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ABSTRACT

Obtaining text embeddings that excel across diverse downstream scenarios is a
long-standing pursuit in representation learning, yet negative transfer remains a
persistent obstacle. This challenge is particularly pronounced when jointly opti-
mizing two core tasks: Information Retrieval (IR) and Semantic Textual Similar-
ity (STS). Owing to discrepancies in data organization, text-length distributions,
and evaluation metrics, naive co-training typically yields steep performance trade-
offs. In this paper, we contend that systematically decoupling these tasks at both
the design and training levels is essential for comprehensive model convergence.
To this end, we propose CoDiEmb, a unified framework that processes IR and STS
collaboratively yet distinctly. Unlike previous methods, CoDiEmb achieves supe-
rior performance under joint optimization without requiring complex multi-stage
training pipelines or additional learnable components. CoDiEmb introduces three
key innovations: (1) a unified data format compatible with inputs of any granular-
ity. (2) task-specific objective functions aligned with evaluation metrics; and (3) a
dynamic single-source data sampling strategy. Extensive experiments on 15 stan-
dard IR and STS benchmarks across three base encoders thoroughly validate the
effectiveness of CoDiEmb. Our results and analysis demonstrate that the frame-
work not only mitigates inter-task conflicts but also substantially alleviates the
issues of anisotropy and over-smoothing in the semantic space. Our code is pub-
licly available at https://anonymous.4open.science/r/CoDiEmb.

1 INTRODUCTION

Modern Natural Language Processing (NLP) is largely driven by two paradigms: generation and
encoding (Muennighoff et al., 2024). The output of encoder models, known as text embeddings,
represents a cornerstone of computational linguistics. Among the myriad applications and bench-
marks for text embeddings, Semantic Textual Similarity (STS) and Information Retrieval (IR) stand
out as two of the most critical (Gao et al.| [2021). STS aims to determine the semantic proximity
between two text segments, forming the foundation for technologies such as recommendation sys-
tems, text clustering, and content normalization (Sheng et al., [2024). IR, on the other hand, focuses
on measuring the relevance between a query and a large document collection, playing a pivotal role
in search engines, dialogue platforms, and Al agents (Sun et al., 2025).

Motivated by the goal of developing a universal text encoder proficient in both task families, state-
of-the-art embedding models commonly train on large mixtures of STS and IR datasets using con-
trastive learning (Xiao et al.} 2024;|Lee et al.,2024a). While straightforward, this practice overlooks
the inherent discrepancies between the two task types. Concretely, STS and IR exhibit significant
differences in several key aspects:

* Data Structure: STS tasks typically organize data in triplets (x1, x2, y), where the paired
texts 1 and x5 are highly symmetric; swapping their positions does not alter the label y.
Furthermore, because STS demands fine-grained semantic distinctions, y often has multi-
ple levels (e.g., 1 to 5). In contrast, IR datasets are inherently asymmetric, comprising a set
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of queries {¢}7", a large document corpus {d}7, and a relevance mapping {(g¢;, d;)}{ that
defines their relationships. During inference, a query ¢; is matched against each document
in {d}7, but only the pairs (g;, d;) specified in the mapping are considered relevant. More-
over, as most IR tasks do not partition samples beyond positive and negative, their label
granularity can be considered binary.

* Text Length: STS predominantly operates at the sentence level with short texts, perhaps
because semantic similarity becomes ambiguous as length increases (Deshpande et al.|
2023). Conversely, the queries and documents in IR tasks are highly flexible in length,
with documents frequently spanning hundreds of tokens. As a result, although both tasks
leverage cosine similarity for efficient matching, the underlying meaning of the calcula-
tion differs: STS prioritizes semantic equivalence, whereas IR leans towards topical or
knowledge-level relevance.

* Evaluation Metrics: The primary metric for STS is Spearman’s rank correlation coeffi-
cient (Zar, 2005), which measures the monotonic relationship between predicted and true
rankings. The Normalized Discounted Cumulative Gain (nDCG) metric (Wang et al., 2013)
used in IR is also list-wise but places greater emphasis on the correctness of top-ranked
items. Furthermore, considering that documents relevant to a query are typically sparse in
most IR tasks, nDCG@k is more commonly adopted.

These discrepancies lead to suboptimal performance when the two tasks are optimized indiscrimi-
nately. As we will demonstrate in Section [3| naively applying an objective function suited for one
task, such as InfoNCE Loss (Oord et al.,|2018)) for IR or CoOSENT Loss (Huang et al.,2024) for STS,
is detrimental to the other. In contrast, our proposed framework, CoDiEmb, strikes a robust balance
between IR and STS during collaborative training, approaching or even surpassing the performance
of single-task fine-tuning.

Notably, some cutting-edge research has also observed these performance trade-offs. |Asai et al.
(2022) propose designing distinct instructions for different tasks and prepending them to the input
text. While this strategy yields notable gains, the prior information provided by such instructions
is limited and relies entirely on the model’s implicit contextual understanding, lacking explicit gra-
dient signals. Jina-embeddings-v3 (Sturua et al., 2024)) introduces Task LoRA for parameter-level
customization, but this necessitates storing a series of adapters. Moreover, if a document appears
in k task sets, it would require k distinct embeddings, incurring prohibitive storage costs. NV Em-
bed (Lee et al.,|2024a) converts all data types into an IR format and constructs a two-stage training
pipeline: first fine-tuning on IR datasets with hard negatives, followed by contrastive learning on a
mixture of all corpora without them. This process inevitably discards a large volume of low-score
STS data that cannot be formulated into positive pairs. In addition, as noted in prior work, coarse-
grained contrastive objectives are ill-suited for tasks with fine-grained labels (Zhang & Li, [2024aib).

This landscape reveals a pressing need for a unified, effective, and end-to-end solution for the joint
optimization of IR and STS. To this end, we present CoDiEmb, a framework that Collaboratively
yet Distinctly handles Information Retrieval and Semantic Textual Similarity across data formatting,
loss functions, and sampling strategies.

Specifically, for IR tasks, we design a contrastive loss that supports multiple positives and hard
negatives per anchor. This is augmented with cross-device negative sampling, which dramatically
expands the pool of comparison candidates, yielding sharper separability. During this process,
CoDiEmb’s dynamic sampler ensures that, in each iteration, all GPUs draw samples strictly from
disjoint subsets of the same data file, thereby providing pure task gradients. For STS tasks, rather
than relying on the binary classification-style InfoNCE Loss or approximating the ranking objective
by penalizing inverted pairs, we optimize directly for order consistency. Building on the Pearson
Loss from Pcc-tuning (Zhang & Lil 2024a)), we introduce our modified and adapted KL divergence
Loss and PRO Loss (Peng et al.| [2024), which substantially enhance the model’s fine-grained se-
mantic discrimination. Furthermore, to facilitate comprehensive convergence across all tasks, we
allow dataset-specific batch sizes to fully balance their update counts.

In summary, the main contributions of this paper are as follows:

* We propose CoDiEmb, a framework that enables a model to converge effectively on both
IR and STS tasks within a single training stage. CoDiEmb requires no adapter compo-
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nents, and its unified data format is fully compatible with corpora of arbitrary granularity,
eliminating the need to discard any samples.

* We formulate specialized loss functions tailored to the distinct characteristics of IR and
STS. In conjunction with our custom dynamic sampler, this approach not only balances
per-task iteration counts but also prevents the gradient interference induced by mixed-task
batches.

¢ We conduct extensive experiments with MiniCPM (Hu et al.} 2024)), E5 (Wang et al.,[2024)),
and BGE 2024) across 8 IR and 7 STS benchmarks, thoroughly validating the
superiority of CoDiEmb. To further elucidate the underlying principles of our method, we
provide a series of theoretical analyses, finding that CoDiEmb’s joint optimization strategy

effectively mitigates anisotropy (Ethayarajhl 2019) and over-smoothing 2022)

in the learned representation space.

2 METHODOLOGY

This section presents CoDiEmb (Figure [I), our end-to-end framework for unified representation
learning across STS and IR. We begin in subsection [2.1] by introducing our task—agnostic data for-
mat, explaining its compatibility with inputs of heterogeneous granularity and its extensibility to
other tasks. Building upon this, subsection provides a detailed exposition of CoDiEmb’s spe-
cialized loss functions, linking their design to the corresponding evaluation metrics. Finally, subsec-
tion[2.3]elaborates on our custom data sampler and the multi-device training configuration.

Data Preprocessing=— Dynamic Sampling Task Specific Optimization
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Figure 1: The overall workflow of CoDiEmb, covering data preprocessing, dynamic sampling, and
multi-task joint optimization.

2.1 UNIFIED DATA FORMAT

As previously discussed, IR and STS tasks exhibit significant structural differences. IR samples are
typically organized as tuples of (¢,d™, {d~}), where d* is a document directly relevant to the query
¢, and d~ is a set of hard negatives obtained through data mining. As this format does not include ex-
plicit scores, the supervisory signal is derived primarily from the annotator’s binary partition of pos-
itive and negative samples. In contrast, for STS tasks, each text pair (21, x2) is associated with a nu-
merical label y that determines its relative ordering during inference. Furthermore, y is not restricted
to binary categories and can be an integer or floating-point number within any range. To accommo-
date both data types, CoDiEmb employs a unified format: (¢,q, {d™}7*, {d=}7, {y*}7%, {y~}}).
Here, t is a task identifier, which can be specified at the file level. In the subsequent training pipeline,
samples with different identifiers are routed to distinct branches for task-specific processing. For
fields absent in the original dataset, CoDiEmb fills them with default placeholders that are ignored
during the forward pass, incurring no additional memory overhead.
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This consolidated data structure is highly extensible. When handling STS tasks, we map the triplet
(21,2, y) to the query g, the first positive document df, and the first positive score y;, respectively.
For IR, we populate the query g, the positive set {d* }7*, and the negative set {d~ }}. Furthermore,
data from classification or clustering tasks are also compatible with CoDiEmb. In these scenar-
ios, the raw data can be partitioned by labels, allowing for intra-cluster (positive) and inter-cluster
(negative) sampling to construct inputs for contrastive learning. An alternative strategy, adopted by
works like Sentence-BERT (Reimers & Gurevych|, 2019) and STS-Reg (Zhang & Li|, [2024D), is the
classifier-head architecture. In this case, the input text and its ground-truth label can be passed as ¢
and y, respectively.

Leveraging this unified data structure, CoDiEmb not only standardizes the loading of diverse corpora
but also enables the configuration of differentiated loss functions tailored to task characteristics,
thereby facilitating multi-granularity training. Although this paper focuses on the joint optimization
of IR and STS, the potential of CoDiEmb extends beyond this scope. For instance, in Appendix[A.3]
we provide our implementation and test results on Pair Classification tasks.

2.2 DIFFERENTIATED LOSS FUNCTIONS

As the optimization objective for model training, loss functions have profound impacts on neural
network’s performance. A well-designed loss should closely align with the evaluation metrics to
provide effective learning signals. The primary metrics for IR and STS are nDCG@k and Spear-
man’s correlation coefficient, respectively. Both are non-differentiable ranking metrics and thus
cannot be directly optimized via backpropagation. For a given query g, let the top-k documents
retrieved by the model be {dg(1), dg(2), ---, dg(x) }- The nDCG @k is calculated as follows:

k k ideal
rel; rel; DCG@k
DCG@k = E ———— IDCG@k = E _ % 1DCG@k — 1
— logy(i +1) = log, (i + 1) n bccek

Here, rel; is the annotated relevance of dg(i), while reliideal denotes the score of the ideal document

at that rank; clearly, rel; < relzdeal. This formulation reveals that the core objective of nDCG@k
is to place highly relevant documents at the top of the full candidate list. We analyze the average
number of relevant documents per query across five open-source IR datasets, with results shown in
Figure[2] It is evident that even within a vast corpus, content truly relevant to a specific query is typ-
ically sparse, making it feasible to enumerate most positive samples. Moreover, since mainstream
IR datasets predominantly use binary labels, improving the nDCG @k for a query is equivalent to
maximizing the predicted scores of its m = min(k, n_positives) positive documents. This objective
aligns with the principles of contrastive learning but imposes two additional requirements: (1) docu-
ments involved in the relevance comparison should come from the same corpus and be as numerous
as possible, and (2) a sufficient number of positive examples should be considered simultaneously.
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Figure 2: Average number and distribution of relevant documents per query across five widely used
open-source IR datasets.
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In CoDiEmb, the first requirement is primarily met by our custom sampler, which we will detail
in subsection The second is achieved through our design of an extended InfoNCE Loss that
incorporates multiple positives and hard negatives. For a batch size of N, the loss is formulated as:

N Kt . N K~ B
Z;r _ Z Z ecos(ai-djy.) /T zZ7 = Z Z ecos(aisdj.)/T
J#i k=1 J=1k=1
N (2
N K

ecos(qi ,d:rc)/‘r

Lr =-E 1
IR ZZ og ecos(‘h,d:;)/'r + Zz+ + Zz_

i=1 c=1

In Equation K™ and K~ denote the numbers of positive and hard negative examples, drawn from
the input fields {d™}7* and {d~ }7. If the available samples are fewer than K or K, we sample
with replacement. By considering multiple positives against an expanded set of negatives, this con-
trastive objective more closely approximates the nDCG @k metric, thereby boosting performance on
IR tasks.

Unlike nDCG, which is a position-aware metric that assigns greater weight to top-ranked items,
Spearman’s correlation coefficient p treats each sample equally and focuses on overall ranking qual-
ity. Its formula is described in Equation (3| where n is the number of data points, and d; is the
difference in ranks between the predicted and true scores for the i-th pair. Spearman’s coefficient
ranges from —1 to 1, with higher values indicating stronger agreement between the model outputs
and human judgments.

6y, &

Training data for STS tasks often contain fine-grained annotation scores, for which coarse-grained
modeling approaches like contrastive learning are suboptimal, as they fail to fully leverage such
nuances and thus face a performance ceiling. To address this, Zhang & Li| (2024a)) introduced
a Pearson Loss that directly optimizes the model at the rank level. CoDiEmb inherits this idea.
Given a set of text pairs {(z%,2%)}™ , let the model’s predicted cosine similarities be X =
{cos (f(z1), f(x}))}7, and the list of ground-truth scores be Y = {y’}? ;. The Pearson Loss
is calculated as:

. Cov(X,Y)

OxXO0y

»CPearson =-r+1 (4)

While effective, Pearson correlation primarily captures linear relationships. To model more com-
plex mappings, CoDiEmb introduces two additional list-wise losses. The first adapts KL diver-
gence, which measures the distance between a predicted distribution ) and a target distribution P
as Dxi (P||Q) = >, pilog(pi/q;). An intuitive application to STS would involve converting pre-
dicted scores ¢ and ground-truth scores y into probability distributions (¢ and p) using a standard
Softmax function:

i = cos (F(eh). f(ah) 4= e D oW/

Zj:l exp(g;/7) Zj:l exp(y;/7)

Since p; is derived from ground-truth labels and carries no gradients, optimizing KL divergence
is equivalent to minimizing cross-entropy. This process is analogous to knowledge distillation
with soft labels and is logically sound. However, p; depends on the relative magnitudes of y;
within the batch and can fluctuate substantially with the score distribution. Consider two batches:
Y4 = [0.9,0.88,0.2] and Yp = [0.6,0.2,0.1]. With 7 = 0.1, we have P4 = Softmax(Y) =~
[0.5496, 0.4499, 0.0005]. Here, the first two samples account for 99.95% of the total probabil-
ity mass, forcing the model to spend significant effort fitting the minute difference between 0.9
and 0.88, while the 0.2-scored sample receives a negligible gradient. Similarly, for batch B,
Pp = Softmax(Yp) ~ [0.9756,0.0179,0.0066]. In this case, the model is heavily incentivized
to rank the first sample correctly, while the relative order of the other two is largely ignored.

This unstable weight allocation mechanism deviates from the spirit of Spearman correlation, which
prioritizes rank consistency over absolute values. We therefore propose a Rank-normalized KL-
divergence Loss Lrankkr. Instead of comparing scores, we align the model’s predictions with an
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ideal distribution derived from ground-truth ranks. First, we sort all samples within a batch in
descending order based on their labels to obtain ranks r; € [0, N — 1], where N is the batch size.
In case of ties, following the definition of Spearman correlation, r; is set to the average of their
ranks. These ranks are then normalized to y; € [0, 1], matching their scale with predicted cosine
similarities . We then define the target distribution p; as the Softmax of y, while keeping ¢; as
before. The final loss is:

__ exp(yi/7) __ exp(@i/7)
SN exp(y)/7) SN exp(g5/7)
(N —1) N ©
/ - — T 7
Yi= T N_-1 LRrankkL = sz‘ log (i)

i=1

Compared to the original KL divergence, Lrankkr directly optimizes for rank, making it robust to the
absolute magnitudes of ground-truth scores. This allows it to provide a stable gradient throughout
training, driving the predicted ranking toward the desired order.

Building on this, we adapt Preference Rank Optimization (PRO), a reinforcement learning method
originally from BEQUE (Peng et al.|[2024) for query rewriting, to the domain of text representation.
Similar to Lrankkr, We first sort samples by their true scores y;. For any pair (4, j) in the sorted
list where ¢ > j, we define a weight 7 = 7/(y; — y;), where T is a temperature hyperparameter.

We then set 7;* to min;~ ;(77), i.e., the weight corresponding to the largest gap between sample i
and any subsequent sample. The Lpgro is formulated as below. It decomposes the ranking objective
into N — 1 sequential subproblems. For each anchor point 7 in the list, we construct a classification
task where the goal is to make its predicted score g; higher than all subsequent items, with the
optimization weights determined by their true similarity differences.

exp(3i/T;')

~ - .
> exp(y;/T7)
Finally, the total loss for STS tasks in CoDiEmb is a weighted sum of these components: Lgrs =

Lpearson + BLRankkL + 7Lpro. During training, we alternate between Lg and Lgrs to update
network parameters, preventing catastrophic forgetting and achieving a robust balance across tasks.

N—1
»CPRO =-E Z IOg (7)
i=1

2.3  SAMPLER AND MULTI-GPU SETUP

As model and data volumes scale, distributed training has become standard practice in representation
learning. Our previous analysis has highlighted that a core aspect of IR is making positive examples
stand out from the entire document collection. Thus, with appropriate learning rates and iteration
counts, a model’s IR performance generally benefits from larger batch sizes (Zhang et al., [2022; |Wu
et al.| 2022} Zhang et al., 2024a). Accordingly, CoDiEmb enables cross-device negative sampling
when processing IR tasks to gather a larger pool of reference items.

However, merely increasing the sample count is insufficient for robust performance gains; the nega-
tives obtained from other GPUs must be meaningful. In both real-world IR applications and bench-
marks, a document is ranked against others from the same corpus. Therefore, negatives drawn from
the same data distribution are more challenging and informative than random documents from a
global pool. Consequently, CoDiEmb implements a custom data sampler that guarantees, within a
single iteration, that each device processes non-overlapping shards of the same data file.

Conversely, for STS tasks, our empirical findings show that model convergence is not contingent on
massive batch sizes. In fact, since many STS datasets use a small set of discrete integer labels (e.g.,
0, 1, 2), an excessively large batch can lead to a high frequency of tied scores. Such a distribution
can degrade the performance of rank-sensitive list-wise losses. Therefore, we disable cross-device
sampling when processing STS batches.

Furthermore, the significant disparity in typical text lengths between IR (long documents) and STS
(short sentences) makes a uniform batch size inefficient, leading to unbalanced GPU utilization and
difficulty in managing per-task training iterations. To resolve this, CoDiEmb’s data loader supports
task-specific batch size configurations, optimizing training efficiency and providing finer control
over the learning process.
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3 EXPERIMENTS

3.1 MAIN RESULTS

Our experiments are primarily conducted on the well-established CMTEB leaderboard (Xiao et al.,
2024), which comprises 7 STS tasks and 8 IR tasks spanning diverse domains such as news,
medicine, finance and general knowledge. To validate the generality of our approach, we fine-tune
three different PLMs as base encoders: MiniCPM-Embedding (Hu et al.| 2024), multilingual-e5-
large (Wang et al.;|2024), and bge-large-zh-v1.5 (Xiao et al.l 2024)). For training, we adopt the pub-
licly available CMTEB IR and STS datasets. Notably, three IR tasks—CovidRetrieval (Qiu et al.,
2022)), MMarcoRetrieval (Bonifacio et al [2021)), and MedicalRetrieval (Long et al.l [2022)—do
not provide dedicated training sets. Evaluations on these tasks are therefore performed in a zero-
shot setting, which directly reflects the models’ generalization capabilities. Detailed experimental
configurations are provided in Appendix[A.2]

Table [T| summarizes the overall performance of different methods on the full suite of CMTEB STS
and IR tasks, while per-task scores are reported in Appendix To isolate the contributions of
CoDiEmb’s components, we compare it against several carefully designed baselines. Here, “In-
foNCE” denotes training solely with the InfoNCE Loss. For STS tasks under this setting, pairs with
low similarity are filtered via a threshold to ensure the correctness of contrastive objectives. Con-
versely, “CoSENT” refers to training exclusively with the CoSENT Loss, a prevalent approach in
STS research (Li et al., 2024} [Yu et al.| [2025). The formulas for both objectives are given below,
where the notation is consistent with subsection[2.2] Additionally, “Mixed” indicates the adoption of
a mixed-batch sampler during training. While this sampler still requires that texts within each GPU
originate from the same data file, it places no such restriction across GPUs. Consequently, in a sin-
gle iteration, different GPUs may process different task types, providing the model with mixed-task
gradients.

N S(f (@), f (@5
1 ecos(,f(I1)7f(12))/T
Linfonce = —E E :log 1;;\1;9,1 cos(f(x}),f(x3)) /7
i=1 Zj:l € e ®

Leoen =108 (143" 15, exp (cos (F(]), flad)) /= cos (f(a1), S (23) /7))

Table 1: Main results on the CMTEB benchmark. Avg. IR and Avg. STS report the average
nDCG @10 across 8 IR tasks and the average Spearman correlation across 7 STS tasks, respectively.
The Overall Score equals the sum of these two metrics.

Methods PLMs Avg. IR Avg. STS Overall Score

InfoNCE  MiniCPM  74.23 60.53 134.76
CoSENT  MiniCPM  71.30 70.05 141.35

Mixed MiniCPM  73.05 70.32 143.37
CoDiEmb  MiniCPM  75.73 71.15 146.88
InfoNCE eS-large 70.90 56.32 127.22
CoSENT e5S-large 65.69 64.61 130.30

Mixed e5-large 68.61 66.89 135.50
CoDiEmb  e5-large 70.62 68.19 138.81
InfoNCE  bge-large 71.73 58.09 129.82
CoSENT  bge-large 66.55 64.70 131.25

Mixed bge-large 68.67 67.12 135.79
CoDiEmb  bge-large 71.07 67.87 138.94

As demonstrated in Table [T} compared to using InfoNCE alone, CoDiEmb attains comparable or
superior IR performance while consistently outperforming it on STS tasks, leading to a significantly
higher overall score across all backbones. This phenomenon is interpretable: when harnessing a
unified contrastive learning approach, the threshold-filtered STS samples steer the model toward
cluster-oriented updates akin to IR, thus effectively acting as a form of data augmentation for the IR
task. However, this slight improvement in IR comes at the expense of a drastic degradation in STS
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performance. For this reason, CoDiEmb avoids relying on coarse-grained contrastive learning as the
primary optimization strategy for STS.

When benchmarked against the CoOSENT-only approach, CoDiEmb demonstrates markedly superior
performance on both IR and STS tasks. For instance, with multilingual-e5-large as the backbone,
CoDiEmb achieves gains of 4.93 on average nDCG@ 10 and 3.58 on average Spearman correla-
tion—substantial increases for both metrics. This highlights the inadequacy of a single pair-wise
ranking loss for the distinct optimization of both tasks. A similar pattern holds when comparing
against the mixed-gradient sampler. By strictly ensuring that each GPU processes a disjoint subset
of the same dataset per iteration while flexibly balancing the update frequencies of different data
sources, CoDiEmb delivers steady improvements across tasks. Collectively, these observations con-
firm the effectiveness of CoDiEmb’s specialized loss design and its single-source sampling strategy.
Furthermore, we also provide robustness experiments under various batch size configurations as
well as ablation studies of the loss functions in Appendix [A.5]and Appendix [A.6]

3.2 COMPARISON WITH SINGLE-TASK MODELS

To conclusively substantiate that CoDiEmb achieves a synergistic balance rather than a simple trade-
off, we compare it against two specialist models: one trained exclusively on IR data (IR-only) and
another on STS data (STS-only). The results, presented in Table [2] first reveal the severe limita-
tions of single-task training. While the specialist models excel on their native tasks, they suffer a
catastrophic performance collapse when transferred to the other domain. On average, the IR-only
model’s STS performance is 17.3 points lower than the STS specialist, while the STS-only model’s
IR performance is a staggering 22.2 points lower than its IR counterpart.

In stark contrast, CoDiEmb demonstrates a highly effective and favorable trade-off. It incurs only
a marginal cost on IR tasks (averaging -0.71 points relative to the IR specialist), while delivering
substantial gains on STS tasks (improving by 1.92 points on average over the STS specialist). More
strikingly, CoDiEmb consistently outperforms the STS-only model on its own primary task across
all backbones, indicating that the STS task does not suffer from negative transfer but instead benefits
from co-training with IR data under our collaborative-yet-distinct paradigm.

Table 2: Performance comparison between CoDiEmb and single-task specialist models. Values
in parentheses denote the performance difference (A) of CoDiEmb relative to the corresponding
specialist model, indicating a performance gain (+) or cost (-).

PLMs | Method | Avg.IR | Avg. STS | Overall Score
IR-only 76.10 49.67 125.77
MiniCPM-Embedding | STS-only 62.28 68.83 131.11
CoDiEmb | 75.73 (-0.37) | 71.15 (+2.32) 146.88
IR-only 71.34 48.22 119.56
multilingual-e5-large | STS-only 48.02 66.37 114.39
CoDiEmb | 70.62 (-0.72) | 68.19 (+1.82) 138.81
IR-only 72.12 51.72 123.84
bge-large-zh-v1.5 STS-only 45.64 66.26 111.90
CoDiEmb | 71.07 (-1.05) | 67.87 (+1.61) 138.94

4  ANALYSIS

To assess the intrinsic quality of the embedding space learned by CoDiEmb, we move beyond bench-
mark scores to conduct an in-depth quantitative analysis of its geometric properties. A high-quality
embedding space should capture subtle semantic distinctions while maintaining a well-dispersed dis-
tribution, thereby maximizing representational capacity. However, prior work has pointed out that
pre-trained language models commonly suffer from over-smoothing (Shi et al., 2022) and anisotropy
(Ethayarajhl 2019), both of which can severely compromise representation quality.

Over-smoothing arises when a model loses the ability to differentiate among tokens within a text,
mapping them to overly similar embeddings. Anisotropy, by contrast, occurs when embeddings
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collapse into a narrow cone in the vector space, resulting in limited expressiveness. Our central
hypothesis is that CoDiEmb—through its collaborative architecture, task-specific loss functions,
and task-pure gradient signals—effectively mitigates these issues. To validate this hypothesis, we
employ a suite of diagnostic metrics established in prior work (Zhang et al.| [2025a) to evaluate the
health of the learned embedding space.

Given an input sequence T = [t1, 1o, ...,t,], the model outputs a token embedding matrix X €
R™*4 whose rows are the token vectors {z1, 72, . . ., =, }. We quantify over-smoothing using Token-
wise Similarity (TokSim), defined as the average pairwise cosine similarity among distinct tokens:

TokSim(X) = n(nl—l) Dt ||mia|j|;|T;jH2- A lower value indicates better separability.

To evaluate anisotropy, we analyze the singular value spectrum of X. First, we report the matrix
rank rank(X ), where a higher value indicates richer, less redundant information. We then perform
Singular Value Decomposition (SVD) on X and adopt two additional indicators. The Condition
Number, £(X) = Omax/0mn, is the ratio of the largest to the smallest singular value. A lower
value is preferred, as it signifies a more uniform spectrum. The SVD Entropy H(X) measures
the richness of the effective semantic dimensions. It is calculated by first normalizing the squared

singular values into a probability distribution p; = o2/ 2521 ajz and then computing the entropy

H(X) = - Zle p;log(p;). A higher value indicates that more semantic dimensions contribute
meaningfully to the representation, signaling a lower degree of anisotropy.

We compute these four metrics on the seven STS test sets in CMTEB using the BGE backbone. As
shown in Table [3] CoDiEmb exhibits a consistent and significant advantage across all metrics. It
achieves the lowest token-wise similarity, confirming its effectiveness in mitigating over-smoothing.
Concurrently, it systematically obtains a higher rank and SVD entropy, alongside a markedly lower
condition number. These results provide strong quantitative evidence that CoDiEmb produces a
more expressive, isotropic, and well-structured embedding space.

Table 3: Analysis of embedding space properties on the CMTEB STS test sets. For Rank and SVD
Entropy, higher is better. For Token Similarity and Condition Number, lower is better.

Method Metric ATEC BQ LCQMC PAWSX STSB AFQMC QBQTC Avg
Rank 14.52 12.58 10.61 38.41 19.54 14.36 9.35 17.05
InfoNCE Token Similarity 73.22 78.79 70.69 70.67 717.78 72.41 72.92 73.93
SVD Entropy 1.61 1.27 1.62 2.10 1.49 1.60 1.45 1.59
Condition Number  21028.14 21571.02 22738.23  1245.10 7025.74 24150.67 20942.72 16957.37
Rank 14.57 12.68 10.62 38.44 19.67 14.40 9.38 17.11
CoSENT Token Similarity 73.04 76.30 74.55 69.97 75.32 73.36 74.02 73.79
SVD Entropy 1.58 1.36 1.42 2.07 1.58 1.56 1.38 1.56
Condition Number  17917.04 16278.22 22119.27  348.73  3742.57 20770.19 19353.22 14361.32
Rank 14.45 12.58 10.61 38.42 19.52 14.33 9.35 17.04
Mixed Token Similarity 67.83 7491 71.86 61.58 66.54 67.93 70.46 68.73
X SVD Entropy 1.77 1.40 1.54 247 1.96 1.76 1.53 1.78
Condition Number  19580.63 17888.89 20916.23 1007.10 6118.76 21357.64 18648.04 15073.90
Rank 14.97 12.85 10.63 38.44 19.80 14.62 9.47 17.25
CoDiEmb Token Similarity 67.67 72.92 70.61 61.68 65.77 67.82 70.22 68.10
SVD Entropy 1.81 1.50 1.59 2.49 2.01 1.79 1.54 1.82

Condition Number ~ 7413.04  10847.82 19901.18 265.59  507.70 13129.53 15584.98 9664.26

5 CONCLUSION

In this paper, we introduced CoDiEmb, a unified training framework that optimizes text embeddings
for Information Retrieval (IR) and Semantic Textual Similarity (STS) in a collaborative-yet-distinct
manner. Through innovations in data formatting, loss design, and sampling strategies, CoDiEmb
delivers significant performance gains across a broad range of tasks. The success of CoDiEmb
suggests that the pursuit of universal text encoders should transcend conventional multi-stage con-
trastive learning. Instead, a more promising direction lies in developing a unified framework that
explicitly leverages task-specific characteristics to attain a synergistic equilibrium. Future work will
focus on extending CoDiEmb and exploring its generalization to a broader range of tasks.



Under review as a conference paper at ICLR 2026

REFERENCES

Akari Asai, Timo Schick, Patrick Lewis, Xilun Chen, Gautier Izacard, Sebastian Riedel, Han-
naneh Hajishirzi, and Wen-tau Yih. Task-aware retrieval with instructions. arXiv preprint
arXiv:2211.09260, 2022.

Luiz Bonifacio, Vitor Jeronymo, Hugo Queiroz Abonizio, Israel Campiotti, Marzieh Fadaee,
Roberto Lotufo, and Rodrigo Nogueira. mmarco: A multilingual version of the ms marco passage
ranking dataset. arXiv preprint arXiv:2108.13897, 2021.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-Gazpio, and Lucia Specia. Semeval-2017 task
1: Semantic textual similarity-multilingual and cross-lingual focused evaluation. arXiv preprint
arXiv:1708.00055, 2017.

Jing Chen, Qingcai Chen, Xin Liu, Haijun Yang, Daohe Lu, and Buzhou Tang. The bq corpus: A
large-scale domain-specific chinese corpus for sentence semantic equivalence identification. In
Proceedings of the 2018 conference on empirical methods in natural language processing, pp.
49464951, 2018.

Alexis Conneau and Douwe Kiela. SentEval: An evaluation toolkit for universal sentence repre-
sentations. In Proceedings of the Eleventh International Conference on Language Resources and
Evaluation (LREC 2018), Miyazaki, Japan, May 2018. European Language Resources Associa-
tion (ELRA). URL https://aclanthology.org/L18-1269/.

Ameet Deshpande, Carlos Jimenez, Howard Chen, Vishvak Murahari, Victoria Graf, Tanmay Ra-
jpurohit, Ashwin Kalyan, Danqi Chen, and Karthik Narasimhan. C-STS: Conditional semantic
textual similarity. In Proceedings of the 2023 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 5669-5690, Singapore, December 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.emnlp-main.345. URL https://aclanthology.org/
2023.emnlp-main.345/.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171-4186, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https:
//aclanthology.org/N19-1423/.

Kawin Ethayarajh. How contextual are contextualized word representations? Comparing the ge-
ometry of BERT, ELMo, and GPT-2 embeddings. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pp. 55-65, Hong Kong, China, November
2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1006.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. SimCSE: Simple contrastive learning of sentence
embeddings. In Proceedings of the 2021 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 6894—6910, Online and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.552. URL
https://aclanthology.org/2021.emnlp—main.552/.

Hai Hu, Kyle Richardson, Liang Xu, Lu Li, Sandra Kiibler, and Lawrence Moss. OCNLI: Original
Chinese Natural Language Inference. In Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pp. 3512-3526, Online, November 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.findings-emnlp.314. URL https://aclanthology.
org/2020.findings-emnlp.314/.

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang,
Yuxiang Huang, Weilin Zhao, et al. Minicpm: Unveiling the potential of small language models
with scalable training strategies. arXiv preprint arXiv:2404.06395, 2024.

Xiang Huang, Hao Peng, Dongcheng Zou, Zhiwei Liu, Jianxin Li, Kay Liu, Jia Wu, Jianlin Su,
and Philip S Yu. Cosent: consistent sentence embedding via similarity ranking. [EEE/ACM
Transactions on Audio, Speech, and Language Processing, 32:2800-2813, 2024.

10


https://aclanthology.org/L18-1269/
https://aclanthology.org/2023.emnlp-main.345/
https://aclanthology.org/2023.emnlp-main.345/
https://aclanthology.org/N19-1423/
https://aclanthology.org/N19-1423/
https://aclanthology.org/2021.emnlp-main.552/
https://aclanthology.org/2020.findings-emnlp.314/
https://aclanthology.org/2020.findings-emnlp.314/

Under review as a conference paper at ICLR 2026

Ting Jiang, Jian Jiao, Shaohan Huang, Zihan Zhang, Deqing Wang, Fuzhen Zhuang, Furu Wei,
Haizhen Huang, Denvy Deng, and Qi Zhang. PromptBERT: Improving BERT sentence embed-
dings with prompts. In Proceedings of the 2022 Conference on Empirical Methods in Natu-
ral Language Processing, pp. 8826—8837, Abu Dhabi, United Arab Emirates, December 2022.
Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.603. URL
https://aclanthology.org/2022.emnlp—-main.603/.

Ting Jiang, Shaohan Huang, Zhongzhi Luan, Deqing Wang, and Fuzhen Zhuang. Scaling sen-
tence embeddings with large language models. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2024, pp. 3182-3196, Miami, Florida, USA, November 2024.
Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.181. URL
https://aclanthology.org/2024.findings—-emnlp.181/l

Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan Raiman, Mohammad Shoeybi, Bryan Catan-
zaro, and Wei Ping. Nv-embed: Improved techniques for training llms as generalist embedding
models. arXiv preprint arXiv:2405.17428, 2024a.

Jinhyuk Lee, Zhuyun Dai, Xiaoqi Ren, Blair Chen, Daniel Cer, Jeremy R Cole, Kai Hui, Michael
Boratko, Rajvi Kapadia, Wen Ding, et al. Gecko: Versatile text embeddings distilled from large
language models. arXiv preprint arXiv:2403.20327, 2024b.

Jinhyuk Lee, Feiyang Chen, Sahil Dua, Daniel Cer, Madhuri Shanbhogue, Iftekhar Naim, Gus-
tavo Herndndez Abrego, Zhe Li, Kaifeng Chen, Henrique Schechter Vera, et al. Gemini embed-
ding: Generalizable embeddings from gemini. arXiv preprint arXiv:2503.07891, 2025.

Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang, Yiming Yang, and Lei Li. On the sentence
embeddings from pre-trained language models. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing (EMNLP), pp. 9119-9130, Online, November
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.733. URL
https://aclanthology.org/2020.emnlp—main.733/.

Shiyu Li, Yang Tang, Shizhe Chen, and Xi Chen. Conan-embedding: General text embedding with
more and better negative samples. arXiv preprint arXiv:2408.15710, 2024.

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan Zhang. Towards
general text embeddings with multi-stage contrastive learning. arXiv preprint arXiv:2308.03281,
2023.

Xin Liu, Qingcai Chen, Chong Deng, Huajun Zeng, Jing Chen, Dongfang Li, and Buzhou Tang.
Lcqme: A large-scale chinese question matching corpus. In Proceedings of the 27th international
conference on computational linguistics, pp. 1952-1962, 2018.

Dingkun Long, Qiong Gao, Kuan Zou, Guangwei Xu, Pengjun Xie, Ruijie Guo, Jian Xu, Guanjun
Jiang, Luxi Xing, and Ping Yang. Multi-cpr: A multi domain chinese dataset for passage retrieval.
In Proceedings of the 45th International ACM SIGIR Conference on Research and Development
in Information Retrieval, pp. 3046-3056, 2022.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-
tations in vector space. arXiv preprint arXiv:1301.3781, 2013.

Niklas Muennighoff, SU Hongjin, Liang Wang, Nan Yang, Furu Wei, Tao Yu, Amanpreet Singh,
and Douwe Kiela. Generative representational instruction tuning. In The Thirteenth International

Conference on Learning Representations, 2024.

Zach Nussbaum, John X Morris, Brandon Duderstadt, and Andriy Mulyar. Nomic embed: Training
a reproducible long context text embedder. arXiv preprint arXiv:2402.01613, 2024.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

11


https://aclanthology.org/2022.emnlp-main.603/
https://aclanthology.org/2024.findings-emnlp.181/
https://aclanthology.org/2020.emnlp-main.733/

Under review as a conference paper at ICLR 2026

Wenjun Peng, Guiyang Li, Yue Jiang, Zilong Wang, Dan Ou, Xiaoyi Zeng, Derong Xu, Tong Xu,
and Enhong Chen. Large language model based long-tail query rewriting in taobao search. In
Companion Proceedings of the ACM Web Conference 2024, WWW °24, pp. 20-28, New York,
NY, USA, 2024. Association for Computing Machinery. ISBN 9798400701726. doi: 10.1145/
3589335.3648298. URL https://doi.org/10.1145/3589335.3648298,

Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global vectors for word
representation. In Alessandro Moschitti, Bo Pang, and Walter Daelemans (eds.), Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp.
1532-1543, Doha, Qatar, October 2014. Association for Computational Linguistics. doi: 10.
3115/v1/D14-1162. URL https://aclanthology.org/D14-1162/.

Yifu Qiu, Hongyu Li, Yingqi Qu, Ying Chen, Qiaoqgiao She, Jing Liu, Hua Wu, and Haifeng Wang.
Dureader_retrieval: A large-scale chinese benchmark for passage retrieval from web search en-
gine. arXiv preprint arXiv:2203.10232, 2022.

Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), pp. 3982-3992, Hong Kong, China, November 2019. Association for Com-
putational Linguistics. doi: 10.18653/v1/D19-1410. URL https://aclanthology.org/
D19-1410/.

Xiang-Rong Sheng, Feifan Yang, Litong Gong, Biao Wang, Zhangming Chan, Yujing Zhang,
Yueyao Cheng, Yong-Nan Zhu, Tiezheng Ge, Han Zhu, et al. Enhancing taobao display adver-
tising with multimodal representations: Challenges, approaches and insights. In Proceedings of
the 33rd ACM International Conference on Information and Knowledge Management, pp. 4858—
4865, 2024.

Han Shi, Jiahui Gao, Hang Xu, Xiaodan Liang, Zhenguo Li, Lingpeng Kong, Stephen Lee, and
James T Kwok. Revisiting over-smoothing in bert from the perspective of graph. arXiv preprint
arXiv:2202.08625, 2022.

Saba Sturua, Isabelle Mohr, Mohammad Kalim Akram, Michael Giinther, Bo Wang, Markus Krim-
mel, Feng Wang, Georgios Mastrapas, Andreas Koukounas, Nan Wang, et al. jina-embeddings-
v3: Multilingual embeddings with task lora. arXiv preprint arXiv:2409.10173, 2024.

Jiashuo Sun, Xianrui Zhong, Sizhe Zhou, and Jiawei Han. Dynamicrag: Leveraging outputs of large
language model as feedback for dynamic reranking in retrieval-augmented generation. arXiv
preprint arXiv:2505.07233, 2025.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the 31st Inter-
national Conference on Neural Information Processing Systems, NIPS’17, pp. 6000-6010, Red
Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

Hao Wang and Yong Dou. Sncse: Contrastive learning for unsupervised sentence embedding
with soft negative samples. In Advanced Intelligent Computing Technology and Applica-
tions: 19th International Conference, ICIC 2023, Zhengzhou, China, August 1013, 2023, Pro-
ceedings, Part IV, pp. 419-431, Berlin, Heidelberg, 2023. Springer-Verlag. ISBN 978-981-
99-4751-5. doi: 10.1007/978-981-99-4752-2.35. URL https://doi.org/10.1007/
978-981-99-4752-2_35,

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Ma-
jumder, and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training. arXiv
preprint arXiv:2212.03533, 2022.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. Multi-
lingual e5 text embeddings: A technical report. arXiv preprint arXiv:2402.05672, 2024.

Yining Wang, Liwei Wang, Yuanzhi Li, Di He, and Tie-Yan Liu. A theoretical analysis of ndcg type
ranking measures. In Proceedings of the 26th Annual Conference on Learning Theory, volume 30
of Proceedings of Machine Learning Research, pp. 25-54, Princeton, NJ, USA, 12-14 Jun 2013.
PMLR. URL https://proceedings.mlr.press/v30/Wangl3.html.

12


https://doi.org/10.1145/3589335.3648298
https://aclanthology.org/D14-1162/
https://aclanthology.org/D19-1410/
https://aclanthology.org/D19-1410/
https://doi.org/10.1007/978-981-99-4752-2_35
https://doi.org/10.1007/978-981-99-4752-2_35
https://proceedings.mlr.press/v30/Wang13.html

Under review as a conference paper at ICLR 2026

Xing Wu, Chaochen Gao, Liangjun Zang, Jizhong Han, Zhongyuan Wang, and Songlin Hu. ES-
imCSE: Enhanced sample building method for contrastive learning of unsupervised sentence em-
bedding. In Proceedings of the 29th International Conference on Computational Linguistics, pp.
3898-3907, Gyeongju, Republic of Korea, October 2022. International Committee on Computa-
tional Linguistics. URL https://aclanthology.org/2022.coling—1.342/l

Shitao Xiao, Zheng Liu, Peitian Zhang, Niklas Muennighoff, Defu Lian, and Jian-Yun Nie. C-
pack: Packed resources for general chinese embeddings. In Proceedings of the 47th Interna-
tional ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR
24, pp. 641-649, New York, NY, USA, 2024. Association for Computing Machinery. ISBN
9798400704314. doi: 10.1145/3626772.3657878. URL https://doi.org/10.1145/
3626772.3657878.

Xiaohui Xie, Qian Dong, Bingning Wang, Feiyang Lv, Ting Yao, Weinan Gan, Zhijing Wu, Xiang-
sheng Li, Haitao Li, Yiqun Liu, et al. T2ranking: A large-scale chinese benchmark for passage
ranking. In Proceedings of the 46th International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, pp. 2681-2690, 2023.

Liang Xu, Hai Hu, Xuanwei Zhang, Lu Li, Chenjie Cao, Yudong Li, Yechen Xu, Kai Sun, Dian
Yu, Cong Yu, Yin Tian, Qiangian Dong, Weitang Liu, Bo Shi, Yiming Cui, Junyi Li, Jun
Zeng, Rongzhao Wang, Weijian Xie, Yanting Li, Yina Patterson, Zuoyu Tian, Yiwen Zhang,
He Zhou, Shaoweihua Liu, Zhe Zhao, Qipeng Zhao, Cong Yue, Xinrui Zhang, Zhengliang
Yang, Kyle Richardson, and Zhenzhong Lan. CLUE: A Chinese language understanding eval-
uation benchmark. In Proceedings of the 28th International Conference on Computational
Linguistics, pp. 4762—4772, Barcelona, Spain (Online), December 2020. International Com-
mittee on Computational Linguistics. doi: 10.18653/v1/2020.coling-main.419. URL https:
//aclanthology.org/2020.coling-main.419/.

Yinfei Yang, Yuan Zhang, Chris Tar, and Jason Baldridge. Paws-x: A cross-lingual adversarial
dataset for paraphrase identification. arXiv preprint arXiv:1908.11828, 2019.

Peng Yu, En Xu, Bin Chen, Haibiao Chen, and Yinfei Xu. Qzhou-embedding technical report. arXiv
preprint arXiv:2508.21632, 2025.

Jerrold H Zar. Spearman rank correlation. Encyclopedia of biostatistics, 7, 2005.

Bowen Zhang and Chunping Li. Pcc-tuning: Breaking the contrastive learning ceiling in seman-
tic textual similarity. In Proceedings of the 2024 Conference on Empirical Methods in Natu-
ral Language Processing, pp. 14290-14302, Miami, Florida, USA, November 2024a. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.791. URL https:
//aclanthology.org/2024.emnlp-main.791/.

Bowen Zhang and Chunping Li. Advancing semantic textual similarity modeling: A regression
framework with translated ReLU and smooth k2 loss. In Proceedings of the 2024 Confer-
ence on Empirical Methods in Natural Language Processing, pp. 11882—-11893, Miami, Florida,
USA, November 2024b. Association for Computational Linguistics. doi: 10.18653/v1/2024.
emnlp-main.663. URL https://aclanthology.org/2024.emnlp-main.663/.

Bowen Zhang, Kehua Chang, and Chunping Li. Cot-bert: Enhancing unsupervised sentence
representation through chain-of-thought. In Artificial Neural Networks and Machine Learn-
ing — ICANN 2024: 33rd International Conference on Artificial Neural Networks, Lugano,
Switzerland, September 17-20, 2024, Proceedings, Part VII, pp. 148—163, Berlin, Heidelberg,
2024a. Springer-Verlag. ISBN 978-3-031-72349-0. doi: 10.1007/978-3-031-72350-6_10. URL
https://doi.org/10.1007/978-3-031-72350-6_10.

Bowen Zhang, Kehua Chang, and Chunping Li. Simple techniques for enhancing sentence em-
beddings in generative language models. In Advanced Intelligent Computing Technology and
Applications: 20th International Conference, ICIC 2024, Tianjin, China, August 5-8, 2024,
Proceedings, Part IlI, pp. 52-64, Berlin, Heidelberg, 2024b. Springer-Verlag. ISBN 978-
981-97-5668-1. doi: 10.1007/978-981-97-5669-8_5. URL https://doi.org/10.1007/
978-981-97-5669-8_05,

13


https://aclanthology.org/2022.coling-1.342/
https://doi.org/10.1145/3626772.3657878
https://doi.org/10.1145/3626772.3657878
https://aclanthology.org/2020.coling-main.419/
https://aclanthology.org/2020.coling-main.419/
https://aclanthology.org/2024.emnlp-main.791/
https://aclanthology.org/2024.emnlp-main.791/
https://aclanthology.org/2024.emnlp-main.663/
https://doi.org/10.1007/978-3-031-72350-6_10
https://doi.org/10.1007/978-981-97-5669-8_5
https://doi.org/10.1007/978-981-97-5669-8_5

Under review as a conference paper at ICLR 2026

Bowen Zhang, Zixin Song, and Chunping Li. Cse-sfp: Enabling unsupervised sentence represen-
tation learning via a single forward pass. In Proceedings of the 48th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 1402-1412, 2025a.

Jianjin Zhang, Zheng Liu, Weihao Han, Shitao Xiao, Ruicheng Zheng, Yingxia Shao, Hao Sun,
Hanqging Zhu, Premkumar Srinivasan, Weiwei Deng, Qi Zhang, and Xing Xie. Uni-retriever:
Towards learning the unified embedding based retriever in bing sponsored search. In Proceed-
ings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD
’22, pp. 4493-4501, New York, NY, USA, 2022. Association for Computing Machinery. ISBN
9781450393850. doi: 10.1145/3534678.3539212. URL https://doi.org/10.1145/
3534678.3539212,

Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang, Huan Lin, Baosong Yang, Pengjun Xie,
An Yang, Dayiheng Liu, Junyang Lin, et al. Qwen3 embedding: Advancing text embedding and
reranking through foundation models. arXiv preprint arXiv:2506.05176, 2025b.

A APPENDIX

A.1 RELATED WORK

As a cornerstone of computational linguistics, text representation has long attracted sustained at-
tention from the research community. Broadly, the evolution of this field can be divided into three
distinct stages. Early works, such as Word2Vec (Mikolov et all [2013) and GloVe (Pennington
et al.l 2014)), focused on lexical-level representations, primarily yielding context-independent en-
codings. The advent of Pre-trained Language Models (PLMs), exemplified by BERT (Devlin et al.,
2019), marked a paradigm shift in NLP, driven by significant advances in computational power and
model architectures (Vaswani et al.,|2017)). Pioneering studies including Sentence-BERT (Reimers
& Gurevych, 2019), BERT-flow (Li et al. |2020), and SimCSE (Gao et al.l |2021) subsequently
integrated discriminative PLMs with representation learning from different perspectives, achiev-
ing notable breakthroughs in sentence-level embeddings. This period was characterized by rapid
progress in unsupervised text representation. Leveraging innovative data augmentation techniques,
approaches like SNCSE (Wang & Dou, 2023)), PromptBERT (Jiang et al.| [2022), and CoT-BERT
(Zhang et al.} |2024a) attained strong performance on the seven STS tasks aggregated by SentEval
(Conneau & Kielal 2018)), using only unsupervised corpora composed of individual sentences.

Despite the powerful semantic understanding afforded by bidirectional attention, the architectural
constraints of BERT-style models—namely, a 512-token maximum sequence length and relatively
modest parameter counts—long prevented text embedding research from fully benefiting from the
scaling laws of Large Language Models (LLMs). To address this, PromptEOL (Jiang et al., 2024)
pioneered the application of 7B-scale generative models for text representation and proposed the
widely adopted Explicit One-Word Limitation (EOL) hypothesis. Building on this, [Zhang et al.
(2024b) demonstrated through extensive experiments that EOL is unnecessary for fine-tuning and
introduced two simple yet effective techniques that directly enhance the representational capacity of
base models. Subsequently, Pcc-tuning (Zhang & Li, [2024a) provided an insightful analysis of the
binary classification nature of contrastive learning, explaining the performance bottlenecks it faces
in fine-grained semantic discrimination, and proposed directly optimizing the Pearson correlation
coefficient.

With the rise of Retrieval-Augmented Generation (RAG) and Al Agent systems, a consensus has
formed around the need for powerful, general-purpose text encoders. In response, models such
as ES (Wang et al 2022)), GTE (Li et al., 2023), BGE (Xiao et al. 2024), and Nomic Embed
(Nussbaum et al., [2024)) have been trained on massive datasets, typically employing multi-stage
contrastive learning pipelines to progressively refine semantic expressiveness. State-of-the-art em-
bedding models, including Gecko (Lee et al., 2024b), Gemini Embedding (Lee et al.| 2025), and
Qwen Embedding (Zhang et al.,|2025b), can be viewed as continuations of this paradigm.

CoDiEmb builds upon these prior works, aiming to learn multi-functional representations within a
single, unified framework. However, our approach diverges by advocating for a deeper, task-aware
analysis and customization of the training process. Our results suggest that tailoring optimization
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to each task’s distinctive properties can enhance, rather than compromise, the model’s overall ver-
satility. We hope this work will inspire further research into developing specialized, yet synergistic,
optimization strategies for universal representation learning.

A.2 IMPLEMENTATION DETAILS

This appendix provides supplementary implementation details for the experiments in Section|3| As
noted in the main text, both our training and evaluation data are drawn from the CMTEB benchmark.
Detailed statistics for each dataset are provided in Table [d In particular, for the T2Retrieval task
(Xie et al., |2023), we mined a set of hard negatives for each query to ensure parity with corpora
that naturally include them. Furthermore, following established practices, we designed task-specific
instructions and prepended them to each input text before encoding. The datasets and instructions
used are identical across all methods and experiments to ensure a fair comparison.

For MiniCPM-Embedding and multilingual-e5-large, we derive text representations via mean pool-
ing and mask out instruction tokens. For bge-large-zh-v1.5, we follow the official guidelines and
employ CLS pooling. To conserve computational resources, all training runs leverage DeepSpeed
ZeRO-1 and gradient checkpointing.

Table 4: Overview and statistics of the CMTEB IR and STS datasets. A dash (-) in the “Train” col-
umn indicates that the task lacks a training split; evaluations on these tasks are therefore conducted
in a zero-shot setting.

Name Type #Train  #Test Description

CmedqaRetrieval (Qiu et al.|[2022) Retrieval 99,904 4,000  Online medical consultation texts

CovidRetrieval (Qiu et al.[|2022} Retrieval - 949 The COVID-19 news article retrieval dataset

DuRetrieval (Qiu et al.|[2022) Retrieval 83,456 2,000 A large-scale Chinese web search engine paragraph retrieval benchmark
MMarcoRetrieval (Bonifacio et al.||2021)  Retrieval - 6,980  the multilingual version of the MS MARCO paragraph ranking dataset
T2Retrieval (Xie et al.[|2023) Retrieval 698,752 22,800 T2Ranking: A large-scale Chinese paragraph ranking benchmark
EcomRetrieval (Long et al.[[2022) Retrieval 81,920 1,000  Multi-CPR: A Multi Domain Chinese Dataset for Passage Retrieval
MedicalRetrieval (Long et al.||2022) Retrieval - 1,000  Multi-CPR: A Multi Domain Chinese Dataset for Passage Retrieval
VideoRetrieval (Long et al.|[2022) Retrieval 82,560 1,000  Multi-CPR: A Multi Domain Chinese Dataset for Passage Retrieval
AFQMC (Xu et al.|[2020) STS 34,334 3,861  Ant Financial Question Matching Corpus

ATEC (Xiao et al.|[2024) STS 62,477 20,000 ATEC NLP Sentence Pair Similarity Competition

BQ (Chen et al.[l2018) STS 100,000 10,000 Banking Question Semantic Similarity

LCQMC (Liu et al.{[2018) STS 238,766 12,500 Large-scale Chinese Question Matching Corpus

PAWSX (Yang et al.||2019) STS 49,129 2,000 Translated PAWS evaluation pairs

QBQTC (Xu et al.[[2020) STS 180,000 5,000  QQ Browser Query Title Corpus

STSB (Cer et al.|[2017) STS 5,231 1,360  Translated STS-B into Chinese

A.3 EXTENDING CODIEMB TO PAIR CLASSIFICATION

In this appendix, we investigate the transferability of our CoDiEmb framework by extending it to
Pair Classification (PC) tasks. The CMTEB benchmark includes two PC datasets, OCNLI (Hu et al.|
2020) and CMNLI (Xu et al., |2020), whose data formats are largely consistent with those of STS.
For methodological simplicity, we handle PC data via the same processing pipeline and objective
functions designed for STS. We conduct two experiments using the bge-large-zh-v1.5 backbone:
first, we train a model on IR and STS data only and evaluate its zero-shot transfer performance on
PC; second, we train a model on all three task types. The results are presented in Table[5]

As shown in Table[5] joint training on IR and STS corpora enables the model to not only significantly
outperform the raw baseline on those primary tasks but also to achieve a discernible performance
gain on the unseen PC task (65.18 vs. 62.82). This suggests that CoDiEmb’s training paradigm
improves the fundamental geometric properties of the embedding space, leading to enhanced gener-
alization. This aligns with our analysis in Section] where we demonstrated that CoDiEmb mitigates
the issues of over-smoothing and anisotropy.

Furthermore, by explicitly incorporating PC data into the training regimen, CoDiEmb achieves a
substantial boost in PC performance—an increase of over 23 accuracy points—with only a minimal
trade-off in its IR and STS capabilities. Collectively, these findings demonstrate that the CoDiEmb
framework can be effectively extended to new task domains, underscoring its versatility and robust-
ness.
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Table 5: Performance of CoDiEmb when extended to include Pair Classification (PC) tasks. All
experiments adopt the bge-large-zh-v1.5 backbone. Avg. PC reports the average accuracy on the
OCNLI and CMNLI datasets.

PLMs \ Method | Avg. IR | Avg. STS | Avg. PC | Overall Score
Raw Model 47.74 50.57 62.82 161.13
bge-large-zh-v1.5 CoDiEmb (IR + STS) 71.07 67.87 65.18 204.12
CoDiEmb (IR + STS + PC) 70.89 67.13 88.62 226.64

A.4 PER-TASK RESULTS FOR STS AND IR

In subsection[3.1] we presented the aggregate performance of CoDiEmb and the baselines on the IR
and STS task families. Here, we report detailed per-task scores for each method on the 8 IR and 7
STS tasks from the CMTEB benchmark. The results are shown in Table[7]and Table[6] respectively.
Consistent with standard practice in the field, we report nDCG @ 10 as the primary metric for IR and
Spearman’s rank correlation for STS.

Table 6: Spearman’s correlation scores of different methods on the 7 STS tasks in CMTEB. The last
two columns, Avg. IR and Avg. STS, represent the model’s average performance on IR and STS,
respectively. Corresponding IR results are available in Table[7]

Methods AFQMC ATEC BQ LCQMC PAWSX QBQTC STS-B | Avg. IR | Avg. STS

Implementation on MiniCPM-Embedding
InfoNCE 61.51 58.03 67.78 71.89 40.93 41.82 81.73 74.23 60.53
CoSENT 69.28 59.54  73.57 79.97 63.95 58.35 85.69 71.30 70.05
Mixed 70.77 61.37 72.01 78.40 65.48 59.29 84.93 73.05 70.32
CoDiEmb 69.70 60.56 74.23 80.38 67.12 60.98 85.11 75.73 71.15

Implementation on multilingual-e5-large

InfoNCE 52.07 53.12  69.72 72.83 26.99 40.46 79.02 70.90 56.32
CoSENT 53.18 53.09 72.19 80.29 57.53 53.52 82.50 65.69 64.61
Mixed 58.36 5491 72.83 79.99 63.44 56.87 81.84 68.61 66.89
CoDiEmb 62.70 55.65 73.16 80.44 66.17 56.43 82.78 70.62 68.19

Implementation on bge-large-zh-vi.5

InfoNCE 54.47 54.34 68.64 74.16 34.31 41.12 79.61 71.73 58.09
CoSENT 56.73 54.52 7255 80.54 55.34 52.56 80.67 66.55 64.70
Mixed 62.59 56.59 73.04 80.16 59.51 56.82 81.13 68.67 67.12
CoDiEmb 66.60 58.32 7227 80.07 60.48 56.90 80.45 71.07 67.87

Table 7: nDCG @10 scores of different methods on the 8 IR tasks in CMTEB. The last two columns,
Avg. IR and Avg. STS, represent the model’s average performance on IR and STS, respectively.
Corresponding STS results are available in Table[6]

Methods Cmedqa Covid Du Ecom MMarco Medical T2  Video \ Avg. IR \ Avg. STS

Implementation on MiniCPM-Embedding
InfoNCE 41.99 90.73 88.78 65.42 83.76 61.26 8691 7498 | 74.23 60.53
CoSENT 42.28 81.81 86.70 65.66 78.89 59.57 84.52 7097 | 71.30 70.05
Mixed 41.82 90.01 87.62 64.10 83.21 59.64  86.22 71.75 73.05 70.32
CoDiEmb 45.43 90.61 89.51 69.24 84.26 62.86  87.36 76.55 75.73 71.15

Implementation on multilingual-e5-large

InfoNCE 41.85 7497 8590 65.76 77.40 59.82 84.47 77.00 | 70.90 56.32
CoSENT 33.49 7031 83.82 62.50 73.05 51.66 8254 68.17 | 65.69 64.61
Mixed 38.53 75.79 83.02 63.64 75.75 55.92 82.12 74.07 | 68.61 66.89
CoDiEmb 41.92 7620 85.85 66.31 76.95 56.80 8430 76.62 | 70.62 68.19

Implementation on bge-large-zh-v1.5

InfoNCE 45.14 75.86  88.19 67.33 76.01 59.51 8492 76.86 | 71.73 58.09
CoSENT 39.66 68.22 85.68 63.79 67.28 5590 8236 69.49 | 66.55 64.70
Mixed 43.04 7490 85.58 64.96 66.58 57.39 83.50 73.40 | 68.67 67.12
CoDiEmb 44.62 7641 8835 67.36 70.80 59.61 8494 7649 | 71.07 67.87
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A.5 THE IMPACT OF BATCH SIZE ON MODEL PERFORMANCE

Performance sensitivity to hyperparameters is a persistent challenge in deep learning. This issue is
particularly acute in representation learning, which often involves large-scale distributed training.
In the context of this paper, each query from an IR dataset is paired with K positives and K~
hard negatives. Consequently, a change of m in the number of queries per device batch results in a
substantial fluctuation of n_gpu x m x (K+ + K ™) in the total number of contrastive examples per
optimization step, where n_gpu is the number of GPUs (32 in our case). This dynamic implies that
even a modest adjustment to the batch size dramatically alters the training landscape. While a larger
set of in-batch negatives can enhance the discriminative power of the learned embeddings, it also
increases the risk of introducing false negatives, making the final performance difficult to predict.

A desirable property of a general-purpose framework like CoDiEmb is robustness to such variations,
ensuring stable and predictable outcomes. To evaluate this, we test the performance of CoDiEmb
across several batch size configurations, using bge-large-zh-v1.5 as the backbone. The correspond-
ing results are presented in Table |8} In the table, “IR Batch Size” refers to the number of queries,
while the total number of documents involved in one iteration is this value multiplied by (K T+K ™).
In contrast, “STS Batch Size” denotes the number of standard text pairs.

As shown in Table |8} CoDiEmb maintains stable convergence even when the global batch sizes for
IR and STS vary considerably. The overall score fluctuates by less than 0.5 points across all tested
configurations, underscoring the framework’s stability and robustness with respect to this critical
hyperparameter.

Table 8: Robustness of CoDiEmb to different batch size configurations. The table shows perfor-
mance as the per-device IR and STS batch sizes are varied. The total batch size is calculated over
32 GPUs. All experiments use the bge-large-zh-v1.5 backbone.

IR Batch Size  STS Batch Size Avg. IR  Avg. STS Overall Score
48 x 32 =1536 28 x 32 =896 70.99 67.78 138.77
52 x 32 =1664 28 x 32 =896 70.82 67.73 138.55
56 x 32 =1792 32x32=1024 7092 67.81 138.73
64 x 32 =2048 32x32=1024 71.19 67.52 138.71
72 x32=2304 32x32=1024 71.07 67.87 138.94

A.6 ABLATION STUDY OF LOSS FUNCTIONS

Table 9: Ablation study of CoDiEmb’s loss functions. The full model is compared against variants
where each novel objective (Lrankkr, L£pro> LencE) 18 individually removed. All experiments are
conducted using the multilingual-e5-large backbone.

Methods Avg. IR  Avg. STS Overall Score
CoDiEmb (Full)  70.62 68.19 138.81
W/0 LRankKL 70.26 67.50 137.76
w/o Lpro 70.99 67.26 138.25
w/o EENCE 69.78 67.98 137.76

Building upon prior work, CoDiEmb introduces three novel objective functions to the training pro-
cess of embedding models: (1) an extended contrastive loss with multiple positives and hard nega-
tives, denoted Lgncg; (2) a rank-normalized KL divergence loss, Lrankkr; and (3) an adapted Pref-
erence Rank Optimization (PRO) loss, Lpro. As demonstrated in our main results, these objectives
exhibit strong synergistic effects when adopted in concert.

To further ascertain whether each loss component contributes positively, we conduct an ablation
study with multilingual-e5-large as the base encoder. The results are presented in Table 9] In this
analysis, we systematically remove each component from the full model. Notably, the “w/o Lgncg”
configuration reverts to a standard InfoNCE loss for the IR task, leaving other components intact.
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The results clearly indicate that removing any of the proposed loss functions leads to a degradation
in overall performance. The impact of Lrakkr and Lencg is particularly pronounced. Ablating
either of these two components results in a performance drop of more than a full point on the overall
score, an effect that could not be recovered even with careful hyperparameter retuning.

A.7 LLM USAGE STATEMENT

We utilized large language models (LLMs) as a writing aid during the preparation of this manuscript.
Specifically, LLMs were used for tasks such as improving grammar, refining phrasing, and ensuring
clarity in the text. All core scientific contributions, including the methodological design, experimen-
tal setup, and analysis of results, were conceived and executed by the human authors.
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