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ABSTRACT

Diffusion models achieve state-of-the-art performance in generating realistic ob-
jects and have been successfully applied to images, text, and videos. Recent work
has shown that diffusion can also be defined on graphs, including graph repre-
sentations of drug-like molecules. Unfortunately, it remains difficult to perform
conditional generation on graphs in a way which is interpretable and controllable.
In this work, we propose GraphGUIDE, a novel framework for graph generation
using diffusion models, where edges in the graph are flipped or set at each discrete
time step. We demonstrate GraphGUIDE on several graph datasets, and show that it
enables full control over the conditional generation of arbitrary structural properties
without relying on predefined labels. Our framework for graph diffusion can have
a large impact on the interpretable conditional generation of graphs, including
the generation of drug-like molecules with desired properties in a way which is
informed by experimental evidence.

1 INTRODUCTION

Diffusion models have rapidly become the state-of-the-art method for generating many kinds of
data|Sohl-Dickstein et al.[|(2015); Ho et al.|(2020); |Song et al.|(2021), including images and videos
Dhariwal & Nichol| (2021)); Ho et al.| (2022), text|Li et al.| (2022), and tabular data |Kotelnikov et al.
(2022). In order to generate objects from some distribution ¢o(z), a diffusion model defines a
forward-diffusion process which iteratively adds noise (typically continuous Gaussian noise) to an
object 29 ~ go(z). The model then learns a reverse-diffusion process to iteratively denoise a diffused
object back to the original xg. This allows the model to effectively sample new objects from go(z).

The most useful and impactful developments in diffusion models, however, arguably stem from the
ability to conditionally generate objects—that is, generating objects xy which satisfy some desired
property. There are a few methods for conditional generation today, which effectively supply the
model with a label y (out of a predefined set) to steer the reverse-diffusion process toward generating
an object ¢ which satisfies the property defined by y (Section[2). Using these methods, many of
the most prominent recent works in diffusion models have centered on conditional generation; these
include image generation by class|Song et al.[(2021)); [Dhariwal & Nichol| (2021) and image/video
synthesis from text Rombach et al.[(2021);|Ho et al.|(2022).

Although diffusion models have been successful in generating and conditionally generating many
different data types, applying these models to generating graphs poses several somewhat unique
challenges, particularly for conditional generation. These challenges are major obstacles for many
real-world problems, such as drug discovery, where it is critically important to be able to generate
molecular graphs which have certain desired physiological or chemical properties. Although methods
exist today for generating graphs using diffusion models |Niu et al.| (2020); Jo et al.| (2022);[Vignac
et al.| (2022), they are limited in several ways.

One such limitation is that many current graph-diffusion methods are continuous and generate reverse-
diffusion intermediates which are not well-defined discrete graphs; instead, their intermediates include
fractional or negative-valued edges. This severely hinders the interpretability and controllability of
these methods; after all, it is not easy to decipher what —0.2 in an adjacency matrix means, or how to
control generation where the probability of an edge is 0.6.
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A bigger set of issues lies in the current available methods for conditional generation, which are rather
limiting for graph diffusion (including for diffusion frameworks which are discrete). Firstly, current
conditional-generation methods supply a label y to influence reverse diffusion as a soft constraint.
This renders conditional generation an inscrutable process which prevents humans from interpreting
or controlling the generated graph sample (this is even worse for continuous-diffusion frameworks).
For many real-world applications such as drug discovery, being able to very precisely control the
generated outputs for specific features (e.g. functional groups) is an important feature for a generative
algorithm. Secondly, current conditional-generation methods rely on a predefined set of possible
labels to condition on, and the addition of new properties necessitates the retraining of all or part of
the model. For many graph applications, this is particularly limiting, as there are a huge number of
specific structural properties that may be conditioned on. For example, in the fields of drug discovery
and molecule design, it is not uncommon to desire a molecular graph which might contain a benzene,
or toluene, or aniline, etc. Thus, for many real-world graph-generation problems such as drug design,
both these limitations in current conditional-generation methods can pose a serious obstacle that
prevents more widespread adoption of graph diffusion.

In this work, we present GraphGUIDE (Graph Generation Using Interpretable Diffusion on Edges),
an alternative graph-diffusion framework that addresses these limitations. GraphGUIDE relies on
a diffusion process which is fully discrete, defined by flipping edges in and out of existence based
on a Bernoulli random process. We define three different diffusion kernels, which add, delete, or
flip edges randomly. Thus, at each point in both forward and reverse diffusion, the intermediate is
an interpretable, well-defined graph. More importantly, this allows for full, interpretable control of
conditional generation using the appropriate kernel without any reliance on a predefined set of labels.

To summarize, our main contributions are the following:

* We present a novel framework, GraphGUIDE, for interpretable and controllable graph
generation based on discrete diffusion of graph edges.

* We derive three discrete diffusion kernels based on the Bernoulli distribution, including a
more efficient and stable parameterization of a kernel based on symmetrically flipping bits,
and two novel kernels based on asymmetrically setting bits.

* We compare our method to other recent state-of-the-art graph-generation methods on bench-
mark datasets, showing that it achieves comparable generation quality.

* We demonstrate that GraphGUIDE enables full control of arbitrary structural properties—
which do not need to be predefined at training time—during generation, thus allowing the
injection of custom priors such as the presence or absence of specific graph motifs.

2 RELATED WORK

2.1 CONDITIONAL GENERATION IN DIFFUSION MODELS

A major goal of generative modeling is to perform conditional generation, where we wish to draw a
sample from go(z) which satisfies a specific label or property. Within the diffusion-model literature,
there are effectively two methods for conditional generation.

Classifier-guided conditional generation was proposed in |[Song et al.|(2021), in which an external
classifier f(x;) is trained on x to predict some label y. Input gradients from this classifier are then
used during the generative process to bias the generation of an object toward one which has the label
y. While elegant in its mathematical justification (a simple invocation of Bayes’ Rule), it relies on
an external classifier which is trained on noisy inputs x; from across the diffusion timeline and a
predefined set of labels y. This method is also only readily applied to diffusion models trained in a
continuous-time and continuous-noise setting, due to its reliance on gradients.

In contrast to classifier-guided conditional generation, [Ho et al.| (2021)) proposed an alternative
method: classifier-free conditional generation. Instead of relying on an external classifier, the neural
network py (which defines the reverse-diffusion/generative process) is trained with labels as an
input: pg(x¢,t,y). This method for conditional generation has been exceedingly popular, and has
been shown to generate state-of-the-art samples [Rombach et al.| (2021)); |Ho et al.| (2022)). Unlike
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classifier-guided conditional generation, this method enjoys the freedom of not relying on any external
classifier, and it can be applied to discrete-time and/or discrete-noise diffusion settings.

Unfortunately, both methods for conditional generation suffer from some limitations. Firstly, both
methods merely supply a reverse-diffusion-influencing signal to the generative process (i.e. through
biasing gradients or through an auxiliary input). This acts as a soft constraint which not only is
uninterpretable, but also cannot be controlled or modified manually by a human during reverse
diffusion. Secondly, both methods require a predefined set of labels y (to train either an external
classifier or the diffusion model itself). The addition of new labels or properties to conditionally
generate would necessitate the retraining of an entire model; in the more popular case of classifier-free
conditional generation, the entire diffusion model would need to be retrained.

2.2 DISCRETE DIFFUSION KERNELS

The vast majority of diffusion models are trained with Gaussian noise, as this is the most well-
developed kernel. Methods for discrete diffusion, however, have been proposed and utilized.

In the paper which first demonstrated diffusion models, |Sohl-Dickstein et al.| (2015)) briefly proposed
a discrete diffusion kernel based on the Bernoulli distribution—termed the “binomial” kernel—which
flipped black-and-white pixels back and forth according to some probability. Unfortunately, the
binomial kernel was parameterized in a way which made it inefficient for forward diffusion and
unstable for reverse diffusion. Because of the large focus on Gaussian kernels in the literature, this
discrete kernel has remained underdeveloped and unused until this point, and until now has not been
reparameterized to behave efficiently and stably.

Later on, Hoogeboom et al.| (2021) proposed an alternative way to diffuse over discrete states based on
the multinomial distribution, where forward diffusion transforms a one-hot-encoded category vector
into a uniform multinomial distribution. |Austin et al.| (2021} then proposed a similar framework
where forward diffusion is defined a discrete Markov process; the authors showed that multinomial
diffusion is a special case of this framework. Although these methods for discrete diffusion have
been successfully applied to unconditional generation, there is very limited usage of these kernels for
conditional generation (in graphs or other data types).

2.3 GRAPH GENERATION

For the problem of graph generation, there is already a large body of literature which spans many
techniques, from autoregressive to one-shot. This includes GraphRNN |You et al.|(2018), GRAN |Liao
et al.| (2019), MolGAN |Cao & Kipf| (2018)), and SPECTRE Martinkus et al.|(2022), among others.

For graph generation using diffusion models specifically, a few methods have been proposed, each
of which solves the problem of graph discreteness differently. Niu et al.| (2020) applied continuous
diffusion on the adjacency matrix using Gaussian noise—a relaxation of the discreteness of edges.
This generated graph-diffusion intermediates which had fractional and negative edges. [Lee et al.
(2022) then adapted this framework and performed conditional generation on molecular graphs by
incorporating gradients from an external property-prediction network—an application of classifier
guidance, made possible by the continuous relaxation Song et al.|(2021). Methods such as these,
however—which diffuse on adjacency matrices—are severely hindered in their ability to conditionally
generate structural properties. There are many equivalent adjacency-matrix orderings which satisfy
the same structural property, which makes it difficult to inject this form of inductive bias into the
generative process. Of course, these methods also suffer from the aforementioned limitations inherent
to classifier-guided conditional generation.

Later on, [Vignac et al.| (2022) applied the Markovian diffusion framework proposed by |Austin
et al.| (2021) on discrete graph adjacency matrices and node features. The authors showed that
their method—DiGress—achieved state-of-the-art generative performance compared to other graph-
generation methods, including those listed above. The authors also attempted to apply classifier-
guided conditional generation using a discretized approximation of gradients, although this was
limited by the conflict between continuous gradients and discrete diffusion, as well as the limitations
inherent to current conditional-generation methods (i.e. they are uninterpretable soft constraints
which require predefining a set of labels at training time).
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3 GRAPHGUIDE FOR CONDITIONAL GRAPH GENERATION
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Figure 1: Interpretable and controllable graph diffusion. a) In the GraphGUIDE framework, we
forward diffuse graphs by flipping edges in and out of existence. In reverse diffusion, if a certain
set of edges or graph motifs are desired (or undesired), appropriate edges may be manually added
(or pruned, respectively) to generate a graph sample with the desired property. b) We propose three
Bernoulli diffusion kernels which flip edges on or off randomly (top), add edges randomly (middle),
or delete edges randomly (bottom).

Previous work in graph diffusion created uninterpretable diffusion intermediates, or they lacked a
component which allowed for successful control over conditional generation. Here, we propose
GraphGUIDE as an alternative framework for graph generation which allows for more interpretable
and controllable generation (Figure[Th).

In this section, we present discrete diffusion kernels for graph generation (Section [3.1)), demonstrate
that they are capable of achieving generative performance comparable to other state-of-the-art
methods (Section [3.2), and showcase the ease at which graph generation can be controlled for
arbitrary structural properties using our GraphGUIDE framework (Section[3.3).

3.1 BERNOULLI DIFFUSION ON EDGES

In order for GraphGUIDE to diffuse on graphs in a discrete and controllable manner, We define three
discrete diffusion kernels based on the Bernoulli distribution (Figure[Ib). Consider a binary vector z;
to be diffused. The diffusion kernels will alter the bits randomly until a prior distribution is reached.
Importantly, instead of performing diffusion on some continuous states, we define the Bernoulli
diffusion kernels to directly flip or set bits, thereby ensuring that every x; in the forward-diffusion
process is a fully well-defined binary vector. We define three diffusion kernels for this process:

1. Bit-flip kernel: at time ¢, flip each bit with probability j;.

2. Bit-one kernel: at time ¢, set each bit to 1 with probability 3; (if the bit is already 1, do
nothing).

3. Bit-zero kernel: at time ¢, set each bit to 0 with probability g; (if the bit is already 0, do
nothing).

For all three kernels, we assume there is a fixed noise schedule §; with ¢ € {1,...,T}. A typical
noise schedule monotonically increases from 8, = 0 to Sy = % Note that the forward-diffusion
process defines an independent Bernoulli distribution for each entry in z; at every time ¢.

For each of these three kernels, we derive an analytical formula for the marginal forward distribution
q(z¢|xo) and for the marginal posterior distribution ¢(z;—1|x, o). Importantly, we derive parame-
terizations for these kernels which satisfy two properties: 1) q(x¢|x¢) is also a Bernoulli distribution
for any ¢, and it is very tractable to compute its parameters; and 2) the reverse-diffusion posterior
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distribution g(x¢_1|z, zo) is also a tractable Bernoulli distribution, so the reverse-diffusion process
can be modeled by learning the posterior’s parameters directly, leading to more stable behavior.
These two properties are critical for the efficient training of diffusion models which stably generate
high-quality samples |Ho et al.[(2020).

We derive closed-form formulae for our three Bernoulli kernels, including the forward distribution,
the posterior distribution, and the prior distribution (Supplementary Table[ST). See Appendix [B]for
derivations.

These three Bernoulli kernels are defined on general bits. In order to generate undirected graphs,
we define x; as a binary vector denoting which edges exist in the graph (1 if the edge exists, and
0 otherwise). This vector has size (g), where n is the number of nodes in the graph (we do not
allow self-edges or multi-edges, but our work can be extended easily to accommodate both cases;
see Sectiond). We diffuse on an undirected graph by applying a Bernoulli kernel to this binary edge
vector. That is, the forward-diffusion process adds or removes edges (or both) randomly, and the
reverse-diffusion process reconstructs a graph by deciding which nodes to link or unlink. The precise

behavior depends on which of the three kernels is being used.

When applied to graph edges, the bit-flip kernel slowly flips edges in and out of existence with
increasing probability until the graph approaches a prior which is the Erdos—Renyi graph (with
p = 0.5 for a typical noise schedule). In reverse diffusion, the bit-flip kernel starts with an Erdos—
Renyi graph and iteratively toggles edges on and off until a final graph sample is recovered. The
bit-one kernel slowly adds edges randomly to the graph until reaching the prior, which is the complete
graph (i.e. all possible edges exist). In the reverse direction, bit-one diffusion successively removes
edges until obtaining a graph sample. Finally, the bit-zero kernel slowly removes random edges,
approaching the prior of the empty graph (i.e. no edges exist at all). In reverse diffusion with the
bit-zero kernel, edges are slowly added until a final graph sample is formed. In our experiments
below, we focus our work on discrete diffusion over edge existence alone, as this is sufficient for
many applications, including for molecule design (See Section [ for more details).

3.2 GENERATIVE PERFORMANCE

We compare the generative performance of graph-diffusion models trained with our Bernoulli kernels
compared to other graph-generation methods. Over two well-known benchmark datasets (community-
small and stochastic block models), we use the maximum-mean-discrepancy (MMD) metric to
quantify how similar the generated graphs are to the training set (Table[T)). We compute the MMD
between the distributions of degrees, clustering coefficients, and orbit counts [Hocevar & Demsar
(2014). We report an MMD ratio: the MMD of generated graphs and the training set, normalized by
the MMD of the training set and an independently sampled validation set. We compare our MMD
ratios to those reported by other graph-generation methods (when available). A lower MMD is better.
Note that in some cases, these other methods erroneously label MMD squared as MMD in their text,
whereas we report MMD (i.e. values taken from other works which report MMD squared have been
square rooted).

Table 1: Bernoulli edge diffusion MMD ratio

Community-small Stochastic block models
Method Deg.| Clus.] Orbit] Deg.| Clus.| Orbit]

GraphRNN 2.00 1.31 2.00 2.62 1.33 1.75
GRAN 1.73 1.25 1.00 3.76 1.29 1.46
MolGAN 1.73 1.36 1.00 5.42 1.87 1.67
SPECTRE 1.00 1.73 1.00 3.14 1.26 0.54

DiGress 1.00 0.95 1.00 1.26 1.22 1.30
Bit-flip 0.99 0.58 2.55 2.73 1.23 0.94
Bit-one 1.21 0.62 1.83 1.00 1.21 0.81
Bit-zero 1.87 1.02 4.69 1.31 1.19 0.80
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These experiments demonstrate that diffusion using the discrete Bernoulli kernels on graph edges
achieves comparable performance compared to other state-of-the-art methods for graph generation,
including other discrete graph-diffusion methods such as DiGress|Vignac et al.|(2022).

3.3 GRAPH GENERATION WITH INTERPRETABLE CONTROL

GraphGUIDE employs these discrete Bernoulli kernels because they result in perfectly well-defined
graphs at each intermediate stage of the diffusion process. Not only are these intermediates more
readily interpretable, but they also allow the generation process to be easily controlled. At any
stage of reverse diffusion, edges or graph motifs that are desired can be manually retained in the
intermediate (or symmetrically, edges or motifs that are not desired can be prevented from forming).

a) Unconditional generation b) Conditional generation
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Figure 2: Examples of generated graphs with and without manual control via GraphGUIDE. On three
different graph datasets, we show examples of graphs generated a) unconditionally, or b) using the
GraphGUIDE framework while controlling for a desired property (listed in red).

In order to illustrate the ease at which graph generation can be controlled with GraphGUIDE, we
show some example graphs generated to have specific desired properties (Figure[2). First, we trained
a model using the bit-one kernel to generate cliques of sizes three to six. Graphs that were generated
unconditionally (i.e. without manual control) contained cliques of various sizes (Figure [2h, top). We
then conditionally generated graphs by manually controlling the reverse-diffusion process so that
all generated graphs would have a clique of size 6 (Figure 2b, top). Recall that the bit-one kernel
confers a prior distribution which is the complete graph (i.e. 7 corresponds to a graph with all
possible edges). In the reverse-diffusion process, edges are gradually removed to recover a sample
of xy. For each graph generated under manual control, we arbitrarily selected 6 nodes. Throughout
the reverse-diffusion process—at each step—we ensured that no edges were removed between any
of these 6 nodes. If any such edges were removed at a reverse-diffusion step, they were added back
before the next step. As a result, all graphs generated using this procedure contained a 6-clique.
Intriguingly, the model also extrapolated from the data and generated 7- and 8-cliques, which contain
6-cliques as subgraphs.

We then trained a model using the bit-zero kernel to generate community-small graphs (as in Table ).
Graphs generated by this model typically showed two communities which were oftentimes linked to
each other with one or more edges (Figure[Zh, middle). We then controlled generation by ensuring
no edges were added between the two communities, thereby always forming two disjoint subgraphs
(Figure Zb, middle). The bit-zero kernel confers a prior distribution which has no edges, and in the
reverse-diffusion process, edges are slowly added to form the final graph sample xg. In order to
perform manual control, we simply partitioned the empty graph x7 into two equal-sized sets of nodes,
and ensured that no edges were ever added between nodes of different communities. The result is a
set of graphs where the two communities were always disjoint.

Finally, we trained a model using the bit-flip kernel to generate a set of molecule-like graphs. Our
molecule-like graphs consist of backbone and secondary nodes (atoms), where backbone nodes
always have a degree of at most 4, and secondary nodes always have a degree of 1 and are linked to a
backbone node. In terms of real organic chemistry, backbone nodes might correspond to carbon atoms,
and secondary nodes might correspond to halogens. The backbone atoms can be linked together in
rings of various sizes, or be acyclic and branched. Graphs generated from this model showed a diverse
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set of molecule-like structures (Figure [2h, bottom). We then performed controllable generation and
enforced throughout reverse diffusion that a 6-membered backbone ring would be formed (Figure [2p,
bottom). The bit-flip kernel confers a prior distribution 2 which is an Erdos—Renyi graph, and edges
are slowly removed or added throughout the reverse-diffusion process to generate a graph sample
zo. In order to perform manual control, we identified 6 backbone nodes from z, and enforced
throughout the generative process that those 6 backbone nodes were linked together in a ring, with no
other edges between them. The resulting graphs always had a 6-membered backbone ring, usually
with other backbone nodes or secondary nodes attached.

Throughout these experiments, because of the full manual control offered by the discrete diffusion,
100% of the resulting graphs always had the desired property. In contrast, when we uncondition-
ally generated graphs from these models, we only obtained 6-cliques 68% of the time, disjoint
communities 21% of the time, and 6-membered-ring molecules 12% of the time.

In this section, we demonstrated the power of conditional generation via manual control with
GraphGUIDE. Notably, this was made possible by the fully discrete nature of the Bernoulli kernels,
which require that all diffusion intermediates are fully well-defined graphs. This is not only important
for interpretability and for humans to easily manipulate the diffusion process, but is also critical for
the robustness of the neural-network predictions. Just as the neural network is trained on well-defined
graphs with binary edges, manually edited reverse-diffusion intermediates are also well-defined
graphs with binary edges, and therefore are more likely in-distribution for the neural network, thus
not leading to unexpected or undefined behavior. Furthermore, we presented three Bernoulli kernels,
each of which is well-suited for different controllable-generation tasks, where edges or motifs need
to be retained or removed. The bit-one kernel is best for ensuring that a particular set of edges are
retained; the bit-zero kernel is best for ensuring that a particular set of edges are removed; the bit-flip
kernel is best for ensuring that a more complex motif (with some edges that need to be retained and
others removed) forms. Using the best-suited kernel of the three helps ensure that manually controlled
generation creates intermediates that are in-distribution for the model. For example, using the bit-one
kernel generates a prior which is the complete graph, and so in the reverse-diffusion process, edges
are gradually deleted. If the manual-control task is to retain a set of edges, then retaining those edges
throughout the reverse-diffusion process ensures that diffusion intermediates are much more likely to
remain in-distribution for the neural network.

Contrast this interpretability and controllability with other graph-diffusion frameworks. On
continuous-diffusion frameworks, the diffusion intermediates contain edges that are fractional or
negative. Not only is this far less interpretable, it is also much more difficult to control the generation
in terms of desired structural features, such as the presence or absence of a particular motif. Any
attempt to manually control the generative process like above would be foiled by the fact that fully
well-defined graphs are not in-distribution for most of the diffusion process. Additionally, all existing
graph-diffusion frameworks (continuous or discrete) rely on traditional methods for conditional
generation, which inscrutably influence graph generation using a limited, predefined set of labels
(Section [2).

Our experiments highlight the unique method of conditional generation offered by GraphGUIDE.
Conditional generation using GraphGUIDE no longer requires an external classifier, or even a
predetermined set of property labels. Because the diffusion intermediates are so easily manipulated,
practically any structural property—which is defined by the presence and/or absence of edges or
motifs—can be imposed with full manual control at any time in the reverse-diffusion process. This
very much distinguishes our framework from other methods for conditional generation.

4 DISCUSSION

The diffusion framework proposed in this work is unique from other diffusion methods due to the
controllability of the reverse-diffusion product. Graph generation through GraphGUIDE can be
thought of as a reverse-diffusion process which iteratively decides which edges to add or remove in
order to recover a final graph sample xg. This renders the generation process highly interpretable and
controllable to humans.

Within the GraphGUIDE framework, nodes and their features can be thought of as static and eternal;
the reverse-diffusion process determines which nodes to link up in order to form a final graph sample.
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As such, in our experiments, we did not perform diffusion on node features. Of course, this requires
the set of nodes to have a limited set of possible feature values. For many graph-generation tasks,
this assumption holds, including graphs where only the structure is important (e.g. communities,
stochastic block models, etc.), and molecular graphs (i.e. there are only a few types of atoms in
typical molecular-generation tasks). Note, however, that in order to accommodate nodes with many
more possible features, diffusion can also be performed on node features and edges jointly.

Although we demonstrated GraphGUIDE on undirected graphs without self-edges or multi-edges, our
work can be easily extended to accommodate self-edges, multi-edges, directed edges, and graphs with
edge attributes (as long as there is a relatively small set of discrete attributes). This can be done simply
by having the binary vector z, (which denotes edge presence) contain an entry for every possible
edge or edge—attribute pair. Alternatively, GraphGUIDE can be combined with kernels other than
the Bernoulli kernels, such as multinomial kernels like those proposed in[Hoogeboom et al.| (2021)
and |Austin et al.|(2021)). Graphs with many possible edge attributes or continuous edge attributes,
however, do not fit very well into the GraphGUIDE framework, as a fundamental assumption made
by the Bernoulli kernel (or multinomial kernels) is that all edges are binary (or have a limited number
of discrete states, respectively).

Another limitation of our framework may be in the set of properties that can be conditionally generated
via manual control. We demonstrated that GraphGUIDE enables conditional generation of graphs
with arbitrary structural properties (e.g. molecules with 6-membered backbone rings), without the
need to predefine them. Hence, in order to take advantage of controllable generation using our
framework, the property desired must be definable structurally—that is, it needs to be definable
by a set of known edges or graph motifs. As such, it is difficult to use this framework to generate
graphs which satisfy a high-level property (e.g. a molecular graph which is a target for the (5
adrenergic receptor), because it is not easy to identify what specific low-level structural properties
(e.g. bonds or functional groups) confer this high-level property, which is a complex descriptor.
Instead, high-level properties (e.g. drug targets) may be controlled for using the current standard
methods of conditional generation, such as classifier-free conditional generation (i.e. training the
diffusion model on a predefined set of labels) Ho et al.| (2021). Notably, our framework remains
orthogonal to classifier-free conditional generation, and can be easily combined with such methods
so that conditional generation can be performed on a smaller set of pre-defined high-level properties
as well as arbitrary low-level structural properties simultaneously.

5 CONCLUSION

In this work, we proposed GraphGUIDE, a novel framework for interpretable and controllable graph
generation using diffusion models. To aid in generating interpretable and controllable diffusion
intermediates, we presented three discrete diffusion kernels based on the Bernoulli distribution and
applied them to graph edges. The resulting diffusion processes add noise to graphs by flipping, adding,
or removing edges. In the reverse-diffusion process, the diffusion model iteratively decides which
edges to keep or remove to recover a final graph sample. Notably, all diffusion intermediates are
interpretable well-defined graphs. More importantly, by using the appropriate kernel, the generative
process is highly controllable—specific edges, motifs, and other properties can be retained or
prevented at each stage of the reverse-diffusion process, while still being in-distribution for the
neural network. Because of this high degree of control over all parts of the generative process,
practically any structural property can be conditioned on, and without relying on any predefined
set of labels. Together, GraphGUIDE allows the enforcement of any arbitrary structural property
on-the-fly with 100% success. Additionally, we demonstrated that these advantages in interpretability
and controllability are gained without any penalty in generative performance.

We illustrated the benefits of GraphGUIDE for several kinds of undirected graphs, particularly
highlighting the application to molecular graphs for drug discovery or chemical design. Our work,
however, may be applied to generating other kinds of graphs in an interpretable and controllable
manner, such as knowledge graphs and causality graphs. In both these situations, it would be highly
beneficial to be able to control for certain substructures easily and interpretably. Furthermore, the
framework defined by GraphGUIDE may be applied to data types outside of graph edges, as well.
Further exploration in discrete diffusion and controllable generation can continue to have impacts in
many other real-world domains.
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A SUMMARY OF BERNOULLI KERNELS

Table S1: Forward, posterior, and prior distributions for three Bernoulli diffusion kernels. See
Appendix [B] for derivations.

Kernel  Forward q(z; = 1|xz0) Posterior q(x;—1 = 1|z, 20) Prior 7(zp = 1)

(oe+Bi—22080) (3+(220-1)2' TT (3-50)

Bit-flip (1 —0)B; + 20(1 — By,
_ t
where B, = 2 — 271 T[ (5 —

=1

[NIES

b+1-2(z—z0))2 11 (3-5)

Bi)
t :ct(:1>0+(1—3:0)(1—:]_[ (1-54)))
Bitone zo+(1—z0)(1—[[(1—5:)) - i1 : 1t
i=1 zozt+(1—xzo)ze(1— ];Il(l—ﬂi))+(1—mo)(1—mf) ];[1(1—[3i)
¢ (we+Bi—22:Bi)w0 tﬁl(lfﬂz)
Bit-zero  xo [] (1 — 5;) = i ot
i=1 (l—mg)(l—mt)+:170(1—:l>t)(1—‘];[1(1—/31))4—,10;” 1;[1(1_ﬂi)

+Assuming [; approaches % over a sufficiently long diffusion time
tAssuming fractional 3 over a sufficiently long diffusion time

B DERIVATION OF BERNOULLI KERNELS

For all three kernels, we assume there is a fixed noise schedule §; with ¢t € {1,...,T}. A typical
noise schedule monotonically increases from 8; = 0 to S = %

B.1 DERIVATION OF BIT-FLIP KERNEL

In order to “diffuse” or “noise” a binary vector zy, we define a stochastic process in which bits are
slowly flipped between 0 and 1. At time ¢, each bit independently flips with probability 3;, and is
kept the same with probability 1 — 3. Note that if 3; = 0, then no noising happens.

Forward distribution

Here, we seek a closed-form expression for ¢(z; = 1|xg) so that we may compute the forward

distribution in an efficient way. We have that z; = b, — xg, where b, is a binary vector denoting

whether or not a flip (relative to x¢) happens over diffusion time from O to ¢. From the piling-up
t

lemma, we have that b, ~ Bern(1 — 271 T (1 — 3;)).

=1

This gives us a forward distribution that is also distributed according to a Bernoulli distribution,
_ _ _ t
where q(z; = 1|zo) = (1 — x0)B; + zo(1 — B;), where B, = 1 — 2071 ] (3 — )
i=1

Prior distribution

Jim, B, = 5. as long as T is a sufficiently large time horizon and ; approaches 3. Thus, ¢(z7 =
—

1) = %, regardless of the value of x.
Posterior distribution

Here, we seek a closed-form expression for g(x;—1 = 1|y, o) as a parameterized distribution. By
(ze|re—1=1,20)q(xt_1=1|z0)

Bayes’ Rule, we have q(z;_1 = 1|z, 1) = £ EAED)

Let’s look at each piece separately:

x|z =1, 20) = (1 — @) By + x4(1 — Br) = x¢ + B — 22454
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(i1 = 1|zo) = (1 — x0)(5 — Qt_Qﬁi[i(% — i) + zo(5 + 2072 tlji(% — i) = 5 + (2x0 —
D22 TG - )

danfo) = (o0 = a0} 27 [T - 8) + (1 = (o - 50))(E + 27 [T} - 4) =
Ly (1= 2y — 2p)2)2 13(5 — 8)

Note (; — x0)? is the xor between the two (binary) variables
That is, all together, we have that x;_1 ~ Bern(p(zo,x:)), where p(xo,z;) =

-1
(oot B2, 80) (3 +(2m0-1)2'2 TT (3-50)

b2z —a0))20 1 [T (350

B.2 DERIVATION OF BIT-ONE KERNEL

Here, we define a stochastic process on binary xy where bits are slowly turned into 1s. At time ¢,
each bit independently turns into a 1 with probability 3;. If the bit already is 1, then nothing happens.
Note that if 5; = 0, then no noising happens.

Forward distribution

Again, we seek a closed-form expression for g(x; = 1|xg) so that we may compute the forward
t
distribution in an efficient way. We have that ¢(z; = 1|z¢) = xo + (1 —x0)(1 — ] (1 — 8;)) G.e. if
i=1
xo = 1, then x; = 1; otherwise, x; will be 1 if at least one of the ;s is successful). Again, this is a
Bernoulli distribution.

Prior distribution

t

tlinr% [1(1 = 8;) =0, as long as T is a sufficiently large time horizon and f3; approaches some
—1i=1

nonzero fraction (e.g. %). Thus, g(zg = 1) = 1, regardless of the value of x.

Posterior distribution

q(zi|ze—1=1,20)g(xt—1=1[20)
q(zt|zo)

We again start with Bayes’ Rule: ¢(x;—1 = 1|z, 20) =

Let’s look at each piece separately:

q(z¢|xe—1 = 1,20) = x4 (if x4—1 = 1, then 2y = 1 has a probability of 1, 2; = 0 can’t happen and
has a probability of 0)

g(r—s = 1ae) = 20 + (1 —20)(1 — [] (1 - 5)

i=1

a(arlwo) = oz, + (1 mo)an(1 - ﬁ[lu —B) +(1—z)(1—a) [1(L-5)

1=

1
That is, all together, we have that z;_1 ~ Bern(p(zo,x:)), where p(zo,z;) =
-1

we(@o+(1—0)(1- TT (1-8,)))

i=1

sowe+ (1=w0)er (1= I (1) +(1=z0)(1=2¢) 1T (1)

B.3 DERIVATION OF BIT-ZERO KERNEL
Here, we define a stochastic process on binary xy where bits are slowly turned into Os. At time ¢,

each bit independently turns into a 0 with probability 3;. If the bit already is 0, then nothing happens.
Note that if 5; = 0, then no noising happens.
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Forward distribution
Again, we seek a closed-form expression for g(x; = 1|xg) so that we may compute the forward

t

distribution in an efficient way. We have that q(z; = 1|zo) = o [[(1 — Bi) G.e. if 29 = 0,
i=1

then x; = 0; otherwise, x; will be 0 if none of the 5;s was successful). Again, this is a Bernoulli

distribution.

Prior distribution
t
hn% [1(1 = B;) = 0, as long as T is a sufficiently large time horizon and f3; approaches some
t— i=1
nonzero fraction (e.g. %). Thus, g(z7 = 1) = 0, regardless of the value of xg.

Posterior distribution

q(ze|ze_1=1,20)q(z¢—1=1[x0)
Q(1t|10)

We again start with Bayes’ Rule: ¢(x;—1 = 1|z, 20) =

Let’s look at each piece separately:
g(zi|lxe—1 = Lxo) = 2 (1— Be) + (L — x4) B = x¢ + B — 224 8¢ (if x4—1 = 1, then x; = 1 means
[; failed; on the other hand, x; = 0 means 3; succeeded)

t—1

¢(ze-1 = 1|zo) = 20 [[ (1 = fi)

i=1

(1= ) + zox: [T (L - B)

i=

q(wfzo) = (1 = wo) (1 — ) + wo(1 — 2¢) (1 —

K2

=R

1
That is, all together, we have that z;_1 ~ Bern(p(zo,x:)), where p(zo,z;) =

t—1
(4Bt —2x+ Bt) 0 ’_1:[1(1*51‘)

(1=20)(1=a0)+z0(1—we) (1= [T (1=B)+zoz: 1] (1-52)

B.4 TRAINING/SAMPLING ALGORITHMS

Training with the Bernoulli kernels

Input: training set {z(*)}
Repeat:

Sample z( from training data {z(*)}

Sample ¢t ~ Unif(0,T)

Sample x4 ~ q;(|o)

Gradient descent on p(g, g, (¢, t) to predict zg
Until convergence

Sampling with the Bernoulli kernels

Input: trained pg
Sample z; < @ from w(x)

fort =T toO: Zo < po(xt,t)
Sample x;—1 ~ q(z1—1|zt, Zo)
Ty < T—1

Return &
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C SUPPLEMENTARY METHODS

The code to generate the results and figures in this work is available at
https://github.com/Genentech/GraphGUIDE.

We trained all of our models and performed all analyses on a single Nvidia Quadro P6000.

C.1 DATASETS

Community-small

We generate a dataset of two-community graphs following the definition in|You et al.|(2018). That is,
we first pick |V'| € [12, 20], which is split into two equal-sized communities (for an odd number, one
community will have one more node than the other). Each community is generated by the Erdos—
Renyi model with p = 0.3. We then add 0.05|V| edges uniformly between the two communities.

All nodes have a single feature with value 1.

We generate 6400 random graphs per epoch, where graphs across different epochs are generated
independently.

For our generative-performance analyses, following |You et al.| (2018)); Liao et al.|(2019); Martinkus
et al.| (2022)); [Vignac et al.| (2022)), we pre-generated and cached 200 random graphs, and trained only
on these 200 repeatedly.

Stochastic block models

We generate a dataset of stochastic-block-model graphs following the definition in Martinkus et al.
(2022). That is, we first pick a number of blocks between [2, 5]. Each block size is independently and
uniformly sampled from [20, 40] nodes. The intra-block edge probability is 0.3, and inter-block edge
probability is 0.05.

All nodes have a single feature with value 1.

For our generative-performance analyses, following You et al.|(2018); |Liao et al.| (2019); Martinkus
et al.[(2022); Vignac et al.| (2022), we pre-generated and cached 200 random graphs, and trained only
on these 200 repeatedly.

Cliques

We generate a dataset of clique graphs. Each graph has 10 nodes, and contains two cliques randomly
drawn from sizes {3, 4,5, 6}, without replacement. Excess nodes are left as singletons.

All nodes have a single feature with value 1.

We generate 6400 random graphs per epoch, where graphs across different epochs are generated
independently.

Molecule-like graphs

We generate a dataset of molecule-like graphs. The number of backbone nodes is selected randomly
from [4, 6], and the number of secondary nodes is selected randomly from [0, 4]. The backbone nodes
are first linked into a ring or a branched structure (with 0.5 probability of each). If the backbone is
to be linked into a ring, it is linked into a single simple cycle. If the backbone is to be linked into a
branched structure, a random tree is constructed such that the degree of each backbone node is at
most 4. In order to do this, backbone nodes are iteratively and stochastically added to a structure
which is slowly built up by randomly adding a leaf node to some pre-existing node with degree less
than 4.

Once the backbone is constructed, secondary nodes are added uniformly at random to the backbone.
Secondary nodes are always added as “leaves” (i.e. they always have degree 1, attached to a backbone
node), such that the backbone nodes have degree at most 4. The random selection is done such that
each free spot on a backbone node has equal probability of having a secondary node added.

Singleton backbone and secondary nodes are added (in equal amounts, or as equal as possible) to
create a graph of 10 nodes.

14



Under review at the MLDD workshop, ICLR 2023

All backbone nodes have a single feature with value 0, and all secondary nodes have a single feature
with value 1.

We generate 6400 random graphs per epoch, where graphs across different epochs are generated
independently.

C.2 MODEL ARCHITECTURE

For most of our experiments, we used a graph-attention network. We compute a time embedding as
[sin(3 %), cos(5 %), &]. The time embedding is passed through a dense layer with 256 units. This
output is concatenated with the node features. This is then passed through 2 dense layers of 256 units

each, followed by a ReL.U after each one.

We also compute a spectrum transformation matrix for each graph, where we take the eigendecompo-
sition of the Laplacian L = [ — D3 AD? for adjacency matrix A and degree matrix D. We limit the
eigenvectors to the 5 smallest eigenvalues (or the number of nodes in the graph if there are fewer than
5).

The node embeddings are passed through 5 GAT layers. In each layer, the input node embeddings
are passed through a spectral convolution using the spectrum transformation matrix. The spectral
convolution has the same number of units as the input node embeddings. This is concatenated with
the original input node embeddings for the layer, and passed through a GAT with 8 attention heads
of 32 units each. The GAT attends every node to every other, thereby ensuring that information
is passed between all nodes even as edge connectivity changes over the course of diffusion. Edge
presence/absence is encoded as a binary set of edge attributes which are passed to the GAT. The
output of each GAT layer is passed through dropout of probability 0.1, a ReLU, and layer normalized
with a summed residual connection with the GAT output. This is then passed twice through a series of
dense units which maintain dimensionality, dropout, and layer normalization with a summed residual
connection.

The final output of the GAT layers is passed through two dense layers of 256 units each (followed by
a ReL.U after each one), then a final dense layer which maps each node’s embedding into a single
scalar. The output is a probability of each edge, which is the product of the two endpoint nodes’
scalar embeddings passed through a sigmoid.

For our benchmark of stochastic block models, we use the architecture in|Vignac et al.[(2022).

Our loss function is the binary cross entropy between the model output and x (which is binary).

C.3 TRAINING SCHEDULES

For all discrete Bernoulli kernels, we used a noise schedule of 8; = min(co( 10), 3 —107°),

where the 1079 is for numerical stability. We set 7" = 1000 time steps.

4 _
100

For our experiments, we trained for 100 epochs with a learning rate of 0.001. We used a batch size of
32.

For our benchmarking of generative performance, we trained for 200 epochs with a learning rate of
0.001. We used a batch size of 32, except we used a batch size of 16 for the stochastic block models.

C.4 GENERATIVE PERFORMANCE

Following the convention set by [You et al.|(2018)) and continued by other graph-generation works
including |[Liao et al.| (2019); [Martinkus et al.| (2022); Vignac et al.|(2022)); etc., we computed various
multivariate measurements on the generated graphs and the training graphs (i.e. node degrees,
clustering coefficients, and node orbit counts), and compared these multivariate measurements using
maximum mean discrepancy (MMD).

We computed node orbit counts using Orca|HocCevar & DemsSar| (2014).

Like previous works, we computed MMD using the Gaussian-total-variation kernel. For node degrees,
we directly compared the count histograms; we used o = 1 in the kernel. For clustering coefficients,
we compared the histograms drawn with 100 bins; we used ¢ = 0.1 in the kernel. For node orbit
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counts, we computed the average orbit count for each orbit type, and directly compared the histograms
with o = 30 in the kernel. These settings match the settings published in previous works, including
Martinkus et al.| (2022).

Following Martinkus et al.|(2022) and |Vignac et al.| (2022), we also computed the MMD between the
training set and an equal-sized validation set drawn from the same distribution. We report the ratio
of the MMDs as the MMD between generated and training graphs, divided by the MMD between
training and validation graphs.

In order to compare our MMD ratios with other works, we took the published MMD values for
GraphRNN, GRAN, MolGAN, and SPECTRE from Martinkus et al.[|(2022). We took the MMD
ratios for DiGress directly from|Vignac et al.| (2022).

Importantly, all cited previous works report MMD squared, but the values are erroneously
described as simply MMD in the text. Here, we adjust for this error by simply taking the square
root of the reported values before comparing them to ours.

We also note that significantly lower (by orders of magnitude) MMD values were achieved by training
on only a small (e.g. 200) set of cached graphs, and computing the MMD of generated graphs to this
training set. In contrast, the MMD was much larger if the training set consisted of graphs randomly
generated on the fly (i.e. there is no caching of graphs), and if the generated graphs were compared to
an independently sampled test set. Of course, in this work we trained and tested on the same small
set of cached graphs in order to be comparable to previous methods. Unfortunately, however, this is
less realistic and inherently suffers from train—test leakage. Instead, we propose that moving forward,
generative models may be trained on larger samples and that MMD values are computed against an
independently sampled test set.

C.5 CONTROLLABLE GENERATION

To generate cliques of size 6, we started with our model trained on the full cliques dataset, using the
bit-one kernel. After sampling from the prior (i.e. the complete graph K1), we selected 6 nodes
arbitrarily. At each point in the reverse-diffusion process, we ensured that edges do not get removed
between these 6 nodes. If a reverse-diffusion step removed any of those edges, they were added back
before the next reverse-diffusion step (including the very last step which generates the final graph).
In figures which show generated cliques, only one clique per graph is shown for clarity.

To generate disjoint communities, we started with our model trained on the full community-small
dataset, using the bit-zero kernel. After sampling from the prior (i.e. the empty graph with size
between 12 and 20), we arbitrarily partitioned the nodes into two communities of equal size (or as
equal as possible in the case of an odd number of total nodes). At each point in the reverse-diffusion
process, we ensured that edges do not get added between these the two communities. If a reverse-
diffusion step added any of those edges, they were removed before the next reverse-diffusion step
(including the very last step which generates the final graph). We consider a generated graph to have
two distinct communities if the largest connected component has fewer than 60% of the nodes.

To generate molecule-like graphs with a 6-membered backbone ring, we started with our model
trained on the full molecule-like dataset, using the bit-flip kernel. After sampling from the prior (i.e.
Erdos—Renyi graph of size 10 and p = 0.5, with an average of 6 backbone nodes), we arbitrarily
selected 6 backbone nodes and assigned each a ring position. Any graphs without 6 backbone nodes
were tossed out from the analysis. At each point in the reverse-diffusion process, we ensured that
these 6 nodes were connected in a ring (according to the ring positioning), and had no other edges
between them. If a reverse-diffusion step added or removed any improper edges, they were fixed
before the next reverse-diffusion step (including the very last step which generates the final graph). In
figures which show generated molecule-like graphs, excess singleton nodes were removed for clarity.
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