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Abstract

Recently, we have observed that Large Multi-
modal Models (LMMs) are revolutionizing
the way machines interact with the world, un-
locking new possibilities across various multi-
modal applications. To adapt LMMs for down-
stream tasks, parameter-efficient fine-tuning
(PEFT) which only trains additional prefix to-
kens or modules, has gained popularity. Never-
theless, there has been little analysis of how
PEFT works in LMMs. In this paper, we
delve into the strengths and weaknesses of
each tuning strategy, shifting the focus from the
efficiency typically associated with these ap-
proaches. We first discover that model parame-
ter tuning methods such as LoRA and Adapters,
distort the feature representation space learned
during pre-training, limiting the full utilization
of pre-trained knowledge. We also demonstrate
that prefix-tuning excels at preserving the rep-
resentation space, despite of its lower perfor-
mance on downstream tasks. These findings
suggest a simple two-step PEFT strategy called
Prefix-Tuned PEFT (PT-PEFT), which suc-
cessively performs prefix-tuning and then other
PEFT (i.e., Adapter, LoRA), combines the ben-
efits of both. Experimental results show that
PT-PEFT not only improves performance in
image captioning and visual question answer-
ing compared to vanilla PEFT methods but also
helps preserve the representation space of the
four pre-trained models.

1 Introduction

Understanding the visual scene and expressing
it with a natural language are two distinct tasks
yet the human brain can comprehensively handle
both without difficulty. Large multi-modal mod-
els (LMMs) mimic such capability by training a
deep neural network such that it learns semantically
meaningful connections between vision and lan-
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Figure 1: Advantages of the proposed PT-PEFT, which
performs 1) prefix-tuning and 2) fine-tuning (i.e.,
parameter-efficient or full fine-tuning) sequentially.

guage from a large number of image-text pairs (Li
et al., 2020b; Zhang et al., 2021b; Wang et al.,
2022b; Radford et al., 2021). Recently, LMMs
have become widely used due to their broad range
of applications, including chatbot, robot control,
and video generation. (Ouyang et al., 2022; Brohan
et al., 2023; Ramesh et al., 2022).

In the pre-training, LMMs are trained to pre-
dict the masked words or next words from the
image-text pair (Li et al., 2023; Alayrac et al.,
2022; Wang et al., 2022a). In the second step
called fine-tuning, the pre-trained LMMs are tai-
lored to the specific downstream task. It has been
shown that fine-tuning provides superior perfor-
mance in performing various downstream tasks
such as image captioning (IC), visual question an-
swering (VQA), and image-text retrieval (Li et al.,
2023; Wang et al., 2022a,b; Zhang et al., 2021b).
However, fine-tuning often suffers from the loss
of generalization capability learned from the pre-
training (Sun et al., 2015; Brown et al., 2020a).
Since the task-specific dataset is far smaller than
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Figure 2: Performance of different task adaptation meth-
ods on COCO image captioning dataset. The proposed
method (PT-) consistently improves performance when
combined with other methods.

the pre-training unlabeled dataset, the pre-trained
model can be easily overfitted to the small-sized
downstream task dataset, leading to degraded per-
formance on diverse datasets (Kumar et al., 2022).
To address the problem, various approaches have
been suggested over the years. In prompt-based
approaches, human-engineered sentences or train-
able continuous embedding vectors are processed
alongside the input without modifying the model
parameters (Li and Liang, 2021; Liu et al., 2021;
Tam et al., 2022; Lester et al., 2021). In knowl-
edge distillation-based fine-tuning approaches, the
model is fine-tuned using the distance between the
distribution of the pre-trained model and the fine-
tuned model (Xu et al., 2020; Sanh et al., 2019;
Boschini et al., 2022). The common wisdom be-
hind these approaches is to minimize the modifica-
tion of the pre-trained model parameters.

One drawback of full model fine-tuning is the
huge computational burden caused by the model
parameters update. In an effort to reduce the huge
training cost, a variety of parameter-efficient fine-
tuning (PEFT) techniques have been proposed (Li
and Liang, 2021; Houlsby et al., 2019; Hu et al.,
2022; He et al., 2021). In this approach, instead
of applying full fine-tuning, only a small set of
additional modules (e.g., prefix, Adapter, LoRA)
is trained. This approach is especially benefi-

cial for training the large pre-trained model like
GPT (Brown et al., 2020b), T5 (Raffel et al., 2020),
and Llama (Touvron et al., 2023).

Training efficiency is a well-known advantage of
prefix-tuning, but what distinguishes prefix-tuning
from other PEFT methods is that prefix-tuning does
not modify the model’s parameters at all, leaving
the representation space unchanged. To investigate
the changes in the representation space, we analyze
the feature representation matrices using singular
value decomposition. Notably, we observe that
the representation space of a fine-tuned model (in
IC and VQA) only utilizes a limited set of effec-
tive basis vectors (60 % of the pre-trained model)
to express the output compared to that of the pre-
trained model, limiting its ability to fully take the
advantages gained from pre-training (see Figure 4).
In contrast, we discover that all the basis vectors
are utilized for the prefix-tuned model, indicating
that prefix-tuning effectively preserves the inher-
ited representation space from pre-training. These
results suggest that prefix-tuning may address the
poor generalization observed in fine-tuning.

While prefix-tuning is effective in preserving
pre-trained knowledge, the efficacy of this ap-
proach has been somewhat questionable since the
reported evaluation results were not conclusive.
Some studies claim that the prefix-tuning performs
comparable to the model parameter-tuning (e.g.,
full fine-tuning, LoRA, Adapter), while others ar-
gue that the prefix-tuning struggles in the train-
ing of relatively small-sized language models (Liu
et al., 2021; Tam et al., 2022).

In this paper, we suggest a simple yet effec-
tive strategy for grafting two seemingly distinct
approaches. The method, henceforth referred to
as Prefix-Tuned PEFT (PT-PEFT), performs the
prefix-tuning and the model parameter-tuning se-
quentially to combine the merits of both. The key
feature of this approach is to preserve the pre-
trained feature space through prefix-tuning and
then refine the model parameters through other
PEFT methods. Intuitively, this approach resem-
bles a language model learning a new task using
prompt sentences such as "I will provide example
sentences describing the given pictures in a news
article style. Please generate the caption for the
given images with such style." By providing con-
text suitable for the new task, the model begins



Fine-tuningPrefix-tuningZero-shotImage IdImage

"an old stove sitting on the 
side of the road"

"a stove on the side of the 
road with the words \"become 

your dream\" written on it"

"a stove sitting on the side of the 
road with a sign that says \"become 

your dream\" written on it"
107257

"a group of birds perched 
on a ledge overlooking a 

body of water"

“seagulls perched on the edge 
of a building overlooking a 

body of water"

"birds perched on a ledge 
overlooking a body of water with a 

city skyline in the background"
407180

"a person sitting at a table 
under a red umbrella"

"a person sitting at a table 
under a red and yellow 

umbrella"

"an outdoor patio with two 
umbrellas and a person sitting under 

one of the umbrellas"
518937

"a view of a city street 
from inside a car"

"a jeep driving down the 
street in front of a building"

"a car driving down a street with 
traffic lights and buildings in the 

background"
448078

Figure 3: Qualitative image captioning results of zero-shot learning, prefix-tuned, and fine-tuned models. Although
fine-tuning provides accurate answers, its results often ignore visual details compared to the other two.

training with high adaptability, allowing for faster
convergence and minimal changes to the weights
of the pre-trained model.

In our experiments, we show that applying
prefix-tuning before LoRA, Adapter, and even full
fine-tuning consistently improves the task perfor-
mance in four IC/VQA public datasets on four
pre-trained LMMs including BLIP (Li et al., 2022),
BLIP-2 (Li et al., 2023), OFA (Wang et al., 2022a)
and VINVL (Zhang et al., 2021b).

Our contributions are as follows:

• We establish the connection between represen-
tation space and performance through rank-
based analysis. We qualitatively and qualita-
tively illustrate the effects of representation
space collapse.

• We reveal that prefix-tuning differs signifi-
cantly from other fine-tuning techniques like
LoRA, Adapter, and full fine-tuning, high-
lighting the unique advantage of prefix-tuning
in preserving the integrity of the pre-trained
knowledge.

• We propose PT-PEFT, a method that sequen-
tially performs prefix-tuning followed by an-
other fine-tuning technique, maximizing the
utilization of pre-trained knowledge in LMMs.
PT-PEFT outperforms standard fine-tuning
methods in image captioning and VQA tasks
across four different LMMs.

2 Representation Space Collapse Causes
the Loss of Generalization Capabilities

2.1 Zero-shot Sometimes Performs Better
than Fine-tune

Model parameter tuning generally shows supe-
rior performance over prefix-tuning, however, the
full fine-tuned model sometimes generates even
worse answer comparing to zero-shot generation
for certain samples. Figure 3 presents a qualitative
comparison between zero-shot inference, full fine-
tuning, and prefix-tuning on IC and VQA tasks.
For IC tasks, we find that prefix-tuning capture
more detailed descriptions of objects compared to
full fine-tuning. Although the IC output from fine-
tuning is technically correct, the captions generated
through prefix-tuning are richer and more natu-
ral. Similarly, for VQA tasks, the Top-5 answers
from prefix-tuning are more relevant to the given
questions, whereas answers from fine-tuning are
often nonsensical or less likely to be correct. This
phenomenon arises from the downstream dataset,
which consists of a limited range of objects and
object’s attributes compared to the diverse range
encountered during pre-training. Intuitively, fit-
ting the fine-tuning data leads to forgetting word
and image representations for other objects and at-
tributes that exist in the pre-trained dataset but not
in the downstream dataset (a.k.a., catastrophic for-
getting) (Rebuffi et al., 2017; Kalajdzievski, 2024).
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Figure 4: Accumulated and normalized singular values of feature vectors extracted from the last layer of BLIP-2
(OPT-2.7 B). A more concave graph indicates that the singular values are more concentrated, implying the narrower
representation space.

Pre-training Fine-tuning Prefix-tuning S-Adapter P-Adapter LoRA PT−→S-Adapter PT−→P-Adapter PT−→LoRA PT −→ Finetuning

VINVL 50.2 % 30.0 % 50.2 % - - - - - - 50.2 %

BLIP-2 68.2 % 47.0 % 68.2 % 53.0 % 53.7 % 52.0 % 63.5 % 58.4 % 63.5 % 68.2 %

Table 1: Effective rank of representation space of various fine-tuning techniques. Note that the effective rank is
defined as the remaining rank ratio at which the accumulated singular values equal to 0.9 in Figure 4.

2.2 Relationship Between Semantic Richness
and Representation Space

Forgetting the words and image representation fur-
ther contributes to the simplification of the rep-
resentation space by rendering the unused vectors
become unnecessary. To this end, we argue that the
information of the representation matrix is closely
related to their rank, following previous studies
on the representation space (Zhang et al., 2021a;
Bansal et al., 2018; Swaminathan et al., 2020). For
instance, low-rank compression methods intention-
ally reduce the rank of features to distill essential
information, such as object class (Sainath et al.,
2013; Swaminathan et al., 2020). This rank reduc-
tion phenomenon, which we refer to as “represen-
tation collapse”, can result in a degradation in cap-
turing semantically rich details across a wide range
of objects and their attributes. This degradation
in capturing semantically rich details potentially
harms the generalization ability for downstream
tasks.

2.3 Empirical Analysis on Representation
Space Collapse

Representation Space Analysis via SVD To
quantitatively measure the representation collapse
in different model adaptation methods, we apply

a singular value decomposition (SVD) on the rep-
resentation matrices. SVD allows us to quantita-
tively analyze the average number of basis vec-
tors used to represent a single text or image. For
SVD, we use the output (i.e., activation) matrix
of the last layer from a single sentence/image.
Specifically, LMM processes the text input xtxt =
[wsos, w1, ..., wN , weos], yielding a sequence of
output embedding vectors Ftxt = LMM(xtxt):

Ftxt := [fsostxt , fw1
txt, ..., fwN

txt , feostxt , ]. (1)

For each sentence embedding matrix Ftxt, we per-
form SVD to get the singular values (i.e., the diag-
onal elements of Σ):

Ftxt = UΣVT. (2)

We sort the singular values s = [σ1, ..., σM ] in
descending order and normalize such that sum of
all singular values equals one:

ŝ =
1∑M

i=1 σi
[σ1, ..., σM ]. (3)

After computing singular values on a per-
image/per-sentence basis, we average them across
the K samples in the dataset:

ŝavg =
1

K

K∑
i=1

ŝk. (4)



We the accumulated sum of the elements in ŝavg:

y =

σ̂avg,0, ..., i∑
j=1

σ̂avg,j , ...,

M∑
j=1

σ̂avg,j

 . (5)

The final y is ploted in Figure 4 for each model and
training technique.

Comparison Between Various Fine-tuning
Methods Figure. 4 presents the cumulative sum
of singular values of feature vectors extracted
from different models. Specifically, we compare
the rank of an image and text features extracted
from the three models (pre-trained, fine-tuned, and
prefix-tuned). The naive fine-tuned model shows
the fastest saturation towards the top (see red line
in Figure. 4), meaning that most singular values
are close to zero (i.e.,

∑k
i=1 σi ≈ 1 for small k).

This in turn means that the effective rank of the
feature matrix extracted from the fine-tuned model
is much lower than that of the pre-trained model.
In addition, as an accuracy shown in the Figure. 4
legend, the curvature of the singular value plot
is also highly correlated to the final performance
(e.g., CIDEr, Accuracy) (Daneshmand et al., 2020;
Dong et al., 2021). As shown in Table 1, LoRA-
tuned and fine-tuned models utilize only 60% basis
vectors from the pre-trained representation space,
while prefix-tuning utilizes almost all the basis vec-
tors.

3 Prefix-Tuned Parameter-Efficient Fine
Tuning (PT-PEFT)

Prefix Implementation Prefix embedding vec-
tors are first processed through the prefix encoder,
following standard practices in prefix-tuning (Li
and Liang, 2021) (see Appendix for details). The
processed prefixes are then concatenated with text
and/or image tokens to form the input to the LMMs,
as shown in Figure 5. The green boxes in the Fig-
ure represent learnable prefix embeddings (tokens)
used during the prefix-tuning stage.

Two-stage Optimization As described in the
previous Section, we use a two-stage approach:
prefix-tuning followed by fine-tuning. During the
prefix-tuning step, we only train the prefix em-
beddings and prefix encoder, keeping the other
parameters of LMMs frozen. In the subsequent
fine-tuning step (either PEFT or full fine-tuning),

Transformer Encoder

(Image tokens) (Text tokens)(Prefixes)

(a) VINVL

Transformer Encoder

(Image tokens) (Prefixes)

(b) OFA

Transformer Decoder

(Text tokens)(Prefixes)

Transformer Decoder

(Q-Former tokens) (Text tokens)(Prefixes)

(c) BLIP-2

Figure 5: Visualization of where the prefixes are in-
serted for different LMMs. Proposed method can be
applied for general Transformer-based architectures.

we train the corresponding parameters including
prefixes, to further adapt the model.

4 Experiments

4.1 Setup

Model To demonstrate the generalization ca-
pability of our method, we use various pre-
trained LMMs with different architectures and
sizes. Specifically, we conduct experiments on
VINVL-BASE/LARGE (Zhang et al., 2021b),
OFA-BASE (Wang et al., 2022a), BLIP (Li et al.,
2022), an BLIP-2 (Li et al., 2023) models.

Dataset We evaluate image captioning (IC) task
performance on MS-COCO (Lin et al., 2014) and
Flickr30k (Plummer et al., 2015) datasets. For the
visual question-answering (VQA) task, we use the
VQAv2 (Antol et al., 2015) dataset.

Fine-tuning Methods We take pre-trained
LMMs and compare different fine-tuning meth-
ods. These include Prefix-tuning (Prefix), LoRA,
Parallel-Adapter (P-Adapter), and Sequential-
Adapter (S-Adapter) (Hu et al., 2023), and also the
full fine-tuning (Full-FT). Adapters usually include



#Trainable Params
COCO IC Flickr30k IC VQAv2

B4 C S B4 C S test-dev test-std

OFABASE (Wang et al., 2022a)
Prefix-tuning 0.15 % 35.2 115.6 19.3 27.0 61.4 16.5 72.9 73.2

S-Adapter 3.10% 35.6 119.7 20.9 27.4 62.1 16.8 73.1 73.4
S-Adapter → Prefix 3.15% 38.2 128.2 21.6 27.6 64.8 17.3 73.9 74.1
Prefix → S-Adapter 3.15% 39.0 130.7 22.5 29.2 68.3 17.3 74.3 74.4

P-Adapter 3.08% 36.8 123.7 21.3 28.5 64.4 17.0 73.4 73.8
P-Adapter → Prefix 3.12 % 38.4 129.7 21.7 28.8 67.2 17.9 74.0 74.2
Prefix → P-Adapter 3.12 % 39.7 132.8 23.4 31.1 73.6 18.7 75.6 75.7

LoRA 0.26 % 35.3 117.4 19.5 24.7 52.4 15.2 50.1 50.3
LoRA → Prefix 0.45 % 36.6 122.0 21.2 28.5 66.2 17.5 70.9 71.1
Prefix → LoRA 0.45 % 39.2 131.6 23.1 30.5 71.6 18.0 74.6 74.9

Full fine-tuning 100 % 38.6 127.5 22.8 32.2 74.1 18.5 75.7 75.8

BLIP-2ViT-g + OPT 2.7B (Li et al., 2023)
Prefix-tuning 0.20 % 41.0 138.0 24.9 34.6 92.3 20.6 30.1 29.8

S-Adapter 4.32 % 40.4 140.0 25.0 34.4 93.8 22.6 51.8 52.4
S-Adapter → Prefix 4.52 % 40.7 139.8 24.8 34.9 93.8 22.7 53.2 54.3
Prefix → S-Adapter 4.52 % 41.0 140.6 25.0 35.6 95.4 23.4 54.3 54.4

P-Adapter 3.23 % 40.1 139.0 24.9 33.6 90.4 22.3 53.1 50.4
P-Adapter → Prefix 3.43 % 40.6 140.6 24.9 35.0 94.1 23.0 53.2 53.7
Prefix → P-Adapter 3.43 % 41.0 140.6 25.2 35.1 95.1 23.4 53.2 54.3

LoRA 0.34 % 40.3 139.0 25.1 35.2 94.4 22.5 43.8 44.4
LoRA → Prefix 0.54 % 40.6 139.3 25.0 35.7 95.9 23.0 53.2 54.3
Prefix → LoRA 0.54 % 41.2 140.6 25.2 36.1 97.0 23.3 52.2 52.3

Full fine-tuning 100 % 41.1 141.7 25.0 35.9 97.5 27.6 74.9 74.7

Table 2: Performance comparison between PEFT and our PT-PEFT, applying prefix-tuning followed by other PEFT.
B4, C, Simplies BLEU-4, CIDEr, and SPICE scores, respectively.

multi-layer modules, so they generally equip more
trainable parameters than LoRA. Prefix-tuning
uses the smallest number of trainable parameters
among all. Note that our PT-PEFT can be applied
to all methods, with prefix-tuning used before other
fine-tuning methods as our key innovation.

Additional Details We carefully designed set-
tings for each model and method to achieve the
best performance. For more details about the mod-
els, datasets, and hyper-parameters, please refer to
Appendix B.

4.2 Downstream Task Performance
Prefix-tuned PEFT Table 2 shows the perfor-
mance of various task adaptation methods, applied
to OFA-BASE and BLIP-2 models. Our proposed
PT-PEFT consistently outperforms standard PEFT
methods across all 8 metrics. PT-PEFT even sur-
passes full fine-tuning, with a 0.2p/0.1p in BLEU-
4 metric for Flickr30k/COCO, along with a 0.2p
improvement in SPICE score. Additionally, the re-

sults show that applying PEFT before prefix-tuning
(i.e., reversing the order) is considerably less effec-
tive than PT-PEFT, though it still performs better
than not using prefix-tuning at all.

Prefix-tuned Full Fine-tuning Tables 3 and 4
compare prefix-tuning, full fine-tuning, and the
sequential combination of both (ours). To ensure
the reliability of our results, we conducted three
separate runs with different random seeds and re-
ported the mean and standard deviation obtained
from these runs. Notably, the standard deviation
of the scores is significantly smaller than the im-
provements over the baseline models. Compared
to the full fine-tuning, our prefix-tuned full fine-
tuning achieves approximately an 11% increase
in the BLEU-4, a 16% increase in SPICE, and a
noteworthy 21% improvement in CIDEr. These
results highlight the effectiveness of our method,
demonstrating that prefix-tuning can help preserve
pre-trained knowledge and improve performance



COCO Image Captioning Flickr-30k Image Captioning

BLEU-4 CIDEr SPICE BLEU-4 CIDEr SPICE

VINVLBASE
Prefix-tuning 37.3 122.5 22.2 28.7 65.5 16.9
Full fine-tuning 40.4 137.2 24.5 33.8 85.5 21.1
Prefix → Full-FT 41.2 ± 0.08 141.1 ± 0.10 25.0 ± 0.04 35.6 ± 0.13 89.7 ± 0.36 21.5 ± 0.10

VINVLLARGE
Prefix-tuning 38.5 128.2 23.2 31.9 72.0 18.3
Full fine-tuning 41.0 139.6 24.8 34.3 85.2 21.1
Prefix → Full-FT 41.4 ± 0.06 141.1 ± 0.12 24.9 ± 0.07 35.8 ± 0.59 89.8 ± 0.14 21.9 ± 0.04

OFABASE
Zero-shot 18.2 62.3 14.8 15.3 23.2 12.1
Prefix-tuning 35.2 115.6 19.3 27.0 61.4 16.5
Full fine-tuning 38.6 127.5 22.8 32.2 74.1 18.9
Prefix → Full-FT 41.4 ± 0.02 136.4 ± 0.16 24.3 ± 0.11 35.8 ± 0.24 89.8 ± 0.21 21.9 ± 0.07

BLIP-2ViT-g + OPT 2.7B
Zero-shot 39.7 129.0 22.6 29.5 74.5 16.8
Prefix-tuning 40.0 138.0 24.9 34.6 92.3 20.6
Full fine-tuning 41.1 141.7 25.0 35.9 97.5 27.6
Prefix → Full-FT 41.8 ± 0.11 142.8 ± 0.07 25.2 ± 0.04 36.5 ± 0.09 98.3 ± 0.19 23.6 ± 0.30

Table 3: Image captioning performance comparison between prefix-tuning, full fine-tuning and ours.

VQAv2

test-std test-dev

VINVLBASE
Linear-probing 72.7 72.6
Prefix-tuning 73.8 73.4
Full fine-tuning 74.1 74.4
Prefix → Full-FT 76.2 ± 0.04 76.2 ± 0.08

VINVLLARGE
Linear-probing 73.3 73.7
Prefix-tuning 75.0 74.9
Full fine-tuning 76.5 76.6
Prefix → Full-FT 77.0 ± 0.04 77.9 ± 0.02

OFABASE
Zero-shot 25.9 25.8
Prefix-tuning 73.2 72.9
Full fine-tuning 75.8 75.7
Prefix → Full-FT 76.8 ± 0.04 76.6 ± 0.04

BLIPLARGE
Zero-shot 5.0 5.2
Prefix-tuning 30.1 29.8
Full fine-tuning 74.9 74.7
Prefix → Full-FT 77.0 ± 0.07 77.9 ± 0.03

Table 4: VQAv2 performance comparison.

in both PEFT and full fine-tuning scenarios.

5 Analysis & Discussion

5.1 Preserving Representation Space

Figure 4 visualizes the accumulated singular val-
ues, as described in Section 2.3. The saturation
curves for the pre-trained, prefix-tuned, and PT-

(a) Performance of the sequential-tuned model.

COCO IC valid VQAv2 valid

B4 C S Acc1 Acc5

w/Prefix 41.3 139.3 24.6 75.2 93.3

-Prefix 22.9 75.0 15.3 36.5 72.6

-Prefix +Noise 25.1 82.9 16.2 31.2 61.4

(b) Performance of the parallel-tuned model.

COCO IC valid VQAv2 valid

B4 C S Acc1 Acc5

w/Prefix 41.0 138.0 24.3 71.6 91.9

-Prefix 23.1 74.3 15.1 72.2 91.7

-Prefix +Noise 23.5 76.8 15.5 62.2 86.6

Table 5: Comparison of (a) sequential and (b) parallel
tuning. Unlike PT-PEFT, parallel tuning applies prefix-
tuning and fine-tuning together. For noise addition ex-
periments (third rows), we replace learned prefixes with
random noise during inference.

PEFT models are almost identical, implying that
the effective rank is preserved. In contrast, LoRA,
Adapter, and full fine-tuning methods show more
concave curves, indicating a narrower representa-
tion space.

5.2 Ablation Study
Sequential vs. Parallel Instead of sequentially
applying prefix-tuning and then fine-tuning, one
may consider using both methods together in par-



Model
#Epochs COCO Image Captioning

PT FT BLEU-4 CIDEr SPICE

M1 3 7 35.3 114.2 18.8

M2 5 5 40.2 129.6 23.5

M3 7 3 41.4 136.4 24.3

Table 6: Ablation study on the number of epochs for
prefix-tuning (PT) and fine-tuning (FT) stages.

allel. We call this variant parallel-tuning and com-
pare its performance to our sequential training.
Table 5 (a) and (b) present the downstream task
performance of parallel tuning and ours, respec-
tively. The result shows that parallel-tuning per-
forms worse than PT-PEFT in all cases.

To further investigate how parallel-tuning affects
the effectiveness of the prefix, we distort the trained
prefixes and observe the performance change. Ta-
ble 5(b) shows that for the parallel-tuned model,
even without prefixes, VQA accuracy is almost pre-
served, meaning that the prefix does not contribute
to performance. This finding is further emphasized
when replacing the trained prefix with random
noise; accuracy only slightly decreases, implying
that the prefixes are not very powerful. In contrast,
when using prefix tuning first (Table 5(a)), remov-
ing prefixes severely hurts the accuracy, showing
that they actively contribute to the performance.

Ratio of Each Stage We conduct experiments
to find the best number of training steps for the
prefix-tuning and fine-tuning stages. As shown
in Table 6, we found that prefix-tuning requires a
sufficiently long iteration for optimal performance.
Within the same training budget, the model achies
better performance with fewer fine-tuning epochs
if sufficient prefix-tuning precedes.

5.3 Intuitive Explanation of PT-PEFT
Based on our analysis, we conclude that prefix-
tuning and other fine-tuning method contributes
to the adaptation in different ways. By sequen-
tially performing prefix-tuning and parameter fine-
tuning, the model first encodes the representation
space as prefix tokens that align with the pre-
trained space. This is because the original model
parameters remain unchanged during prefix-tuning,
so the learned knowledge is not damaged. Once
such context is established, the subsequent fine-
tuning process can effectively avoid the representa-

tion collapse, as the prefixes provide a foundation
for a rich representation space.

5.4 Prior Works in Language Domain

Here, we highlight how our work significantly dif-
fers from recent studies that combine two fine-
tuning techniques in the language domain. The
original LoRA paper reported that combining
LoRA with Prefix-tuning could improve perfor-
mance (Appendix E of the paper (Hu et al., 2022)).
However, their combination used a "parallel-
tuning" approach, in contrast to our "sequential-
tuning" approach. In addition, they utilized a much
larger number of trainable parameters, making it
an unfair comparison between LoRA alone and
LoRA with Prefix-tuning.

Around the same time as our work, Pro-
Mot (Wang et al., 2024) also suggested using
prefix-tuning before model parameter tuning in
a sequential manner. They also reported significant
performance improvements, which is consistent
with our findings. However, our work is very dis-
tinct in two key perspectives.

First, our experiments focus on LMMs, demon-
strating the effectiveness of PT-PEFT across vari-
ous vision-language tasks and Transformer-based
model architectures. Second, our analyses show
that the primary reason for performance gain
comes from the preservation of learned knowledge
during pre-training, as revealed by our systematic
investigation of the effective rank of embeddings.
This sets our work apart and highlights the unique-
ness of our PT-PEFT.

6 Conclusion

In this paper, we discovered that fine-tuning meth-
ods including LoRA, Adapter, and full fine-tuning
could cause the loss of learned knowledge from
the pre-training stage. We quantified this loss in
representation space using a novel rank-bases anal-
ysis and identified that prefix-tuning does not result
in this critical loss. Based on these findings, we
proposed a two-step strategy, PT-PEFT, which first
performs prefix-tuning and then applies other fine-
tuning methods. Our experiments showed that PT-
PEFT not only preserves the representation space
preservation but also improves downstream task
performance.



7 Limitations

The proposed PT-PEFT can take advantage of both
prefix-tuning and fine-tuning. However, there are
two practical limitations. Firstly, it leads to an in-
creased computational cost during inference due
to the longer input sequence. Managing this in-
creased computational cost in prefix-tuning may
become challenging, especially when the portion
of prefixes in the total number of input tokens. It’s
worth noting that the performance gains tend to
plateau at around 16 prefixes, which doesn’t sig-
nificantly exacerbate the computational cost (see
Appendix C prefix length ablation study). Sec-
ondly, we manually determine the best-performing
hyper-parameters, such as prefix length, learning
rates, and training iterations. We did our best to
find the best set for a fair comparison; however, we
are aware that such a manual hyperparameter tun-
ing process can be cumbersome, especially when
applying our technique to new tasks, datasets, or
models.

8 Ethical Statement

In our paper, we analyze various fine-tuning strate-
gies to identify methods for preserving pre-trained
knowledge during the fine-tuning process. Rather
than having potential risks, we believe that our re-
search can serve as a solution to address ethical
issues related to data corruption and safety control
in current AI systems. For instance, even if the
model is fine-tuned with data corrupted by hack-
ing, our technique can offer robustness to such data
corruption by preserving the model’s representa-
tion space. Our work can be also beneficial for
not forgetting the safety guardrails learned during
pre-training or instruction tuning. We’d like to
note that this representation-preserving have not
been studied much in VL models, regardless of the
increasing interest on VL applications.
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A Related Work

VL Model Architecture The Transformer and
its variants (e.g., BERT, GPT) are widely adopted
as VL model architectures due to their powerful
attention mechanisms capturing correlations be-
tween image and text (Vaswani et al., 2017). Exam-
ples include VINVL using a Transformer encoder,
OFA employing a Transformer encoder-decoder
pair, and BLIP-2 utilizing a Transformer decoder.
We evaluate CGFT on these models to demonstrate
its robustness and applicability.

VL Unsupervised Pre-training VL models of-
ten undergo unsupervised pre-training on large
datasets, employing objectives like masked lan-
guage modeling, image-text matching, and causal
language modeling (Li et al., 2023; Alayrac et al.,
2022; Wang et al., 2022a; Yuan et al., 2021; Zhang
et al., 2021b). This pre-training helps the model
understand the relationships between image and
text. Tasks include predicting masked words, scor-
ing image-text matching, and predicting the next
words from given image-text pairs. The models
pre-trained using these approaches are evaluated
using CGFT to assess their performance.

Semantic Richness and Rank Assessing the
semantic richness of features is crucial for effec-
tive Vision-Language (VL) learning. This refers
to how well a feature encapsulates fine-grained,
dense information from the input. Evaluation often
involves linear probing in computer vision. Nu-
merous studies indicate a strong correlation be-
tween rank and information content in represen-
tations (Bansal et al., 2018; Zhang et al., 2021a).
For instance, low-rank compression methods inten-
tionally reduce rank to distill essential information,
such as object class (Sainath et al., 2013; Swami-
nathan et al., 2020).

Fine-tuning Strategies in VL Learning To en-
hance pre-trained model performance, various
transfer learning techniques address domain adap-
tation challenges. A parameter-efficient fine-tuning
approach involves inserting additional modules
into pre-trained model layers and optimizing only
these modules (Houlsby et al., 2019; Hu et al.,
2022).

B Experiments Setup

B.1 Model

Baselines To assess the effectiveness of PT-
PEFT, we have employed a diverse set of pre-
trained models featuring different architectures and
sizes. Specifically, we have tested models such as
VINVL base, VINVL large (Zhang et al., 2021b),
OFA (base) (Wang et al., 2022a), BLIP (Li et al.,
2022)(only for VQA) and BLIP-2 (ViT-g and OPT-
2.7B) (Li et al., 2023) as our baseline model due
to its good performance on VL sequence genera-
tion and classification among many VL model vari-
ants (Tan and Bansal, 2019; Lu et al., 2019; Li et al.,
2020a; Zhou et al., 2020; Li et al., 2020b; Alayrac
et al., 2022), as described in Table 7 (Zhang et al.,
2021b; Wang et al., 2022a; Li et al., 2023).

Layer N
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G
ELU
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Figure 6: Prefix encoder structure.

Prefix Encoder Figure 6 illustrates the prefix
encoder (see Section 3). In contrast to previous
re-parameterizations (Li and Liang, 2021), our ap-
proach incorporates prefix type embedding to es-
tablish a symmetrical setting with token type em-
bedding, as used in previous VL models (Zhang
et al., 2021b; Li et al., 2020b). After training, the
output of the prefix encoder can be saved as the
new prefix, so there is no computational overhead
in using this block. In other words, the block is
only realized during the training phase.

B.2 Downstream task

Visual Question Answering Visual Question
Answering task requires the model to select or gen-
erate the correct answer from the given question-
image pair. For VINVL (Zhang et al., 2021b; Li
et al., 2020b), we train the model to classify the
answer given question and image pair sequence
from answer sets (i.e., 3129 for VQAv2, 1852 for
GQA). For OFA (Wang et al., 2022a) and BLIP-
2 (Li et al., 2023), we train the model to generate
the answer given question and image pair.



Model # of Param Module Hidden Dim Number of Layer Number of Attention Head

VINVL Base 110M VL Fusion Encoder (BERT-Base) 768 12 12

VINVL Large 340M VL Fusion Encoder (BERT-Large) 1024 24 16

OFA Base 180M
Vision Encoder (ResNet-101) 2048 101 -

VL Fusion Encoder (Transformer Enc Base) 768 6 12

VL Fusion Decoder (Transformer Dec Base) 768 6 12

BLIP-2 (OPT 2.7B) 3.6B
Vision Encoder (ViT-g) 1408 40 16

Q-Former (BERT-Base) 768 12 12

VL Fusion Decoder (OPT 2.7B) 2560 32 32

Table 7: Baseline VL pre-trained models specifications.

Model Module
Prefix-tuning
Prefix Length

LoRA
Weights

VINVL Base VL Fusion Encoder (BERT-Base) 16 -

VINVL Large VL Fusion Encoder (BERT-Large) 16 -

OFA Base
Vision Encoder (ResNet-101) - -

VL Fusion Encoder (Transformer Enc Base) 64 (IC), 16 (VQA) Q, K, V (r=16, a=32)

VL Fusion Decoder (Transformer Dec Base) 64 (IC), 16 (VQA) Q, K, V (r=16, a=32)

BLIP-2 (OPT 2.7B)
Vision Encoder (ViT-g) - Q, K, V (r=16, a=32)

Q-Former (BERT-Base) 8 (IC), 16 (VQA) Q, K, V (r=16, a=32)

VL Fusion Decoder (OPT 2.7B) 8 (IC), 16 (VQA) -

Table 8: Parameter-efficient tuning (Prefix-tuning and LoRA) specifications.

Image Captioning Image captioning task re-
quires the model to generate a natural language de-
scription for the given input image. Image caption-
ing fine-tuning is typically a 2-stage process, which
consists of cross-entropy (CE) training and self-
critical sequence training (SCST) (Rennie et al.,
2017).

For the masked language model (VINVL), dur-
ing CE training, we use masked language mod-
eling for randomly masked tokens with a left-to-
right (causal) attention mask to reflect the auto-
regressive behavior (see VINVL (Zhang et al.,
2021b) for details). And then, the model is trained
by optimizing the CIDEr score with SCST which
utilizes the score as the reward for REINFORCE
algorithm (Rennie et al., 2017). For inference, we
utilize a beam size of 5 for beam search, while for
SCST, we use a beam size of 1.

For the causal language model (OFA, BLIP-
2), we only train the model with the causal lan-
guage modeling (i.e., next token prediction) with
the causal attention mask. Note that we did not use
SCST for these models.

B.3 Dataset

Image Captioning For IC experiments, we eval-
uate the performance of our proposed fine-tuning
techniques on MS COCO (Lin et al., 2014) and
Flickr30k (Plummer et al., 2015) datasets. We
follow the Karpathy split (Karpathy and Fei-Fei,
2015) for a fair comparison. Karpathy split of
COCO and Flickr30k datasets contain 83k/5k/5k
and 29.8k/1k/1k images for train/val/test split.

Visual Question Answering For VQA exper-
iments, the model is evaluated on the VQAv2
dataset (Antol et al., 2015). VQAv2 dataset con-
tains 83k/41k/81k images and 444k/214k/448k
question sets for train/val/test split, respectively.

B.4 Experiment Details

Hyper-parameters For training, we employ a
set of hyper-parameters as detailed in Table 13.
The table shows the best configurations for prefix-
tuning and fine-tuning; these settings are also used
for each stage of PT-PEFT. To update the net-
work parameters, we utilize the AdamW optimizer
(Loshchilov and Hutter, 2017) with betas set to
(0.9, 0.99). For the learning rate schedule, We



combine linear warm-up followed by linear decay,
gradually increasing the learning rate from 0 to the
maximum LR during warm-up epochs and linearly
decaying it to 0 for the remaining training epochs.

Evaluation Metrics In evaluating image caption-
ing, we employ the CIDEr, SPICE, and BLEU-4
metrics (Vedantam et al., 2015; Anderson et al.,
2016; Papineni et al., 2002) to evaluate the quality
of generated captions. The evaluation is performed
using the pycocoevalcap API available at https:
//github.com/salaniz/pycocoevalcap. For
visual question answering, we present accuracy
as a performance metric.

Computational Resources We conducted exper-
iments using four A100 (40GB) GPUs.

B.5 Implementation Details

Prefix-tuning In prefix-tuning, the VL model is
kept frozen, and only the prefix-encoder block (see
Figure 6) and prefix vectors are trained. Our im-
plementation of the prefix-tuning closely follows
the original prefix-tuning approach (Li and Liang,
2021), where an MLP is employed as the prefix
encoder for stable optimization. The number of
prefix vectors is empirically chosen for the best
performance based on the experiment in Figure 8
as described in Table 8.

LoRA We implement the low-rank adapter fol-
lowing (Hu et al., 2022). We update all query, key,
and value projection matrices in the self-attention
module by setting the rank r = 16, scaling factor
α = 32, and dropout probability of 0.05 through-
out all the experiments (see Table 8).

PT-PEFT PT-PEFT, proposed in our work, lever-
ages both prefix-tuning and fine-tuning sequen-
tially. For image captioning, we freeze the word
embedding layer and the head throughout the train-
ing process, including both the prefix-tuning stage
and the subsequent fine-tuning stage. In the prefix-
tuning stage, we only train the prefix encoder and
prefix embedding using CE training. Subsequently,
we fine-tune the model using a combination of CE
training and SCST (for VINVL COCO-IC only).
For visual question answering, we follow a similar
procedure. We first train the prefix encoder and
prefix embedding (and the CLS head for VINVL)
and then proceed with fine-tuning the model.

PT-LoRA PT-LoRA is the parameter-efficient
version of prefix-tuning which performs the LoRA
instead of the full fine-tuning in the second stage.
To ensure a similar number of training parameters
(i.e., 0.3 %) with prefix-tuning and LoRA tuning,
we train only selected blocks (e.g., only Q-former
is trained for the BLIP-2) for the LoRA tuning
stage in PT-LoRA. Other than that, all the training
processes and settings are the same as the PT-PEFT
case.

C Additional Experiments

C.1 Ablation Study
Training Step We conduct experiments to deter-
mine the best training steps each for prefix-tuning
and fine-tuning stages in PT-PEFT. As shown in Ta-
ble 6, we found that prefix-tuning requires training
for a sufficiently long iteration until convergence
(see M1 and M4). Otherwise, it may be learned to
be ignored rather than providing assistance in the
subsequent fine-tuning step. We can achieve high
performance in the subsequent fine-tuning stage
even with fewer training iterations compared to the
preceding prefix-tuning (see M3 and M4). This
is because fine-tuning starts from a higher perfor-
mance level achieved by the already-trained prefix,
compared to training solely from the pre-trained
model without prefix. However, longer training
leads to severe overfitting (see M2).

Prefix Length Longer prefixes (i.e., many prefix
tokens) involve more trainable parameters, thus
assumed to enhance the performance for prefix-
tuning (Li and Liang, 2021). Figure 8 shows that
performance indeed improves as the number of
prefix tokens increases, but saturates after a certain
point. Note that previous works on prefix-tuning
often used much longer prefix lengths than our
PT-PEFT, but since PT-PEFT refines all the param-
eters, longer prefix seems to be unnecessary for
PT-PEFT.

Prefix Encoder In order to assess the impact
of the prefix encoder design, we conducted abla-
tion studies as summarized in Table 10. These ex-
periments were performed on the VQAv2 dataset,
following the training step of the PT-PEFT pro-
cess. We use the same hyper-parameter settings
described in Table 13. Notably, the results indicate
a slight decrease in top-1 accuracy when the prefix

https://github.com/salaniz/pycocoevalcap
https://github.com/salaniz/pycocoevalcap
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Figure 7: Cosine similarities between prefix-word, and prefix-image feature in image captioning using CGFT.

type embedding is removed, but there is a signifi-
cant drop in top-5 accuracy. This suggests that the
prefix type embedding plays an important role in
improving performance. Furthermore, when the
MLP block is removed, top-5 accuracy experiences
a considerable decline. This demonstrates that the
prefix encoder contributes to the overall perfor-
mance of the model, highlighting its importance in
capturing and encoding essential information for
VQA tasks.

Alternation Training We conduct experiments
to see whether the alternation training can further
enhance the performance. As shown in Table 9,
we found that prefix-tuning fails to learn the con-
text necessary for the task during the alternation
training. Even if the initial prefix-tuning is suc-
cessful (see train alternation step 1), the knowl-
edge learned from the pre-trained model during
this phase is lost (see train alternation steps 4, pre-
fix is no longer affecting the output). This loss may
be attributed to retraining in the collapsed repre-
sentation space. Repeated fine-tuning also causes
overfitting and performance degradation (see train
alternation steps 4 in Table 9).

C.2 Empirical Analysis

Mimicking Pre-trained Representations To
gain insights into the learned representations of the
prefix during training, we analyze cosine similarity
between prefix tokens and image/caption tokens
in the PT-PEFT-tuned model (prefix length of 16).
We observe that the cosine similarities between 16
prefix tokens are very low, all below 0.09.

Furthermore, we find that the correlation be-
tween prefix-image and prefix-word increased
across the different layers (see Figure 7 (a) and (b)).
Interestingly, the prefix-word similarities (0.1-0.2)

40
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Figure 8: Ablation on the prefix length in image caption-
ing and visual question answering. The x-axis indicates
the number of prefix tokens used.

are higher than prefix-image similarities (0.0-0.05),
especially in lower layers (see Figure 7 (c) and (d)).
This suggests that the prefix maintains its represen-
tation space from pre-training by acquiring quasi-
orthogonal bases that are relatively closer to pre-
trained text features. However, in higher layers, the
prefix-image similarities (0.2-0.4) are higher than
prefix-text similarities (0.2-0.35) (see Figure 7 (a)
and (b)). These results clearly indicate that the
feature of the image is converted to language space
through the interaction with prefix vectors.

SVD Experiments We experiment with SVD
analysis as in Figure 4 on the VINVL(see Fig-
ure 9). The results in VINVL also show that rep-



Alternation Steps
1 2 3 4

BLEU-4 CIDEr SPICE BLEU-4 CIDEr SPICE BLEU-4 CIDEr SPICE BLEU-4 CIDEr SPICE

w/ Prefix 41.3 139.3 24.6 33.2 115.1 20.7 23.7 90.0 16.8 20.6 67.4 13.8

- Prefix 22.9 75.0 15.3 21.5 73.8 14.9 21.2 71.3 14.5 20.6 67.4 13.8

Table 9: Alternation training experiments on COCO image captioning.
VINVL (ResNeXt-152 C4 + BERT-Base)

122.5
N/A
137.2
141.1

Prefix-tuning Prefix-tuning Prefix-tuning73.4
N/A
74.4
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Figure 9: Accumulated and normalized singular values of feature vectors extracted from the last layer of VINVL.

resentation collapse (i.e., most singular values of
the representation matrix are close to zero) in the
fine-tuned model while the representation space is
preserved (i.e., most singular values are the same)
in PT-Full-Finetuning or PT-LoRA model.

More Qualitative Examples Figures 10 and 11
show qualitative examples of generated captions on
the COCO Karpathy test split and VQAv2 valid set,
respectively. We visualize representative images
and corresponding captions generated by two mod-
els trained using PT-PEFT and fine-tuning. Com-
pared to the fine-tuned model, the PT-PEFT-tuned
model demonstrates a strong ability to capture im-
portant details for enriching generated captions.
For example, the proposed method enables extract-
ing proper object-related attributes such as ‘cut in
half’, ‘in the mirror’, ‘in front of’, and ‘a red and
yellow’. Similarly, in VQA, the predictions from
PT-PEFT are more consistent with the answer, and
there is a high correlation within the top-5 candi-
dates. In contrast, the predicted topmost answers
after only applying the fine-tuning are much less
similar to each other, implying that the learned
word representations are lost. These observations
can be attributed to the rank of the feature matrix,
as the high-rank features produced by PT-PEFT
contain semantically rich information.

Prefix-tuning Stage Fine-tuning Stage

Acc1 Acc5 Acc1 Acc5

PT-PEFT 73.8 93.1 75.2 93.3

- Prefix Type Embedding 73.6 90.6 74.8 91.0

- Prefix MLP 73.3 90.3 74.9 90.8

- Prefix Encoder 73.3 90.3 74.7 90.7

Table 10: Ablation of prefix-encoder in VQAv2 valida-
tion split.

Zero-shot Qualitative Example To provide a
more comprehensive understanding of the quali-
tative differences between zero-shot, prefix-tuned,
and fine-tuned models, we present additional ex-
amples in Table 11. These examples illustrate how
fine-tuned models, despite achieving high metric
scores, may overlook important visual details, re-
sulting in captions that are shorter and more simpli-
fied compared to those generated by prefix-tuning
and zero-shot approaches.

D Discussion

D.1 Simply Adding Parameters Helps?

One might assume that the performance enhance-
ment is simply a result of adding additional parame-
ters during fine-tuning. However, it is important to
note that increasing the number of parameters (i..e,
stacking more layers) does not necessarily expand



the representation space. Intuitively, if we consider
a linear transformation where Y = WX, with W
as the layer weight and X as the input, then the rank
of Y is limited by the minimum rank between W
and X (i.e., rank(Y) ≤ min(rank(W), rank(X))).
This means that simply adding more layers would
not contribute to avoiding representation collapse.
Moreover, previous research has demonstrated that
incorporating more complex layers can lead to a
faster collapse in rank (Dong et al., 2021).

D.2 Expressive Power vs. Semantic Richness?

‘Expressive power of parameters’ refers to a
model’s ability (complexity and size) to adjust its
weights to fit a new downstream task. On the other
hand, a ‘semantically rich feature representation
space’ or ‘high-rank feature’ refers to the capabil-
ity of a model to capture informative features that
exhibit strong generalization across different tasks.

To maximize the downstream performance, both
‘expressive power’ and ‘semantic richness’ are im-
portant. Our experiments show that prefix-tuning,
which only tunes a few parameters, has limited
expressive power but is good at preserving a se-
mantically rich feature representation space. In
contrast, fine-tuning, an approach to modify all pa-
rameters, has greater expressive power but might
distort the representation space, resulting in lower
rank and reduced semantic richness compared to a
pre-trained model.

Our findings (including SVD analysis and task
performance comparison) are consistent with the
previous analyses on fine-tuning where ‘fine-
tuning makes the space simpler’ (Zhou and Sriku-
mar, 2021) and ‘simplified space yields lower per-
formance to out-of-domain (OOD) data (bad gen-
eralization)’ (Kumar et al., 2022). In summary,
the goal of PT-PEFT is to take advantage of both
expressive power and the preservation of semantic
richness of the feature representation space.

D.3 How Prefix-Tuning Preserves the
Representation Space?

To elucidate how prefix-tuning preserves the repre-
sentation space, we analytically compare the rank
of the representation space (i.e., vector space) after
applying the attention operation in both fine-tuned
and prefix-tuned models.

In a Transformer model, information from the

input tokens of the input sequence is mixed exclu-
sively through self-attention. The other compo-
nents in the Transformer, such as the feed-forward
network, are token-wise operators and thus are
not affected by prefix tokens. Specifically, for a
given input sequence X = [x0; . . . ;xN ], the output
of self-attention is the weighted sum of the value
matrix XWV , where the weights are the attention
scores:

f(X) = σ(WQXXTWT
K)XWV (6)

where σ denotes the softmax function.
In the case of prefix-tuning, the self-attention

function is reformulated to incorporate a learnable
prefix matrix P:

fPrefix(X) = σ(WQ[X;P][X;P]TWT
K)XWV (7)

Here, only the number of input tokens in-
creases while the model parameters remain un-
changed. Considering the rank of the matrix prod-
uct, which satisfies the inequality rank(AB) ≤
min(rank(A), rank(B)), the rank of the self-
attention output is bounded by:

rank (f(X))

≤ min (|X|, rank (XWV )) (8)

rank
(
fprefix(X)

)
≤ min(|X|+ |P|, rank ([X;P]WV )) (9)

Assuming the softmax output is full rank, this in-
dicates that the upper bound of the rank is at least
as large as the rank of the pre-trained representa-
tion space, provided that the parameters remain
unchanged:

min(|X|, rank(XWV ))

≤ min(|X|+ |P|, rank([X;P]WV )) (10)

This theoretical analysis suggests that prefix-
tuning maintains or even enhances the semantic
richness of the feature representation space by pre-
serving the rank, whereas fine-tuning can reduce
the rank, thereby diminishing the semantic rich-
ness.



COCO
Image ID

Zero-Shot Finetune Prompt

272117 “a group of people sitting
around a table with a birthday
cake in front of them”

“a group of people sitting
around a table with a cake”

“a group of people sitting
around a table with a birthday
cake in front of them”

503392 “two horses in an arena with
a person riding on the back of
one of the horses”

“two horses in an arena with
a person riding one of the
horses”

“two horses in an arena with
a person riding on the back of
one of the horses”

60467 “a lunch tray with a breakfast
sandwich, orange juice, and a
glass of milk”

“a lunch tray with a
sandwich, orange juice, and a
glass of milk”

“a tray of food on a table”

544471 “a man and a woman sitting
on a brick wall with a laptop
in front of them”

“a woman and a boy sitting
on steps with a laptop”

“a man and a woman posing
with a laptop”

117170 “two pizza rolls sitting on a
counter with a sign that says
‘pizza rolls’ ”

“two pizza rolls sitting on top
of a silver platter”

“two pizza rolls on a silver
platter with a sign that says
‘pizza rolls’ ”

235644 “a group of people working
on a person on a stretcher at a
train station”

“a group of people on a
platform next to a train”

“three people helping a
person on a stretcher on a
train platform”

514607 “an umbrella on a beach with
rocks and a body of water in
the background”

“an umbrella on a rocky
beach with the ocean in the
background”

“a beach with a beach
umbrella in the foreground
and the ocean in the
background”

89541 “a container of food with
strawberries, blueberries, and
a muffin in it”

“a bowl filled with fruit and
muffins on a table”

“a yellow container with
strawberries, blueberries, and
a muffin in it”

477470 “a street at night with traffic
lights and a building in the
background”

“a traffic light on a city street
at night”

“a street at night with traffic
lights and a building in the
background.”

529004 “a car driving down a road
with a herd of cows on the
side of the road”

“a herd of cattle crossing a
road in front of a car”

“a car driving down a road
with a herd of cows on the
side of the road”

545407 “an airplane flying in the sky
with a clear blue sky in the
background”

“an airplane flying through a
clear blue sky”

“an airplane flying in the sky
with a blue sky behind it”

255036 “an intersection with traffic
lights and a building in the
background”

“a traffic light sitting on the
corner of a street”

“a traffic light at an
intersection with a building
in the background”

276146 “a pizza on a cutting board
with a glass of wine and a
bottle of wine”

“a pizza sitting on a cutting
board next to a bottle of
wine”

“a pizza on a cutting board
with a glass of wine next to
it”

62554 “some food on a table with a
bowl of broccoli and a bowl
of asparagus”

“a table topped with bowls of
food and plates of food”

“a bowl of broccoli and a
bowl of asparagus on a table”

554980 “a red school lunch tray with
a sandwich, orange, and a
glass of milk”

“a red plastic tray with a
sandwich, fruit, and a glass
of milk”

“a red tray with food on it”

290951 “people walking in a building
with umbrellas hanging from
the ceiling”

“people walking under
colorful umbrellas in a
building”

“umbrellas suspended from
the ceiling of a building”

299039 “a plate of food on a table
with a vase of flowers in the
background”

“a plate of food on a table
with a vase of flowers”

“a plate of food on a table
with a vase of flowers in the
background”

379842 “a wii game with a wii
remote and nintendo super
mario galaxy 2 game”

“a wii game and controller
sitting on a table”

“a wii remote and nintendo
super mario galaxy 2 game”

Table 11: Comparison of Captioning Methods on COCO Dataset



Training method Total train epoch Warmup epoch Max LR Batch size Weight decay

COCO IC BASE
Prefix-tuning 30 3 1.00E-05 1024 0.2
CE 40 12 1.00E-05 1024 0.2
SCST 75 15 3.00E-06 128 0.2

COCO IC LARGE
Prefix-tuning 30 3 1.00E-05 512 0.2
CE 30 6 3.00E-06 512 0.2
SCST 50 10 3.00E-06 192 0.1

Flickr30k IC BASE
Prefix-tuning 30 0 5.00E-05 512 0.1
Fine-tuning 70 0 1.00E-05 512 0.15

Flickr30k IC LARGE
Prefix-tuning 30 0 5.00E-05 512 0.1
Fine-tuning 70 0 3.00E-05 512 0.15

VQA BASE
Prefix-tuning 50 0 1.00E-04 512 0.05
Fine-tuning 25 3 1.00E-05 512 0.05

VQA LARGE
Prefix-tuning 50 0 5.00E-05 512 0.05
Fine-tuning 25 3 5.00E-06 512 0.05

GQA BASE
Prefix-tuning 5 0.5 1.00E-04 512 0.05
Fine-tuning 5 0.5 1.00E-05 512 0.05

Table 12: Training hyper-parameters for VINVL. PT-PEFT is trained with the same hyper-parameter with Fine-
tuning (CE) in the table. Image size of 640x480 is used.

Training method Total train epoch Warmup epoch Max LR Batch size Weight decay

COCO IC
Prefix-tuning 10 0 1.00E-03 16 0.01
LoRA 5 0 1.00E-03 16 0.01
Fine-tuning 5 0 1.00E-03 16 0.15
CGFT (2nd Stage) 10 0 1.00E-05 16 0.15
CGFT-LoRA (2nd Stage) 10 0 1.00E-05 16 0.15

Flickr30k IC
Prefix-tuning 5 0 1.00E-03 16 0.01
LoRA 5 0 1.00E-03 16 0.01
Fine-tuning 5 0 1.00E-03 16 0.15
CGFT (2nd Stage) 10 0 1.00E-05 16 0.15
CGFT-LoRA (2nd Stage) 10 0 1.00E-05 16 0.15

VQA
Prefix-tuning 50 0 1.00E-04 512 0.05
LoRA 50 0 1.00E-04 512 0.05
Fine-tuning 25 3 1.00E-05 512 0.05
CGFT (2nd Stage) 10 0 1.00E-05 16 0.15
CGFT-LoRA (2nd Stage) 10 0 1.00E-05 16 0.15

Table 13: Training hyper-parameters for OFA. Image size of 480x480 is used.



Training method Total train epoch Warmup Steps Max LR Batch size Weight decay

COCO IC
Prefix-tuning 5 5000 5.00E-05 128 0.05
LoRA 5 5000 1.00E-04 128 0.05
Fine-tuning 5 5000 1.00E-05 128 0.05

Flickr30k IC
Prefix-tuning 5 5000 5.00E-05 128 0.05
LoRA 5 5000 1.00E-04 128 0.05
Fine-tuning 5 5000 1.00E-05 128 0.05

VQA
Prefix-tuning 5 0 5.00E-05 512 0.05
LoRA 5 0 1.00E-04 128 0.05
Fine-tuning 5 0 1.00E-03 128 0.05

Table 14: Training hyper-parameters for BLIP-2. PT-PEFT and PT-LoRA are trained with the same hyper-parameter
with LoRA and Fine-tuning in the table. Image size of 224x224 is used.



GT
a sandwich cut in half on a 
plate in front of a laptop.

a plate with a sandwich and a 
mountain dew in the back.

PT-PEFT
a sandwich cut in half on a 
plate with a bottle of soda.

Fine-tuning
a sandwich on a plate on a 
table.

GT
bathroom area with multiple 
sinks and mirrors with 
television reflected.

a bathroom with a television, 
sink and two boxes of tissues.

PT-PEFT
a bathroom with two sinks and 
a television in the mirror.

Fine-tuning
a bathroom with a sink and a 
mirror.

GT
a woman holding a cake with 
candles and a man blowing 
them out.

the man blows out the 
birthday candles.

PT-PEFT
a man and an older woman 
blowing out a candle on a 
cake.

Fine-tuning
a man and a woman holding a 
cake.

GT
a large man in a top hat is on 
his phone by an old red ford.

a man in a top hat and suit 
standing in front of an old 
truck talking on his cell phone.

PT-PEFT
a man in a top hat talking on a 
cell phone in front of a red 
truck.

Fine-tuning
a man in a suit talking on a 
cell phone.

GT
a close up of a woman 
wearing a shirt and tie.

there is a woman next to 
water and many factory 
buildings.

PT-PEFT
a woman in a white shirt and a 
tie standing in front of a city.

Fine-tuning
a woman standing in front of a 
cloudy sky.

GT
donuts in baskets are 
displayed by people sitting at 
a table.

A blue basket filled with 
donuts on top of a table.

PT-PEFT
a group of people standing 
around a blue tray of donuts.

Fine-tuning
a blue tray of donuts on a 
table.

GT
a person breaking a bottle 
with a baseball bat.

a boy in yellow shirt swinging 
a baseball bat.

PT-PEFT
a man is swinging a baseball 
bat at a fireworks display.

Fine-tuning
a man swinging a golf club at 
a ball in the water.

GT
a flock of small birds flying in 
the sky over the water.

a black and white image 
showing birds flying over a 
body of water.

PT-PEFT
a group of birds flying in the 
sky over a beach.

Fine-tuning
a group of birds flying in the 
sky over a field.

GT
a couple of people sitting on a 
bench next to a dog.

a large white dog sits on a 
bench with people next to a 
path.

PT-PEFT
a man and a woman sitting on 
a bench with a white dog.

Fine-tuning
a man and a white dog on a 
bench.

GT
a red and yellow train pulling 
into a train station.

red/yellow train with people 
standing nearby waiting to 
board.

PT-PEFT
a red and yellow train parked 
at a train station.

Fine-tuning
a red train is parked at a train 
station.

GT
a cat on the window looking 
outside next to the balcony.

tiger kitten sitting by french
window looking out over 
sunny balcony.

PT-PEFT
a cat sitting on a porch looking 
out of a window.

Fine-tuning
a cat sitting on top of a 
window sill.

GT
three zebras and other wild 
animals out in a semi-green 
field.

three zebras and two other 
animals grazing.

PT-PEFT
a couple of zebras and other 
animals standing next to a 
body of water.

Fine-tuning
a group of zebras standing 
next to a body of water.

Figure 10: Qualitative examples of generated captions on COCO Karpathy test split. GT: the ground-truth captions.



Question

“What city is this in?

GT
“new york”

PGF-tuning
Top_5_answer:
"new york", "washington", 
"chicago", "washington dc", 
"boston

Fine-tuning
Top_5_answer:
"101",  "2", "31", "4", 
"unknown“

Question

“Why is the cat looking at 
the TV?

GT
“curious”

PGF-tuning
Top_5_answer:
"curious",  "watching tv",  
"yes", "bored",  "playing"

Fine-tuning
Top_5_answer:
"yes", "curious",  "bark",  
"it isn't", "dead"

Question

“What’s going on in the 
wires above the buildings?”

GT
“electricity”

PGF-tuning
Top_5_answer:
"electricity", "power", “nothing",
"power lines", "unknown"

Fine-tuning
Top_5_answer:
"advertisement", "for sale", 
"stop", "no",  "nothing"

Question

“What kind of dog is this?

GT
“german shepherd”

PGF-tuning
Top_5_answer:
"german shepherd", "mutt", 
“lab","goldenretriever", 
”labrador"

Fine-tuning
Top_5_answer:
"brown", "white", "terrier", 
"lab", "mutt"

Question

“What is the destination for 
bus 176?

GT
“pandang”

PGF-tuning
Top_5_answer:
“los angeles”, “Beijing”, 
“Chicago”, “china”, “unknown"

Fine-tuning
Top_5_answer:
“unknown”, “can’t tell”, “not 
sure”, “city”, “don’t know"

Question

“What company does the 
moving truck belong to?

GT
“budget”

PGF-tuning
Top_5_answer:
"fedex", "moving", "ford", 
"target", "unknown"

Fine-tuning
Top_5_answer:
"unknown", "can't tell", "nike", 
"not possible", "not sure"

Question

“What are the two woman 
sitting waiting for?

GT
“their flight”

PGF-tuning
Top_5_answer:
"train", "bus", "luggage", 
“family", "nothing"

Fine-tuning
Top_5_answer:
"nothing", "child",  "luggage",
"people", "train"

Question

“What does this cake say?

GT
“congratulations orchard team 

and happy birthday james”

PGF-tuning
Top_5_answer:
"happy birthday", "bird", 
"happy", "black", "harry potter"

Fine-tuning
Top_5_answer:
"heart", “stop", "love", "peace",
"cross"

Question

“Which restaurant made the 
food?

GT
“nathan’s”

PGF-tuning
Top_5_answer:
“nathan’s", "fast food", 
"mcdonald’s”, “hot dog",          
"restaurant"

Fine-tuning
Top_5_answer:
"unknown", "home", “bakery",
"kitchen", "nathan's"

Question

“Who has the green poles?

GT
“the man on left”

PGF-tuning
Top_5_answer:
"man on left", "woman", "boy",
"man on right", “man"

Fine-tuning
Top_5_answer:
"man", "woman", "right", 
"person", "girl"

Question

“Where is the sunshine?

GT
“sky”

PGF-tuning
Top_5_answer:
“behind clouds", “sky”, “in sky”, 
“above”, “yes"

Fine-tuning
Top_5_answer:
“background”, “in background”, 
“left”, “behind”, “right"

Question

“What operates this 
transportation device?

GT
“human”

PGF-tuning
Top_5_answer:
”motor”, “man”, “driver”,
“person”, “motorcycle”

Fine-tuning
Top_5_answer:
"seat", "handlebars", "light", 
"radio", "motorcycle"

PT-PEFT PT-PEFT PT-PEFT PT-PEFT

PT-PEFT PT-PEFT PT-PEFT PT-PEFT

PT-PEFT PT-PEFT PT-PEFT PT-PEFT

Figure 11: Qualitative examples of generated captions on VQAv2 validation split. GT: the ground-truth answer.
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(a) CIDEr scores on Image Captioning

[15%] ‘a woman in a bridenatalnatalnatal POSTnatalnatal New Turn’

[30%] ‘a woman in a wedding dress eating a piece of cake.’

[100%] ‘a bride and groom standing next to each other 
holding a piece of cake.’

[100%] ‘a blue motorcycle parked on the sidewalk with luggage on 
the back.’

[30%] ‘a blue motorcycle parked on the side of street.’

[15%] ‘neauneauneauagherzoszoszosearchzoszosneauneauum
ptionzoszosearcher’

[GT] ＂A bride is with long red haired person with cake. "

[GT] ”A blue motorcycle with luggage compartment parked at a driveway. "

[3%] ‘ievalhibitedhibitedhibited
Sectionievalievalieval POSTievalieval MA MA MAievalieval’

[3%] ‘ociationhibitedhibitedinylinylinylictionictionictionneaun
eauneauagheragheraghervisor’

(b) Generated caption examples

Figure 12: The effect of rank reduction on COCO image captioning performance. The percentage in (b) denotes
the remaining rank ratio.
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