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Abstract
In contrast tomany online services based on client-server infrastruc-

ture, peer-to-peer systems are usually designed as open commons.

This is partly because, by design, peer-to-peer systems replicate

data on end-user devices and typically use open implementations,

precluding access control. Open commons however lower incen-

tives for end users to contribute the resources necessary to cover

development and maintenance costs, resulting in chronic under-

funding and few offerings of mature peer-to-peer alternatives.

In this paper, we show how to design peer-to-peer systems as

closed commons by making the replication of updates conditional

to proven contributions, tracked by a blockchain or eventually-

consistent ledger. We also present an economic model that incen-

tivizes users to support both developers of the system and content

producers. We finally identify factors that suggest our economic

model might be cost-competitive with cloud-hosting for compatible

applications.
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1 Introduction
Over the last decade, open source communities have pioneered

many initiatives to redecentralize major Internet services, often

using peer-to-peer architectures [4, 17, 24]. However, the economic

models used by many peer-to-peer projects are not sufficient to

cover their development and maintenance costs and most projects

are effectively subsidized through other means, e.g. by volunteers

offering their work freely and a small proportion of users donating.

The situation is partly caused by the technical workings of the

peer-to-peer protocols themselves: replicating data on every user

devices precludes the ability of controlling access to data after it has

been replicated. Peer-to-peer projects then simply eagerly replicate

data to whoever requests it, effectively implementing an open data

commons.

Client-server applications, in contrast, are often designed with a

clear and closed boundary: access to the server is conditional on
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having previously paid for the services. Users therefore have a clear

incentive to contribute. The much larger number of companies

using closed client-server models compared to peer-to-peer alter-

natives suggests the former currently better succeeds at covering

development and maintenance costs.

In this paper, we show that a closed commons for peer-to-peer
systems is not only possible but may also be cheaper to operate

than client-server applications hosted in clouds. We first present an

economic model to support developers of core protocols and con-

tent producers. Our model is voluntary, with producers of content

able to make some of their content freely available or contribution-

conditional, and contributors able to choose which producers they

want to support. We then make our economic model practical with

the design of a replication primitive that is conditional on contribu-

tions. Our primitive is based on the conjunction of two key insights:

1) updates of developer and user generated code and content can

be restricted to contributors of time and/or financial resources

tracked by producer-specific tokens, and 2) contributors have a

natural incentive to only replicate updates with other contributors.

We finally identify economic and technical factors that are likely

to make peer-to-peer hosted applications based on our economic

model competitive with cloud-hosted offerings.

The rest of this paper is structured as follows: we present our eco-

nomic model in Section 2, we describe our contribution-conditional

replication primitive in Section 3, we identify favorable economic

and technical factors in Section 4, we relate our work to similar

fields in Section 5, and we conclude with potential future research

directions in Section 6.

2 Economic Model
In this section, we present an economic model for peer-to-peer

systems that forms a voluntary closed commons of knowledge pro-
duction with the ability to remunerate producers with contributions

from consumers. Our economic model is based on voluntary partic-
ipation, which we define as follows:

Voluntary Participation: Producers can optionally choose to ask
for contributions in exchange for their updates. Contributors choose
who they support, but only get updates from producers for whom they
meet contribution requirements.

We now present the participating economic actors, exchange

flows, examples of possible contribution schemes, and finally show

that the actors have incentives to maintain the commons as a volun-

tary but closed system, contributing to the long-term sustainability

of an implementation.

2.1 Actors
Our model has two kinds of actors:

• Producers: Produce knowledge in the form of updates, e.g.

software updates or content, for contributors in exchange

for tokens.

https://doi.org/10.1145/3631310.3633491
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• Contributors: Obtain updates in exchange for tokens. Pro-

vide computing resources necessary for replication (stor-

age, network bandwidth, and computing power). Actively

maintain the commons boundary by reserving updates to

other contributors that meet the contribution requirements

of those updates.

Producers are similar to knowledge producers, such as software

developers, bloggers, writers, video producers, etc. Similar to writ-

ers onmajor blogging platforms, they can ask for tokens and reserve

some updates only for those who paid them. However, in contrast

to many current online platforms, the developers that maintain the

platform do not have a privileged position, e.g. that allows them to

charge a percentage of other transactions happening on the plat-

form. They can only request contributions for the updates they

themselves provide. Moreover, users of the platform voluntarily

choose which updates they will use and therefore retribute with

tokens.

Contributors are in some aspects similar to regular consumers of

content: they obtain updates that they can use an unlimited number

of times. For example, once they have obtained a software update,

they can continue using the updated software in perpetuity. Simi-

larly, they can read blog posts or watch videos an unlimited number

of times. However, we explicitly call them contributors because

they participate much more actively than is normally expected of

consumers in other systems: 1) they participate in the replication of

updates with their device; 2) they provide the necessary computing

resources for replication, including storage required to replicate

all updates, network bandwidth to disseminate the updates, and

computation for providing services; and 3) they actively enforce

the commons boundary by only sending updates to contributors

that have met the producer requirements (as they themselves did).

2.2 Exchange Flows
For both producers and contributors, exchanges are structured

around updates because peer-to-peer systems based on open pro-

tocols and formats cannot limit later accesses to data once it has

been replicated. Therefore, the exchange of knowledge for tokens

is instead enforced at the moment the knowledge is first replicated,

i.e. when a potential contributor requests the update. Trading of

updates for tokens serves two purposes with opposite directions of

flow.

In one direction, which we call push, contributors ask others

to propagate their latest updates through the system. We tie a

contributor’s pushing ability to having contributed at least the

minimum requested by developers for software updates. However,

we do not compensate the use of computing resources of other

contributors partly to avoid the complexity of creating a resource

market but mostly because the dominant cost in a peer-to-peer

system is developer’s time.

In the other direction, which we call pull, contributors request
the newest updates of producers, in the form of software or content,

from other contributors. The contribution requirements in this case

are established by the producers but enforced by all contributors.

We make a special case of software updates from developers of

the system: the same contribution gives both the ability to push a

contributor own’s updates and pull the latest developer updates.

2.3 Possible Contribution Schemes
Multiple schemes of contribution requirements are possible in our

model. So far, we have identified two major categories that we

describe as follows.

Time-based subscription: This scheme is analogous to exist-

ing newspaper or blogging platform funding models in which sub-

scribers pay for a time-limited access to the content, e.g. access to

all subscriber-limited articles for a one month period, but applied on

updates instead. Contributors first obtain tokens that are accepted

by the producer, then transfer the tokens to the producer. If using a

blockchain, the subscription time starts when the block containing

the transaction was added on the blockchain, i.e. validated and pos-

sibly mined by validator nodes. If using an eventually-consistent

ledger, such as GOC-Ledger [12], the subscription starts when the

reception of tokens was acknowledged by the producer. In both

cases, determining the time elapsed since the subscription began is

performed by another contributor providing updates and is outside

the control of the subscriber. A subscriber then will receive all up-

dates that have previously happened at the time of a request, if the

request is performed before the subscription expires.

Update-based subscription: This scheme uses the publishing

of updates as logical events to determine whether a subscriber’s

request will be fulfilled. Updates are sequentially published in an

append-only log, e.g. as 2P-BFT-Log [11], tied to the producer iden-

tifier. A producer may then, for example, ask for "one token per

update": i.e. if a subscriber has transferred 𝑥 tokens then they will

receive the first 𝑥 updates from a producer. This scheme also allows

discounting earlier updates based on the total number of updates

replicated from a producer, e.g. the first fifty updates may be avail-

able at half price once at least one hundred updates have been

published. In contrast to the time-based scheme, this enables a pro-

ducer to better distribute costs across subscribers over time and

removes the dependency on an external clock.

2.4 Incentives
The incentives of both producers and contributors are aligned with

sustaining the economic model.

Both software producers that maintain the system as well as

content producers have an incentive to maintain the model because

they are remunerated from it. They might be tempted to require

larger contributions but since their total revenues are equal to the

amounts requested times the total number of contributors, they

are incentivized to limit the requested amounts so the updates will

be accessible to a sufficiently large number of contributors [19].

Producers are however not in a position to force contributors to

use their updates, therefore they have to produce updates that are

desirable by contributors.

Contributors have an incentive to use a peer-to-peer system

because it can potentially provide more affordable replication ser-

vices than cloud-based alternatives (see Section 4), therefore they

can obtain updates from their favorite content providers for less

than on other alternatives. They also have an incentive to use an

update-based system because they won’t have restrictions on how

many times they can use the resulting software or content. Finally,

contributors are responsible for maintaining the ability of produc-

ers to obtain a sufficient livelihood by not providing updates to

non-contributors. We expect this mutual dependency between the
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developers of the system, the content providers, and contributors

will contribute to developing strong loyalty.

Nonetheless, our model does not prevent some participants to

freely distribute contribution-restricted updates. This is less of an

issue than it may first appear because the vast majority of con-

tributors do not have the technical skills nor the time to modify

implementations to circumvent contribution checks. For the sake

of argument, let’s still assume that among the small number of

contributors that have both the skills and time to do so, some do

decide to maintain alternative implementations that do not imple-

ment checks for contributions while remaining compatible with the

rest of the functionalities. They therefore would become non-loyal

producers of updates and users of their software updates would

become non-contributors (free riders). Non-loyal producers have

to maintain alternative implementations while being compensated

less than the loyal developers and content providers (potentially

not at all), because otherwise the non-contributors would be better

off by simply contributing to the loyal producers to get the updates

legitimately. This therefore puts non-loyal producers at a disadvan-

tage, for otherwise if they have the required skills to contribute to

development they might as well contribute legitimately and be com-

pensated through the official channels. Moreover, non-contributors

still have to trust non-loyal producers to not use the opportunity

to create malicious software that could e.g. steal tokens, use com-

puting resources for illegitimate purposes, or steal private data to

increase their gains. It seems more than likely that a sufficient ma-

jority of contributors, given reasonably priced updates, will prefer

getting their updates legitimately to obtain official support and

good security and privacy guarantees. Nonetheless, since our goal

is to enable producers to cover their costs of production, some

non-loyal behaviour can still be tolerated as long as it is sufficiently

limited to not threaten the livelihood of loyal producers.

That being said, the possibility of producers becoming non-loyal

should not be entirely prevented because it also threatens the loyal

developers and content providers with the possibility of starting

a competing system if the needs and desires of contributors are

not sufficiently taken into account, therefore helping to establish a

good balance between the interests of all actors.

3 Contribution-Conditional Replication
In this section, we present a replication primitive that ensures

the requested amount of tokens by producers has been previously

transferred prior to replicating updates. This replication primitive

is the core technical enabler of our economic model (Sec. 2).

3.1 System Model
Our replication primitive is intended for eventually-consistent

replicated databases that contain updates from contributors and

whose replicas periodically reconcile their state with other replicas.

Our work is based on Git [25], but other systems such as Secure-

Scuttlebutt [9, 24] or Hypercore [8, 17] could also be used.

Users might be non-loyal, in which case they might create alter-

native replicas that do not implement our replication primitive, and

therefore do not honour producer requirements, but still propagate

updates. However, we assume they have limited resources to do so

and will eventually be exposed and blocked by loyal contributors,

and therefore the majority of users will use replicas maintained by

loyal developers (as discussed in Section 2.4).

We assume every user, i.e. producer or contributor, has a public-

private key pair whose public part is used as an identity and the

private part is used to sign messages for authenticating their prove-

nance. We assume loyal users do not share private keys, therefore

signatures uniquely identify them. We do not assume anything

about non-loyal users.

3.2 Token Layer
Users use the same public identity to exchange tokens with other

users, e.g. through a blockchain platform such as Bitcoin or Ethereum

or using an eventually-consistent ledger, such as GOC-Ledger [12].

In the first case, double-spending is prevented by the platform,

while in the second case it will be detected after the fact, e.g. by

using 2P-BFT-Log [11]. In case of detection, 1) loyal users will pro-

vide negative exposure of offending users; 2) the correct replicas

operated by loyal users will eventually replicate the proof that a

fork happened [11] (that enabled double-spending [12]) and that

proof will be used to forever prevent the offending users from ever

participating in replication with loyal users again.

Each producer emits their own tokens, e.g. implementing local

crypto-tokens [13], that can be bought e.g. in exchange for other

producer tokens, through public exchanges, or simply through a

website with a payment mechanism.

3.3 Update Layer
Independently of the layer used for token exchanges, users pub-

lish their updates in an append-only log that sequentially orders

all updates and is eventually-consistent even in the presence of

malicious users, such as 2P-BFT-Log [11]. This is necessary to dis-

ambiguate which update is paid for by which tokens. If users break

the sequentiality of their updates, they are eventually automatically

blacklisted.

Producers and contributors may have as many public logs, i.e.

logs without contribution requirements, as they fancy but they

need to contribute tokens for each individual log to be replicated

by the system. This prevents Sybil attacks and decreases the appeal

of the system for trolls, by associating an economic cost to each

replicated log.

The first message of a log describes the contribution require-

ments for obtaining all subsequent updates. Changes in contribu-

tion requirements may be implemented by terminating the current

log with a message pointing to a new log listing different contribu-

tion requirements, with contributors having to explicitly decide to

subscribe to the new log and ensure they meet new requirements,

before receiving the new updates.

Updates are encoded as Git commits [6] and signed by the pro-

ducer under a self-certifying branch reference [11]. Apart from the

contribution checks introduced by our replication primitive in the

next section (Sec. 3.4), they are replicated using the standard Git

replication protocol [6].

3.4 Replication Primitive
Algorithm. 1 lists the three operations that form our replication

primitive: all three operations are analoguous to the push and pull

operations of Git but specialized for updates on append-only logs

and token contributions. Operations are event-driven and their im-

plementation describes how a replica reacts to requests from other

replicas. These operations are the only interface through which a

replica may obtain updates from another replica. For all operations,
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the user performing the request, i.e. the requester, must be authen-

ticated first, e.g. using SSH or the secret handshake protocol [23],

otherwise the operation aborts immediately.

Algorithm 1 Contribution-Conditional Replication

1: Require:
• devId: identifier receiving tokens for development

2: producers← { devId } ⊲ Identifiers actively replicated

3: contributions← empty ledger replica
4:

5: upon push-updates(requester, frontier)
6: Preconditions: requester is authenticated and frontier is

valid.

7: if requester ∈ producers then
8: store updates from requester up to frontier
9:

10: upon pull-updates(requester, producer, frontier)
11: Preconditions: requester is authenticated, producer is

known, and frontier is valid.
12: if contributions from requester meet requirements from

producer then
13: send updates from producer to requester newer than

frontier
14:

15: upon push-contributions(requester, contributions’)
16: Preconditions: requester is authenticated and contribu-

tions’ is valid.
17: if requester ∉ producers and contributions’ satisfy require-

ments of developers for requester then
18: merge contributions with contributions’
19: else if requester ∈ producers then
20: merge contributions with contributions’
21: for each contributor ∈ contributions do
22: if contributions from contributor satisfy requirements

from developers then
23: producers← producers ∪ { contributor }

Before execution, a replica needs devId, the identifier of the

account from which developers of the system are compensated.

This identifier is distributed along or inside the embedding peer-to-

peer application.

When a replica is initialized for the first time, two variables are

initialized. The set of producers only contains devId, i.e. the identifier
of the developers of the application. The ledger replica containing

contributions is empty. Both are persisted between executions.

The first operation, push-updates, enables a requester, as identi-
fied by their public key, to push their updates to another replica. In

addition to authenticating the requester, the frontier, which repre-

sents the latest state of requester’s log, must be valid, i.e. it must be

correct according to the expected format of updates and invariants

of the log. If neither of these conditions is met, the operation aborts

immediately. Otherwise, only if requester is in the current set of

producers, do their updates are stored and propagated further.

The second operation, pull-updates is similar to push-updates

but has updates flowing in the other direction. It enables a requester,
also identified by their public key, to pull updates from a producer,

also identified by their public key, from another replica. In addition

to authenticating the requester, the producer must be known, and

the frontier, i.e. the latest state of the producer log known by the

requester, must be valid otherwise the operation aborts immediately.

If previous contributions from requester intended for producer are
sufficient, then updates more recent than frontier are sent back to

requester. Otherwise, no updates are sent.

The third operation, push-contributions, is a separate oper-

ation from push-updates because otherwise the preconditions

of the latter would prevent updates representing tokens trans-

fers from propagating. In addition to an authenticated requester,
it receives contributions’, a set of contributions represented as a

state-based CRDT (e.g. a grow-only set of references to blocks of

a blockchain or the state of an eventually-consistent ledger, such

as GOC-Ledger [12]). Assuming contributions’ is valid, then it is

merged with contributions inside the local replica under two con-

ditions: either 1) requester is not already in the producers set and
contributions’ satisfies the requirement from developers to make

requester a producer as well; or 2) requester is already a producer in
which case it is allowed to propagate their contributions and those

of others.

4 Economics of Cloud Hosting compared to
Peer-to-Peer Hosting

Developing and maintaining cloud- and peer-hosted applications

entails a variety of costs including but not limited to hardware

procurement and replacement, Internet access, developer and main-

tainer time, and energy supply. We highlight hereafter cases in

which the economics work differently between both and suggest

peer-to-peer hosting can be economically competitive.

Cloud hosting costs include replacement of hardware every 5-6

years [2, 3, 15], as well as cooling costs, which represent as much

as 30% of the power consumption of a data center [30]. In contrast,

peer-to-peer applications leverage spare resources from end user

devices that have otherwise been paid for other usages. Because

end user devices are widely distributed geographically, they do

not require additional cooling infrastructure. In addition, from an

end-user perspective, cloud hosting always involves more and more
expensive hardware than peer-to-peer hosting because a client de-

vice is needed in both cases but servers with strong capabilities are

only needed for cloud-hosting.

In cloud hosting, network traffic costs are typically proportional

to the total amount of data downloaded from a data centre but

uploading is typically free [1]. In contrast, many end-users have

home data plans with fixed monthly prices and unlimited data

both in download and upload (but bandwidth throttling) (ex: [22]).

Therefore, data transfer costs, when performed directly between

end-users, are going to be equal or less than data transfers to and

from cloud-hosted applications. In effect, peer-to-peer transfers

leverage spare data transfer capacity that end users are already

paying to their Internet Service Provider.

In a cloud, the baseline power requirements to maintain constant

availability are significant and force cloud operators to require

instantly dispatchable energy sources and/or significant energy

storage. In both cases, these are more expensive than intermittent

renewable sources used directly at the production site [29]. This is

because cloud operators cannot control when users will actually

use their service. In contrast, mobile devices are already equipped
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with batteries and end-users have the choice to defer their energy-

intensive computing activities to when energy is the cheapest,

which typically will occur during periods of abundant sunlight or

strong winds. Moreover, since end-users have visibility of their

monthly energy consumption and an economic incentive to defer

usage to periods of lower prices, peer-to-peer systems should more

easily adapt to renewable energy availability, without the need of

artificial incentives, nudging, or extra monitoring infrastructure.

In addition to the intrinsic scalability of peer-to-peer systems,

because more users contribute more computing resources, these

trends suggest that the platform costs of running peer-to-peer sys-

tems will be lower than those of cloud hosting. Assuming all other

costs being similar, e.g. remunerating developers and maintainers

as well as content producers, this means peer-to-peer hosting may

cost less, leading potentially to more affordable services.

5 Related Work
To the best of our knowledge, we are the first to propose a contribution-

conditional replication primitive for eventually-consistent peer-to-

peer systems, with an associated economic model and economic

analysis. That being said, other work has addressed similar themes

in other contexts, which we briefly survey.

5.1 Economics of Distributed Computing
In 1998, Shapiro and Varian [19] conceptualized unique properties

of digital products and services distributed over the Internet, which

they had called the network economy. Their analysis, among other

topics, explained how to maximize the revenues and profit margins

of technology companies using new marketing strategies that were

not common or even possible in other economic sectors, with wide

and successful adoption. Varian later became Chief Economist at

Google and has continued to write on the topic [26, 27].

In 2009, researchers at the RadLab at UC Berkeley [7] described

the underlying economic and technical factors, including elastic-

ity and risk shifting, that clouds made possible and described the

economies of scale achievable by moving on-premise infrastructure

into the cloud. Their analysis successfully foreshadowed the growth

of the startup ecosystem based on cloud hosting. Over a decade

later, clouds appear to not remain cost competitive for large and

mature companies, with companies such as Dropbox bringing back

their computing infrastructure in-house [28].

The previous analyzes have not considered the possibility of

organizing computing resources as commons and did not compare

the costs of peer-to-peer hosting to those of clouds.

5.2 Eventually-Consistent Peer-to-Peer Systems
In parallel, there was intense research on structured peer-to-peer

network overlays, e.g. online distributed hash tables [14, 18, 21, 31].

However, as the cloud emerged as a dominant paradigm, general

academic interest on peer-to-peer systems waned. A newer genera-

tion of systems appeared in the 2010s [8, 17, 24], that could work

with intermittent connectivity because they were inspired by decen-

tralized version control systems [25] and therefore strongly even-
tually consistent [20]. This newer paradigm for application devel-

opment, spearheaded by open-source developer communities, was

fully articulated as local-first software [10]. However, eventually-
consistent peer-to-peer system designers did not consider the inte-

gration of economic layers and designed them as open commons

instead.

5.3 Blockchains and Peer-to-Peer Accounting
Bitcoin [16] publicly emerged in 2009 as the first peer-to-peer cur-

rency and payment system that required no trust in a central au-

thority for creating accounts, emitting currency, or performing

transactions. Ethereum [5] followed in 2014 and generalized the

system to turing-complete state-machine replication, i.e. execution

of general-purpose code, enabling a plethora of new tokens and

financial services. However, both platforms require global consensus
and maintain a single global ledger, requiring billions of dollars of
investments either in mining hardware or staked capital [13]. This

entails transaction fees that are too high for applications in local

economics [13], in which participants that know each others re-

peatedly transact together. An alternative approach is to link token

creation to producers, detect double-spending after the fact, and

exclude malicious participants [13].

6 Conclusion and Future Work
We have presented an economic model for peer-to-peer systems

based on closed commons. This model is voluntary: producers have

the possibility to not require contributions and contributors have

the choice of whom they want to support. We have designed a

contribution-conditional replication primitive as the core operation

that enables this economic model, by allowing updates to flow only

if contributions were made. We have finally identified economic

and technical factors that suggest peer-to-peer hosting based on our

economic model might have lower cost of operations than cloud

hosting, which highlights an economic niche in which peer-to-peer

systems based on closed commons might thrive.

Our economic model could be refined with additional special-

ized roles, e.g. data transmitter in community networks or hoster

on highly-available replicas, beyond those of software update and

content producers. Each additional role would extend the replica-

tion primitive checks to ensure sufficient contributions have been

made to obtain the associated services, prior to replicating updates.

Similar to those of other producers, the contribution requirements

of additional roles can also be encoded into logs and replicated like

any others.

We intend to demonstrate the practicality of both the base eco-

nomic model as well as possible extensions within software devel-

opment communities. The aim will be to test the technical ideas

and the economic assumptions we have made in this paper, then

publish the resulting positive and negative findings. Developers

and content producers interested in participating are invited to

contact us at the email address mentioned on the front page.
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