n
GPR(x) = σ̂n

GPR(x)ΣE , where σ̂n
GPR(x) = exp

{ ∑L

l=1
G(x)l log(σl)

}
. (24)

Due to the finite candidate set σ1, . . . , σL we are limited to measure a quantization of Σn
GPR(x) through

G(x)l = P(Σn
GPR(x) = σlΣE). If, in fact, Σn

GPR ∈ {σ1ΣE , . . . , σLΣE} holds true, then there exists an index
function j(x) ∈ {1, . . . , L} such that Σn

GPR(x) = σj(x)ΣE . In this case, we are able to exactly recover LOB
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with G(x)l =
{

1, l = j(x)
0, else

. In any other case, the estimate (24) of LOB is a reasonable interpolation, which

deviation from Σn
GPR can be controlled by the number of bandwidth candidates of the MoE.

4.4 Model training

This section is devoted to the training of the model described in Sec. 4.3. We first set up the training objective
in Sec. 4.4.1 and describe the training procedure of our model in Sec. 4.4.2, where we identify hyperparameters
of the approach. Then, we discuss how to choose the essential hyperparameters systematically on the initial
training dataset in Sec. 4.4.3.

4.4.1 The training objective

First, we will set up the objective function for training our MoE model in batch mode.

The main objective Denote by ∅ ⊊ B ⊆ {1, . . . , n} the indices of a batch, and let wB =
∑

b∈B
w(xb) for

the training importance weight function w ∝ q/p. Let Pl be the prior distribution of the inducing function
values of the l-th expert and Ql the corresponding variational distribution as defined in Sec. 3.4.1. We choose
the (through the gate G) weighted sum of the individual expert negative ELBO objectives (13), denoted by

Obj(Xn, Yn,B, w, Θ) = −
∑L

l=1

[
w−1

B

∑
b∈B

vl(xb)Pb,l − 1
nl
KL [Ql(·|Xn, Yn)∥Pl]

]
,

as our main objective, where nl = nwB/νB,l for νB,l =
∑

b∈B
vl(xb) with vl(x) = G(x)lw(x) and

Pb,l = Eu∼Ql(·|Xn,Yn) log
∫

Pl(yb|f)Pl(f |u, xb)df

is the predictive log-likelihood (14) of the l-th expert in xb, marginalized over its variational distribution Ql.

A penalty on small bandwidth choices In the spirit of Lepski’s method (Lepski, 1991; Lepski &
Spokoiny, 1997), we prefer the largest choice of bandwidth out of all candidates that perform comparably
well. In order to enforce this, we penalize smaller bandwidth choices by adding the following term:

penσ(Xn, Yn,B, w, Θ) = 2
(L− 1)

∑L

l=1
νB,l(L− l)

/ ∑L

l=1
νB,l. (25)

Note that penσ(Xn, Yn,B, w, Θ) = 1 if νB,1 = . . . = νB,L. Our total objective then amounts to

Obj(Xn, Yn,B, w, Θ) = Obj(Xn, Yn,B, w, Θ) + ϑσpenσ(Xn, Yn,B, w, Θ). (26)

Remark 4. If we assume our problem to be (almost) noise-free, we replace the Obj in our objective (26) for
the mean squared error

MSE(Xn, Yn,B, w, Θ) = w−1
B

∑
b∈B

w(xb)∥yb − ŷ(xb)∥2.

4.4.2 Training procedure

We implement our model in PyTorch (Paszke et al., 2019), using the GPyTorch-package (Gardner et al., 2018).
Given the training set (Xn, Yn), we minimize the objective described in Sec. 4.4.1 via ADAM-optimization
(Kingma & Ba, 2015). It remains to identify those variables of the MoE that will be adapted as parameters
during the training. Then, the remaining variables are hyperparameters that need to be specified or tuned
through an external validation step.

Recall from Sec. 4.3 that the MoE has two further hyperparameters, κ for enforcing sparse gate responses
and a noise term on the gate responses during the training, which is controlled by s. Instead of learning s as
a parameter during the training—like proposed by Shazeer et al. (2017)—we propose to shrink s← sηs after
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each training epoch, for a multiplicative factor ηs < 1 and an initial value s := s0 as hyperparameters. We
discuss this heuristic choice in Appendix F.

We require appropriate learning rates for the optimization of the parameters and tunable hyperparameters of
the model. Generally, we suggest applying an adaptive base learning rate η, where we shrink η ← ηi := 1

2 ηi−1
for an initial base learning rate η0 during the training as soon as the validation performance gets stuck until
ηi crosses a lower threshold, e.g., ηi < η0/1000. Note that, relative to the base learning rate, good learning
rates for the individual types of tunable parameters should be deployed: Within a GP component SVGP(θ)
with θ = (µ, λ, v̂, Σ, X†, µ†, S†), the hyperparameters (µ, λ, v̂) must be updated on a smaller scale than the
inducing value distribution, given by (µ†, S†). In this regard, let ηH ≤ 1 be the factor such that, if we update
µ† at rate η, then we update (µ, λ, v̂) at rate ηHη.

Similarly, we need to update the gate parameters θgl
on a smaller scale than the expert parameters θel

. In
this regard, let ηG ≤ 1 be the factor such that, if we update θel

at rate η, then we update θgl
at rate ηGη.

The set of hyperparameters that require off-training selection (e.g., via cross-validation) is thus given by

ΘH = (B, κ, {σl}L
l=1, σG, λG, XE

† , XG
† , s0, ηs, ϑσ, η0, ηH , ηG), (27)

whereas the overall set of parameters that get tuned while training is given by

ΘT = (µE , λE , v̂, ΣE , µE
† , µG, µG

† ). (28)

We provide further details on the design choices for our MoE model in Appendix F.

4.4.3 Choosing the hyperparameters

Since our MoE approach is based on known building blocks (Williams & Rasmussen, 1996; Hensman et al.,
2015; Shazeer et al., 2017) we can train our model using well-established software libraries (Kingma & Ba,
2015; Paszke et al., 2019; Gardner et al., 2018), with the hyperparameters chosen by following best practice.
While the set of hyperparameters (27) appears to be large, most of them can be tuned in advance on the
initial training dataset of moderate size and held fixed in the subsequent training data refinement process.

Note that some hyperparameters impact the computational complexity rather than the model performance.
Thus, as long as they are not underestimated, their tuning is optional and will therefore be postponed:

• Since our MoE is robust concerning unnecessarily large choices of the gate output sparsity κ, we
initialize κ ≡ L while choosing the remaining hyperparameters, followed by tuning κ as the last
hyperparameter, where we successively reduce κ until we observe a significant loss of performance of
the MoE.

• The numbers mE =
∣∣∣XE

†

∣∣∣, mG =
∣∣∣XG

†

∣∣∣ of IPs of the expert and the gate are the main driver of the
computational complexity of our MoE. While unnecessarily large numbers will not hurt the model
performance, they should therefore be set to the smallest value that leads to no significant loss of
performance to keep the computational complexity of the model moderate at larger training sizes. In
the initial iteration, we use mE = n0 for the experts and mG = n0

4 , where the locations of the IPs
XE

† , XG
† ∼ p are chosen diverse as described in Appendix E. In the second iteration, where we have

first estimates of LFC, XE
† and XG

† are drawn as discussed in Sec. 4.5. Here, we gradually decrease
mE and mG until we observe a significant loss of validation performance of the MoE. We hold mE

and mG fixed in subsequent iterations. Note that the IP locations are not subject to optimization.

The initial base learning rate and the expert’s internal hyperparameters learning rate (η0, ηH) and the batch
size B that are related to a single GPR expert rather than the whole MoE model:

• First, we hold ηH = 0.2, B = n0 fixed at reasonable initial values and perform line search over η0
according to the resulting validation performance of a single, isotropic, sparse GPR expert. Here, too
small values of η0 result in slow convergence of the objective, in which case we interrupt the training
immediately and increase η0 as long as the first objective updates are consistently decreasing.
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• Next, we choose ηH according to the resulting validation performance of a single, isotropic, sparse
GPR expert, where we gradually decrease ηH , starting from ηH = 1. Again, we interrupt the training
for too large choices of ηH , where the training objective will diverge.

• Finally, we choose B according to the resulting validation performance of a single, isotropic, sparse
GPR expert, where we gradually decrease B, starting from B = n0.

Next, we have to deal with the remaining hyperparameters that are related to the MoE model. For this,
we first initialize the less crucial hyperparameters at reasonable values, tuning them afterward: We apply
a set of experts with {σl}L

l=1, where L = 7, and σl = 2 l−4
δ , which are logarithmically spaced around

the global bandwidth estimate ΣE of the best-performing model that we obtained from the above tuning
of the hyperparameters related to a single GPR expert. The noise added to the gate (s0, ηs) as well as
the regularization ϑσ of the bandwidth function are about fine-tuning of the model. We set them to
s0 = 0.1, ηs = 1/

√
2 and ϑσ = 0.01. We suggest to keep ηs = 1/

√
2 throughout without further tuning.

• Via grid search, we choose σG, λG according to the resulting validation performance of the MoE
model, where we gradually decrease the gate learning rate from ηG = 1.

As a last step, we choose the hyperparameters for fine-tuning of the MoE model:

• First, we perform line search over ϑσ according to the resulting validation performance of the MoE.

• Next, we tune {σl}L
l=1: We observe that unreasonable bandwidths will be automatically dropped

during the training. Therefore, if the minimal or maximal candidate associated with σ1, σL is not
chosen during the training, we remove the respective expert and retrain the MoE. Vice versa, we
expand the bandwidth candidate range beyond σ1, σL with a factor of 2∓ 1

δ as long as the boundary
candidates are not dropped during the training.

• Finally, we perform line search over s0 according to the resulting validation performance of the MoE.

4.5 Initializing the IP locations

Since the numbers of IPs of the gate XG
† , as well as the experts XE

† are the computational bottleneck of
our model, they should be chosen advisedly. We can interpret the choice of IPs as a nested AL task at
small sample size. In the small sample size regime, input space geometric arguments have proven to be
robust and superior in comparison to naive approaches like random sub-sampling from the training inputs
(Teytaud et al., 2007; Yu & Kim, 2010; Wu, 2019; Liu et al., 2021). They are representative, respecting the
training distribution, and diverse (with low-dispersion) so that they achieve an acceptable representation of
the dataset at the smallest possible number of IPs. By low-dispersion, we resort to the following definition:
Definition 5. The dispersion, given by supx∈X min1≤i≤n ∥x− xi∥ (Niederreiter, 1988) is a measure of how
well spread out the training sample is. We say that a sequence has low-dispersion if its dispersion is lower
than the dispersion of random uniform sampling.

Indeed, by sampling the IPs in this manner, we can reduce the distance of an evaluation point x to its
closest neighbor in XE

† , which is known to reduce the reconstruction error of a full kernel matrix by a sparse
representation (Zhang et al., 2008).

In addition, recall that our derived LFC measure of local structural complexity quantifies the local variation
of the target function. Intuitively, we require more IPs to sense and reconstruct the target function where
this local variation is higher. In summary, we therefore propose to choose the IPs

XE
† , XG

† ∼
√

p · Cn
GPR (29)

as the geometric mean of LFC and the training density Xn ∼ p in a diverse way. Here, we ensure diversity
by implementing distribution preserving clustering or particle repulsion as described in Appendix E.
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5 Experiments

In this section, we will first analyze our approach on toy-data, regarding the MoE model, LFC, and the
superior training density. Then, we apply our approach to a high-dimensional MD simulation dataset from
quantum chemistry, by which we can deduce deeper insights into this regression problem.

We denote the root mean squared error (RMSE) and the maximum absolute error (max AE) of a model f̂ for
a test set XT ∈ XN with XT ∼ q by

RMSE(f̂ , Xn, Yn) =

 1
N

∑
x∈XT

∣∣∣f(x)− f̂Xn,Yn
(x)

∣∣∣2
 1

2

and max AE(f̂ , Xn, Yn) = max
x∈XT

∣∣∣f(x)− f̂Xn,Yn
(x)

∣∣∣ .

As already discussed in Sec. 4.1, the learning rate is invariant under change of the training density Xn ∼ p in
the considered scenario. For our MoE model and f ∈ Cα (X ,R) we, thus, can write

RMSE(f̂MoE, Xn, Yn) = Cpn−τ (1 + o(1)) , with τ =
{

α
2α+d , α <∞
1/2, α =∞

, (30)

where Cp > 0 is a constant depending on the training density p. Note that we can theoretically bound the
asymptotic RMSE from below by C∗n−τ , where we have defined C∗ := Cp∗ with X ′

n ∼ p∗ being the optimal
training set from (3). Unfortunately, since p∗ is unknown—even when given the ground truth—we are not
able to estimate C∗ and, thus, provide a lower bound of the RMSE beyond the known learning rate n−τ .

As an AL performance measure, we use the relative required sample size from Definition 2 which can be
estimated for a GPR-based model such as our MoE and f ∈ Cα (X ,R) according to

ϱ(f̂MoE, p) ≈
[

RMSE(f̂MoE,X′
n,Y ′

n)
RMSE(f̂MoE,Xn,Yn)

] 1
τ

(31)

where it is X ′
n ∼ p and Xn ∼ q with respective labels Y ′

n and Yn. Using (31), we can compare the asymptotic
AL performance of different AL sampling schemes in the following experiments. For example, we can quantify
the AL performance of our proposed AL framework by sampling X ′

n ∼ p̂GPR,n
Sup .

5.1 Doppler function

We will first demonstrate our approach on the Doppler function (see, for example, Donoho & Johnstone
(1994)), which was also discussed in related work that deals with inhomogeneous complexity (Panknin et al.,
2021; Bull et al., 2013). For x ∈ X = [0, 1], let

P(y|x) = N (y; f(x), 1), f(x) = C
√

x(1− x) sin (2π(1 + ϵ)/(x + ϵ)) ,

where ϵ = 0.05, C is chosen such that ∥f∥
2

= 7 and N (·; µ, σ2) denotes the Gaussian distribution with mean
µ and variance σ2. We assume a uniform test distribution q ∼ U(X ) in all Doppler function experiments.

This one-dimensional, homoscedastic toy-example allows for an easy and intuitive visualization. Fig. 3 shows
an example dataset as blue dots and the true function f to infer in black. Due to the strong variation
of structural complexity, a single-scale GPR model does not cope well with the Doppler function (see
Appendix G.1 for a comparison of single-scale to multi-scale GPR).

We implement our proposed MoE model as described in Sec. 4.3 with sparse GPs as the expert and gate
models and using the Gaussian kernel k. We apply 512, respectively 128 IPs for the experts and the gate,
which are chosen via SVGD (see Appendix E). Furthermore we apply σj = 10(j−10)/3, 1 ≤ j ≤ 7, as the
expert bandwidths, λE = 20 as the initial expert regularization, and σG = 0.05 and λG = 10 for the gate. For
the training, we apply a batch size of B = 512, a terminal expert sparsity κ = 2, a penalty factor of ϑσ = 0.5
for small bandwidth choices, gate noise parameters s0 = 0.1 and ηs = 1/

√
2, and learning rate parameters

η = 0.01, ηH = 0.2, ηG = 1.
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Figure 3: The Doppler experiment: An exemplary dataset and the locations of 128 IPs, once sampled most
naively—that is, random according to the test distribution—and once optimized regarding diversity as well
as structural complexity and representativeness as described in Sec. 4.5, shown on natural x-scale (left) and
on logarithmic x-scale (right).

Figure 4: The Doppler experiment: The gate function (left) and the associated estimates of LOB, LFC and
superior training density (right) trained on the dataset from Fig. 3 and shown on a logarithmic x-scale.

Fig. 4 shows the gate function after training of the MoE model, as described in Sec. 4.4.1, and the associated
estimates of LOB, LFC and the superior training density, calculated according to (24) and (21).

Comparing the active learning framework in the LPS and GPR domain Since f ∈ C∞ (X ,R),
our deduced superior training density estimate is given by Eq. (21). In Fig. 5 we plot our estimates of LOB
and the superior training density in comparison to the LPS-based results for polynomial degrees of order
Q = 1, 3, and with implementation and hyperparameters as described in Panknin et al. (2021). Here, we can
observe the qualitative similarity of the LPS- and GPR-based estimates of LOB.

When conducting the proposed GPR-based active sampling scheme as described in Sec. 4.2, we additionally
observe quantitative benefits in Fig. 6 over random test sampling—quite similar to the LPS-based result
for Q = 3: When estimating the relative sample size (31) we require to achieve the same RMSE via active
sampling compared to random test sampling, we obtain ϱ(f̂MoE, p̂GPR,n

Sup ) = 0.58± 0.04. This means that we
save about 42% of samples via our active sampling scheme.

This provides evidence for the effectiveness of our superior sampling scheme, combining the theoretical
foundation of the LPS domain with the efficient access to LOB estimates in the GPR domain.

Comparing random test sampling to equidistant sampling In the introduction, we indicated that
the advantage of the robust and model-agnostic input space geometric arguments (Teytaud et al., 2007; Yu &
Kim, 2010; Wu, 2019; Liu et al., 2021) diminishes as the training size grows. We can substantiate this claim
by comparing random test sampling to equidistant sampling on the Doppler dataset. By equidistant sampling
over X = [0, 1] we mean the deterministic construction of the training inputs, where for n given training
samples the subsequent n training inputs get placed halfway between all nearest neighbors of the former n
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Figure 5: The Doppler experiment: The LOB estimates (left) and the resulting superior training density of
our proposed GPR-based approach in comparison to the LPS-based approach of order Q = 1, 3 (right). The
results are averaged over 20 repetitions.

Figure 6: The Doppler experiment: The RMSE (left) and the max AE (right) of our proposed GPR-based
approach in comparison to the LPS-based approach of order Q = 3 (see Eq. (5) and (6)), once using the
respective AL scheme and once, applying random test sampling. The results are averaged over 20 repetitions.
The long-dashed, gray line is for illustration of the optimal learning rate τ from (30), where the offset C∗ is
imaginary. It shall therefore not be confused with a true lower bound.

samples. In this way, the training input inter-distances are halved exactly with each iteration. We regard this
construction as the optimal input space geometric choice, which result will subsume all AL competitors of
this type. We now observe in Fig. 7 that, indeed, equidistant sampling is superior to random test sampling at
small training sizes. As claimed, however, with growing training size, this advantage gradually diminishes
until it has vanished completely at n = 215 training samples.

On Gaussian process uncertainty In Sec. 2 we mentioned that GP uncertainty sampling is the most
related approach to our superior sampling scheme since both build on GPR models. As also discussed therein,
we can regard standard GP uncertainty sampling as an input space geometric argument, whose performance
we can subsume by equidistant sampling in the Doppler experiment. Particularly this implies that standard
GP uncertainty sampling provides no benefits regarding asymptotic AL performance.

Instead—given the gate function of our MoE from the previous part of this experiment, which was obtained for
215 training samples and which we now keep fixed—we define the uncertainty estimate of our model MoGPU
as a straightforward extension of GP uncertainty sampling which takes the inhomogeneous complexity of
data into account: By simply weighting the predictive variances of all experts in some input x with respect
to the gate values G(x) from (15), we derive

MoGPU(x) =
∑L

l=1
G(x)lC

∗
θl

(x), (32)
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Figure 7: The Doppler experiment: The RMSE (left) and the max AE (right) of our proposed MoE model
when comparing random test sampling to equidistant sampling. The results are averaged over 20 repetitions.

Figure 8: A comparison of the mixture of Gaussian process uncertainty and the equidistant sampling baselines
to our proposed active sampling scheme for the Doppler experiment: (Top) The training data histograms
after 213 samples, contrasted with functions of σn

GPR, and the RMSE (bottom left) and the max AE (bottom
right) at several training sizes of the compared schemes. The results are averaged over 20 repetitions. The
long-dashed, gray line is for illustration of the optimal learning rate τ from (30), where the offset C∗ is
imaginary. It shall therefore not be confused with a true lower bound.

where C∗
θl

is the predictive variance of the l-th expert (see (12)). Note that we consider MoGPU as a baseline
competitor to our superior sampling scheme.

Intuitively, the uncertainty estimate in x ∈ X increases as the applied bandwidth σn
GPR(x) decreases. Now,

in order to equalize uncertainty over the input space, MoGPU will sample more in regions where σn
GPR is

smaller. For Xn drawn according to MoGPU, we expect Xn ∼ [σn
GPR]−d. This expectation holds as can be

seen at the top in Fig. 8.
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Figure 9: A comparison of the DGP model performance, using the ALC criterion for DGP, the random test
sampling baseline, and our proposed active sampling scheme for the Doppler experiment: (Top) The training
data histograms after 512 samples, and the RMSE (bottom left) and the max AE (bottom right) at several
training sizes of the compared schemes. The results are averaged over 5 repetitions.

For evaluation, we combine the fixed gate function with full GPR experts and compare our proposed sampling
scheme with MoGPU (both determined through the gate). In all error measures the beneficial effect of the
low-dispersion property of Xn drawn according to MoGPU has already vanished for about 512 training
samples, from where the asymptotic law dominates. As expected, our approach is superior to MoGPU when
comparing RMSE. Interestingly, MoGPU is superior to our approach regarding the max AE, suggesting that
Xn ∼ [σn

GPR]−d is the preferable training distribution under the supremum-norm.

AL Performance on deep Gaussian processes To demonstrate the model-agnosticity of our AL
approach, we deploy the DGP model of Sauer et al. (2023b) using the CRAN package deepgp4. This package
also implements an aggregate variance-based AL criterion (Cohn, 1994), which they named active learning
Cohn (ALC) after the originator. We deploy a 3-layer DGP model, using the Gaussian kernel. For test
evaluation, We train the model using Vecchia-approximation (Sauer et al., 2023a) with a total of 10,000
Gibbs-sampling steps, burning the initial 8000, and thinning the remaining steps to 1,000.

Beginning with 128 equidistant samples, we refine the training data of the DGP model using the ALC
criterion, random test sampling, and our proposed superior training scheme. The resulting training data
distributions and the performance of the DGP model are plotted in Fig. 9. As expected, our superior training
scheme performs superior to random test sampling. While the ALC criterion that is particularly designed
for the DGP model performs best, we observe only very little difference at 512 training samples. Note that
sampling according to the ALC criterion becomes computationally challenging already at this point since
the DGP model has to be re-trained after each new sample. In contrast, sampling Xn ∼ pGPR,n

Sup can be
performed in batch mode. This result emphasizes the complementary nature of our asymptotic work to the
classic bottom-up AL literature.

4See https://cran.r-project.org/web/packages/deepgp/index.html

22

https://cran.r-project.org/web/packages/deepgp/index.html


Published in Transactions on Machine Learning Research (12/2023)

Figure 10: The Doppler experiment: The curves show the RMSE at training size n = 215 for a varying number
of expert IPs m. The colors correspond to different IP distributions, whereas the line styles correspond to
the underlying training distribution. The results are averaged over 20 repetitions.

Necessity of the small bandwidth penalty We impose a penalty on small bandwidth choices through
the factor ϑσ = 0.5 to regularize the bandwidth function and prevent overfitting, as described in Appendix F.
We demonstrate this overfitting issue in Appendix G.2 that results from applying no regularization (ϑσ = 0).

Parsimonious modeling using LFC In Sec. 4.1 we mentioned that LFC can also be used to coarsen or
refine the model resolution adequately to reduce the overall complexity of the model. While we fixed the IPs
to reasonable numbers in the other parts of the Doppler experiment, that is, m = 512 and m = 1024 IPs
under active, respectively random test sampling, we here investigate the influence of the number of IPs and
their distribution on the capability to resemble the Doppler function. Recall from Sec. 4.5 that we interpret
the choice of the IPs as a nested AL task at small sample size (m≪ n), where it is reasonable for them to be
sampled in a diverse way, respecting the training distribution but also the structural complexity of the target
function. In Fig. 3, we show a naive choice and our optimized choice of IPs.

In Fig. 10, we compare the RMSE for the fixed training size n = 215 for both settings, active and passive,
when sampling the IPs according to the training density p, the LFC and their geometric mean (29). First of
all, we observe that we generally require less IPs with active sampling compared to random test sampling,
which originates from the fact that the superior training density p̂GPR,n

Sup already respects LFC to some degree.
Next, we observe that the geometric mean of the training density and LFC performs best, provided that the
number of IPs m is large enough. Finally, we observe that, non-surprisingly, we can shrink m the most under
the LFC distribution, namely to m = 128, before the performance of the model degrades substantially.

In summary, we are able to shrink the model complexity up to a factor of 8 for the Doppler function without
a significant loss of performance, when respecting LFC in the model design.

Comparing our proposed IP selection method to a greedy fast forward selection In Sec. 2, we
discussed other IP selection approaches. For comparison, we have implemented the greedy fast forward (GFF)
IP selection method of Seeger et al. (2003), in which, beginning from scratch, the most informative training
inputs are gradually added to the set of IPs as a means to approximate the full GP(θ) distribution. Here, the
information of an IP candidate xi ∈Xn \X† is measures by

J(xi) = KL
[
QX†∪{xi}∥QX†

]
,

which is the Kullback-Leibler divergence between the posterior distributions based on the IPs X† ∪ {xi} and
X†. Accordingly, the updated set of IPs is given by X† ←X† ∪ {x∗

i }, where

x∗
i = argmaxxi∈Xn\X†

J(xi).

The procedure converges, when the remaining IP candidates carry no further information, that is, J(x∗
i ) < εJ ,

up to a specified threshold εJ ≥ 0.

At a given threshold εJ , we observe that the number of selected IPs is very small for the experts with a large
bandwidth, while it increases drastically (∝ σ−1

i ) for experts with a small bandwidth. Now that the overall
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Figure 11: The Doppler experiment: The curves show the RMSE at training size n = 215 at a varying number
of expert IPs m, where the IPs are either chosen at random, according to our proposed selection method, and
via GFF. The results are averaged over 20 repetitions.

Figure 12: The Doppler experiment under heteroscedastic noise: (Top left) An exemplary dataset; (Top
right) The LOB estimates, when comparing the homoscedastic to the heteroscedastic Doppler experiment;
(Bottom left) The training densities of random test sampling, pGPR,n

Sup and pGPR,n
Sup when wrongly assuming

homoscedasticity; (Bottom right) The RMSE at several training sizes of the compared sampling schemes.
The results are averaged over 20 repetitions.

complexity of the MoE is dominated by the expert with the most IPs, it is fair to compare the number of IPs
of the expert at bandwidth σ1 with our statically specified number m of IPs in Fig. 10. Here, we will vary the
threshold εJ to obtain a curve that maps the associated number of IPs to the achieved RMSE. The results
in Fig. 11 show that with GFF almost no IPs can be saved for this inhomogeneously complex problem, as
opposed to our proposed IP selection method.

In any case, even under training according to pGPR,n
Sup , the selected IPs by Seeger et al. (2003) are uniformly

distributed. In particular, the need for less IPs of the experts at smaller bandwidths to the right of X is not
recognized and, thus, we observe no IP savings at an acceptable performance over a random IP selection at
all for this inhomogeneously complex problem.
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Heteroscedastic noise treatment While the treatment of heteroscedastic noise is not the main focus of
this work, we will now demonstrate our approach on a heteroscedastic version of the Doppler experiment. For
this, we let v(x) = (3− 4 |x− 0.5|))2 ∈ [1, 9], which we plot in Fig. 12 (top left) together with the resulting
dataset. Here, we assume the local noise variance (or an estimate of it) to be provided externally, again, since
its estimation is out of the scope of this work. However, note that the estimation of v is well-studied in the
literature, especially for GPs (Kersting et al., 2007; Cawley et al., 2006; Tresp, 2001).

In Fig. 12 (top right) we compare the LOB estimates obtained from the homoscedastic dataset and the
heteroscedastic version. As we have suggested in Sec. 4.1, the influence of v on the LOB estimates obtained
from heteroscedastic GPR experts is relatively small. Likewise, we proceed with the evaluation of our proposed
AL scheme under heteroscedasticity. Here, we compare to random test sampling but also to pGPR,n

Sup under
the wrong assumption of homoscedastic noise. Note that we use the heteroscedastic MoE in all cases since
the wrong assumption of homoscedastic noise in the experts makes the MoE very volatile. The respective
training densities and RMSE learning curves can be seen in the bottom row in Fig. 12. Due to the stronger
noise (compared to the homoscedastic experiment), the asymptotic behavior begins to materialize later from
n = 213 training samples. Until this point, sampling only with respect to the structural complexity looks
also promising. However, as soon as the training size becomes large enough to roughly resemble the target
function, respecting the inhomogeneity in the noise level becomes crucial to achieve a homogeneous pointwise
convergence and, thus, maintaining asymptotic superiority.

5.2 Force field reconstruction

We now turn our attention to a real-world example in which we predict the potential energy surface (PES)
and corresponding force field (FF) of a molecule from first-principles calculations. The PES function links the
geometry x = [R1, . . . , Ra] ∈ R3×a of a molecule to its potential energy E ∈ R, where Ri are the Cartesian
positions of the a atoms of the molecule. In ab initio computations, this mapping is achieved by solving
the time-independent Schrödinger equation. The PES encodes essential information on the properties of
a molecule. Due to thermal and quantum effects, molecules are never perfectly rigid but assume different
configurations. The distribution of these configurations is determined by the shape of the PES. For example,
the minima of the PES will be sampled more frequently than other regions and correspond to stable structures.
This has practical implications since many experimental techniques measure an expectation value over
molecular distributions. In order to achieve a meaningful comparison, sampling needs to be taken into account
in theoretical simulations as well. One of the most successful approaches to sample molecular distributions is
MD simulation. They model the time evolution of the atomic positions, sampling the PES by integrating
Newton’s equations of motion. To this end, energy-conserving forces acting on each atom are required. These
forces are the negative derivative of the PES with respect to the atomic positions F ∈ R3×a.

This type of proxy for the prohibitively expensive ab initio quantum mechanical calculations is commonly used
to enable long-timescale MD simulations that consist of millions of steps, each requiring the evaluation of the
PES and FF for a new geometry. Converged MD trajectories give unique insights into the dynamic behavior
and structure-function relationships of physical systems at atomic scale. They are widely used in molecular
biology research and play a crucial role in applications such as protein folding and drug discovery. ML has
the potential to profoundly advance this field, as it bears the promise of offering a unique cost-accuracy
trade-off that is not achievable with traditional methods (Noé et al., 2020; von Lilienfeld et al., 2020; Unke
et al., 2021b; Keith et al., 2021). However, some commonly deployed ML-based FFs rely on rather naive
exhaustive sampling schemes to gather training data, which stands in the way of scaling to larger system
sizes, both, from a data acquisition cost and training perspective. Here, we demonstrate how our method can
be used to construct smaller, yet more effective training datasets.

In this experiment, we reconstruct a FF for the molecule malonaldehyde, which has a = 9 atoms and the
chemical formula C3H4O2 (see Fig. 13 (A)). Formally, we try to infer the high-dimensional target function
f : X → Y, R 7→ [E, F ], where X = R3a and Y = R1+3a. For visualization purposes, we only show a
two-dimensional subspace of the PES, which is characterized by the two main features of this molecule, its
two rotors (aldehyde groups) (Chmiela et al., 2018; Sauceda et al., 2020). Their relative orientation is the
dominant driver of the potential energy in this case and therefore most descriptive. Each point on the surface
depicted in Fig. 13 (B) is generated by fixing the rotor pair at a particular angle and relaxing all remaining

25



Published in Transactions on Machine Learning Research (12/2023)

LFC Estimate

Test density
Optimized data distributionGeometry

sampling
Energies &

Forces

e.g. 500K

Superior training
       density

A B C D E

Figure 13: Reconstructing ML-based FFs using our MoE approach: (A-B) The inputs and outputs of the
regression task are the geometries and energies (including forces, i.e., energy gradients) of malonaldehyde. As
an example, we highlight the geometries of the two energetically stable states found in the local minima of the
energy surface. (C) The density estimate of the true MD geometry distribution. (E) The superior training
density estimate (21) based on our approach. All properties are evaluated at the relaxed malonaldehyde
configurations and plotted with respect to the angles of the two aldehyde rotors of malonaldehyde (see
Chmiela et al. (2018); Sauceda et al. (2020)).

degrees of freedom to obtain a minimal energy configuration. We will refer to these geometries as the relaxed
configurations in the following.

To reconstruct the FF, we consider the broadly adopted symmetric gradient-domain machine learning
(sGDML) method (Chmiela et al., 2018; 2019), which is a GPR model that takes energy and force labels
and also roto-translational and permutational invariances of the geometries into account (see Appendix H.1
for details). We anticipate that sGDML will benefit from our MoE approach, where we deploy sGDML as
the expert model, since the transition paths along the PES vary in complexity, due to the interplay between
distinct atom types with different characteristic interaction length scales. Our AL approach can only improve
training efficiency if there are inhomogeneities in the data. Using our LFC estimate, we therefore first verify
our intuition that the PES of malonaldehyde varies in complexity. Based on this, we derive the superior
training density, which we finally input into our AL framework to refine the training dataset in a superior
way.

Experimental setup All experiments use an extensive pre-computed reference trajectory (almost a million
data points (Xpool, Ypool)) as ground truth, as opposed to generating new data points on demand. This test
setup allows a post-hoc verification of the training distribution generated by our AL approach, while still
providing ample redundancy and therefore sampling freedom.

Recall from Sec. 4.2 that we require an unnormalized density estimate of the trajectory Xpool ∼ pX since
we are dealing with a pool-based AL scenario. We estimate p̂X by standard kernel density estimation,
based on the energy-to-energy entry of the sGDML kernel k̃ from (46) at σ = 0.03. Fig. 13 (C) shows the
density estimate of the relaxed configurations, where we observe that pX is very unbalanced, with a strong
concentration of mass near the stable configurations.

We implement our MoE approach, using the sGDML kernel k̃ from (46) with a Gaussian base kernel function
k. While we sample the training data randomly (with appropriate weights) from the pool, we will draw
sub-samples (i.e., for choosing the IPs of sparse expert and gate models) via symmetrized distributional
clustering (DC) with distributional k-means++ initialization (see Appendix E).

Since this dataset comes with practically noise-free labels (we consider the first principle calculations as
ground truth), we tune the experts (and MoE model) with respect to MSE rather than the Obj objective.
For stability, we will apply v̂(x) = 10−9 even though we assume no noise.

Anisotropic bandwidths sGDML operates on d = a(a − 1)/2 = 36 features that are based on the
interatomic distances of the molecule. In contrast to the work of Chmiela et al. who restrict themselves to an
isotropic bandwidth ΣE = σEId, our implementation of sGDML in GPyTorch naturally enables us to tune
an anisotropic bandwidth ΣE = diag(σ1, . . . , σd) in the preprocessing step.
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Figure 14: A visualization of the individual
feature importance of malonaldehyde in the
anisotropic case: The structural formula of
the molecule is plotted in black. The im-
portance of the individual interatomic dis-
tances is reciprocal to ΣE , which is the
bandwidth estimate obtained by training the
anisotropic sGDML model. Hence, we ex-
press the importance of each interatomic dis-
tance of the molecule in red, where the im-
portance corresponds to the line saturation
γ =

[
− log(ΣE)−min(− log(ΣE))

max(− log(ΣE))−min(− log(ΣE))

]2
∈ [0, 1].

We partially offset the increased memory footprint of the model due to the tunable ΣE by implementing the
sparse GPR model from Sec. 3.4.1 under the sGDML kernel k̃ from (46) and limiting the number of IPs to
m = 128 configurations. Since all our features are of the same type—pairwise interatomic distances—they
are inherently calibrated in terms of scale. Hence, the reciprocal entries of ΣE directly translate into the
importance of the features, which we display in Fig. 14.

We observe, that the importance assigned to some pairs of atoms agrees with chemical intuition, e.g.,
interactions with light hydrogen atoms are generally weaker. Furthermore, the important role of the opposing
aldehyde groups in malonaldehyde emerges in the form of a heavily weighted path that connects the O-C-C-C-O
backbone of the molecule.

In Fig. 15 we see that our anisotropic variant of sGDML performs consistently better than the original
isotropic sGDML model. Similar to the calculation of the relative sample size in (31) we can compare two
models of equal asymptotic MSE law. When comparing anisotropic to isotropic sGDML, both under random
test sampling, we can save about 10% of samples.

Setting up the MoE model After having trained ΣE , we apply dense sGDML experts with Σj = σjΣE ,
where σj = 2−5/4+j/2, 1 ≤ j ≤ 8 as the individual expert bandwidths, λE = 1 as the initial expert
regularization, and σG = 0.1 and λG = 104 for the sparse gate with 1024 IPs. For the training, we apply a
batch size of B = 1024, a terminal expert sparsity κ = 8, a penalty factor of ϑσ = 0.01 for small bandwidth
choices, gate noise parameters s0 = 0.01 and ηs = 1/

√
2, and learning rate parameters η = 0.005, ηH = 0.05,

ηG = 0.1. As we discuss in Appendix F, for tuning the MoE with dense (sGDML) experts, we either require
an additional gate training set, which is independent of the training set for the experts, or we could provide
leave-one-out (LOO) responses of the experts for the training of the gate. In our experiment, we use an
additional gate training set XG

nG
of fixed size nG = 214. The anisotropic MoE model performs consistently

better than anisotropic sGDML, as can be seen in Fig. 15. When comparing the anisotropic MoE model to
isotropic sGDML, both under random test sampling, we can save about 21% of samples.

Active learning We assume an intrinsic dimension of δ = 2 (the two aldehyde rotor angles, the most
salient features of malonaldehyde) and a smooth target function f ∈ C∞ (X ,Y). The test distribution is
given by the MD trajectory such that q = pX . Prior to the AL procedure, we separate the validation samples
Xval and test samples XT at random from the pool Xpool. We apply an initial expert training size of
n0 = 29, doubling the sample size with each iteration of the AL procedure. The initial expert training set
Xn0

and the gate training set XG
nG

are drawn via importance sampling from the remaining pool with weights
p̂

−1/2
X (Xpool \ (Xval ∪XT)). By this it is Xn0

∼ q1/2, which is more in alignment with the superior training
density (21) than sampling Xn0

∼ q.
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Figure 15: The RMSE under the true MD trajectory test distribution for different variants of sGDML and
training distribution at varying training size: The performance is given for passive sampling, using the original
isotropic sGDML (dotted), anisotropic sGDML (dash-dotted) and our MoE model with anisotropic sGDML
experts (dashed), and for the MoE model, applying the proposed superior sampling scheme (solid). The
results are averaged over 5 repetitions.

In Fig. 13 (D, E) we show the estimates of LFC and the superior training density under the pool test
distribution, evaluated on the relaxed configurations of malonaldehyde. The LFC estimates confirm our
expectation that the transition areas are more complex to model than the regions near the stable configurations.
Subsequently, our active sampling scheme shifts sample mass away from the stable regimes in favor of the
transition areas.

We have plotted the error curves of passive and active sampling schemes in Fig. 15. When estimating the
relative sample size (31) that we require to achieve the same RMSE via active sampling compared to random
test sampling, we obtain ϱ(f̂MoE, p̂GPR,n

Sup ) = 0.920 ± 0.013. This means that we save about 8% of samples
under the MoE model with our active sampling scheme compared to random test sampling. In total, when
comparing our actively trained MoE approach to the passively trained, original sGDML model, we can save
about 31% of samples. Notably, DFT level calculations (Perdew et al., 1996; Blum et al., 2009; Tkatchenko
& Scheffler, 2009) for the studied system require minutes to hours of computation per sample, CCSD(T) level
computations even require days of computation per sample. So in the field of quantum chemistry saving
roughly a third of computing power is of practical importance.

6 Discussion

Active learning Recall that in this work we have restricted ourselves to the scenario of model-agnostic AL
with persistent performance at large training size. This scenario is complementary to the more common small
sample size regime. And while both cases are important, a lot of AL related work (as discussed in Sec. 2)
does not apply to our AL scenario. We also discussed and demonstrated in our experiments that input space
geometric arguments which are model-free asymptotically come with no benefit over random test sampling.
Since our proposed model is GPR-based, we also analyzed uncertainty sampling (MoGPU) for our MoE model
to show that our proposed superior sampling scheme differs from uncertainty sampling. Moreover, our superior
sampling scheme showed to be superior to uncertainty sampling. Finally, in the regime of our AL scenario,
the approach by Panknin et al. (2021) recently has demonstrated state-of-the-art performance to recent,
sophisticated, model-agnostic AL approaches. This was done by training different models on the actively
constructed training sets of their and other AL approaches and assessing their performance. In particular,
they compared favorably to Goetz et al. (2018)—a random tree-based AL approach—in a heteroscedastic
setting, using a regression forest model and to Bull et al. (2013)—a wavelet-based AL approach—in a setting
of inhomogeneous complexity, using an RBF-network. This demonstrates the flexibility of this AL approach
in terms of learning problem specifications as well as model choices. Now that our work builds on the previous
work of Panknin et al. (2021), state-of-the-art performance of our work is implied.
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Interpretability of LFC Due to model-agnosticity, we consider LFC to be an intrinsic, interpretable
property of the regression problem, which can be used as an analysis tool by domain experts:
When looking at a single point in a high-dimensional input space, a visual assessment of the local structural
complexity (e.g., a human can visually detect more complexity to the left of the Doppler function) is
challenging. Here, the scalar LFC value gives a human assessable, quantitative description. The LFC (as
a scalar-valued function) then even allows for an easy visualization of the local structural complexity in
high-dimensional input spaces, if the input space features a reasonable low-dimensional projection. This
benefit was demonstrated in the high-dimensional FF reconstruction experiment, where the two-dimensional
visualization of LFC provides new insights into the regression problem. Note that the LFC function cannot
be visualized in the absence of a low-dimensional projection.

Parsimonious modeling We proposed a novel, model-agnostic approach to select the IPs of GPR, sampling
them in a diverse way from a distribution that is representative for the training data and respects the LFC.
In the experiments, we have seen that for problems of inhomogeneous complexity, our approach sustains the
expressive power of the model at a considerably smaller number of IPs, compared to the GFF IP selection
method of Seeger et al. (2003).

Heteroscedasticity While inhomogeneities in noise are not the focus of our work, note that both, our model
as well as the original AL framework upon which we built our approach naturally deal with heteroscedasticity.
It, therefore, suffices to complement our work with an estimate of the noise variance function v as, e.g., given
in Kersting et al. (2007); Cawley et al. (2006). The only aspect left open is to elaborate on the impact of v
on the LOB of GPR and, thus, the adequate adjustment with respect to v in the derivation of the LFC. As
we argued, GPR already treats heteroscedasticity through local adaptions of the regularization. Hence, we
assume the influence of v on the LOB to be negligible to not existent. This is opposed to the LOB of LPS
whose only way to deal with heteroscedasticity is through adaption of its LOB.

Intrinsic dimension and smoothness of the problem In our derivation of LFC and the superior
training density, we assumed the intrinsic dimension δ ≤ d and the smoothness α ∈ (0,∞] of f ∈ Cα (X ,R)
to be given through domain knowledge.

If δ is unknown, we can estimate it from unlabeled input instances, such as Xpool in a pre-processing step.
However, this is beyond the scope of our work and we refer to the approach of Facco et al. (2017)5 for an
estimate of the δ for unbalanced input distributions in high-dimensional input spaces X .

If we have no ground truth knowledge about the smoothness α of the target function f ∈ Cα (X ,R), we
resort to α̂ =∞ as default in practice. This assumption is justified, as long as f happens to be rougher in at
most finitely many locations of the input space. Since, asymptotically, the violation of α =∞ affects only
a set of measure zero, the influence on our AL setting that addresses large training sizes is marginal. We
consider the restriction to target functions that are at most rough on a finite set of input space locations a
weak assumption which, thus, comes with no practical limitations.

One way to deal with an unknown smoothness α is to deploy the Matérn kernel

kν(x, x′) := 21−ν

Γ(ν)
(
∥x− x′∥/σ

)ν
k̃ν

(
∥x− x′∥/σ

)
,

where Γ is the gamma function and k̃ν is the modified Bessel function of the second kind or order ν. After
finding the best fitting ν∗, we obtain by α̂ := ⌈ν∗⌉ − 1 a reasonable estimate to α. We defer this idea to
future work as it is beyond the scope of this work.

Dimensional scaling As opposed to nonstationary GP approaches (e.g., the tree-based or local GP by
Gramacy & Lee (2008); Gramacy & Apley (2015) that suffer from the curse of dimensionality through input
space localization, we segment the input space into a fixed number L of patches, given by the L experts of our
MoE. Thus, if we were to instantiate our MoE with dense GPR models, our approach scales well concerning
the input space dimension d. However, in real-world applications, we typically deal with training sizes that
are too large for dense modeling. In this regime, sparse GPR representations scale poorly in d as their IPs

5For an implementation in Python see https://scikit-dimension.readthedocs.io/en/latest/index.html
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must be space-filling (Binois & Wycoff, 2022). Likewise, our density-based AL approach encounters decaying
power for large d. A low intrinsic dimension (δ < d) of the regression problem is therefore crucial for our
work to apply.

LFC and the superior sampling scheme as a ML concept Recall that we consider LFC to be a
problem intrinsic property. Here, the problem is characterized by features x ∈ X with labels f(x) ∈ R, a
hypothesis space of locally adaptive models, and the MISE as the loss function (or rather the pointwise MSE
from (1) due to the localization of LFC). In this sense, LFC is formally a property of the combination of
model and loss according to the characterization of (Jung (2022), Chapter 2). Similarly, the superior training
density is a property of the combination of model and loss with respect to the same hypothesis space and
MISE instead of the pointwise MSE as loss function.

On a realistic implementation in ab initio FF reconstruction In our FF reconstruction experiment,
we assumed a large unlabeled reference trajectory Xpool to be given that already follows the true molecular
distribution. This will not be given in practice, since building the input trajectory already requires the
computationally expensive estimation of the respective labels. At this point, the actual task behind the
regression problem would already be solved. We outline a realistic ab initio FF reconstruction scenario in
Appendix H.3.

7 Conclusion

Standard ML tasks implicitly assume a certain homogeneity in the data scales. However, in practice this
structural property of the learning problem may not be fulfilled, e.g., in multiscale problems from the sciences
such as turbulence (Brunton et al., 2020) or quantum chemistry (Noé et al., 2020; von Lilienfeld et al., 2020;
Unke et al., 2021b; Keith et al., 2021).

In this work, we aimed to identify local inhomogeneities in regression tasks, which can be used to construct
better models and training datasets and for domain interpretation. To this end, we combined recent results on
model-agnostic LFC estimates and asymptotically optimal sampling, which are founded in the domain of LPS,
with estimates of LOB, which are derived in the GPR domain. By this, we benefit from both sides, having a
theoretically sound superior sampling scheme on the one hand, and having access to the required estimates
from a model that naturally can cope with high input space dimensions on the other hand. Furthermore, we
have shown how respecting LFC in the selection of IPs contributes to parsimonious modeling.

On synthetic data, we showcased and validated our approach, where we analyzed similarities with the
LPS-based analog but also compared to the most related GP uncertainty sampling concepts for AL. To
show the full potential of our approach, we studied a real-world, high-dimensional force field reconstruction
task. Our approach not only gave access to an interpretable visualization of the inhomogeneous structural
complexity but also guided the sampling process in a way that takes the structural changes into account,
enhancing the quality of the training data. Here, we additionally identified the multi-scale structure of the
individual atomic interactions, whose treatment also results in a substantial performance gain of the broadly
adopted method sGDML.

Future work In Sec. 4.1 we conjecture that the LOB of heteroscedastic GPR is invariant or scales at most
weakly with respect to the local noise level v(x). This claim should be supported by further theoretical
investigation. While we deployed our estimates of LFC and the superior training density, using α̂ = ∞,
if the smoothness of the target function f ∈ Cα (X ,R) is unknown, it is possible to (re-)estimate α̂, e.g.,
by tuning the regularity of the Matérn kernel of a GPR model after the acquisition of each new training
data batch. While we have compared to baseline IP selection methods, a thorough comparison to more
sophisticated approaches remains open. A promising idea is also to combine our LFC estimate with the IP
selection approach by Moss et al. (2023) to obtain informative and diverse IPs in GPR. Finally, we will focus
on the application of our approach to real-world problems from chemistry, physics, and further domains also
applying techniques from explainable AI (e.g. Samek et al. (2021); Letzgus et al. (2022)). In particular,
recent advances on sGDML regarding the scalability by Chmiela et al. (2023) will enable the application of
our approach to large molecular systems.
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A Asymptotic results for local polynomial smoothing

In this section, we will review the theory of Panknin et al. (2021).

The prediction of the LPS model of order Q under the bandwidth Σ ∈ Sd
++ in x ∈ X can be understood as

follows: First, the regression problem is localized around x according to weights kΣ(·, x) that decrease with
growing distance to x. Then we search for the polynomial up to order Q that fits the localized regression
problem best. Finally, the evaluation of this polynomial in x is returned as the prediction. Formally, it is

mΣ
Q(x) = p∗

Q,Σ,x(0), where (33)

p∗
Q,Σ,x = argmin

p∈PQ(Rd)

∑n

i=1
kΣ(xi, x) (yi − p(xi − x))2

,

and PQ(Rd) is the space of the real polynomial mappings p : Rd → R up to order Q.

The localization is controlled by Σ through the kernel weights KΣ(x, xi) for xi ∈Xn: For an RBF-kernel,
kΣ(x, x′) decays monotonically with growing distance of x′ to x. This decay is dampened or amplified as Σ
increases or decreases, respectively (in the sense of the Loewner order).

For readability, since Σ will be replaced by terms with more involved notation, we redefine (1) by

MSE
(

x, f̂ , Σ|Xn

)
:= MSE

(
x, f̂Σ|Xn

)
. (34)

For a bandwidth space S ⊆ Sd
++, Panknin et al. (2021) proposed to minimize the AL objective

MISE
(

q, f̂ |Xn

)
=

∫
X

infΣ∈S MSE
(

x, f̂ , Σ|Xn

)
q(x)dx, (35)

which is the optimal MISE, obtained by predictions that are based on locally optimal chosen bandwidths. If
these locally optimal bandwidth choices are well-defined, that is, if for all x ∈ X there exists a unique Σ′ ∈ S
such that

MSE
(

x, f̂ , Σ′|Xn

)
= infΣ∈S MSE

(
x, f̂ , Σ|Xn

)
,

we are able to define the LOB function

Σn(x) = argminΣ∈S MSE
(

x, f̂ , Σ|Xn

)
.

This function exists, for example, in the isotropic case S = {σId | σ > 0} for LPS under mild conditions,
where we denote Σn(x) = σn(x)Id (see, e.g., Masry (1996; 1997); Fan et al. (1997) or Panknin et al. (2021)
for an overview).

Assuming the isotropic bandwidths candidate space S = {σId | σ > 0}, the LOB as in Eq. (4) is an
asymptotically well-defined function under mild assumptions6: Denoting the LOB of LPS of order Q by
Σn

Q(x) = σn
Q(x)Id such that

σn
Q(x) = argminσ>0 MSE

(
x, mQ, σId|Xn

)
, (36)

asymptotically it holds

σn
Q(x) = CQ

[
v(x)

p(x)n

] 1
2(Q+1)+d bQ [x, Id]−

2
2(Q+1)+d + op

[
n− 1

2(Q+1)+d

]
, (37)

where CQ is a constant, and bQ [x, Id] is a function of x taken from the asymptotic conditional bias
f(x) − E

[
mhnId

Q (x)
∣∣∣Xn

]
of LPS (Masry, 1996; 1997). That is, for a sequence hn → 0 as n → ∞ we can

write the conditional bias, which is of order Q + 1, as

f(x)− E
[
mhnId

Q (x)
∣∣∣Xn

]
= hQ+1

n bQ [x, Id] + op

[
hQ+1

n

]
. (38)

6We require non-vanishing leading bias- and variance-terms of mQ(x), which is guaranteed if ∀x ∈ X it holds that bQ [x, Id] ̸= 0
from Eq. (38) and v(x) > 0.
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Eq. (37) shows how LOB scales asymptotically with respect to the training size n, the local noise level
function v(x) and the training density p(x). The remaining bias component depends on the local structural
complexity, which can be characterized by the derivatives of f in a non-trivial way. Therefore it encodes the
local structural complexity of f . Given all other properties and LOB itself, we are able to formulate LFC in
a closed form.
Definition 6 (Panknin et al. (2021)). For LPS of order Q, the LFC of f in x ∈ X is asymptotically given by

Cn
Q(x) =

[
v(x)

p(x)n

] d
2(Q+1)+d ∣∣Σn

Q(x)
∣∣−1 =

[
v(x)

p(x)n

] d
2(Q+1)+d

σn
Q(x)−d.

As already mentioned in Eq. (35), given a test density q, the AL task is to minimize MISE
(
q, mQ|Xn

)
. Now,

if LOB is well-defined, we can rewrite

MISE
(
q, mQ|Xn

)
=

∫
X

infΣ∈S MSE
(
x, mQ, Σ|Xn

)
q(x)dx

=
∫

X
MSE

(
x, mQ, Σn

Q(x)|Xn

)
q(x)dx.

Finally, when solving for the optimal training dataset

X ′
n ≈ argminXn∈X n MISE

(
q, mQ|Xn

)
,

as in Eq. (3), the optimal training inputs X ′
n can be written asymptotically as an independent and identically

distributed sample from the optimal training distribution, whose density pQ,n
Opt possesses an asymptotic closed

form.
Theorem 7 (Panknin et al. (2021)). Let v, q ∈ C0 (

X ,R+

)
for a compact input space X , where q is a test

probability density. Additionally, assume that v and q are bounded away from zero. I.e., v, q ≥ ϵ for some
ϵ > 0. Let k be a RBF-kernel with bandwidth parameter space S = {σId | σ > 0}. Let Q ∈ N be odd and
f ∈ CQ+1 (X ) such that the bias of order Q + 1 does not vanish almost everywhere. Then the optimal training
density for LPS of order Q is asymptotically given by

pQ,n
Opt (x) ∝

[
Cn

Q(x)q(x)
] 2(Q+1)+d

4(Q+1)+d v(x)
2(Q+1)

4(Q+1)+d (1 + o(1)).

We will use this optimal distribution to sample X ′
n ∼ pQ,n

Opt with a proposed estimator for Cn
Q that is scalable

with respect to the input space dimension.

For LPS with X ′
n ∼ p and Xn ∼ q, we can asymptotically calculate the relative required sample size from

Definition 2 in Sec. 4.1 by

ϱ(mQ, p) =
[

MISE(q,mQ|X′
n)

MISE(q,m
Q

|Xn)

] 2(Q+1)+d
2(Q+1)

. (39)

B Analytic GPR formulations

B.1 Classical Gaussian process regression

The GPR model ŷ ∼ GP(θ) (see, e.g. Williams & Rasmussen (1996)) is defined as follows: The GP is described
by the hyperparameters θ = (µ, λ, v̂, Σ), which are the global constant prior mean µ, the regularization
parameter λ, the label noise variance function v̂ and the bandwidth matrix Σ of the kernel. If we can assume
homoscedastic noise, we let v̂(x) ≡ σ2

ε .

The GP prior then assumes the labels Yn of Xn to be distributed according to Yn = ŷ(Xn) ∼
N (·; µ(Xn), C(Xn)|θ), for the constant mean function µ(Xn) = µ1n, and the covariance function

C(Xn) = λKn + diag(v̂(Xn)),
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where Kn = KΣ(Xn) is the kernel matrix of Xn.

For test inputs X∗, the posterior predictive distribution of Y∗ is then given by

ŷ(X∗) ∼ N (·; µ∗(X∗), C∗(X∗)|θ),

where the predictive mean and covariance are given by

µ∗(X∗) = µ(X∗) + C∗nC−1
n (Yn − µ(Xn)), (40)

C∗(X∗) = C∗ −C∗nC−1
n C⊤

∗n, (41)

and we have defined
C(Xn ∪X∗) =

[
Cn C⊤

∗n

C∗n C∗

]
.

B.2 Analytic sparse Gaussian processes

We define the sparse GPR model ŷ ∼ SGP(θ) as follows, following Snelson & Ghahramani (2005): The sparse
GP is described by the (hyper-) parameters θ = (µ, λ, v̂, Σ, X†), which are the global constant prior mean µ,
the regularization parameter λ, the label noise variance function v̂, the bandwidth matrix Σ of the kernel and
the prior distribution, given by the IP locations X† ∈ Xm.

Here, the degree of sparsity is described by m IPs: This number can be fixed in advance or gradually
increased with training size n, where the increase mn = o[n] is typically much slower than n. If we can
assume homoscedastic noise, we let v̂(x) ≡ σ2

ε .

The sparse GP then outputs
ŷ(X∗) ∼ N (·; µ∗(X∗), C∗(X∗)|θe)

for the mean function

µ∗(X∗) = K∗†Q−1
† K⊤

n†(Λ + diag(v̂(Xn)))−1(Yn − µ(Xn))

and the covariance function

C∗(X∗) = K∗ −K∗†(K−1
† −Q−1

† )K⊤
∗† + diag(v̂(X∗))

where we have defined K† = KΣ(X†), Kn = KΣ(Xn), K∗† = KΣ(X∗, X†), Kn† = KΣ(Xn, X†),
Q† = K† + K⊤

n†(Λ + diag(v̂(Xn)))−1Kn†, and Λ = diag(λ) with λ = diag(Kn + Kn†K−1
† K⊤

n†).

We choose µ to be the constant mean function, i.e., µ(X) = µ1n for X ∈ Xn, noting that other mean
functions are possible.

C LFC of GPR

Theorem 1 (LFC of GPR). For f ∈ Cα (X ,R), Xn ∼ p and homoscedastic noise, the GPR-based LFC
estimate of f in x ∈ X is asymptotically given by

Cn
GPR(x) :=

[
1

p(x)n

] d
2α+d

|Σn
GPR(x)|−1

. (19)

Proof. Let X =
⊎k

i=1
X k

i be a segmentation of the input space with non-empty interiors (X k
1 )◦, . . . , (X k

k )◦ ̸= ∅,
over which we can define the restricted bandwidth function search space

Sk =
{

Σ(x) =
∑k

i=1 1X k
i

(x)Σi

∣∣∣∣ Σ1, . . . , Σk ∈ S
}

.
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Here, 1A(z) is the indicator function, returning 1 for z ∈ A and 0, else. Furthermore let Σk,n ∈ Sk be the
minimizer of the MISE over Sk with Σk,n(x) =

∑k

i=1 1X k
i

(x)Σk,n
i such that

∫
X

MSE
(

x, f̂Σk,n(x)|Xn

)
q(x)dx = minΣ∈Sk

∫
X

MSE
(

x, f̂Σ(x)|Xn

)
q(x)dx.

Recall from (9) that Σn
GPR ∝ n− 1

2α+d generally holds for arbitrary input spaces. Due to this, asymptotically,
f̂|X k

i

does not depend on training samples outside X k
i . Hence, letting Xi,n :=

{
x ∈Xn

∣∣ xi ∈ X k
i

}
, the

individual Σk,n
i are asymptotically found by solving the isolated segments of the objective

∫
X k

i

MSE
(

x, f̂Σk,n
i |Xi,n

)
q(x)dx = minΣ∈S

∫
X k

i

MSE
(

x, f̂Σ|Xi,n

)
q(x)dx.

First of all, it is EXi,n = p(X k
i )n, where p(A) :=

∫
A

p(x)dx is the probability for a training sample to fall

into A ⊂ X . In addition, we need to account for the expanse of X kn
i , which we measure by Vol(X kn

i ). Here,

Vol(A) :=
∫

A
dx is the volume of A ⊂ X . Again with (9), it is therefore

Σk,n
i ∝

[
p(X kn

i )/Vol(X kn
i )n

]− 1
2α+d

.

Subsequently, we can slowly refine the segmentation X =
⊎kn

i=1
X kn

i , where max1≤i≤kn
Vol(X kn

i )→ 0 for
kn →∞ slow enough (with kn = o(n)). Then, for almost every x ∈ X , there exists a sequence (ik,x)k∈N with
x ∈ X k

ik,x
for all k ∈ N such that

Σkn,n
ikn,x

= p(x)n(1 + op [1]).

By construction, it is Σkn,n
ikn,x

= Σn
GPR(x)(1 + op [1]). It follows Σn

GPR(x) = p(x)n(1 + op [1]) such that

|Σn
GPR(x)| = [p(x)n]

d
2α+d (1 + op [1]). Therefore, asymptotically, Cn

GPR(x) :=
[

1
p(x)n

] d
2α+d |Σn

GPR(x)|−1 does
not depend on n and p. Under homoscedasticity, asymptotically, Cn

GPR is necessarily a function that only
depends on f , which justifies its use as a measure of LFC. ■
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D Algorithmic summary of the proposed AL framework

Algorithm 2: (ΘH , ΣE)← hyper_init(Xn0
, Yn0

, p0, Xval, Yval)
Input
1: Initial training data (Xn0 , Yn0 )
2: Training data density p0
3: A labeled validation set (Xval, Yval)
Output
4: Initial hyperparameters ΘH = (B, κ, {σl}L

l=1, σG, λG, XE
† , XG

† , s0, ηs, ϑσ , η0, ηH , ηG)
5: Global (anisotropic) expert bandwidth ΣE ∈ ΘT

Procedure
6: ▷ Initialize secondary hyperparameters related to computational complexity
7: Identify κ ≡ L

8: Set mE ← n0 and mG ← n0
4 ▷ Recall mE =

∣∣XE
†

∣∣, mG =
∣∣XG

†

∣∣ are the number of IPs
9: Draw IP locations XE

† , XG
† ∼ p0 as described in Appendix E

10: ▷ Tune expert-related hyperparameters
11: Choose (B, η0, ηH) as described in Sec. 4.4.3 according to the validation performance of SVGP(θ), where µ, λ, v̂, ΣE , µ† ∈ θ

are learned with respect to (Xn0 , Yn0 ) and (B, η0, ηH)
12: Set ΣE ∈ ΘT , where we choose ΣE ∈ θ from the best performing SVGP(θ) of the previous step
13: ▷ Initialize secondary hyperparameters related to fine-tuning
14: Set L← 7 and σl ← 2

l−4
δ for 1 ≤ l ≤ L as described in Sec. 4.4.3

15: Set s0 ← 0.1, ηs ← 1/
√

2 and ϑσ ← 0.01 as described in Sec. 4.4.3
16: ▷ Tune MoE related hyperparameters
17: Choose (σG, λG, ηG) as described in Sec. 4.4.3 according to the validation performance of f̂MoE from (15), where the model

parameters ΘT \ {ΣE} from (28) are learned with respect to (Xn0 , Yn0 ) and the model hyperparameters ΘH \ {σG, λG, ηG}
from (27) are fixed

18: Choose (ϑσ, s0, L, {σl}L
l=1) as described in Sec. 4.4.3 according to the validation performance of f̂MoE, where the model

parameters ΘT \{ΣE} from (28) are learned with respect to (Xn0 , Yn0 ) and the model hyperparameters ΘH\{ϑσ , s0, {σl}L
l=1}

from (27) are fixed
19: Decrease κ ∈ ΘH (beginning from κ = L) as long as the validation performance of f̂MoE does not degrade

E Finding diverse IP locations

In order to obtain diverse IP locations with a certain distribution, we consider two approaches, Stein
variational gradient descent (SVGD) (Liu & Wang, 2016; Han & Liu, 2018) and distributional clustering (DC)
(Krishna et al., 2019).

Stein Variational Gradient Descent SVGD takes a particle swarm and tries to align the empirical
distribution of the particles with a target distribution, of which we require the density, as well as its derivative
(Liu & Wang, 2016). In addition, the individual particles repel each other, such that we have both diversity
and representativeness. In our scenario we have no access to this derivative, such that we resort to the work
of Han & Liu (2018) that is solely based on the density. Since the particles move freely in the input space
and we have to evaluate the target density a considerable number of times, we suggest applying SVGD, when
we deal with well-behaved input spaces and target densities that are easy to evaluate. If the input space is
only given through high-dimensional features from a finite set of samples, SVGD might move particles into
regions far apart from the data manifold.

Distributional Clustering DC is similar to the known k-means clustering (Gan et al., 2020) but solves
a different inertia objective, that is modified such that asymptotically, as the number of cluster centers∣∣∣X†

∣∣∣ → ∞, the distribution of the training data is preserved (Krishna et al., 2019). Under the standard

k-means clustering objective, we would observe X† ∼ p
d

2+d (Graf & Luschgy, 2007), where it was Xn ∼ p.
Since we intend to use clustering for sub-sampling rather than identifying a fixed number of true cluster
centers, we deal with a comparably large number of cluster centers, here. Thus, we will use DC so as to
obtain a representative set of IPs. Due to very mild assumptions on the problem, DC is specifically easy to
perform in higher dimensions.
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Dealing with local optima of DC The inertia objective of DC is given by

inertiaDC[c|Xn] =
∑

c∈c

∑
x∈Ic

1x ̸=c log ∥x− c∥, (42)

where

Ic =
{

x ∈Xn

∣∣ ∥x− c∥ ≤ ∥x− c′∥,∀c′ ∈ c
}

(43)

are those elements in Xn that are closest to the center c.

In the classical Lloyd-step the centers are updated so as to minimize the intra-cluster inertia, which is given
in the case of DC by

c∗ = argminz∈Ic

∑
x∈Ic

1x ̸=z log ∥x− z∥. (44)

It is a known problem that k-means-related inertia objectives suffer from local optima (Arthur & Vassilvitskii,
2007): The converged solution of cluster centers will typically lie close to their initialization. One way to
tackle this issue in practice is to run multiple repetitions of the procedure, followed by choosing the solution
with minimal inertia. Unfortunately, the amount of local optima increases with the number of cluster centers.
In our case, where we use DC for sub-sampling rather than clustering in its usual sense, we deal with a large
number of clusters such that this strategy becomes computationally tedious.

Complementary to running multiple repetitions of k-means, we will extend the state-of-the-art method
k-means++ for choosing the initial set of clusters in a more sophisticated way, where we additionally account
for the training distribution. Given the inertia objective

inertia[c|Xn] =
∑n

i=1
minc∈c ∥xi − c∥2

of the cluster centers c, the k-means++ procedure builds the set of initial cluster centers as follows: Draw the
first center c1 randomly from Xn. Then keep track of the current closest squared distance

dm
i = min

j∈{1,...,m}
∥xi − cj∥2 (45)

of each element xi ∈ Xn to the so far drawn centers c1, . . . , cm and sample the next center cm+1 with
probability ∝ (dm

i )n
i=1 from Xn. This procedure is repeated until the desired number of cluster centers is

reached.

The advantage of k-means++ is that the initial centers are more diverse than if they were sampled at random
from Xn. However, in its standard form, the centers initialized by k-means++ are themselves distributed
flatter than Xn. And so, in the case of DC, we propose the following adjustment for a distributional
k-means++:

We sample with probability ∝
(
dm

i p(xi)2/d
)n

i=1 from Xn, where Xn ∼ p.

Symmetrized DC for molecules Since any symmetric molecule has multiple equivalent representations,
care must be taken when measuring distances in DC. The key idea is to always compare the two configurations
in its closest representation. Using the notation from Appendix H.1, let

d(z, z′) = min1≤s≤s ∥Φ(z)− Φ(πsz′)∥

be the symmetrized distance between two molecule representations. The symmetrized DC algorithm is then
obtained by replacing all occurrences of ∥z − z′∥ with d(z, z′) in the cluster assignments Ic, the objective
inertiaDC[c|Xn], the cluster updates c∗ and closest distances dm

i from Equations 43, 42, 44 and 45.

F Design choices of the sparse MoE model

In Sec. 4.3 we have made several design choices with computational feasibility in mind. We will discuss these
summarized in this section.
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The gate model While in Sec. 4.3 we have chosen the gate gl ∼ SVGP(θgl
) to be a GPR model, note that

any choice of model with sufficient flexibility would have been possible. GPR features universal approximation
properties, which makes it a favorable choice.

Furthermore, the gate should come with a small degree of freedom to prevent compared to the experts to
prevent those from overfitting during the training of the MoE. For this reason, and the fact that we have no
ground truth labels for the training of the gate anyhow, we choose our GPR-based gate to be sparse.

Finally, note that we share the set of gate IP locations XG
† across all gate channels. While this is not

necessary, it simplifies our method without costs as the MoE is rather insensitive concerning the gate IP
locations, as long as these are well-spread.

The expert models While we made clear why we use GPR experts in our work, we left open in Sec. 4.3,
whether these experts should be sparse or dense. Here, the deciding factor is the amount of n training samples
that we have to deal with: When n goes beyond a few thousand, we suggest switching to sparse GPR experts
for computational reasons. Note that after training of the MoE, it is also possible to switch back to full GPR
experts, if one aims for a high accuracy predictor. For the purpose of AL, this is not necessary.

Similar to the gate, we share the IP locations XE
† across all experts, which simplifies our model. In contrast

to the gate situation, the MoE is sensitive to the choice of expert IP locations. Now, if we were to allow
individual IP locations for each expert, an elsewise locally underperforming expert might work better than the
remaining experts due to a lucky choice of its individual IPs. Subsequently, this would result in a sub-optimal
gate and, hence, ultimately in a wrong superior training density estimate.

For better generalization, if our MoE model comprises dense GPR experts, we will either have to rely on
individual training sets for the experts and the gate, or we use leave-one-out expert responses on a shared
training set.

In the sparse expert case, it is necessary to learn reasonable inducing values µ† prior to the actual learning
procedure of the MoE to not get stuck in a spurious solution. Therefore, there should be a short pre-training
phase for each individual expert.

In addition—whether or not the experts are sparse—the shared expert parameters µE , λE , v̂, ΣE should be
initialized reasonably. In this regard, we suggest training a single, global expert model before the (pre-)training
of the actual experts to obtain those initial parameter estimates for which we have no prior knowledge. If
we assume isotropic bandwidths to be sufficient, we can simply set ΣE = σEId and learn the scalar σE > 0
instead. Note that, from practice, the training of the MoE suffers tremendously from online changes of the
expert bandwidths. Thus, we suggest to keep ΣE fixed after initialization.

Finally, note that, if we stick with sparse experts after training of the MoE, it can be beneficial for the
prediction accuracy to re-train the MoE, where we keep the gate fixed. In this post-processing step, we would
like to apply larger learning rates on the experts to escape local optima. However, larger learning rates also
lead to underperforming intermediate steps, in which an actively trained gate might reject the best fitting
expert at random—therefore pushing the gate towards a local optimum. Keeping the pre-trained gate fixed
at this point prevents this undesired behavior.

The IPs Recall that we have set the covariance S† = 0 of the inducing value distribution to zero, whereas
it could have also been a diagonal or positive definite matrix. Playing around with this parameter, we have
seen no significant improvement that would justify the considerable amount of additional model parameters
from a computational point-of-view.

In our approach we suggest keeping the IP locations fixed, which is also for reasons of computational
feasibility, but, more importantly, adaptive IP locations come along with heavy prediction instabilities during
the training.

We found it necessary and sufficient to initialize the IP locations by state-of-the-art methods, as described in
Appendix E.

The MoE objective For the training of our MoE in Sec. 4.4.1, we added a penalty on small bandwidth
choices. As described in (Lepski, 1991; Lepski & Spokoiny, 1997), the optimal bandwidth choice is the largest
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one that is capable of modeling the function. Now that we are able to model a comparably flat function by
small bandwidths, as long as we have got enough training support, it can occur that, with no regularization,
we choose a too-small bandwidth for such a flat region. A too-small bandwidth choice might cause overfitting.
But even worse, in the subsequent AL loop the flat region is falsely identified as complex, leading to more
training queries in this location, which then allow for even smaller bandwidths to model this flat region. We
will demonstrate this pathological behavior for the unregularized case on toy-data in Sec. 5.1.

The gate noise s Like already mentioned in Sec. 4.4.1, it is possible to tune s in the training process:
Remark 8. Shazeer et al. (2017) proposed to learn the s parameter by adding a penalty term to the main
objective that penalizes the imbalance of how likely training inputs are assigned to each expert: Let πb ∈ [0, 1]L
be the expert assignment probabilities of xb and define πB =

∑
b∈B

πb. Then they add a penalty V[πB]
/

[EπB]2

to the objective, which is the squared coefficient of variation—a coefficient that accounts for the non-uniformity
of a set of positive variables.

We justify our simple heuristic to shrink s in a static way as follows: Recall from Sec. 4.3 that s prevents
premature commitment to a spurious solution. When treating s as a trainable parameter, it does not decay
towards zero. Maintaining the noise then prevents the locally best-performing experts from converging by
randomly withholding training samples. For this reason, we find that s behaves best when decaying towards
zero as the training progresses.

G Supplemental results on the Doppler experiment

G.1 The single-scale GPR model

When training a single-scale GPR model on the Doppler dataset, the tuned bandwidth parameter will
typically take an intermediate value, trying to compromise between more complex and simpler regions. This
is reflected in the predictions in Fig. 16, where the single-scale GPR model suffers from the inhomogeneous
structure, underfitting the complex region to the left while simultaneously overfitting the simple region to the
right.

In Fig. 17 we compare the performance of our multi-scale MoE approach to the single-scale GPR model. The
consistently inferior performance of the single-scale GPR model shows that the issue above persists even for
large training sizes.

G.2 Necessity of the small bandwidth penalty

In Appendix F we discuss overfitting issues with too small local bandwidth estimates as a consequence of
inadequate regularization of LOB. To address this issue, we have proposed to penalize such small bandwidth
choices by ϑσpenσ(Xn, Yn,B, w, Θ) with the penalty term penσ from (25) and a scaling factor ϑσ ≥ 0.

Figure 16: The Doppler experiment: An exemplary dataset and the predictions of a global GPR model,
shown on natural x-scale (left) and on logarithmic x-scale (right).
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Figure 17: The Doppler experiment: The max AE (left) and the RMSE (right) of our proposed MoE model
in comparison to a single-scale GPR model. The results are averaged over 20 repetitions.

Figure 18: The Doppler experiment: An actively sampled dataset (top) with our MoE fit at n = 212 training
samples without small bandwidth penalty (ϑσ = 0), and the associated LOB estimate (bottom).

Now, while the LOB estimate with ϑσ = 0.5 (see Fig. 4) consistently behaves as expected, we show for
comparison a typical LOB estimate in Fig. 18 that results from applying no regularization (ϑσ = 0).
By chance—here, the flat region of the Doppler function to the right—the trained model suffers from
massive overfitting by too small LOB estimates. These falsely obtained small LOB estimates then lead to
overestimation of LFC, which subsequently results in a detrimental oversampling of these locations by the
AL procedure.

H Supplemental on the malonaldehyde MD simulation experiment

H.1 The sGDML model

The GDML model by Chmiela et al. (2017) represents the geometry x = [R1, . . . , Ra] ∈ R3×a of each molecule
in terms of the reciprocal distances Φ(x)kl = ∥Rk −Rl∥−1 of all atom-pairings to achieve roto-translational
invariance of the input. This representation gives us a total d = a(a− 1)/2 input features. The similarity of
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Figure 19: The RMSE under the uniform test distribution for different variants of sGDML and training
distribution at varying training size: The performance is given for passive sampling, using the original
isotropic sGDML (dotted), anisotropic sGDML (dash-dotted) and our MoE model with anisotropic sGDML
experts (dashed), and for the MoE model, applying the proposed superior sampling scheme (solid). The
results are averaged over 2 repetitions.

a pair of configurations (z, E, F ) and (z′, E′, F ′) is then given by the extended covariance function

Cov(E, E′) = k(Φ(z), Φ(z′)),

Cov(E, F ′) = dk(Φ(z), Φ(z′))
dΦ′

dΦ(z′)
dx

,

Cov(F, F ′) =
[

dΦ(z)
dx

]⊤
dk(Φ(z), Φ(z′))

dΦdΦ′
dΦ(z′)

dx
.

Hence, we denote the overall kernel function of two configurations by

k(z, z′) = Cov((E, F ), (E′, F ′)) ∈ R(3a+1)×(3a+1) .

Atoms of the same type are physically identical and therefore exchangeable, albeit only a small subset of
such symmetries is exercised at a given (low) MD simulation temperature. Full permutational invariance is
only needed when enough energy is put into the system for all bonds to break and all atoms to disassociate.

The symmetric extension sGDML (Chmiela et al., 2018; 2019) automatically identifies all accessed atom
permutations from the training set and adds this symmetric prior to the covariance function. Formally, let
(πs)s

s=1 be atomic permutations that lead to an equivalent molecular representation. Then, the extended
symmetric kernel of sGDML is given by

k̃(z, z′) =
∑s

s=1

∑s

t=1
k(πsz, πtz

′). (46)

Malonaldehyde possesses s = 4 such permutations.
Remark 9. The identified set of permutations is transitively closed to form a group. Under isotropy, it
suffices to permute only one of the two configurations given to the kernel: Permuting both entries (as in (46))
equals permuting one entry and multiplying by the constant s. However, if the applied bandwidth is not of the
form Σ = σId, this property does not hold.

H.2 The malonaldehyde MD simulation experiment under a uniform test distribution

In this scenario, we assume a uniform test density q = U(X ). Accordingly, we weight the validation and test
MSE by the importance weights 1/p̂X (Xval) and 1/p̂X (XT). We draw the initial expert training set Xn of
size n = 29 and the gate training set XG

nG
via importance sampling from the remaining pool with weights

1/p̂X (Xpool \ (Xval ∪XT)). By this it is Xn ∼ U(X ).

In Fig. 20 we show the estimates of LOB, LFC, and the superior training density under the pool test
distribution, evaluated on the relaxed configurations of malonaldehyde. The LFC estimates in Fig. 20 confirm
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Figure 20: Estimates of LOB (left), LFC (middle) and the superior training density (right) under the pool
test distribution q = U(X ), evaluated at the relaxed malonaldehyde configurations, plotted with respect to
the angles of the two aldehyde rotors of malonaldehyde.

our expectation that the transition areas are more complex to model than the regions near the stable
configurations. Subsequently, our active sampling scheme shifts sample mass away from the stable regimes in
favor of the transition areas.

We have plotted the error curves of passive and active sampling schemes in Fig. 19. When estimating the
relative sample size (31) that we require to achieve the same RMSE via active sampling compared to random
test sampling, we obtain ϱ(f̂MoE, p̂GPR,n

Sup ) = 0.965± 0.009. This means that we save about 3.5% of samples
with our active sampling scheme. With similar calculations, we save about 27%, when comparing the original
sGDML approach with passive sampling to our MoE model with active sampling.

H.3 A realistic MD simulation AL scenario

In the realistic ab initio FF reconstruction AL scenario, we begin by sampling the initial training set (Xn0
, Yn0

)
as well as the validation set (Xval, Yval) by simulating the true MD trajectory solving the computationally
expensive Schrödinger equation. Estimate the initial MD density pX ,0 based on (Xn0

∪Xval).

For k ∈ N0 :

• Set qk ← p
1− 1

k+1
X ,k to encourage exploration in early iterations and exploitation in later iterations

• Estimate the model f̂k := f̂MoE based on (Xnk
, Ynk

)

• Estimate pGPR,nk
Sup based on qk and f̂k

• Sample a large pool (Xpool,k+1, Ŷpool,k+1) of, e.g., 100,000 candidates by simulating the approximate
MD trajectory using the computationally cheap model f̂k. While simulation, avoid unreliable out-
of-distribution predictions, e.g., by resetting the trajectory in some x whenever pX ,k(x) < ϵ drops
below a reasonable threshold.

• Estimate the trajectory density pX ,k+1 of Xpool,k+1

• Update the training set (Xnk+1
, Ynk+1

) by selecting input candidates from the pool Xpool,k+1 with
distribution pGPR,nk

Sup and estimating the respective labels solving the Schrödinger equation
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