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Abstract

Understanding and analyzing event temporal001
relations is a crucial task in Natural Language002
Processing (NLP). This task, known as Event003
Temporal Relation Extraction (ETRE), aims to004
identify and extract temporal connections be-005
tween events in text. Recent studies focus on006
locating the relative position of event pairs on007
the timeline by designing logical expressions or008
auxiliary tasks to predict their temporal occur-009
rence. Despite these advances, this modeling010
approach neglects the multidimensional infor-011
mation in temporal relation and the hierarchical012
process of reasoning. In this study, we propose013
a novel hierarchical modeling approach for this014
task by introducing a Temporal Cognitive Tree015
(TCT) that mimics human logical reasoning.016
Additionally, we also design a integrated model017
incorporating prompt optimization and deduc-018
tive reasoning to exploit multidimensional su-019
pervised information. Extensive experiments020
on TB-Dense and MATRES datasets demon-021
strate that our approach outperforms existing022
methods.023

1 Introduction024

Event relations usually refer to the mutual connec-025

tions and influences between events. Understand-026

ing and analyzing event relations are crucial for027

individuals to comprehend the world. In the field028

of Natural Language Processing (NLP), extract-029

ing temporal relations between events is a critical030

task that aims to identify and interpret the temporal031

connections within textual data, as illustrated in032

Figure 1, given a sentence containing two events033

and a set of candidate temporal relations, our ob-034

jective is to determine that the relation between the035

Event1 based and the Event2 finish is INCLUDES.036

Researchers have invested substantial effort in037

the Event Temporal Relation Extraction (ETRE)038

task and have explored this topic in various ways.039

Early work primarily relied on traditional machine040

learning and statistical methods (Mani et al., 2006;041

sentence: The panel will be based in Addis Ababa , and will finish its 

investigation within a year , it said.

event_1: based

event_2: finish

temporal relation:  BEFORE,AFTER,INCLUDES,IS_INCLUDED,SIMULTANEOUS,VAGUE

There is a clear temporal 
relation between based 
and finish.

Based and finish have 
an overlapping 
relation.

Based and finish 
are concurrent.
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and finish is INCLUDES.
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Figure 1: An example of ETRE task and two different
modeling methods.

Yoshikawa et al., 2009; Fei et al., 2020). In re- 042

cent years, many studies have attempted to incor- 043

porate external knowledge to alleviate the issue of 044

data scarcity in ETRE. Extensive experiments have 045

demonstrated that augmenting knowledge can en- 046

hance model performance (Ning et al., 2019; Wang 047

et al., 2020; Han et al., 2020; Tan et al., 2023; 048

Zhuang et al., 2023). However, relying on external 049

knowledge inevitably brings new challenges, such 050

as noise injection and the model’s over-reliance 051

on external knowledge. Furthermore, recent stud- 052

ies have emphasized the importance of temporal 053

relation semantics, treating it not merely as a con- 054

ventional multi-class classification task but rather 055

focusing on the relative positions of events on the 056

timeline (Leeuwenberg and Moens, 2018; Wen and 057
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Ji, 2021; Huang et al., 2023). However, existing058

methods based on timeline positioning only utilize059

the occurrence times of events to infer temporal060

relations, as illustrated in Figure 1(a). This model-061

ing approach can merely consider the semantics of062

temporal relations linearly, i.e., the determination063

of temporal relations depends simply on a linear064

combination of start and end times of event pairs,065

which overlooks the hierarchical transitivity inher-066

ent in the process of reasoning. Consequently, the067

model can simply learn limited information about068

the position of events on the timeline from single-069

dimensional information, and fails to learn more070

multidimensional semantic knowledge, which may071

lead to the model’s lack of understanding of tem-072

poral relations, such as the VAGUE relation, its073

complex semantic meaning can easily cause the074

model to misclassify other relations as VAGUE.075

To enable the model to fully leverage the hierar-076

chical prior knowledge in the process of inference,077

and thus learn the intrinsic meaning of temporal078

relations from multiple dimensions, we model the079

task of ETRE in a hierarchical manner and pro-080

pose a ETRE model that integrates prompt opti-081

mization and deductive reasoning. To be specific,082

we design a Temporal Cognitive Tree (TCT), as083

illustrated in Figure 1(b), which is more consistent084

with human thinking patterns. Based on the TCT,085

we propose two modules, firstly, in order for the086

model to fully leverage the multidimensional su-087

pervised information in the TCT for training, we088

design a temporal relation judgment module based089

on multi-task prompt optimization. Secondly, to090

better leverage hierarchical information in the rea-091

soning process, we propose a temporal inference092

module based on deductive reasoning. Extensive093

experiments demonstrate that our method can help094

the model better recognize the temporal relations095

between events.096

Our contributions can be summarized as follows:097

• We propose a novel approach to hierarchically098

model the existing task of ETRE by present-099

ing a Temporal Cognitive Tree based on hu-100

man logical reasoning. On the basis of this101

cognitive tree, we design a temporal relation102

extraction model that integrates prompt opti-103

mization and deductive reasoning.104

• We present a multi-task temporal relation105

judgment module based on prompt optimiza-106

tion, and a multi-label temporal relation in-107

ference module based on deductive reason-108

ing.These two modules leverage multidimen- 109

sional knowledge in the hierarchical reasoning 110

process to assist the model in better discerning 111

the temporal relations between event pairs. 112

• We evaluate our model on two publicly avail- 113

able datasets, TB-Dense and MATRES. Exper- 114

imental results demonstrate that our approach 115

achieves state-of-the-art (SOTA) performance 116

without relying on external knowledge. 117

2 Method 118

In this section, we will introduce our entire model. 119

Our overall model is illustrated in Figure 2. First, 120

we will define the task of event temporal relation 121

extraction. Then, we will present the design of our 122

Temporal Cognitive Tree (TCT). Following this, we 123

will present two modules proposed in our model 124

based on TCT: a temporal judgment module based 125

on multi-task prompt optimization, and a temporal 126

inference module based on deductive reasoning. 127

Finally, we will explain how we integrate these 128

two modules to obtain the final temporal relation 129

extraction model. 130

2.1 Problem Formulation 131

Given a sentence and the two events it contains, 132

our objective is to determine the temporal relation 133

between these two events. This task is typically 134

regarded as a text classification task. The model’s 135

input generally includes a text segment and two 136

event trigger words within this text for which the 137

temporal relation needs to be determined. The 138

output is a label that signifies a particular temporal. 139

2.2 Temporal Cognitive Tree 140

In different temporal relation extraction datasets, 141

the number and meaning of temporal relations are 142

different. In the TB-Dense dataset, temporal re- 143

lations are defined in a fine-grained manner, for 144

example, a BEFORE relation between event pairs 145

(e1, e2) requires meeting the following two condi- 146

tions simultaneously: a) e1 starts earlier than e2; b) 147

e1 and e2 do not overlap on the timeline. However, 148

in the MATRES dataset, determining a BEFORE 149

relation between event pairs does not require con- 150

dition b). Due to the variations in the methods 151

of defining temporal relations, we design differ- 152

ent temporal cognitive trees, as shown in Figure 3. 153

These trees consist of two components: conditional 154

prompts and a multi-label mapping rule. 155

Specifically, for each data point in a dataset with 156

k types of temporal relations, we do not directly 157
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Figure 2: An overview of our model architecture.

inquire about the temporal relation of the given158

event pairs. Instead, we address the characteristics159

of temporal relations by asking yes or no questions160

from k − 1 dimensions, thereby obtaining hierar-161

chical temporal judgment information. For each162

question, we denote the answer “Yes” as label 1163

and “No” as label 0. Each temporal relation can164

then be represented as a combination of k − 1 bi-165

nary values (0 and 1), resulting in a multi-label166

corresponding to each temporal category.167

The temporal cognitive tree classifies each tem-168

poral relation in a fine-grained manner from dif-169

ferent dimensions, thus transforming the original170

single-label problem into a multi-label problem. In171

addition to ensuring that all combinations of 0− 1172

vectors for temporal categories are linearly inde-173

pendent, we design the cognitive tree based on the174

following two principles:175

A) There should be consistency between dif-176

ferent temporal categories in at least one dimen-177

sion. We avoid designing multidimensional labels178

that are merely one-hot encodings of the original179

labels. Instead, we aim for the designed rules to180

help the model learn that different temporal cate-181

gories share the same feature in at least one dimen-182

sion, thereby facilitating a better comprehension183

of the temporal categories’ meanings and the finer-184

grained differences.185

B) All dimensions of any temporal category186

should be hierarchical. We intend for the de-187

signed prompt to present a process similar to hu- 188

man judgment of temporal relations, where higher- 189

level judgment information is more abstract, and 190

lower-level judgment information is more concrete. 191

The labels of high-level prompts can determine the 192

content of low-level prompts, and for some tempo- 193

ral categories, not all prompts needs to be used to 194

determine them. 195

According to the principle B), we find that we 196

only need to ask certain higher-level judgment ques- 197

tions about event pairs to infer their temporal rela- 198

tions. Consequently, we can summarize the reason- 199

ing paths based on conditional prompts for tempo- 200

ral labels, as shown in the Table 1, where we use 201

logical expressions to describe the reasoning paths. 202

In Section 2.4, we will utilize these reasoning paths 203

for temporal relation inference. 204

2.3 Temporal Judgment Module Based on 205

Multi-Task Prompt Optimization 206

Our goal is to train a language model that can com- 207

prehend and determine the temporal relations be- 208

tween pairs of events accurately. It is obvious that 209

according to our proposed cognitive tree, a robust 210

language model should not only be capable of judg- 211

ing the temporal relation of (e1, e2) correctly, but 212

also provide proper answers to the questions in the 213

cognitive tree. We argue that additional training of 214

the model to understand the semantic correlations 215

and differences among the relations from different 216
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Conditional Prompts Multi-label Mapping Rule
BEFORE

1. Is there a clear temporal relation 
between Event1 and Event2?

2. Do Event1 and Event2 have an 
overlapping relation?

3. Does Event1 precede Event2?

4. Are Event1 and Event2 concurrent?

5. Does Event1 contain Event2?

VAGUEAFTER INCLUDES IS_INCLUDED SIMULTANEOUS

1. Do Event1 and Event2 occur in a clear 
and unique sequence?

2. Are Event1 and Event2 simultaneous?

3. Does Event1 precede Event2?
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Figure 3: Details of the temporal cognitive trees corresponding to different manners of defining temporal relations.

perspectives is essential, which can help to make217

the language model better at discerning the tempo-218

ral relations between event pairs.219

We use a sequence-to-sequence model as the220

backbone architecture. We consider judging the221

conditional judgment prompts in the cognitive tree222

as the auxiliary task, while the determination of223

temporal relations between event pairs as the main224

task, and the model is trained in a multi-task man-225

ner. Specifically, we format the data into (s; e1; e2),226

where s represents the sentence containing two227

events, and e1 and e2 represent the event pair for228

which the temporal relation needs to be determined.229

We take x = (s; e1; e2) as the input for the model,230

and we extract the last layer’s hidden state from the231

encoder part as the text encoding, which will be232

served as part of the input to the decoder.233

After obtaining the text encoding, we interact234

it with the conditional prompts to obtain sentence235

representations that entail the hierarchical infor-236

mation. To be specific, for data with t temporal237

categories, we denote the conditional prompts as238

p1, p2, . . . , pt−1, and the final temporal relation239

classification prompt as f . In the decoder part,240

we input the conditional prompt list [p1, p2, . . . ,241

pt−1] along with the text encoding into the model242

sequentially. During the decoding process, the text243

encoding interacts with each token in the prompt244

text and obtains the special end-of-sequence to-245

ken <eos> at the end of the prompt text as the246

final sentence representation h. Consequently,247

we can obtain a list of sentence representations248

[hp, hf ]=[h1, h2, ..., ht−1, hf ] yielded from the in-249

teraction between each conditional prompt and the250

text.251

For the auxiliary task, we set up a binary classi- 252

fier with the set of candidate binary labels denoted 253

as A = {0, 1}. For each prompt information pi, 254

i ∈ {1, 2, . . . , t−1}, we calculate the loss Li based 255

on its corresponding binary label. Similarly, we 256

define a multi-classifier as the final temporal rela- 257

tion classification layer for the main task, which we 258

set the candidate labels as M = {r1, r2, . . . , rt}, 259

representing the set of temporal relations, and com- 260

pute the loss Lf according to the final temporal 261

label. Therefore, we can construct the following 262

two loss functions: 263

Li(θsh, θi) =

∥A∥∑
k=0

k · log(Pi(y = k | x)), (1) 264

265

Lf (θsh, θf ) =

∥M∥∑
k=1

k · log(Pf (y = k | x)), (2) 266

267
Pi(y = k | x) = softmax(MLPi(hi)), (3) 268

269
PJ(Y = rk | x) = Pf (y = k | x)

= softmax(MLPf (hf )),
(4) 270

where y denotes the category number while Y de- 271

notes the final predicted temporal relation. θsh 272

denotes the shared parameters for the main task 273

and the auxiliary task, while θf and θi represent 274

the remaining parameters for the main task and 275

the auxiliary task during training respectively, ex- 276

cluding the shared parameters. MLP(·) stands for 277

task-specific multilayer perceptron. 278

We do not directly combine Li and Lf through 279

linear summation as the final training loss. Instead, 280

inspired by the work of Sener and Koltun (2018), 281

we treat the existing multi-task problem as a multi- 282

objective optimization problem. We employ the 283
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Dataset Relation Reasoning Path

TB-Dense

BEFORE P1 ∧ ¬P2 ∧ P3
AFTER P1 ∧ ¬P2 ∧ ¬P3

INCLUDES P1 ∧ P2 ∧ ¬P4 ∧ P5
IS INCLUDED P1 ∧ P2 ∧ ¬P4 ∧ ¬P5

SIMULTANEOUS P1 ∧ P2 ∧ P4
VAGUE ¬P1

MATRES

BEFORE P1 ∧ P3
AFTER P1 ∧ ¬P3
EQUAL ¬P1 ∧ P2
VAGUE ¬P1 ∧ ¬P2

Table 1: The reasoning paths based on the temporal
cognitive trees for different temporal relations. Here, Pi
represents the i-th conditional information in the tree.

Multiple Gradient Descent Algorithm (MGDA) to284

search for the Pareto optimal solution in this task285

optimization process. For the optimization problem286

involving n auxiliary tasks and one primary task,287

we consider the parameters of the model’s encoder288

as shared parameters, while the remaining param-289

eters, i.e., those of the decoder and classification290

layers, are task-specific parameters. To achieve291

Pareto optimality, our multi-objective optimization292

problem is defined as follows:293

min
θsh,θ1,...,θt−1,θf

(L1(θsh, θ1), . . . ,Lf (θsh, θf ))
T (5)294

Following Sener and Koltun (2018), we trans-295

form the solution to Pareto optimality into a solu-296

tion to task weights. We consider the optimization297

problem:298

min
α1,...,αt−1,αf


∥∥∥∥∥

T∑
i=1

αi∇θshLi(θsh, θi)

∥∥∥∥∥
2

2

 , (6)299

300

s.t.

T∑
i=1

αi = 1, αi ≥ 0∀i, (7)301

where T = {1, 2, . . . , t− 1, f}, ∇θshLi(θsh, θi) is302

the gradient over the shared parameters.303

Once the weights αi is determined, the parame-304

ters θsh is updated using the weighted sum of the305

gradients:306

θsh = θsh − η

T∑
i=1

αi∇θshLi(θsh, θi), (8)307

where η is the learning rate. θi updates in the nor-308

mal way. The process is repeated for each iteration309

in the training, continually adjusting the parameters310

to move towards a Pareto optimal solution.311

2.4 Temporal Inference Module Based on 312

Deductive Reasoning 313

According to the TCT we designed, we argue that 314

the determination of the temporal relation between 315

any event pairs can be inferred based from a series 316

of hierarchical prior knowledge ranging from ab- 317

stract to concrete. Therefore, we conduct deductive 318

reasoning on the judgment of each feature branch 319

of the tree based on the model, thereby deriving the 320

final temporal relation. 321

We first train the model to correctly classify the 322

inference results at each node of the tree, then 323

transform the task into a multi-label binary classifi- 324

cation problem. Specifically, similar to the for- 325

mat described in Section 2.3, given a piece of 326

text and its corresponding event pairs, we con- 327

catenate them as the input x for the BART model 328

and obtain the text representation H . Additionally, 329

for a dataset with t temporal relations, we define 330

F = {d1, d2, . . . , dt−1} as the set of hierarchical 331

features, C = {0, 1} as the set of possible values 332

for each dimension of the features, the label for 333

each dimension i is represented as yi, yi ∈ C. For 334

the training of our model, in addition to utilizing 335

Hamming loss, which is commonly used in multi- 336

label classification tasks, we also apply focal loss 337

(Lin et al., 2017) to our task, which is designed for 338

training with imbalanced samples, to ensure more 339

robust model training. Specifically, we calculate 340

the loss Lfc as follows: 341

Lfc =

∥F∥∑
i=1

∥C∥∑
j=0

exp(log σ(−logitij(2y
i − 1)) · γ)

·(logitij · (1− yi) +mv + LSE(logitij)),

(9) 342

343

LSE(logitij) = log
(
e−mv + e−logitij−mv

)
, (10) 344

where mv = max(−logitij , 0) and LSE(·) means 345

Log-Sum-Exp(LSE) operation, both of them are 346

introduced to ensure numerical stability, γ acts as 347

a modulation factor for the loss function, adjusting 348

the contribution of different samples to the overall 349

loss. 350

After training the model as described above, we 351

obtain the classification probabilities for each event 352

pair at the conditional nodes of the temporal cogni- 353

tion tree. We denote the probability that the value 354

of the i-th feature is 1 as Pr(Pi), which can be 355

calculated as follows: 356

Pr(Pi) = sigmoid(MLPI(H)[i]), (11) 357
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we stipulate that when Pr(Pi) > 0.5 , it can be358

concluded that the event labels the i-th feature as 1,359

which also indicates that it satisfies the condition Pi.360

Finally, we calculate the probability distribution for361

each temporal label and derive the final temporal362

relation prediction probability PI(Y = rk | x)363

based on the reasoning rules in Table 1 and the364

following calculation rules:365

P ∧Q = Pr(P ) · Pr(Q)

P ∧ ¬Q = Pr(P ) · (1− Pr(Q)),
(12)366

2.5 Method Integration367

After obtaining the temporal label probability dis-368

tributions from the aforementioned two modules,369

we perform a weighted summation of these two370

distributions to obtain the final temporal label prob-371

ability distribution as follow:372

Pfinal(Y = rk | x) = α · PJ + β · PI (13)373

3 Experiments374

3.1 Dataset375

We conduct our experiments on two widely recog-376

nized datasets: TB-Dense (Cassidy et al., 2014)377

and MATRES (Ning et al., 2018), both of them378

are publicly available for temporal relation extrac-379

tion task. TB-Dense is a dataset characterized by380

dense annotation for temporal relation extraction.381

It contains six types of relations: BEFORE, AFTER,382

INCLUDES, IS_INCLUDED, SIMULTANEOUS,383

and VAGUE. While MATRES is annotated using384

an innovative multi-axis annotation scheme that385

includes only four types of temporal relations: BE-386

FORE, AFTER, VAGUE and EQUAL. In line with387

the latest work (Zhuang et al., 2023), we divide388

the dataset using the same manner as in previous389

studies (Wen and Ji, 2021; Han et al., 2019a).390

3.2 Experimental Setup391

Consistent with previous work (Han et al., 2019b),392

we use the micro-F1 score, excluding the VAGUE393

category, as the evaluation metric for both MA-394

TRES and TB-Dense. We compare our model with395

a series of representative works from the past three396

years, we categorized these comparison models397

into three groups: 1) Knowledge-augmented mod-398

els: These models incorporate external knowledge399

or additional training data during training through400

various methods(Cao et al., 2021; Tan et al., 2021,401

2023; Zhuang et al., 2023). 2) Timeline position- 402

ing models: These models utilize different tech- 403

niques to directly or indirectly locate the relative 404

position of events on the timeline(Wen and Ji, 2021; 405

Huang et al., 2023). 3) Other benchmark mod- 406

els: These methods do not fall into the above two 407

categories but have demonstrated outstanding per- 408

formance(Han et al., 2021; Hwang et al., 2022; 409

Zhang et al., 2022). Additionally, we employ the 410

generative model T5-large (Raffel et al., 2020) and 411

BART-large (Lewis et al., 2019), which are also 412

based on the encoder-decoder architecture, as two 413

baseline model for comparison. 414

We use BART-large as our backbone model, and 415

we employ Adafactor as the optimizer, with a learn- 416

ing rate warm-up ratio of 0.1. We set the batch 417

size to 32. For TB-Dense, we set the learning rate 418

to 3e-5, α to 0.19 and β to 0.81. For MATRES, 419

we set the learning rate to 2e-5, α to 0.5 and β to 420

0.5. All experiments are trained for 50 epochs on 421

the training set, and the model achieving the best 422

performance on the validation set is selected as the 423

final model for testing. 424

4 Results and Analysis 425

4.1 Overall Performance 426

As can be seen from the Table 2, without utilizing 427

external knowledge, our proposed method consis- 428

tently outperforms the existing methods and base- 429

line models in the comparison of micro-F1. For 430

the TB-Dense, our proposed method outperforms 431

the existing SOTA method based on timeline posi- 432

tioning modeling by 2.9%, demonstrating the supe- 433

riority of modeling the ETRE task based on TCT, 434

which also indicates that compared to timeline po- 435

sition, the hierarchical knowledge in the TCT con- 436

tains more information that is beneficial for model 437

training. While for the MATRES, which only con- 438

tains four types of temporal relations, despite the 439

limited scale of the TCT we constructed (consist- 440

ing of only three hierarchies) due to the nature of 441

the temporal relations in MATRES, our novel ap- 442

proach outperforms the top result by a margin of 443

0.2%, showcasing the efficacy of TCT. Addition- 444

ally, this also indicates that the greater the hierarchy 445

of TCT, the higher the performance improvement 446

in ETRE task, which highlights the importance of 447

hierarchical information for model training. Fur- 448

thermore, comparing with the two baseline mod- 449

els we constructed, we notice notable benefits of 450

our suggested method on both TB-Dense and MA- 451
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Model Augmentation TB-Dense MATRES

P R F1 P R F1
Relative Time* (Wen and Ji, 2021) - - - - 78.4 85.2 81.7
Uncertainty-training (Cao et al., 2021) ✓ 64.3 64.3 64.3 76.6 84.9 80.5
ECONET (Han et al., 2021) - - - 66.8 - - 79.3
HGRU (Tan et al., 2021) ✓ - - - 79.2 81.7 80.5
Probabilistic Box (Hwang et al., 2022) - - - - - - 71.1
Syntax Transformer (Zhang et al., 2022) - - - 67.1 - - 80.3
Bayesian-Trans (Tan et al., 2023) ✓ - - 65.0 79.6 86.0 82.7
Unified-Framework* (Huang et al., 2023) - - - 68.1 - - 82.6
OntoEnhance (Zhuang et al., 2023) ✓ 67.5 68.6 68.0 79.0 86.5 82.6
T5-large(Vanilla Classifier) - 68.5 57.0 62.2 79.1 80.4 79.7
BART-large(Vanilla Classifier) - 67.5 65.5 66.5 75.7 83.7 79.5
TCT(Ours) - 70.3 71.6 70.9 79.0 87.2 82.9

Table 2: The overall experimental results on the TB-Dense and MATRES datasets. Models marked with a * use a
timeline positioning modeling approach. Models with a check mark for “Augmentation” are knowledge-augmented
models. All previous experimental results are cited from the data in their respective papers.

Dataset Backbone Method P R F1

TB-Dense

TCT 66.8 62.7 64.7
BART-base w/o TJM 65.5 58.7 61.9

w/o TIM 63.2 62.5 62.8

TCT 70.3 71.6 70.9
BART-large w/o TJM 67.0 68.3 67.7

w/o TIM 65.8 70.8 68.2

MATRES

TCT 76.6 82.7 79.5
BART-base w/o TJM 76.8 80.4 78.5

w/o TIM 75.3 82.1 78.6

TCT 79.0 87.2 82.9
BART-large w/o TJM 79.3 82.7 81.0

w/o TIM 78.2 86.7 82.2

Table 3: The ablation experimental results on the TB-
Dense and MATRES.

TRES, which further confirms the effectiveness of452

the TCT modeling approach.453

4.2 Analysis of Results on Subcategories454

We also analyze the classification results of our455

method on positive samples for each category in the456

TB-Dense. As shown in Figure 4, our method out-457

performs the baseline model in classifying each cat-458

egory, especially those with fewer instances, which459

indicates that our method can alleviate the impact460

of data imbalance on classification results to a cer-461

tain extent. Furthermore, we compare the instances462

misclassified as VAGUE in the positive samples463

with the previous SOTA method, as shown in the464

Figure 5, which demonstrates a distinctive advan-465

tage in discerning ambiguous relation of our model.466

467

4.3 Ablation Study468

We conduct ablation experiments using two differ-469

ent sizes of backbone models (BART-base, BART-470

Figure 4: Comparison of micro-F1 values for each sub-
category.

large). Based on the ablation study results shown 471

in Table 3, we can draw the following conclusions: 472

1) Both the temporal judgment module (TJM) 473

and the temporal inference module (TIM) have a 474

non-ignorable impact on the overall model perfor- 475

mance. For the TJM, in the TB-Dense, regardless 476

of the model size, removing the TJM significantly 477

reduces the overall model performance (by 2.8% 478

and 3.2% respectively). Similarly, in the MATRES, 479

removing the module also have a considerable im- 480

pact on the overall model performance. For the 481

TIM module, the experimental results in different 482

sizes and datasets also demonstrate its significant 483

effect on the overall performance. This illustrates 484

the importance of utilizing multidimensional hier- 485

archical semantic knowledge, which indeed facili- 486

tates the model to better identify the temporal rela- 487

tionships between events, and further demonstrates 488

the effectiveness of the TCT modeling approach. 489

2) The fusion of the TJM and the TIM effectively 490

combines their strengths. From the experimental re- 491
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Figure 5: Comparison of the number of instances mis-
classified as relation VAGUE.

sults, it is evident that compared to TIM, TJM tends492

to improve the model’s recall rate. Conversely,493

compared to TJM, TIM tends to achieve higher494

precision. This indicates that TJM is more advan-495

tageous in reducing erroneous predictions, while496

TIM is more beneficial in avoiding the omission497

of certain positive instances. The combination of498

these two modules naturally leverages their respec-499

tive advantages, enabling the model to fully exploit500

its potential and achieve optimal performance.501

4.4 Case Study502

Figure 6 illustrates an example of our model in503

ETRE task. In this example, the model correctly504

identifies the relation between finish and said as505

AFTER, and notably, for each query within TCT,506

it provides accurate judgments. Clearly, this not507

only aligns with our expectations but also conforms508

to human common sense when assessing temporal509

relations. In addition, we show the value of the510

probability of the model’s inference for each condi-511

tional branch in this example, which are available512

in the TIM. It is evident that the model’s determi-513

nation of the relation between finish and said as514

AFTER is based on its confident judgments for each515

conditional branch.516

5 Related Work517

Early works mainly utilized traditional ma-518

chine learning and statistics-based methods for519

ETRE(Mani et al., 2006; Yoshikawa et al., 2009).520

With the development of deep learning, some521

works have combined pre-trained language mod-522

els with graph-based models to improve encoding523

performance for alleviating the problem of long-524

distance dependency (Zhang et al., 2022; Mathur525

et al., 2021; Man et al., 2022). Some works focus526

on the problem of data scarcity in existing datasets,527

and propose to introduce external knowledge for528

knowledge enhancement (Ning et al., 2019; Wang529

et al., 2020; Han et al., 2020; Tan et al., 2023;530

Zhuang et al., 2023). There are also works that531

Input: “Sentence: The panel will be based in Addis Ababa , 

and will finish its investigation within a year , it said. Event1: 

finish. Event2: said.”
Q1:  Is there a clear temporal relation between Event1 and 

Event2?  

A1: 1 (Yes)  P(A1=1)=0.9987

Q2:  Do Event1 and Event2 have an overlapping relation?  

A2: 0 (No)  P(A2=1)=0.0029

Q3:  Does Event1 precede Event2?  

A3: 0 (No)  P(A3=1)=0.0045

Q4:  Are Event1 and Event2 concurrent?  

A4: 0 (No)  P(A4=1)=0.0023

Q5:  Does Event1 contain Event2?  

A5: 0 (No)  P(A5=1)=0.0019

Q6:  What's the temporal relation between Event1 and Event2? 

Output: AFTER 

P(relation=After)=0.9987*(1-0.0029)*(1-0.0045)=0.9913

Figure 6: An example of our model performing ETRE.

employ multi-task learning to compensate for the 532

limitations of single-text classification tasks (Wen 533

and Ji, 2021; Ballesteros et al., 2020; Cheng et al., 534

2020). Additionally, some of the latest work con- 535

cerned with the significance of temporal semantics, 536

and further enhanced the performance of temporal 537

relation extraction by combining some rule con- 538

straints (Huang et al., 2023; Hwang et al., 2022). 539

Recently, the rapid development of Large Lan- 540

guage Models(LLMs) has drawn attention to the 541

potential of applying LLMs to ETRE task. Yuan 542

et al. (2023) utilized prompt engineering techniques 543

and conducted extensive experiments on ChatGPT 544

to demonstrate that there is still considerable room 545

for directly predicting on ChatGPT compared to 546

supervised learning with smaller-scale models. Ad- 547

ditionally, Huang et al. (2023) validated the limi- 548

tations of ChatGPT in ETRE tasks in their work, 549

with the best test result on the TB-Dense dataset 550

achieving a micro-F1 score of 41.0%. 551

6 Conclusion and Future Work 552

In this paper, we propose a novel hierarchical mod- 553

eling approach for ETRE. Specifically, we intro- 554

duce a Temporal Cognitive Tree (TCT) that aligns 555

with human logical reasoning processes. Our ap- 556

proach integrates prompt optimization and deduc- 557

tive reasoning, enhancing the model’s ability to 558

understand and extract temporal relations from a 559

multidimensional perspective. Extensive experi- 560

ments demonstrate that our approach achieves sig- 561

nificant performance without the need for external 562

knowledge. In future work, we aim to explore the 563

possibilities of optimizing and extending this ap- 564

proach to accommodate relation extraction tasks 565

with varying fields and data volumes. 566
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Limitations567

From an overall experimental result perspective, al-568

though our model outperforms the current SOTA re-569

sults, it does not demonstrate an absolute advantage570

on the MATRES dataset (only 0.2% higher than the571

best result). We think this is due to our proposed572

method relying on the categories and quantity of573

temporal relations. Clearly, MATRES defines dif-574

ferent temporal relations in a coarser granularity, re-575

sulting in fewer types of temporal relations, which576

limits the improvement potential of our method.577

Further research is needed to address the limita-578

tions of our proposed method in handling different579

quantities of temporal relations, in order to achieve580

a more robust model.581
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