CODIEMB: A COLLABORATIVE YET DISTINCT FRAMEWORK FOR UNIFIED REPRESENTATION LEARNING IN INFORMATION RETRIEVAL AND SEMANTIC TEXTUAL SIMILARITY

Anonymous authors

000

001

002

004

006

008

009

010 011 012

013

015

016

017

018

019

021

023

024

025

026

027

028

029

031

033

035

037

040

041

042

043

044

046

047

048

052

Paper under double-blind review

ABSTRACT

Obtaining text embeddings that excel across diverse downstream scenarios is a long-standing pursuit in representation learning, yet negative transfer remains a persistent obstacle. This challenge is particularly pronounced when jointly optimizing two core tasks: Information Retrieval (IR) and Semantic Textual Similarity (STS). Owing to discrepancies in data organization, text-length distributions, and evaluation metrics, naive co-training typically yields steep performance tradeoffs. In this paper, we contend that systematically decoupling these tasks at both the design and training levels is essential for comprehensive model convergence. To this end, we propose CoDiEmb, a unified framework that processes IR and STS collaboratively yet distinctly. Unlike previous methods, CoDiEmb achieves superior performance under joint optimization without requiring complex multi-stage training pipelines or additional learnable components. CoDiEmb introduces three key innovations: (1) a unified data format compatible with inputs of any granularity. (2) task-specific objective functions aligned with evaluation metrics; and (3) a dynamic single-source data sampling strategy. Extensive experiments on 15 standard IR and STS benchmarks across three base encoders thoroughly validate the effectiveness of CoDiEmb. Our results and analysis demonstrate that the framework not only mitigates inter-task conflicts but also substantially alleviates the issues of anisotropy and over-smoothing in the semantic space. Our code is publicly available at https://anonymous.4open.science/r/CoDiEmb.

1 Introduction

Modern Natural Language Processing (NLP) is largely driven by two paradigms: generation and encoding (Muennighoff et al., 2024). The output of encoder models, known as text embeddings, represents a cornerstone of computational linguistics. Among the myriad applications and benchmarks for text embeddings, Semantic Textual Similarity (STS) and Information Retrieval (IR) stand out as two of the most critical (Gao et al., 2021). STS aims to determine the semantic proximity between two text segments, forming the foundation for technologies such as recommendation systems, text clustering, and content normalization (Sheng et al., 2024). IR, on the other hand, focuses on measuring the relevance between a query and a large document collection, playing a pivotal role in search engines, dialogue platforms, and AI agents (Sun et al., 2025).

Motivated by the goal of developing a universal text encoder proficient in both task families, state-of-the-art embedding models commonly train on large mixtures of STS and IR datasets using contrastive learning (Xiao et al., 2024; Lee et al., 2024a). While straightforward, this practice overlooks the inherent discrepancies between the two task types. Concretely, STS and IR exhibit significant differences in several key aspects:

• Data Structure: STS tasks typically organize data in triplets (x_1, x_2, y) , where the paired texts x_1 and x_2 are highly symmetric; swapping their positions does not alter the label y. Furthermore, because STS demands fine-grained semantic distinctions, y often has multiple levels (e.g., 1 to 5). In contrast, IR datasets are inherently asymmetric, comprising a set

of queries $\{q\}_1^m$, a large document corpus $\{d\}_1^n$, and a relevance mapping $\{(q_i,d_j)\}_1^o$ that defines their relationships. During inference, a query q_i is matched against each document in $\{d\}_1^n$, but only the pairs (q_i,d_j) specified in the mapping are considered relevant. Moreover, as most IR tasks do not partition samples beyond positive and negative, their label granularity can be considered binary.

- Text Length: STS predominantly operates at the sentence level with short texts, perhaps because semantic similarity becomes ambiguous as length increases (Deshpande et al., 2023). Conversely, the queries and documents in IR tasks are highly flexible in length, with documents frequently spanning hundreds of tokens. As a result, although both tasks leverage cosine similarity for efficient matching, the underlying meaning of the calculation differs: STS prioritizes semantic equivalence, whereas IR leans towards topical or knowledge-level relevance.
- Evaluation Metrics: The primary metric for STS is Spearman's rank correlation coefficient (Zar, 2005), which measures the monotonic relationship between predicted and true rankings. The Normalized Discounted Cumulative Gain (nDCG) metric (Wang et al., 2013) used in IR is also list-wise but places greater emphasis on the correctness of top-ranked items. Furthermore, considering that documents relevant to a query are typically sparse in most IR tasks, nDCG@k is more commonly adopted.

These discrepancies lead to suboptimal performance when the two tasks are optimized indiscriminately. As we will demonstrate in Section 3, naively applying an objective function suited for one task, such as InfoNCE Loss (Oord et al., 2018) for IR or CoSENT Loss (Huang et al., 2024) for STS, is detrimental to the other. In contrast, our proposed framework, CoDiEmb, strikes a robust balance between IR and STS during collaborative training, approaching or even surpassing the performance of single-task fine-tuning.

Notably, some cutting-edge research has also observed these performance trade-offs. Asai et al. (2022) propose designing distinct instructions for different tasks and prepending them to the input text. While this strategy yields notable gains, the prior information provided by such instructions is limited and relies entirely on the model's implicit contextual understanding, lacking explicit gradient signals. Jina-embeddings-v3 (Sturua et al., 2024) introduces Task LoRA for parameter-level customization, but this necessitates storing a series of adapters. Moreover, if a document appears in k task sets, it would require k distinct embeddings, incurring prohibitive storage costs. NV Embed (Lee et al., 2024a) converts all data types into an IR format and constructs a two-stage training pipeline: first fine-tuning on IR datasets with hard negatives, followed by contrastive learning on a mixture of all corpora without them. This process inevitably discards a large volume of low-score STS data that cannot be formulated into positive pairs. In addition, as noted in prior work, coarse-grained contrastive objectives are ill-suited for tasks with fine-grained labels (Zhang & Li, 2024a;b).

This landscape reveals a pressing need for a unified, effective, and end-to-end solution for the joint optimization of IR and STS. To this end, we present CoDiEmb, a framework that <u>Co</u>llaboratively yet <u>Di</u>stinctly handles Information Retrieval and Semantic Textual Similarity across data formatting, loss functions, and sampling strategies.

Specifically, for IR tasks, we design a contrastive loss that supports multiple positives and hard negatives per anchor. This is augmented with cross-device negative sampling, which dramatically expands the pool of comparison candidates, yielding sharper separability. During this process, CoDiEmb's dynamic sampler ensures that, in each iteration, all GPUs draw samples strictly from disjoint subsets of the same data file, thereby providing pure task gradients. For STS tasks, rather than relying on the binary classification-style InfoNCE Loss or approximating the ranking objective by penalizing inverted pairs, we optimize directly for order consistency. Building on the Pearson Loss from Pcc-tuning (Zhang & Li, 2024a), we introduce our modified and adapted KL divergence Loss and PRO Loss (Peng et al., 2024), which substantially enhance the model's fine-grained semantic discrimination. Furthermore, to facilitate comprehensive convergence across all tasks, we allow dataset-specific batch sizes to fully balance their update counts.

In summary, the main contributions of this paper are as follows:

 We propose CoDiEmb, a framework that enables a model to converge effectively on both IR and STS tasks within a single training stage. CoDiEmb requires no adapter components, and its unified data format is fully compatible with corpora of arbitrary granularity, eliminating the need to discard any samples.

- We formulate specialized loss functions tailored to the distinct characteristics of IR and STS. In conjunction with our custom dynamic sampler, this approach not only balances per-task iteration counts but also prevents the gradient interference induced by mixed-task batches.
- We conduct extensive experiments with MiniCPM (Hu et al., 2024), E5 (Wang et al., 2024), and BGE (Xiao et al., 2024) across 8 IR and 7 STS benchmarks, thoroughly validating the superiority of CoDiEmb. To further elucidate the underlying principles of our method, we provide a series of theoretical analyses, finding that CoDiEmb's joint optimization strategy effectively mitigates anisotropy (Ethayarajh, 2019) and over-smoothing (Shi et al., 2022) in the learned representation space.

2 METHODOLOGY

This section presents CoDiEmb (Figure 1), our end-to-end framework for unified representation learning across STS and IR. We begin in subsection 2.1 by introducing our task—agnostic data format, explaining its compatibility with inputs of heterogeneous granularity and its extensibility to other tasks. Building upon this, subsection 2.2 provides a detailed exposition of CoDiEmb's specialized loss functions, linking their design to the corresponding evaluation metrics. Finally, subsection 2.3 elaborates on our custom data sampler and the multi-device training configuration.

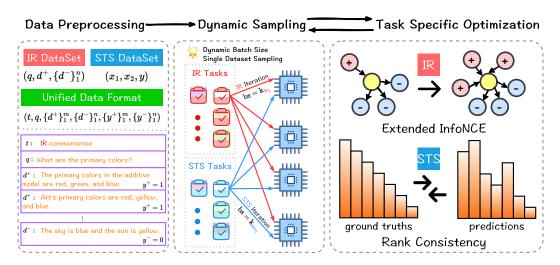


Figure 1: The overall workflow of CoDiEmb, covering data preprocessing, dynamic sampling, and multi-task joint optimization.

2.1 Unified Data Format

As previously discussed, IR and STS tasks exhibit significant structural differences. IR samples are typically organized as tuples of $(q,d^+,\{d^-\})$, where d^+ is a document directly relevant to the query q, and d^- is a set of hard negatives obtained through data mining. As this format does not include explicit scores, the supervisory signal is derived primarily from the annotator's binary partition of positive and negative samples. In contrast, for STS tasks, each text pair (x_1,x_2) is associated with a numerical label y that determines its relative ordering during inference. Furthermore, y is not restricted to binary categories and can be an integer or floating-point number within any range. To accommodate both data types, CoDiEmb employs a unified format: $(t,q,\{d^+\}_1^m,\{d^-\}_1^n,\{y^+\}_1^m,\{y^-\}_1^n)$. Here, t is a task identifier, which can be specified at the file level. In the subsequent training pipeline, samples with different identifiers are routed to distinct branches for task-specific processing. For fields absent in the original dataset, CoDiEmb fills them with default placeholders that are ignored during the forward pass, incurring no additional memory overhead.

This consolidated data structure is highly extensible. When handling STS tasks, we map the triplet (x_1, x_2, y) to the query q, the first positive document d_1^+ , and the first positive score y_1^+ , respectively. For IR, we populate the query q, the positive set $\{d^+\}_1^m$, and the negative set $\{d^-\}_1^n$. Furthermore, data from classification or clustering tasks are also compatible with CoDiEmb. In these scenarios, the raw data can be partitioned by labels, allowing for intra-cluster (positive) and inter-cluster (negative) sampling to construct inputs for contrastive learning. An alternative strategy, adopted by works like Sentence-BERT (Reimers & Gurevych, 2019) and STS-Reg (Zhang & Li, 2024b), is the classifier-head architecture. In this case, the input text and its ground-truth label can be passed as q and y^+ , respectively.

Leveraging this unified data structure, CoDiEmb not only standardizes the loading of diverse corpora but also enables the configuration of differentiated loss functions tailored to task characteristics, thereby facilitating multi-granularity training. Although this paper focuses on the joint optimization of IR and STS, the potential of CoDiEmb extends beyond this scope. For instance, in Appendix A.3, we provide our implementation and test results on Pair Classification tasks.

2.2 DIFFERENTIATED LOSS FUNCTIONS

As the optimization objective for model training, loss functions have profound impacts on neural network's performance. A well-designed loss should closely align with the evaluation metrics to provide effective learning signals. The primary metrics for IR and STS are nDCG@k and Spearman's correlation coefficient, respectively. Both are non-differentiable ranking metrics and thus cannot be directly optimized via backpropagation. For a given query q, let the top-k documents retrieved by the model be $\{d_{\theta(1)}, d_{\theta(2)}, ..., d_{\theta(k)}\}$. The nDCG@k is calculated as follows:

$$DCG@k = \sum_{i=1}^{k} \frac{rel_i}{\log_2(i+1)} \quad IDCG@k = \sum_{i=1}^{k} \frac{rel_i^{ideal}}{\log_2(i+1)} \quad nDCG@k = \frac{DCG@k}{IDCG@k} \quad (1)$$

Here, rel_i is the annotated relevance of $d_{\theta(i)}$, while $\operatorname{rel}_i^{\operatorname{ideal}}$ denotes the score of the ideal document at that rank; clearly, $\operatorname{rel}_i \leq \operatorname{rel}_i^{\operatorname{ideal}}$. This formulation reveals that the core objective of $\operatorname{nDCG@k}$ is to place highly relevant documents at the top of the full candidate list. We analyze the average number of relevant documents per query across five open-source IR datasets, with results shown in Figure 2. It is evident that even within a vast corpus, content truly relevant to a specific query is typically sparse, making it feasible to enumerate most positive samples. Moreover, since mainstream IR datasets predominantly use binary labels, improving the $\operatorname{nDCG@k}$ for a query is equivalent to maximizing the predicted scores of its $\operatorname{m} = \min(k, \operatorname{n-positives})$ positive documents. This objective aligns with the principles of contrastive learning but imposes two additional requirements: (1) documents involved in the relevance comparison should come from the same corpus and be as numerous as possible, and (2) a sufficient number of positive examples should be considered simultaneously.

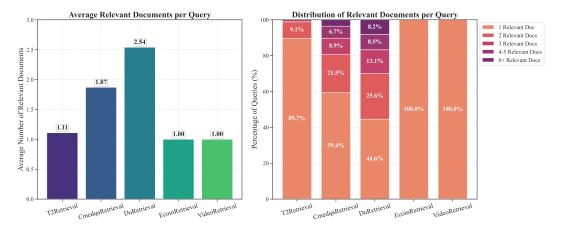


Figure 2: Average number and distribution of relevant documents per query across five widely used open-source IR datasets.

In CoDiEmb, the first requirement is primarily met by our custom sampler, which we will detail in subsection 2.3. The second is achieved through our design of an extended InfoNCE Loss that incorporates multiple positives and hard negatives. For a batch size of N, the loss is formulated as:

$$Z_{i}^{+} = \sum_{j \neq i}^{N} \sum_{k=1}^{K^{+}} e^{\cos(q_{i}, d_{jk}^{+})/\tau} \quad Z_{i}^{-} = \sum_{j=1}^{N} \sum_{k=1}^{K^{-}} e^{\cos(q_{i}, d_{jk}^{-})/\tau}$$

$$\mathcal{L}_{IR} = -\mathbb{E} \left[\sum_{i=1}^{N} \sum_{c=1}^{K^{+}} \log \frac{e^{\cos(q_{i}, d_{ic}^{+})/\tau}}{e^{\cos(q_{i}, d_{ic}^{+})/\tau} + Z_{i}^{+} + Z_{i}^{-}} \right]$$
(2)

In Equation 2, K^+ and K^- denote the numbers of positive and hard negative examples, drawn from the input fields $\{d^+\}_1^m$ and $\{d^-\}_1^n$. If the available samples are fewer than K^+ or K^- , we sample with replacement. By considering multiple positives against an expanded set of negatives, this contrastive objective more closely approximates the nDCG@k metric, thereby boosting performance on IR tasks.

Unlike nDCG, which is a position-aware metric that assigns greater weight to top-ranked items, Spearman's correlation coefficient ρ treats each sample equally and focuses on overall ranking quality. Its formula is described in Equation 3, where n is the number of data points, and d_i is the difference in ranks between the predicted and true scores for the i-th pair. Spearman's coefficient ranges from -1 to 1, with higher values indicating stronger agreement between the model outputs and human judgments.

$$\rho = 1 - \frac{6\sum_{i=1}^{n} d_i^2}{n(n^2 - 1)} \tag{3}$$

Training data for STS tasks often contain fine-grained annotation scores, for which coarse-grained modeling approaches like contrastive learning are suboptimal, as they fail to fully leverage such nuances and thus face a performance ceiling. To address this, Zhang & Li (2024a) introduced a Pearson Loss that directly optimizes the model at the rank level. CoDiEmb inherits this idea. Given a set of text pairs $\{(x_1^i, x_2^i)\}_{i=1}^n$, let the model's predicted cosine similarities be $X = \{\cos\left(f(x_1^i), f(x_2^i)\right)\}_{i=1}^n$ and the list of ground-truth scores be $Y = \{y^i\}_{i=1}^n$. The Pearson Loss is calculated as:

$$r = \frac{\text{Cov}(X, Y)}{\sigma_X \sigma_Y} \quad \mathcal{L}_{\text{Pearson}} = -r + 1 \tag{4}$$

While effective, Pearson correlation primarily captures linear relationships. To model more complex mappings, CoDiEmb introduces two additional list-wise losses. The first adapts KL divergence, which measures the distance between a predicted distribution Q and a target distribution P as $\mathrm{D_{KL}}(P||Q) = \sum_i p_i \log(p_i/q_i)$. An intuitive application to STS would involve converting predicted scores \hat{y} and ground-truth scores y into probability distributions (q and p) using a standard Softmax function:

$$\hat{y}_i = \cos\left(f(x_1^i), f(x_2^i)\right) \quad q_i = \frac{\exp(\hat{y}_i/\tau)}{\sum_{j=1}^N \exp(\hat{y}_j/\tau)} \quad p_i = \frac{\exp(y_i/\tau)}{\sum_{j=1}^N \exp(y_j/\tau)}$$
 (5)

Since p_i is derived from ground-truth labels and carries no gradients, optimizing KL divergence is equivalent to minimizing cross-entropy. This process is analogous to knowledge distillation with soft labels and is logically sound. However, p_i depends on the relative magnitudes of y_i within the batch and can fluctuate substantially with the score distribution. Consider two batches: $Y_A = [0.9, 0.88, 0.2]$ and $Y_B = [0.6, 0.2, 0.1]$. With $\tau = 0.1$, we have $P_A = \text{Softmax}(Y_A) \approx [0.5496, 0.4499, 0.0005]$. Here, the first two samples account for 99.95% of the total probability mass, forcing the model to spend significant effort fitting the minute difference between 0.9 and 0.88, while the 0.2-scored sample receives a negligible gradient. Similarly, for batch $P_B = \text{Softmax}(Y_B) \approx [0.9756, 0.0179, 0.0066]$. In this case, the model is heavily incentivized to rank the first sample correctly, while the relative order of the other two is largely ignored.

This unstable weight allocation mechanism deviates from the spirit of Spearman correlation, which prioritizes rank consistency over absolute values. We therefore propose a Rank-normalized KL-divergence Loss \mathcal{L}_{RankKL} . Instead of comparing scores, we align the model's predictions with an

ideal distribution derived from ground-truth ranks. First, we sort all samples within a batch in descending order based on their labels to obtain ranks $r_i \in [0, N-1]$, where N is the batch size. In case of ties, following the definition of Spearman correlation, r_i is set to the average of their ranks. These ranks are then normalized to $y_i' \in [0,1]$, matching their scale with predicted cosine similarities \hat{y} . We then define the target distribution p_i as the Softmax of y_i' , while keeping q_i as before. The final loss is:

$$p_{i} = \frac{\exp(y_{i}'/\tau)}{\sum_{j=1}^{N} \exp(y_{j}'/\tau)} \quad q_{i} = \frac{\exp(\hat{y}_{i}/\tau)}{\sum_{j=1}^{N} \exp(\hat{y}_{j}/\tau)}$$
$$y_{i}' = \frac{(N-1) - r_{i}}{N-1} \quad \mathcal{L}_{\text{RankKL}} = \sum_{i=1}^{N} p_{i} \log\left(\frac{p_{i}}{q_{i}}\right)$$
 (6)

Compared to the original KL divergence, \mathcal{L}_{RankKL} directly optimizes for rank, making it robust to the absolute magnitudes of ground-truth scores. This allows it to provide a stable gradient throughout training, driving the predicted ranking toward the desired order.

Building on this, we adapt Preference Rank Optimization (PRO), a reinforcement learning method originally from BEQUE (Peng et al., 2024) for query rewriting, to the domain of text representation. Similar to $\mathcal{L}_{\text{RankKL}}$, we first sort samples by their true scores y_i . For any pair (i,j) in the sorted list where i>j, we define a weight $\mathcal{T}_i^j=\tau/(y_i-y_j)$, where τ is a temperature hyperparameter. We then set \mathcal{T}_i^i to $\min_{i>j}(\mathcal{T}_i^j)$, i.e., the weight corresponding to the largest gap between sample i and any subsequent sample. The \mathcal{L}_{PRO} is formulated as below. It decomposes the ranking objective into N-1 sequential subproblems. For each anchor point i in the list, we construct a classification task where the goal is to make its predicted score \hat{y}_i higher than all subsequent items, with the optimization weights determined by their true similarity differences.

$$\mathcal{L}_{PRO} = -\mathbb{E}\left[\sum_{i=1}^{N-1} \log \frac{\exp(\hat{y}_i/\mathcal{T}_i^i)}{\sum_{j=i}^{N} \exp(\hat{y}_j/\mathcal{T}_i^j)}\right]$$
(7)

Finally, the total loss for STS tasks in CoDiEmb is a weighted sum of these components: $\mathcal{L}_{STS} = \alpha \mathcal{L}_{Pearson} + \beta \mathcal{L}_{RankKL} + \gamma \mathcal{L}_{PRO}$. During training, we alternate between \mathcal{L}_{IR} and \mathcal{L}_{STS} to update network parameters, preventing catastrophic forgetting and achieving a robust balance across tasks.

2.3 SAMPLER AND MULTI-GPU SETUP

As model and data volumes scale, distributed training has become standard practice in representation learning. Our previous analysis has highlighted that a core aspect of IR is making positive examples stand out from the entire document collection. Thus, with appropriate learning rates and iteration counts, a model's IR performance generally benefits from larger batch sizes (Zhang et al., 2022; Wu et al., 2022; Zhang et al., 2024a). Accordingly, CoDiEmb enables cross-device negative sampling when processing IR tasks to gather a larger pool of reference items.

However, merely increasing the sample count is insufficient for robust performance gains; the negatives obtained from other GPUs must be meaningful. In both real-world IR applications and benchmarks, a document is ranked against others from the same corpus. Therefore, negatives drawn from the same data distribution are more challenging and informative than random documents from a global pool. Consequently, CoDiEmb implements a custom data sampler that guarantees, within a single iteration, that each device processes non-overlapping shards of the same data file.

Conversely, for STS tasks, our empirical findings show that model convergence is not contingent on massive batch sizes. In fact, since many STS datasets use a small set of discrete integer labels (e.g., 0, 1, 2), an excessively large batch can lead to a high frequency of tied scores. Such a distribution can degrade the performance of rank-sensitive list-wise losses. Therefore, we disable cross-device sampling when processing STS batches.

Furthermore, the significant disparity in typical text lengths between IR (long documents) and STS (short sentences) makes a uniform batch size inefficient, leading to unbalanced GPU utilization and difficulty in managing per-task training iterations. To resolve this, CoDiEmb's data loader supports task-specific batch size configurations, optimizing training efficiency and providing finer control over the learning process.

3 EXPERIMENTS

3.1 Main Results

Our experiments are primarily conducted on the well-established CMTEB leaderboard (Xiao et al., 2024), which comprises 7 STS tasks and 8 IR tasks spanning diverse domains such as news, medicine, finance and general knowledge. To validate the generality of our approach, we fine-tune three different PLMs as base encoders: MiniCPM-Embedding (Hu et al., 2024), multilingual-e5-large (Wang et al., 2024), and bge-large-zh-v1.5 (Xiao et al., 2024). For training, we adopt the publicly available CMTEB IR and STS datasets. Notably, three IR tasks—CovidRetrieval (Qiu et al., 2022), MMarcoRetrieval (Bonifacio et al., 2021), and MedicalRetrieval (Long et al., 2022)—do not provide dedicated training sets. Evaluations on these tasks are therefore performed in a zero-shot setting, which directly reflects the models' generalization capabilities. Detailed experimental configurations are provided in Appendix A.2.

Table 1 summarizes the overall performance of different methods on the full suite of CMTEB STS and IR tasks, while per-task scores are reported in Appendix A.4. To isolate the contributions of CoDiEmb's components, we compare it against several carefully designed baselines. Here, "InfoNCE" denotes training solely with the InfoNCE Loss. For STS tasks under this setting, pairs with low similarity are filtered via a threshold to ensure the correctness of contrastive objectives. Conversely, "CoSENT" refers to training exclusively with the CoSENT Loss, a prevalent approach in STS research (Li et al., 2024; Yu et al., 2025). The formulas for both objectives are given below, where the notation is consistent with subsection 2.2. Additionally, "Mixed" indicates the adoption of a mixed-batch sampler during training. While this sampler still requires that texts within each GPU originate from the same data file, it places no such restriction across GPUs. Consequently, in a single iteration, different GPUs may process different task types, providing the model with mixed-task gradients.

$$\mathcal{L}_{\text{InfoNCE}} = -\mathbb{E}\left[\sum_{i=1}^{N} \log \frac{1_{\text{label}} e^{\cos\left(f(x_1^i), f(x_2^i)\right)/\tau}}{\sum_{j=1}^{N} e^{\cos\left(f(x_1^i), f(x_2^j)\right)/\tau}}\right]$$

$$\mathcal{L}_{\text{Cosent}} = \log \left(1 + \sum 1_{y_i > y_j} \exp\left(\cos\left(f(x_1^j), f(x_2^j)\right)/\tau - \cos\left(f(x_1^i), f(x_2^i)\right)/\tau\right)\right)$$
(8)

Table 1: Main results on the CMTEB benchmark. Avg. IR and Avg. STS report the average nDCG@10 across 8 IR tasks and the average Spearman correlation across 7 STS tasks, respectively. The Overall Score equals the sum of these two metrics.

InfoNCE MiniCPM 74.23 60.53 134.76 CoSENT MiniCPM 71.30 70.05 141.35 Mixed MiniCPM 73.05 70.32 143.37 CoDiEmb MiniCPM 75.73 71.15 146.88 InfoNCE e5-large 70.90 56.32 127.22 CoSENT e5-large 65.69 64.61 130.30 Mixed e5-large 68.61 66.89 135.50 CoDiEmb e5-large 70.62 68.19 138.81 InfoNCE bge-large 71.73 58.09 129.82 CoSENT bge-large 66.55 64.70 131.25 Mixed bge-large 68.67 67.12 135.79	equals are		t o 111 0 tr 1	•5.	
CoSENT MiniCPM 71.30 70.05 141.35 Mixed MiniCPM 73.05 70.32 143.37 CoDiEmb MiniCPM 75.73 71.15 146.88 InfoNCE e5-large 70.90 56.32 127.22 CoSENT e5-large 65.69 64.61 130.30 Mixed e5-large 68.61 66.89 135.50 CoDiEmb e5-large 70.62 68.19 138.81 InfoNCE bge-large 71.73 58.09 129.82 CoSENT bge-large 66.55 64.70 131.25 Mixed bge-large 68.67 67.12 135.79	Methods	PLMs	Avg. IR	Avg. STS	Overall Score
Mixed CoDiEmb MiniCPM MiniCPM 73.05 70.32 71.15 143.37 146.88 InfoNCE e5-large CoSENT e5-large 65.69 64.61 130.30 65.69 64.61 130.30 Mixed e5-large 68.61 66.89 CODiEmb e5-large 70.62 68.19 138.81 InfoNCE bge-large CoSENT bge-large 66.55 64.70 131.25 71.73 58.09 129.82 Mixed bge-large 66.55 64.70 131.25 71.73 13.25 Mixed bge-large 66.55 64.70 131.25 71.73 13.25	InfoNCE	MiniCPM	74.23	60.53	134.76
CoDiEmb MiniCPM 75.73 71.15 146.88 InfoNCE e5-large 70.90 56.32 127.22 CoSENT e5-large 65.69 64.61 130.30 Mixed e5-large 68.61 66.89 135.50 CoDiEmb e5-large 70.62 68.19 138.81 InfoNCE bge-large 71.73 58.09 129.82 CoSENT bge-large 66.55 64.70 131.25 Mixed bge-large 68.67 67.12 135.79	CoSENT	MiniCPM	71.30	70.05	141.35
InfoNCE e5-large 70.90 56.32 127.22 CoSENT e5-large 65.69 64.61 130.30 Mixed e5-large 68.61 66.89 135.50 CoDiEmb e5-large 70.62 68.19 138.81 InfoNCE bge-large 71.73 58.09 129.82 CoSENT bge-large 66.55 64.70 131.25 Mixed bge-large 68.67 67.12 135.79	Mixed	MiniCPM	73.05	70.32	143.37
CoSENT e5-large 65.69 64.61 130.30 Mixed e5-large 68.61 66.89 135.50 CoDiEmb e5-large 70.62 68.19 138.81 InfoNCE bge-large 71.73 58.09 129.82 CoSENT bge-large 66.55 64.70 131.25 Mixed bge-large 68.67 67.12 135.79	CoDiEmb	MiniCPM	75.73	71.15	146.88
Mixed CoDiEmb e5-large e5-large 68.61 (66.89) (68.19) 135.50 (68.19) InfoNCE Dige-large CoSENT Dige-large Mixed 70.62 (68.19) 58.09 (129.82) Mixed Dige-large (66.55 (64.70) 131.25 (67.12) Mixed Dige-large (68.67 (67.12) 135.79	InfoNCE	e5-large	70.90	56.32	127.22
CoDiEmb e5-large 70.62 68.19 138.81 InfoNCE bge-large 71.73 58.09 129.82 CoSENT bge-large 66.55 64.70 131.25 Mixed bge-large 68.67 67.12 135.79	CoSENT	e5-large	65.69	64.61	130.30
InfoNCE bge-large 71.73 58.09 129.82 CoSENT bge-large 66.55 64.70 131.25 Mixed bge-large 68.67 67.12 135.79	Mixed	e5-large	68.61	66.89	135.50
CoSENT bge-large 66.55 64.70 131.25 Mixed bge-large 68.67 67.12 135.79	CoDiEmb	e5-large	<u>70.62</u>	68.19	138.81
Mixed bge-large 68.67 <u>67.12</u> <u>135.79</u>	InfoNCE	bge-large	71.73	58.09	129.82
	CoSENT	bge-large	66.55	64.70	131.25
CoDiEmb bge-large 71.07 67.87 138.94	Mixed	bge-large	68.67	<u>67.12</u>	135.79
	CoDiEmb	bge-large	71.07	67.87	138.94

As demonstrated in Table 1, compared to using InfoNCE alone, CoDiEmb attains comparable or superior IR performance while consistently outperforming it on STS tasks, leading to a significantly higher overall score across all backbones. This phenomenon is interpretable: when harnessing a unified contrastive learning approach, the threshold-filtered STS samples steer the model toward cluster-oriented updates akin to IR, thus effectively acting as a form of data augmentation for the IR task. However, this slight improvement in IR comes at the expense of a drastic degradation in STS

performance. For this reason, CoDiEmb avoids relying on coarse-grained contrastive learning as the primary optimization strategy for STS.

When benchmarked against the CoSENT-only approach, CoDiEmb demonstrates markedly superior performance on both IR and STS tasks. For instance, with multilingual-e5-large as the backbone, CoDiEmb achieves gains of 4.93 on average nDCG@10 and 3.58 on average Spearman correlation—substantial increases for both metrics. This highlights the inadequacy of a single pair-wise ranking loss for the distinct optimization of both tasks. A similar pattern holds when comparing against the mixed-gradient sampler. By strictly ensuring that each GPU processes a disjoint subset of the same dataset per iteration while flexibly balancing the update frequencies of different data sources, CoDiEmb delivers steady improvements across tasks. Collectively, these observations confirm the effectiveness of CoDiEmb's specialized loss design and its single-source sampling strategy. Furthermore, we also provide robustness experiments under various batch size configurations as well as ablation studies of the loss functions in Appendix A.5 and Appendix A.6.

3.2 Comparison with Single-Task Models

To conclusively substantiate that CoDiEmb achieves a synergistic balance rather than a simple tradeoff, we compare it against two specialist models: one trained exclusively on IR data (IR-only) and another on STS data (STS-only). The results, presented in Table 2, first reveal the severe limitations of single-task training. While the specialist models excel on their native tasks, they suffer a catastrophic performance collapse when transferred to the other domain. On average, the IR-only model's STS performance is 17.3 points lower than the STS specialist, while the STS-only model's IR performance is a staggering 22.2 points lower than its IR counterpart.

In stark contrast, CoDiEmb demonstrates a highly effective and favorable trade-off. It incurs only a marginal cost on IR tasks (averaging -0.71 points relative to the IR specialist), while delivering substantial gains on STS tasks (improving by 1.92 points on average over the STS specialist). More strikingly, CoDiEmb consistently outperforms the STS-only model on its own primary task across all backbones, indicating that the STS task does not suffer from negative transfer but instead benefits from co-training with IR data under our collaborative-yet-distinct paradigm.

Table 2: Performance comparison between CoDiEmb and single-task specialist models. Values in parentheses denote the performance difference (Δ) of CoDiEmb relative to the corresponding specialist model, indicating a performance gain (+) or cost (-).

PLMs	Method	Avg. IR	Avg. STS	Overall Score
	IR-only	76.10	49.67	125.77
MiniCPM-Embedding	STS-only	62.28	68.83	131.11
_	CoDiEmb	75.73 (-0.37)	71.15 (+2.32)	146.88
	IR-only	71.34	48.22	119.56
multilingual-e5-large	STS-only	48.02	66.37	114.39
	CoDiEmb	70.62 (-0.72)	68.19 (+1.82)	138.81
	IR-only	72.12	51.72	123.84
bge-large-zh-v1.5	STS-only	45.64	66.26	111.90
	CoDiEmb	71.07 (-1.05)	67.87 (+1.61)	138.94

4 ANALYSIS

To assess the intrinsic quality of the embedding space learned by CoDiEmb, we move beyond benchmark scores to conduct an in-depth quantitative analysis of its geometric properties. A high-quality embedding space should capture subtle semantic distinctions while maintaining a well-dispersed distribution, thereby maximizing representational capacity. However, prior work has pointed out that pre-trained language models commonly suffer from over-smoothing (Shi et al., 2022) and anisotropy (Ethayarajh, 2019), both of which can severely compromise representation quality.

Over-smoothing arises when a model loses the ability to differentiate among tokens within a text, mapping them to overly similar embeddings. Anisotropy, by contrast, occurs when embeddings

collapse into a narrow cone in the vector space, resulting in limited expressiveness. Our central hypothesis is that CoDiEmb—through its collaborative architecture, task-specific loss functions, and task-pure gradient signals—effectively mitigates these issues. To validate this hypothesis, we employ a suite of diagnostic metrics established in prior work (Zhang et al., 2025a) to evaluate the health of the learned embedding space.

Given an input sequence $T=[t_1,t_2,\ldots,t_n]$, the model outputs a token embedding matrix $X\in\mathbb{R}^{n\times d}$ whose rows are the token vectors $\{x_1,x_2,\ldots,x_n\}$. We quantify over-smoothing using Tokenwise Similarity (TokSim), defined as the average pairwise cosine similarity among distinct tokens: $\mathrm{TokSim}(X)=\frac{1}{n(n-1)}\sum_{i\neq j}\frac{x_i^Tx_j}{\|x_i\|_2\|x_j\|_2}$. A lower value indicates better separability.

To evaluate anisotropy, we analyze the singular value spectrum of X. First, we report the matrix rank $\operatorname{rank}(X)$, where a higher value indicates richer, less redundant information. We then perform Singular Value Decomposition (SVD) on X and adopt two additional indicators. The Condition Number, $\kappa(X) = \sigma_{\max}/\sigma_{\min}$, is the ratio of the largest to the smallest singular value. A lower value is preferred, as it signifies a more uniform spectrum. The SVD Entropy H(X) measures the richness of the effective semantic dimensions. It is calculated by first normalizing the squared singular values into a probability distribution $p_i = \sigma_i^2 / \sum_{j=1}^k \sigma_j^2$ and then computing the entropy $H(X) = -\sum_{i=1}^k p_i \log(p_i)$. A higher value indicates that more semantic dimensions contribute meaningfully to the representation, signaling a lower degree of anisotropy.

We compute these four metrics on the seven STS test sets in CMTEB using the BGE backbone. As shown in Table 3, CoDiEmb exhibits a consistent and significant advantage across all metrics. It achieves the lowest token-wise similarity, confirming its effectiveness in mitigating over-smoothing. Concurrently, it systematically obtains a higher rank and SVD entropy, alongside a markedly lower condition number. These results provide strong quantitative evidence that CoDiEmb produces a more expressive, isotropic, and well-structured embedding space.

Table 3: Analysis of embedding space properties on the CMTEB STS test sets. For Rank and SVD Entropy, higher is better. For Token Similarity and Condition Number, lower is better.

Method	Metric	ATEC	BQ	LCQMC	PAWSX	STSB	AFQMC	QBQTC	Avg
InfoNCE	Rank Token Similarity SVD Entropy Condition Number	14.52 73.22 1.61 21028.14	12.58 78.79 1.27 21571.02	10.61 70.69 1.62 22738.23	38.41 70.67 2.10 1245.10	19.54 77.78 1.49 7025.74	14.36 72.41 1.60 24150.67	9.35 72.92 1.45 20942.72	17.05 73.93 1.59 16957.37
CoSENT	Rank Token Similarity SVD Entropy Condition Number	14.57 73.04 1.58 17917.04	12.68 76.30 1.36 16278.22	10.62 74.55 1.42 22119.27	38.44 69.97 2.07 348.73	19.67 75.32 1.58 3742.57	14.40 73.36 1.56 20770.19	9.38 74.02 1.38 19353.22	17.11 73.79 1.56 14361.32
Mixed	Rank Token Similarity SVD Entropy Condition Number	14.45 67.83 1.77 19580.63	12.58 74.91 1.40 17888.89	10.61 71.86 1.54 20916.23	38.42 61.58 2.47 1007.10	19.52 66.54 1.96 6118.76	14.33 67.93 1.76 21357.64	9.35 70.46 1.53 18648.04	17.04 68.73 1.78 15073.90
CoDiEmb	Rank Token Similarity SVD Entropy Condition Number	14.97 67.67 1.81 7413.04	12.85 72.92 1.50 10847.82	10.63 70.61 1.59 19901.18	38.44 61.68 2.49 265.59	19.80 65.77 2.01 507.70	14.62 67.82 1.79 13129.53	9.47 70.22 1.54 15584.98	17.25 68.10 1.82 9664.26

5 CONCLUSION

In this paper, we introduced CoDiEmb, a unified training framework that optimizes text embeddings for Information Retrieval (IR) and Semantic Textual Similarity (STS) in a collaborative-yet-distinct manner. Through innovations in data formatting, loss design, and sampling strategies, CoDiEmb delivers significant performance gains across a broad range of tasks. The success of CoDiEmb suggests that the pursuit of universal text encoders should transcend conventional multi-stage contrastive learning. Instead, a more promising direction lies in developing a unified framework that explicitly leverages task-specific characteristics to attain a synergistic equilibrium. Future work will focus on extending CoDiEmb and exploring its generalization to a broader range of tasks.

REFERENCES

- Akari Asai, Timo Schick, Patrick Lewis, Xilun Chen, Gautier Izacard, Sebastian Riedel, Hannaneh Hajishirzi, and Wen-tau Yih. Task-aware retrieval with instructions. *arXiv preprint arXiv:2211.09260*, 2022.
- Luiz Bonifacio, Vitor Jeronymo, Hugo Queiroz Abonizio, Israel Campiotti, Marzieh Fadaee, Roberto Lotufo, and Rodrigo Nogueira. mmarco: A multilingual version of the ms marco passage ranking dataset. *arXiv preprint arXiv:2108.13897*, 2021.
- Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-Gazpio, and Lucia Specia. Semeval-2017 task 1: Semantic textual similarity-multilingual and cross-lingual focused evaluation. *arXiv preprint arXiv:1708.00055*, 2017.
- Jing Chen, Qingcai Chen, Xin Liu, Haijun Yang, Daohe Lu, and Buzhou Tang. The bq corpus: A large-scale domain-specific chinese corpus for sentence semantic equivalence identification. In *Proceedings of the 2018 conference on empirical methods in natural language processing*, pp. 4946–4951, 2018.
- Alexis Conneau and Douwe Kiela. SentEval: An evaluation toolkit for universal sentence representations. In *Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)*, Miyazaki, Japan, May 2018. European Language Resources Association (ELRA). URL https://aclanthology.org/L18-1269/.
- Ameet Deshpande, Carlos Jimenez, Howard Chen, Vishvak Murahari, Victoria Graf, Tanmay Rajpurohit, Ashwin Kalyan, Danqi Chen, and Karthik Narasimhan. C-STS: Conditional semantic textual similarity. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp. 5669–5690, Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.345. URL https://aclanthology.org/2023.emnlp-main.345/.
- Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding. In *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)*, pp. 4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/N19-1423/.
- Kawin Ethayarajh. How contextual are contextualized word representations? Comparing the geometry of BERT, ELMo, and GPT-2 embeddings. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*, pp. 55–65, Hong Kong, China, November 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1006.
- Tianyu Gao, Xingcheng Yao, and Danqi Chen. SimCSE: Simple contrastive learning of sentence embeddings. In *Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing*, pp. 6894–6910, Online and Punta Cana, Dominican Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.552. URL https://aclanthology.org/2021.emnlp-main.552/.
- Hai Hu, Kyle Richardson, Liang Xu, Lu Li, Sandra Kübler, and Lawrence Moss. OCNLI: Original Chinese Natural Language Inference. In *Findings of the Association for Computational Linguistics: EMNLP 2020*, pp. 3512–3526, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.findings-emnlp.314. URL https://aclanthology.org/2020.findings-emnlp.314/.
- Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang, Yuxiang Huang, Weilin Zhao, et al. Minicpm: Unveiling the potential of small language models with scalable training strategies. *arXiv* preprint arXiv:2404.06395, 2024.
- Xiang Huang, Hao Peng, Dongcheng Zou, Zhiwei Liu, Jianxin Li, Kay Liu, Jia Wu, Jianlin Su, and Philip S Yu. Cosent: consistent sentence embedding via similarity ranking. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, 32:2800–2813, 2024.

Ting Jiang, Jian Jiao, Shaohan Huang, Zihan Zhang, Deqing Wang, Fuzhen Zhuang, Furu Wei, Haizhen Huang, Denvy Deng, and Qi Zhang. PromptBERT: Improving BERT sentence embeddings with prompts. In *Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing*, pp. 8826–8837, Abu Dhabi, United Arab Emirates, December 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.603. URL https://aclanthology.org/2022.emnlp-main.603/.

Ting Jiang, Shaohan Huang, Zhongzhi Luan, Deqing Wang, and Fuzhen Zhuang. Scaling sentence embeddings with large language models. In *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp. 3182–3196, Miami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.181. URL https://aclanthology.org/2024.findings-emnlp.181/.

Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan Raiman, Mohammad Shoeybi, Bryan Catanzaro, and Wei Ping. Nv-embed: Improved techniques for training llms as generalist embedding models. *arXiv preprint arXiv:2405.17428*, 2024a.

Jinhyuk Lee, Zhuyun Dai, Xiaoqi Ren, Blair Chen, Daniel Cer, Jeremy R Cole, Kai Hui, Michael Boratko, Rajvi Kapadia, Wen Ding, et al. Gecko: Versatile text embeddings distilled from large language models. *arXiv preprint arXiv:2403.20327*, 2024b.

Jinhyuk Lee, Feiyang Chen, Sahil Dua, Daniel Cer, Madhuri Shanbhogue, Iftekhar Naim, Gustavo Hernández Ábrego, Zhe Li, Kaifeng Chen, Henrique Schechter Vera, et al. Gemini embedding: Generalizable embeddings from gemini. *arXiv preprint arXiv:2503.07891*, 2025.

Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang, Yiming Yang, and Lei Li. On the sentence embeddings from pre-trained language models. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 9119–9130, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.733. URL https://aclanthology.org/2020.emnlp-main.733/.

Shiyu Li, Yang Tang, Shizhe Chen, and Xi Chen. Conan-embedding: General text embedding with more and better negative samples. *arXiv* preprint arXiv:2408.15710, 2024.

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan Zhang. Towards general text embeddings with multi-stage contrastive learning. *arXiv preprint arXiv:2308.03281*, 2023.

Xin Liu, Qingcai Chen, Chong Deng, Huajun Zeng, Jing Chen, Dongfang Li, and Buzhou Tang. Lcqmc: A large-scale chinese question matching corpus. In *Proceedings of the 27th international conference on computational linguistics*, pp. 1952–1962, 2018.

Dingkun Long, Qiong Gao, Kuan Zou, Guangwei Xu, Pengjun Xie, Ruijie Guo, Jian Xu, Guanjun Jiang, Luxi Xing, and Ping Yang. Multi-cpr: A multi domain chinese dataset for passage retrieval. In *Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval*, pp. 3046–3056, 2022.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations in vector space. *arXiv preprint arXiv:1301.3781*, 2013.

Niklas Muennighoff, SU Hongjin, Liang Wang, Nan Yang, Furu Wei, Tao Yu, Amanpreet Singh, and Douwe Kiela. Generative representational instruction tuning. In *The Thirteenth International Conference on Learning Representations*, 2024.

Zach Nussbaum, John X Morris, Brandon Duderstadt, and Andriy Mulyar. Nomic embed: Training a reproducible long context text embedder. *arXiv preprint arXiv:2402.01613*, 2024.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive coding. *arXiv preprint arXiv:1807.03748*, 2018.

- Wenjun Peng, Guiyang Li, Yue Jiang, Zilong Wang, Dan Ou, Xiaoyi Zeng, Derong Xu, Tong Xu, and Enhong Chen. Large language model based long-tail query rewriting in taobao search. In *Companion Proceedings of the ACM Web Conference 2024*, WWW '24, pp. 20–28, New York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400701726. doi: 10.1145/3589335.3648298. URL https://doi.org/10.1145/3589335.3648298.
- Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global vectors for word representation. In Alessandro Moschitti, Bo Pang, and Walter Daelemans (eds.), *Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 1532–1543, Doha, Qatar, October 2014. Association for Computational Linguistics. doi: 10. 3115/v1/D14-1162. URL https://aclanthology.org/D14-1162/.
- Yifu Qiu, Hongyu Li, Yingqi Qu, Ying Chen, Qiaoqiao She, Jing Liu, Hua Wu, and Haifeng Wang. Dureader_retrieval: A large-scale chinese benchmark for passage retrieval from web search engine. *arXiv preprint arXiv:2203.10232*, 2022.
- Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence embeddings using Siamese BERT-networks. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*, pp. 3982–3992, Hong Kong, China, November 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1410. URL https://aclanthology.org/D19-1410/.
- Xiang-Rong Sheng, Feifan Yang, Litong Gong, Biao Wang, Zhangming Chan, Yujing Zhang, Yueyao Cheng, Yong-Nan Zhu, Tiezheng Ge, Han Zhu, et al. Enhancing taobao display advertising with multimodal representations: Challenges, approaches and insights. In *Proceedings of the 33rd ACM International Conference on Information and Knowledge Management*, pp. 4858–4865, 2024.
- Han Shi, Jiahui Gao, Hang Xu, Xiaodan Liang, Zhenguo Li, Lingpeng Kong, Stephen Lee, and James T Kwok. Revisiting over-smoothing in bert from the perspective of graph. *arXiv* preprint *arXiv*:2202.08625, 2022.
- Saba Sturua, Isabelle Mohr, Mohammad Kalim Akram, Michael Günther, Bo Wang, Markus Krimmel, Feng Wang, Georgios Mastrapas, Andreas Koukounas, Nan Wang, et al. jina-embeddings-v3: Multilingual embeddings with task lora. *arXiv preprint arXiv:2409.10173*, 2024.
- Jiashuo Sun, Xianrui Zhong, Sizhe Zhou, and Jiawei Han. Dynamicrag: Leveraging outputs of large language model as feedback for dynamic reranking in retrieval-augmented generation. *arXiv* preprint arXiv:2505.07233, 2025.
- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Proceedings of the 31st International Conference on Neural Information Processing Systems*, NIPS'17, pp. 6000–6010, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.
- Hao Wang and Yong Dou. Sncse: Contrastive learning for unsupervised sentence embedding with soft negative samples. In *Advanced Intelligent Computing Technology and Applications: 19th International Conference, ICIC 2023, Zhengzhou, China, August 10–13, 2023, Proceedings, Part IV*, pp. 419–431, Berlin, Heidelberg, 2023. Springer-Verlag. ISBN 978-981-99-4751-5. doi: 10.1007/978-981-99-4752-2_35. URL https://doi.org/10.1007/978-981-99-4752-2_35.
- Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder, and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training. *arXiv* preprint arXiv:2212.03533, 2022.
- Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. Multilingual e5 text embeddings: A technical report. *arXiv preprint arXiv:2402.05672*, 2024.
- Yining Wang, Liwei Wang, Yuanzhi Li, Di He, and Tie-Yan Liu. A theoretical analysis of ndcg type ranking measures. In *Proceedings of the 26th Annual Conference on Learning Theory*, volume 30 of *Proceedings of Machine Learning Research*, pp. 25–54, Princeton, NJ, USA, 12–14 Jun 2013. PMLR. URL https://proceedings.mlr.press/v30/Wang13.html.

Xing Wu, Chaochen Gao, Liangjun Zang, Jizhong Han, Zhongyuan Wang, and Songlin Hu. ES-imCSE: Enhanced sample building method for contrastive learning of unsupervised sentence embedding. In *Proceedings of the 29th International Conference on Computational Linguistics*, pp. 3898–3907, Gyeongju, Republic of Korea, October 2022. International Committee on Computational Linguistics. URL https://aclanthology.org/2022.coling-1.342/.

- Shitao Xiao, Zheng Liu, Peitian Zhang, Niklas Muennighoff, Defu Lian, and Jian-Yun Nie. C-pack: Packed resources for general chinese embeddings. In *Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval*, SIGIR '24, pp. 641–649, New York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400704314. doi: 10.1145/3626772.3657878. URL https://doi.org/10.1145/3626772.3657878.
- Xiaohui Xie, Qian Dong, Bingning Wang, Feiyang Lv, Ting Yao, Weinan Gan, Zhijing Wu, Xiangsheng Li, Haitao Li, Yiqun Liu, et al. T2ranking: A large-scale chinese benchmark for passage ranking. In *Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval*, pp. 2681–2690, 2023.
- Liang Xu, Hai Hu, Xuanwei Zhang, Lu Li, Chenjie Cao, Yudong Li, Yechen Xu, Kai Sun, Dian Yu, Cong Yu, Yin Tian, Qianqian Dong, Weitang Liu, Bo Shi, Yiming Cui, Junyi Li, Jun Zeng, Rongzhao Wang, Weijian Xie, Yanting Li, Yina Patterson, Zuoyu Tian, Yiwen Zhang, He Zhou, Shaoweihua Liu, Zhe Zhao, Qipeng Zhao, Cong Yue, Xinrui Zhang, Zhengliang Yang, Kyle Richardson, and Zhenzhong Lan. CLUE: A Chinese language understanding evaluation benchmark. In *Proceedings of the 28th International Conference on Computational Linguistics*, pp. 4762–4772, Barcelona, Spain (Online), December 2020. International Committee on Computational Linguistics. doi: 10.18653/v1/2020.coling-main.419. URL https://aclanthology.org/2020.coling-main.419/.
- Yinfei Yang, Yuan Zhang, Chris Tar, and Jason Baldridge. Paws-x: A cross-lingual adversarial dataset for paraphrase identification. *arXiv* preprint arXiv:1908.11828, 2019.
- Peng Yu, En Xu, Bin Chen, Haibiao Chen, and Yinfei Xu. Qzhou-embedding technical report. *arXiv* preprint arXiv:2508.21632, 2025.
- Jerrold H Zar. Spearman rank correlation. Encyclopedia of biostatistics, 7, 2005.
- Bowen Zhang and Chunping Li. Pcc-tuning: Breaking the contrastive learning ceiling in semantic textual similarity. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 14290–14302, Miami, Florida, USA, November 2024a. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.791. URL https://aclanthology.org/2024.emnlp-main.791/.
- Bowen Zhang and Chunping Li. Advancing semantic textual similarity modeling: A regression framework with translated ReLU and smooth k2 loss. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 11882–11893, Miami, Florida, USA, November 2024b. Association for Computational Linguistics. doi: 10.18653/v1/2024. emnlp-main.663. URL https://aclanthology.org/2024.emnlp-main.663/.
- Bowen Zhang, Kehua Chang, and Chunping Li. Cot-bert: Enhancing unsupervised sentence representation through chain-of-thought. In *Artificial Neural Networks and Machine Learning ICANN 2024: 33rd International Conference on Artificial Neural Networks, Lugano, Switzerland, September 17–20, 2024, Proceedings, Part VII,* pp. 148–163, Berlin, Heidelberg, 2024a. Springer-Verlag. ISBN 978-3-031-72349-0. doi: 10.1007/978-3-031-72350-6_10. URL https://doi.org/10.1007/978-3-031-72350-6_10.
- Bowen Zhang, Kehua Chang, and Chunping Li. Simple techniques for enhancing sentence embeddings in generative language models. In *Advanced Intelligent Computing Technology and Applications: 20th International Conference, ICIC 2024, Tianjin, China, August 5–8, 2024, Proceedings, Part III*, pp. 52–64, Berlin, Heidelberg, 2024b. Springer-Verlag. ISBN 978-981-97-5668-1. doi: 10.1007/978-981-97-5669-8_5. URL https://doi.org/10.1007/978-981-97-5669-8_5.

Bowen Zhang, Zixin Song, and Chunping Li. Cse-sfp: Enabling unsupervised sentence representation learning via a single forward pass. In *Proceedings of the 48th International ACM SIGIR Conference on Research and Development in Information Retrieval*, pp. 1402–1412, 2025a.

Jianjin Zhang, Zheng Liu, Weihao Han, Shitao Xiao, Ruicheng Zheng, Yingxia Shao, Hao Sun, Hanqing Zhu, Premkumar Srinivasan, Weiwei Deng, Qi Zhang, and Xing Xie. Uni-retriever: Towards learning the unified embedding based retriever in bing sponsored search. In *Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, KDD '22, pp. 4493–4501, New York, NY, USA, 2022. Association for Computing Machinery. ISBN 9781450393850. doi: 10.1145/3534678.3539212. URL https://doi.org/10.1145/3534678.3539212.

Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang, Huan Lin, Baosong Yang, Pengjun Xie, An Yang, Dayiheng Liu, Junyang Lin, et al. Qwen3 embedding: Advancing text embedding and reranking through foundation models. *arXiv preprint arXiv:2506.05176*, 2025b.

A APPENDIX

A.1 RELATED WORK

As a cornerstone of computational linguistics, text representation has long attracted sustained attention from the research community. Broadly, the evolution of this field can be divided into three distinct stages. Early works, such as Word2Vec (Mikolov et al., 2013) and GloVe (Pennington et al., 2014), focused on lexical-level representations, primarily yielding context-independent encodings. The advent of Pre-trained Language Models (PLMs), exemplified by BERT (Devlin et al., 2019), marked a paradigm shift in NLP, driven by significant advances in computational power and model architectures (Vaswani et al., 2017). Pioneering studies including Sentence-BERT (Reimers & Gurevych, 2019), BERT-flow (Li et al., 2020), and SimCSE (Gao et al., 2021) subsequently integrated discriminative PLMs with representation learning from different perspectives, achieving notable breakthroughs in sentence-level embeddings. This period was characterized by rapid progress in unsupervised text representation. Leveraging innovative data augmentation techniques, approaches like SNCSE (Wang & Dou, 2023), PromptBERT (Jiang et al., 2022), and CoT-BERT (Zhang et al., 2024a) attained strong performance on the seven STS tasks aggregated by SentEval (Conneau & Kiela, 2018), using only unsupervised corpora composed of individual sentences.

Despite the powerful semantic understanding afforded by bidirectional attention, the architectural constraints of BERT-style models—namely, a 512-token maximum sequence length and relatively modest parameter counts—long prevented text embedding research from fully benefiting from the scaling laws of Large Language Models (LLMs). To address this, PromptEOL (Jiang et al., 2024) pioneered the application of 7B-scale generative models for text representation and proposed the widely adopted Explicit One-Word Limitation (EOL) hypothesis. Building on this, Zhang et al. (2024b) demonstrated through extensive experiments that EOL is unnecessary for fine-tuning and introduced two simple yet effective techniques that directly enhance the representational capacity of base models. Subsequently, Pcc-tuning (Zhang & Li, 2024a) provided an insightful analysis of the binary classification nature of contrastive learning, explaining the performance bottlenecks it faces in fine-grained semantic discrimination, and proposed directly optimizing the Pearson correlation coefficient.

With the rise of Retrieval-Augmented Generation (RAG) and AI Agent systems, a consensus has formed around the need for powerful, general-purpose text encoders. In response, models such as E5 (Wang et al., 2022), GTE (Li et al., 2023), BGE (Xiao et al., 2024), and Nomic Embed (Nussbaum et al., 2024) have been trained on massive datasets, typically employing multi-stage contrastive learning pipelines to progressively refine semantic expressiveness. State-of-the-art embedding models, including Gecko (Lee et al., 2024b), Gemini Embedding (Lee et al., 2025), and Qwen Embedding (Zhang et al., 2025b), can be viewed as continuations of this paradigm.

CoDiEmb builds upon these prior works, aiming to learn multi-functional representations within a single, unified framework. However, our approach diverges by advocating for a deeper, task-aware analysis and customization of the training process. Our results suggest that tailoring optimization

to each task's distinctive properties can enhance, rather than compromise, the model's overall versatility. We hope this work will inspire further research into developing specialized, yet synergistic, optimization strategies for universal representation learning.

A.2 IMPLEMENTATION DETAILS

This appendix provides supplementary implementation details for the experiments in Section 3. As noted in the main text, both our training and evaluation data are drawn from the CMTEB benchmark. Detailed statistics for each dataset are provided in Table 4. In particular, for the T2Retrieval task (Xie et al., 2023), we mined a set of hard negatives for each query to ensure parity with corpora that naturally include them. Furthermore, following established practices, we designed task-specific instructions and prepended them to each input text before encoding. The datasets and instructions used are identical across all methods and experiments to ensure a fair comparison.

For MiniCPM-Embedding and multilingual-e5-large, we derive text representations via mean pooling and mask out instruction tokens. For bge-large-zh-v1.5, we follow the official guidelines and employ CLS pooling. To conserve computational resources, all training runs leverage DeepSpeed ZeRO-1 and gradient checkpointing.

Table 4: Overview and statistics of the CMTEB IR and STS datasets. A dash (-) in the "Train" column indicates that the task lacks a training split; evaluations on these tasks are therefore conducted in a zero-shot setting.

Name	Туре	#Train	#Test	Description
CmedqaRetrieval (Qiu et al., 2022)	Retrieval	99,904	4,000	Online medical consultation texts
CovidRetrieval (Qiu et al., 2022)	Retrieval	-	949	The COVID-19 news article retrieval dataset
DuRetrieval (Qiu et al., 2022)	Retrieval	83,456	2,000	A large-scale Chinese web search engine paragraph retrieval benchmark
MMarcoRetrieval (Bonifacio et al., 2021)	Retrieval	-	6,980	the multilingual version of the MS MARCO paragraph ranking dataset
T2Retrieval (Xie et al., 2023)	Retrieval	698,752	22,800	T2Ranking: A large-scale Chinese paragraph ranking benchmark
EcomRetrieval (Long et al., 2022)	Retrieval	81,920	1,000	Multi-CPR: A Multi Domain Chinese Dataset for Passage Retrieval
MedicalRetrieval (Long et al., 2022)	Retrieval	-	1,000	Multi-CPR: A Multi Domain Chinese Dataset for Passage Retrieval
VideoRetrieval (Long et al., 2022)	Retrieval	82,560	1,000	Multi-CPR: A Multi Domain Chinese Dataset for Passage Retrieval
AFQMC (Xu et al., 2020)	STS	34,334	3,861	Ant Financial Question Matching Corpus
ATEC (Xiao et al., 2024)	STS	62,477	20,000	ATEC NLP Sentence Pair Similarity Competition
BQ (Chen et al., 2018)	STS	100,000	10,000	Banking Question Semantic Similarity
LCQMC (Liu et al., 2018)	STS	238,766	12,500	Large-scale Chinese Question Matching Corpus
PAWSX (Yang et al., 2019)	STS	49,129	2,000	Translated PAWS evaluation pairs
QBQTC (Xu et al., 2020)	STS	180,000	5,000	QQ Browser Query Title Corpus
STSB (Cer et al., 2017)	STS	5,231	1,360	Translated STS-B into Chinese

A.3 EXTENDING CODIEMB TO PAIR CLASSIFICATION

In this appendix, we investigate the transferability of our CoDiEmb framework by extending it to Pair Classification (PC) tasks. The CMTEB benchmark includes two PC datasets, OCNLI (Hu et al., 2020) and CMNLI (Xu et al., 2020), whose data formats are largely consistent with those of STS. For methodological simplicity, we handle PC data via the same processing pipeline and objective functions designed for STS. We conduct two experiments using the bge-large-zh-v1.5 backbone: first, we train a model on IR and STS data only and evaluate its zero-shot transfer performance on PC; second, we train a model on all three task types. The results are presented in Table 5.

As shown in Table 5, joint training on IR and STS corpora enables the model to not only significantly outperform the raw baseline on those primary tasks but also to achieve a discernible performance gain on the unseen PC task (65.18 vs. 62.82). This suggests that CoDiEmb's training paradigm improves the fundamental geometric properties of the embedding space, leading to enhanced generalization. This aligns with our analysis in Section 4, where we demonstrated that CoDiEmb mitigates the issues of over-smoothing and anisotropy.

Furthermore, by explicitly incorporating PC data into the training regimen, CoDiEmb achieves a substantial boost in PC performance—an increase of over 23 accuracy points—with only a minimal trade-off in its IR and STS capabilities. Collectively, these findings demonstrate that the CoDiEmb framework can be effectively extended to new task domains, underscoring its versatility and robustness.

Table 5: Performance of CoDiEmb when extended to include Pair Classification (PC) tasks. All experiments adopt the bge-large-zh-v1.5 backbone. Avg. PC reports the average accuracy on the OCNLI and CMNLI datasets.

PLMs	Method	Avg. IR	Avg. STS	Avg. PC	Overall Score
	Raw Model	47.74	50.57	62.82	161.13
bge-large-zh-v1.5	CoDiEmb (IR + STS)	71.07	67.87	65.18	204.12
	CoDiEmb (IR + STS + PC)	70.89	67.13	88.62	226.64

A.4 PER-TASK RESULTS FOR STS AND IR

In subsection 3.1, we presented the aggregate performance of CoDiEmb and the baselines on the IR and STS task families. Here, we report detailed per-task scores for each method on the 8 IR and 7 STS tasks from the CMTEB benchmark. The results are shown in Table 7 and Table 6, respectively. Consistent with standard practice in the field, we report nDCG@10 as the primary metric for IR and Spearman's rank correlation for STS.

Table 6: Spearman's correlation scores of different methods on the 7 STS tasks in CMTEB. The last two columns, Avg. IR and Avg. STS, represent the model's average performance on IR and STS, respectively. Corresponding IR results are available in Table 7.

Methods	AFQMC	ATEC	BQ	LCQMC	PAWSX	QBQTC	STS-B	Avg. IR	Avg. STS	
Implementation on MiniCPM-Embedding										
InfoNCE	61.51	58.03	67.78	71.89	40.93	41.82	81.73	74.23	60.53	
CoSENT	69.28	59.54	73.57	79.97	63.95	58.35	85.69	71.30	70.05	
Mixed	70.77	61.37	72.01	78.40	65.48	59.29	84.93	73.05	70.32	
CoDiEmb	69.70	60.56	74.23	80.38	67.12	60.98	85.11	75.73	71.15	
Implementation on multilingual-e5-large										
InfoNCE	52.07	53.12	69.72	72.83	26.99	40.46	79.02	70.90	56.32	
CoSENT	53.18	53.09	72.19	80.29	57.53	53.52	82.50	65.69	64.61	
Mixed	58.36	54.91	72.83	79.99	63.44	56.87	81.84	68.61	66.89	
CoDiEmb	62.70	55.65	73.16	80.44	66.17	56.43	82.78	<u>70.62</u>	68.19	
Implementation on bge-large-zh-v1.5										
InfoNCE	54.47	54.34	68.64	74.16	34.31	41.12	79.61	71.73	58.09	
CoSENT	56.73	54.52	72.55	80.54	55.34	52.56	80.67	66.55	64.70	
Mixed	62.59	56.59	73.04	80.16	59.51	56.82	81.13	68.67	67.12	
CoDiEmb	66.60	58.32	72.27	80.07	60.48	56.90	80.45	71.07	67.87	

Table 7: nDCG@10 scores of different methods on the 8 IR tasks in CMTEB. The last two columns, Avg. IR and Avg. STS, represent the model's average performance on IR and STS, respectively. Corresponding STS results are available in Table 6.

Cmedqa	Covid	Du	Ecom	MMarco	Medical	T2	Video	Avg. IR	Avg. STS
Implementation on MiniCPM-Embedding									
41.99	90.73	88.78	65.42	83.76	61.26	86.91	74.98	74.23	60.53
42.28	81.81	86.70	65.66	78.89	59.57	84.52	70.97	71.30	70.05
41.82	90.01	87.62	64.10	83.21	59.64	86.22	71.75	73.05	70.32
45.43	90.61	89.51	69.24	84.26	62.86	87.36	76.55	75.73	71.15
Implementation on multilingual-e5-large									
41.85	74.97	85.90	65.76	77.40	59.82	84.47	77.00	70.90	56.32
33.49	70.31	83.82	62.50	73.05	51.66	82.54	68.17	65.69	64.61
38.53	75.79	83.02	63.64	75.75	55.92	82.12	74.07	68.61	66.89
41.92	76.20	85.85	66.31	76.95	56.80	84.30	76.62	<u>70.62</u>	68.19
Implementation on bge-large-zh-v1.5									
45.14	75.86	88.19	67.33	76.01	59.51	84.92	76.86	71.73	58.09
39.66	68.22	85.68	63.79	67.28	55.90	82.36	69.49	66.55	64.70
43.04	74.90	85.58	64.96	66.58	57.39	83.50	73.40	68.67	67.12
44.62	76.41	88.35	67.36	70.80	59.61	84.94	76.49	71.07	67.87
	41.99 42.28 41.82 45.43 41.85 33.49 38.53 41.92 45.14 39.66 43.04	Cmedqa Covid 41.99 90.73 42.28 81.81 41.82 90.01 45.43 90.61 41.85 74.97 33.49 70.31 38.53 75.79 41.92 76.20 45.14 75.86 39.66 68.22 43.04 74.90	Cmedqa Covid Du 41.99 90.73 88.78 42.28 81.81 86.70 41.82 90.01 87.62 45.43 90.61 89.51 Impl 41.85 74.97 85.90 33.49 70.31 83.82 38.53 75.79 83.02 41.92 76.20 85.85 Im 45.14 75.86 88.19 39.66 68.22 85.68 43.04 74.90 85.58	Cmedqa Covid Du Ecom 41.99 90.73 88.78 65.42 42.28 81.81 86.70 65.66 41.82 90.01 87.62 64.10 45.43 90.61 89.51 69.24 Implementati 41.85 74.97 85.90 65.76 33.49 70.31 83.82 62.50 38.53 75.79 83.02 63.64 41.92 76.20 85.85 66.31 Implementati 45.14 75.86 88.19 67.33 39.66 68.22 85.68 63.79 43.04 74.90 85.58 64.96	Cmedqa Covid Du Ecom MMarco 41.99 90.73 88.78 65.42 83.76 42.28 81.81 86.70 65.66 78.89 41.82 90.01 87.62 64.10 83.21 45.43 90.61 89.51 69.24 84.26 Implementation on multility 41.85 74.97 85.90 65.76 77.40 33.49 70.31 83.82 62.50 73.05 38.53 75.79 83.02 63.64 75.75 41.92 76.20 85.85 66.31 76.95 Implementation on bge-45.14 75.86 88.19 67.33 76.01 39.66 68.22 85.68 63.79 67.28 43.04 74.90 85.58 64.96 66.58	Cmedqa Covid Du Ecom MMarco Medical Implementation on MiniCPM-Embedd 41.99 90.73 88.78 65.42 83.76 61.26 42.28 81.81 86.70 65.66 78.89 59.57 41.82 90.01 87.62 64.10 83.21 59.64 45.43 90.61 89.51 69.24 84.26 62.86 Implementation on multilingual-e5-la 33.49 70.31 83.82 62.50 73.05 51.66 38.53 75.79 83.02 63.64 75.75 55.92 41.92 76.20 85.85 66.31 76.95 56.80 Implementation on bge-large-zh-v1 45.14 75.86 88.19 67.33 76.01 59.51 39.66 68.22 85.68 63.79 67.28 55.90 43.04 74.90 85.58 64.96 66.58 57.39	$ \begin{array}{ c c c c c c c c } \hline \textbf{Cmedqa} & \textbf{Covid} & \textbf{Du} & \textbf{Ecom} & \textbf{MMarco} & \textbf{Medical} & \textbf{T2} \\ \hline & & & & & & & & & & \\ \hline & & & & & &$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	

A.5 THE IMPACT OF BATCH SIZE ON MODEL PERFORMANCE

Performance sensitivity to hyperparameters is a persistent challenge in deep learning. This issue is particularly acute in representation learning, which often involves large-scale distributed training. In the context of this paper, each query from an IR dataset is paired with K^+ positives and K^- hard negatives. Consequently, a change of m in the number of queries per device batch results in a substantial fluctuation of n_- gpu $\times m \times (K^+ + K^-)$ in the total number of contrastive examples per optimization step, where n_- gpu is the number of GPUs (32 in our case). This dynamic implies that even a modest adjustment to the batch size dramatically alters the training landscape. While a larger set of in-batch negatives can enhance the discriminative power of the learned embeddings, it also increases the risk of introducing false negatives, making the final performance difficult to predict.

A desirable property of a general-purpose framework like CoDiEmb is robustness to such variations, ensuring stable and predictable outcomes. To evaluate this, we test the performance of CoDiEmb across several batch size configurations, using bge-large-zh-v1.5 as the backbone. The corresponding results are presented in Table 8. In the table, "IR Batch Size" refers to the number of queries, while the total number of documents involved in one iteration is this value multiplied by $(K^+ + K^-)$. In contrast, "STS Batch Size" denotes the number of standard text pairs.

As shown in Table 8, CoDiEmb maintains stable convergence even when the global batch sizes for IR and STS vary considerably. The overall score fluctuates by less than 0.5 points across all tested configurations, underscoring the framework's stability and robustness with respect to this critical hyperparameter.

Table 8: Robustness of CoDiEmb to different batch size configurations. The table shows performance as the per-device IR and STS batch sizes are varied. The total batch size is calculated over 32 GPUs. All experiments use the bge-large-zh-v1.5 backbone.

	<u> </u>			
IR Batch Size	STS Batch Size	Avg. IR	Avg. STS	Overall Score
$48 \times 32 = 1536$	$28 \times 32 = 896$	70.99	67.78	138.77
$52 \times 32 = 1664$	$28 \times 32 = 896$	70.82	67.73	138.55
$56 \times 32 = 1792$	$32 \times 32 = 1024$	70.92	67.81	138.73
$64 \times 32 = 2048$	$32 \times 32 = 1024$	71.19	67.52	138.71
$72 \times 32 = 2304$	$32 \times 32 = 1024$	71.07	67.87	138.94

A.6 ABLATION STUDY OF LOSS FUNCTIONS

Table 9: Ablation study of CoDiEmb's loss functions. The full model is compared against variants where each novel objective (\mathcal{L}_{RankKL} , \mathcal{L}_{PRO} , \mathcal{L}_{ENCE}) is individually removed. All experiments are conducted using the multilingual-e5-large backbone.

Methods	Avg. IR	Avg. STS	Overall Score
CoDiEmb (Full)	70.62	68.19	138.81
w/o $\mathcal{L}_{ ext{RankKL}}$	70.26	67.50	137.76
w/o $\mathcal{L}_{ ext{PRO}}$	70.99	67.26	138.25
w/o $\mathcal{L}_{ ext{ENCE}}$	69.78	67.98	137.76

Building upon prior work, CoDiEmb introduces three novel objective functions to the training process of embedding models: (1) an extended contrastive loss with multiple positives and hard negatives, denoted \mathcal{L}_{ENCE} ; (2) a rank-normalized KL divergence loss, \mathcal{L}_{RankKL} ; and (3) an adapted Preference Rank Optimization (PRO) loss, \mathcal{L}_{PRO} . As demonstrated in our main results, these objectives exhibit strong synergistic effects when adopted in concert.

To further ascertain whether each loss component contributes positively, we conduct an ablation study with multilingual-e5-large as the base encoder. The results are presented in Table 9. In this analysis, we systematically remove each component from the full model. Notably, the "w/o \mathcal{L}_{ENCE} " configuration reverts to a standard InfoNCE loss for the IR task, leaving other components intact.

The results clearly indicate that removing any of the proposed loss functions leads to a degradation in overall performance. The impact of \mathcal{L}_{RankKL} and \mathcal{L}_{ENCE} is particularly pronounced. Ablating either of these two components results in a performance drop of more than a full point on the overall score, an effect that could not be recovered even with careful hyperparameter retuning.

A.7 LLM USAGE STATEMENT

We utilized large language models (LLMs) as a writing aid during the preparation of this manuscript. Specifically, LLMs were used for tasks such as improving grammar, refining phrasing, and ensuring clarity in the text. All core scientific contributions, including the methodological design, experimental setup, and analysis of results, were conceived and executed by the human authors.