Rethinking Confidence Scores and Thresholds in Pseudolabeling-based SSL

Harit Vishwakarma“' Yi Chen“? Satya Sai Srinath Namburi GNVV? Sui Jiet Tay*
Ramya Korlakai Vinayak > Frederic Sala'

Abstract

Modern semi-supervised learning (SSL) methods
rely on pseudolabeling and consistency regular-
ization. Pseudolabeling is typically performed
by comparing the model’s confidence scores and
a predefined threshold. While several heuristics
have been proposed to improve threshold selec-
tion, the underlying issues of overconfidence and
miscalibration in confidence scores remain largely
unaddressed, leading to inaccurate pseudolabels,
degraded test accuracy, and prolonged training.
We take a first-principles approach to learn con-
fidence scores and thresholds with an explicit
knob for error. This flexible framework addresses
the fundamental question of optimal scores and
threshold selection in pseudolabeling. Moreover,
it gives practitioners a principled way to control
the quality and quantity of pseudolabels. Such
control is vital in SSL, where balancing pseudola-
bel quality and quantity directly affects model
performance and training efficiency. Our exper-
iments show that, by integrating this framework
with modern SSL methods, we achieve significant
improvements in accuracy and training efficiency.
In addition, we provide novel insights on the trade-
offs between the choices of the error parameter
and the end model’s performance.

1. Introduction

The lack of high-quality labeled data is a major bottleneck
in training high-accuracy models. The semi-supervised
learning (SSL) paradigm tackles this problem by leveraging
abundant unlabeled data alongside a limited set of labeled
examples (Chapelle et al., 2006; Zhu, 2005; van Engelen

“Equal contribution 'Department of Computer Sciences, Uni-
versity of Wisconsin-Madison, WI, USA “Department of Electrical
and Computer Engineering, University of Wisconsin-Madison, W1,
USA *GE HealthCare “NYU Courant Institute. Correspondence
to: Harit Vishwakarma <hvishwakarma@cs.wisc.edu>, Yi Chen
<yi.chen@wisc.edu>.

Proceedings of the 42" International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

& Hoos, 2019). While SSL dates back decades and in-
cludes a wide variety of approaches, modern SSL methods
frequently rely on a pair of ideas: self-training or pseu-
dolabeling — where model generated labels are assigned to
unlabeled data for further training (McLachlan, 1975; Amini
et al., 2023; Rosenberg et al., 2005; Lee, 2013; Rizve et al.,
2021) — and consistency regularization to enforce stability
in predictions across perturbed inputs (Laine & Aila, 2017;
Bachman et al., 2014; Sajjadi et al., 2016; Fan et al., 2021;
Kukacka et al., 2017). SSL techniques with these ideas have
strongly performed on several benchmark datasets.

While pseudolabeling is a powerful technique, its effective-
ness hinges on a fundamental question: which points should
be labeled using the model’s predictions? Since pseudola-
bels are derived from a model being trained, they can be
highly unreliable. A naive approach that assigns pseudola-
bels too liberally risks injecting noisy labels into training,
amplifying the model’s existing errors — a phenomenon
known as confirmation bias. Conversely, an overly con-
servative approach that selects only the correct predictions
severely limits the amount of useful training data. Both ex-
tremes can degrade SSL performance, leading to either poor
generalization or slow convergence. To fully harness the
potential of pseudolabeling, we need a principled approach
for pseudolabeling with explicit control on these trade-offs.

A widely used strategy pseudolabels points on which the
model’s confidence score exceeds a threshold. This ap-
proach provides a simple mechanism for selecting points
while controlling the quality and quantity of pseudola-
bels via thresholds. However, the prior works based on
this approach suffer from two key limitations that restrict
their effectiveness. First, thresholding techniques are often
heuristic-driven, lacking precise control for a target error
level (Sohn et al., 2020; Zhang et al., 2021; Wang et al.,
2023; Xu et al., 2021; Chen et al., 2023; Li et al., 2023).
Second, commonly used scores, such as the model’s softmax
outputs, tend to be unreliable. Recent studies in this vein
(Lohetal., 2022; Mishra et al., 2024; Rizve et al., 2021) have
highlighted issues of overconfidence and miscalibration in
these scores, leading to inefficiencies in pseudolabeling.

In addition to these problems with the choices of scores
and thresholds, an equally important question remains: how

Rethinking Confidence Scores and Thresholds in Pseudolabeling-based SSL

much error should be allowed in pseudolabeling? As dis-
cussed earlier, a very low tolerance may pseudolabel too
few points, and conversely, a high tolerance may allow for
large errors, hurting the efficiency of pseudolabeling in both
cases. To solve these issues, we seek a principled solution
to get confidence scores and thresholds for pseudolabeling
at a given target level of error tolerance.

We take a first principles approach to formalize the pseudola-
beling objective: maximize the number of pseudolabeled
points while adhering to the given error tolerance. We for-
mulate this objective as an optimization problem over a
flexible space of confidence functions and thresholds. By
solving this optimization problem, we obtain confidence
scores tailored to our objective of pseudolabeling. To ensure
the pseudolabeling error constraint is strictly followed, we
use a separate procedure to estimate thresholds on these
scores using part of the validation data. Pseudolabeling with
these scores and thresholds ensures we are pseudolabeling a
maximal set of points that can be pseudolabeled at the given
error tolerance level.

We integrate this approach into popular pseudolabeling-
based SSL methods, providing two benefits. First, it pro-
vides a principled way to derive confidence scores and
thresholds for any given error tolerance. Second, by en-
abling more precise pseudolabeling, it improves the utiliza-
tion of the unlabeled data and is expected to yield an end
model with higher test accuracy compared to the ad-hoc
choices of scores and thresholds.

Our main contributions are summarized as follows,

1. Our work settles the question of the right choices of
confidence scores and thresholds in pseudolabeling-
based SSL methods by introducing a framework for
learning confidence scores and thresholds. Departing
from heuristic-driven or ad-hoc and unreliable choices
of scores and thresholds, this framework provides prin-
cipled choices of scores and thresholds for pseudolabel-
ing with any target error tolerance.

2. We show how this framework for learning confidence
scores and thresholds can work in concert with popu-
lar SSL methods such as Fixmatch (Sohn et al., 2020),
Freematch (Wang et al., 2023), etc., and conduct an
extensive empirical evaluation demonstrating that by
pseudolabeling using confidence scores and thresholds
learned from our method can yield significant improve-
ments in the test accuracy.

3. Leveraging our framework’s ability to pseudolabel at
any target error level, we study the impact of varying
pseudolabeling error levels—from fixed to dynamic
tolerance throughout training. Our results confirm the
intuition that lower pseudolabeling errors lead to bet-
ter end models compared to higher errors. Moreover,

among dynamic schedules, it is better to use a decreas-
ing schedule of error tolerances.

2. Related Work

Semi-supervised learning (SSL). There is a rich literature
on SSL (Zhu, 2005; Chapelle et al., 2006; Singh et al., 2008;
Oliver et al., 2018). This literature comprises of a wide vari-
ety of approaches. Among these, significant focus has been
placed on self-training (also called pseudolabeling) (Scud-
der, 1965; Blum & Mitchell, 1998; Rosenberg et al., 2005;
Lee, 2013; Oymak & Gulcu, 2020; Amini et al., 2023), gen-
erative models (Nigam et al., 2000; Adams & Ghahramani,
2009; Kingma et al., 2014), graph-based strategies (Blum
& Chawla, 2001; Niyogi, 2013; Subramanya & Talukdar,
2022), and transductive approaches (Vapnik et al., 1998;
Joachims, 1999). Due to their simplicity, pseudolabeling-
based approaches have gained prominence and are widely
used in application areas such as NLP (Karamanolakis et al.,
2021), speech recognition (Kahn et al., 2020), and protein
prediction (El-Manzalawy et al., 2016). Our paper focuses
on recent variants of this, discussed next.

Pseudolabeling based SSL. These methods generate artifi-
cial labels for unlabeled data and use them for training the
model. A crucial challenge here is the issue of confirmation
bias (Arazo et al., 2020), i.e., when a model starts to rein-
force its own mistakes. To overcome this and to maintain a
high quality of pseudolabels, confidence-based thresholding
is applied. Here, only the unlabeled data with confidence
higher than a particular threshold is used (Sohn et al., 2020).
Due to the limitations of fixed thresholds, adaptive thresh-
olds based on the classifier’s learning status have been intro-
duced to improve performance (Xu et al., 2021; Zhang et al.,
2021; Wang et al., 2023). Nearly all of these methods also
use some form of consistency regularization (Laine & Aila,
2017; Bachman et al., 2014; Sajjadi et al., 2016; Fan et al.,
2021; Kukacka et al., 2017) where the core idea is that the
model should produce similar prediction when presented
with different versions (perturbations) of inputs and all the
present SSL methods (Xie et al., 2020; Wang et al., 2023;
Sohn et al., 2020; Zhang et al., 2021; Chen et al., 2023;
Zheng et al., 2022; Xu et al., 2021; Roelofs et al., 2022).

Confidence functions and calibration. Miscalibration
(overconfidence) in neural networks plagues various ap-
plications (Nguyen et al., 2015; Hendrycks & Gimpel, 2017,
Guo et al., 2017), including SSL. To mitigate this in gen-
eral, a range of solutions have been proposed, including
training-time methods (Moon et al., 2020; Kumar et al.,
2018; Hui et al., 2023; Corbiere et al., 2019; Foret et al.,
2021) and post-hoc methods (Guo et al., 2017; Kumar et al.,
2019; Gupta & Ramdas, 2022; Kull et al., 2019; Zadrozny
& Elkan, 2002). In pseudolabeling based SSL, recent works
(Rizve et al., 2021; Loh et al., 2023; Mishra et al., 2024)

Rethinking Confidence Scores and Thresholds in Pseudolabeling-based SSL

noted the issue of miscalibration. To promote calibration,
Loh et al. (2023) use Bayesian neural nets by replacing the
model’s final layer with a Bayesian layer. Rizve et al. (2021)
utilize negative labels and an uncertainty-aware pseudola-
bel selection technique. Mishra et al. (2024) incorporate a
regularizer to encourage calibration.

While calibration is a reasonable goal in general, it may not
be sufficient to address the overconfidence problem in SSL
and other applications. In pseudolabeling, we seek the use
of scores that can easily segregate the model’s correct and
incorrect predictions, which is closely related to the ordinal
ranking criterion (Hendrycks & Gimpel, 2017; Moon et al.,
2020; Foret et al., 2021; Corbiere et al., 2019). Rather
than experimenting with several such choices, ideally, we
would have a flexible framework that can learn confidence
functions explicitly optimizing pseudolabeling objectives.

3. Background and Problem Setup

We begin with notation, then provide useful background and
a statement of our goal.

Notation. Consider a feature space X and label space) =
{1,...,k} in a k-class classification task. As usual in semi-
superv1sed learning, we have access to a set X,, = {x, }un*,
of unlabeled data drawn from the distribution P, over X’
We also have access to D; = {(x;,4)}~Y, a set of la-
beled data points drawn from the joint distribution P,
with N; < n,. Let h : X —) denote a model and
g : X — T* C R” be an associated confidence function
giving a score g(x) indicating the confidence of h on its
prediction for any data point x. For any x the hard label
prediction is i := h(x). When the prediction 7 is used as
a pseudolabel, we denote it as . In general, for a vector
v € R4, v[i] denotes its i—th component. The vector t
denotes thresholds over the scores k-classes, and t[y] is its
y—th entry, i.e., the threshold for class y.

3.1. Pseudolabeling-based Semi-Supervised Learning

Given, as above, a large collection of unlabeled data X, and
a small set of labeled points D;, inductive semi-supervised
learning (SSL) seeks to learn a classifier iALSSl from the model
class H. The promise of SSL is that by effectively using X,
in the learning process, it can learn a better classifier than
its supervised counterpart, which learns only from D;.

In many recent pseudolabeling-based SSL techniques, in
each iteration of training, a batch of labeled and unla-
beled data is obtained, then the sum of the losses L=
Lo+ M C + AL, is minimized ‘with respect to the model
h. Here£ is the supervised loss, £ unsupervised loss, and
E is (the sum of) regularization term(s). The positive con-
stants A, A, are hyperparameters controlling the relative
importance of the corresponding terms.

Supervised loss. Given a batch of labeled data, Df’ , the

supervised loss is computed as follows, L(h | D?) =
IDbI > x, y)eD? H(y, h,x).Here H(y, h, x) is the standard

cross-entropy loss between the 1-hot representation of y and
the softmax output of h on input x.

Unsupervised loss and consistency regularization. For
the unlabeled batch X?, pseudolabels i = h(x) are com-
puted for each x € X!. Then, a pseudolabeling mask,
S(x,g,t | h) = 1(g(x)[y] > t[y]) is computed. It is 1
for points having confidence score g(x)[7], bigger than pre-
determined threshold t[g], corresponding to the predicted
class y. Recent methods, couple this loss and consistency
regularization together by doing pseudolabeling on weakly
augmented data using weak transform w : X — X and then
defining the cross-entropy loss on the strongly augmented
data using strong transformation €2 : X — X". The loss is,
Buim = 30 S(0(), 0,8h) - H(G, b ().

b
D3l (z,9)eD,

Regularization. A regularization term (or a sum of mul-
tiple regularizers) is often included along with the above
two losses to encourage desired behavior(s). For instance,
Freematch (Wang et al., 2023) adds a self-adaptive class
fairness regularizer to encourage diverse predictions during
the initial training phase. Similarly, a regularizer is intro-
duced in (Mishra et al., 2024) to encourage calibration in
the model’s confidence scores. Including such regularizers
has been fruitful in pseudolabeling-based SSL.

3.2. Quality and Quantity of Pseudolabels

Given a classifier h, the quality and quantity of the pseu-
dolabels w.r.t. to score function g and thresholds t, are:

Pseudolabeling coverage (quantity). Given a set of points
X, the pseudolabeling coverage is the fraction of points
that are pseudolabeled using &, g and t. This measurement
captures the quantity of pseudolabels and is defined as

~ 1
Plg.t |0 X) = 7 > Sxg.tlh) (D)
(x)ex

Plg,t | h) == Ex[S(x,9,t | h)]. 2

Pseudolabeling error (quality). This is the fraction of
pseudolabeled points that got incorrect labels. This metric
captures the quality of pseudolabels:

o Y xwipep S(x gt | h) - L(h(x) # y)

E(g,t | h,D) = s ,
e[D) > ey en S gt [1)

(3

g(g,t|h): EX[S(ngat \h)]l(h(x);éy)])

P(gt[h)

Rethinking Confidence Scores and Thresholds in Pseudolabeling-based SSL

3.3. Our Goals

Pseudolabeling-based SSL aims to learn a classifier ﬁssl that
generalizes well on the unseen data, i.e., has high test ac-
curacy. This is typically achieved by pseudolabeling points
using confidence scores and thresholds and incorporating
them into training. However, existing choices of scores and
thresholding strategies are often ad hoc and unreliable, lim-
iting their effectiveness. Departing from these unreliable
approaches, our goal is to:

(i) Design principled solutions for confidence scores and
thresholding to maximize the number of pseudolabeled
points while ensuring the pseudolabeling error is at most e.

(i1) Incorporate these in the existing pseudolabeling-based
SSL methods and assess whether this gives a better end
model hgg).

(iii) Study the sensitivity of the SSL pipeline to pseudola-
beling errors by leveraging the ability of our approach to
explicitly ensure the pseudolabeling error remains below e.

4. Methodology

In this section, we discuss our principled framework to learn
scores and thresholds with explicit control of the pseudola-
beling errors and use them in pseudolabeling-based SSL.
This framework is an adaptation of a recent solution de-
signed to improve confidence functions for auto-labeling
(Vishwakarma et al., 2024). The detailed steps are outlined
in Algorithm 3 in the Appendix.

4.1. Pseudolabeling Optimization Framework

Given the current model ﬁl in the 7th iteration, can we
obtain confidence scores and thresholds using which we can
identify a maximal set of points that can be pseudolabeled
using ﬁi with at most € error? We begin with a theoretical
formulation to learn such scores and thresholds, and then
introduce its practical version.

Theoretical framework. Instead of improving calibration
or heuristics for thresholding, we propose to express the ob-
jective of pseudolabeling as an optimization problem over
the space of confidence functions and thresholds. The ob-
jective is to maximize the quantity, i.e., the pseudolabeling
coverage (eq. (2)) while keeping the pseudolabeling error
(eq. (4)) below a tolerance level € € (0, 1). More specifi-
cally, given the classifier R in any iteration 7 of SSL,
g7, t; € argmax P(g,t | R) s.t. £(g,t | iAL,) <e (5
geG teTk
are the optimal confidence functions and thresholds for pseu-
dolabeling using Ei’s predictions such that the pseudolabel-

ing error is bounded by e. This frees us from arbitrary
choices of confidence scores, calibration techniques, and

thresholding heuristics. Instead, solving the optimization
problem over a flexible enough space will subsume specific
strategies. Next, we discuss how to make this framework
tractable to obtain scores and thresholds in practice.

Practical version. The optimization problem discussed ear-
lier involves population-level quantities which are usually
not accessible in practice. Thus we have to use their finite
sample estimates and smooth variations to make the opti-
mization problem tractable. Specifically, the coverage and
error are estimated using a small amount of held-out labeled
data (called calibration data D.,;) curated from the valida-
tion data. Then differentiable surrogates for the 0-1 vari-
ables are introduced. Let o(c,z) = 1/(1 + exp(—az))
denote the sigmoid function on R with scale parameter
a € R. The surrogates are as follows,

~ 1
Plgt | b Dea) = o D o007 7).
x,Y,9) € Dcal
©)

| ca1|(

1(y#7) o (g0 71431
o (o900 () -t(7])

Using these surrogates, the following practical optimization
problem is obtained. It is also converted into unconstrained
formulation by introducing the penalty term A € R con-
trolling the relative importance of the error and coverage.

g(g,t | hy Deay) := 2,0, 7)€ Dy
z(&y,ﬂ)ep

(7

cal

Git, € argg mij{t ~P(g,t |?LiaDcal) +2E(g,t | Eincal)
geg,te
(P1)

We use 2-layer neural nets as a choice of G and Tk =
[0, 1]*. The optimization problem (P1) is non-convex but
differentiable and we solve it using Stochastic Gradient
Descent (SGD). See Appendix C for more details on our
choice of G and training details and hyperparameters.

4.2. Threshold Estimation

While we can obtain both the confidence scores and thresh-
olds by solving (P1), we propose to estimate thresholds
separately on a held-out part of the validation data to avoid
potential generalization issues due to learning them simulta-
neously from the same data D., and ensure that the pseu-
dolabeling error constraint is strictly adhered to.

When dealing with datasets containing many classes there
may not be enough samples per class to estimate reliable
thresholds. Thus, to accommodate these possibilities we
consider two variations of the threshold estimation proce-
dure, (i) estimate a common (joint) threshold for all classes
and (ii) estimate separate (classwise) thresholds for each
class. The procedures are outlined in Algorithm 2 and Algo-
rithm 1 in the Appendix. We discuss them briefly here.

The procedure takes in a confidence function g; and part of
the held-out validation data referred to as Dy;,. The idea is

Rethinking Confidence Scores and Thresholds in Pseudolabeling-based SSL

' o _@ | (A) (B)
| () ° i
| # [() Train Model
| o ® Learn new
| Data | Groundiruth Minimize loss on groundtruth and confidence scores
I roundtru — seudolabeled data e
————— Labeled data P and thresholds
.\QQ
° /‘o - o 2
° 4 [I N
I |
. | |
Trained Model | Pseudolabeled | (D) v (C)
data
@@ Labeled o I Pseudolabel accumulation | Pseudolabel points with
Unlabeled Unlabeled data (optional) confidence >= threshold

Pseudolabeled

Figure 1. Workflow of pseudolabeling-based SSL with PabLO (A): Train model with standard supervised loss, consistency regularization,
and other regularizers (B): Learn new confidence scores and thresholds (C): Pseudolabel points with scores greater than the estimated
thresholds (D): An optional pseudolabeling accumulation to use previous pseudolabels for points that are not pseudolabeled in current
round. Note, that the pseudolabels can be noisy (incorrect). The training and pseudolabeling loop continues until a pre-specified number
of iterations. In the end, it outputs a model hsq that is expected to have higher test accuracy than the model trained only on the given
groundtruth training data. Note that in the end, there might be points left unlabeled, and the pseudolabels might be noisy.

to estimate errors at several thresholds on this data and then
pick the smallest threshold. This can be done separately
for each class to obtain classwise thresholds or a common
threshold for all classes. We discuss classwise thresholding
here. First the data Dyy, is partitioned into &k subsets D[(hy)
corresponding to each class y €). Here, we slightly abuse
notation: instead of t € T%, we use ¢ € T in the estimate
of pseudolabeling error at threshold ¢ for class y. To obtain
threshold t[y] for class v, the procedure finds the smallest
t € T such that £(g;, ¢ | h,Dt(}f’)) + C15(€) < e. Here C;
is a constant (we use C; = 0.25) and 7 (2) = /2 - (1 — 2)
and £ is used for brevity in place of (i, ¢ | h, Dt(f)). The
same process is used for joint threshold estimation, where
a single threshold ¢ is estimated using the entire Dy, and
the same ¢ is used for all classes. Using the thresholds
found using these procedures ensures pseudolabeling error
remains below (or close to) the tolerance level e.

Remarks. Departing from fixed thresholds as in (Sohn et al.,
2020), prior works have proposed adaptive and class-wise
heuristic thresholding schemes based on the model’s learn-
ing status, such as in (Djurisic et al., 2023; Zhang et al.,
2021; Wang et al., 2023) and others. In contrast, our ap-
proach is a principled way to estimate adaptive and class-
wise pseudolabeling thresholds while providing strict con-
trol over the quality of pseudolabels. Similar procedures
have been used in the context of creating reliable datasets
and are backed by theoretical guarantees for the quality of
pseudolabels produced (Vishwakarma et al., 2023).

4.3. Pseudolabeling and Accumulation

In the usual pseudolabeling-based SSL setups, the pseudola-
bels inferred by the model for a mini-batch are discarded

after each iteration. Moreover, it is not guaranteed that a
previously pseudolabeled point will get pseudolabled in the
current iteration as well. Given the quality of pseudolabels
is high, it is appealing to reuse the past pseudolabel for a
point that did not get pseudolabeled in the current iteration.
We propose to do so for techniques where the quality of
pseudolabels is assured. We refer to this as “pseudolabel
accumulation”.

Mathematically, let 'y“](l_l) =Y Y[j] and ﬂ;l) = Y]
be the previous and current (fresh) pseudolabels for jth
unlabeled point. Let the corresponding masks (indicating
whether the score is above the threshold) for these psuedola-
bels be SV [j] and S[j] = L(@i(x)[5\"] > T.[51")).
Then with accumulation,

YOU] SOV + (1 - SOENYE V],
SOl 8P v IV

Here V is the boolean or operation and the steps are exe-
cuted in the order. In words, if the point is pseudolabeled in
the current iteration (i.e., its current mask is 1), then it will
use the current pseudolabel otherwise, if the point was pseu-
dolabeled in earlier iteration(s) it will use the pseudolabel
from that iteration and mark the point as pseudolabeled. In
case the point is not pseudolabeled in this iteration or any
other iteration in the past, it will remain unlabeled. While
it is appealing to use this trick, its use is only warranted
in settings ensuring high-quality pseudolabels. We try to
understand the consequences of the inclusion and exclusion
of this trick in pseudolabeling-based SSL via experiments
discussed in the next section.

We put together the steps for learning scores, thresholds, and
performing (optional) accumulation in a common template

Rethinking Confidence Scores and Thresholds in Pseudolabeling-based SSL

Dataset Backbone Model i k Ny, Nyal Niest N, Near Nin Augmentation
CIFAR-10 WRN-28-2 10 50K 6K 4K 40 or 250 1K 1K Weak, Strong
CIFAR-100 WRN-28-2 100 50K 6K 4K 400 0r 2500 3K 3K Weak, Strong

SVHN WRN-28-2 10 604,388 15,620 10,412 40 or 250 3K 3K Weak, Strong

Table 1. Details of the dataset we use in our experiments. k is the number of classes. [V; is the number of labeled data points used for
training the backbone model h. n., is the number of unlabelled data points used for consistency regularization and pseudolabeling for all
the methods. Ny is the number of points used for model selection in all methods. Niest is the number of test data points. Nca is the
number of points used for learning the g function. Ny, is the number of data points used for threshold estimation.

of pseudolabeling-based SSL algorithms. We refer to this
adapted method (Algorithm 3 in Appendix B) as PabLO.
The high-level steps are also illustrated in Figure 1. Next,
we discuss the empirical evaluation of PabLO and baselines.

5. Experiments
We conduct empirical evaluation over several settings to,

C1. Verify that the adaptations of popular pseudolabeling-
based SSL methods with PabLO output models with better
test accuracy.

C2. Study the effects of choice of error tolerance € on test
accuracy of the final model.

C3. Understand the role of pseudolabel accumulation in our
method and baselines.

5.1. Experimental Setup

First, we briefly describe the experimental setup, with details
deferred to Appendix C. The code is available on GitHub .

Methods. We use two simple base methods that capture
the core ideas of pseudolabeling (PL) and consistency reg-
ularization (CR). The first is Fixmatch (Sohn et al., 2020),
which uses fixed thresholds on (maximum softmax proba-
bility) MSP scores for PL and CR. Freematch (Wang et al.,
2023) improves upon it by using adaptive, class-wise thresh-
olds and class fairness regularization (CFR) along with CR,
and is a promising method among others using dynamic
thresholds for PL. We include their combinations with re-
cently proposed Bayesian Model Averaging (BAM) (Loh
et al., 2023) and Margin Regularization (MR) > (Mishra
et al., 2024) to improve calibration in SSL. We replace the
pseudolabeling component by our method PabLO to ob-
tain Fixmatch + Ours (a combination of PabL0O and CR)
and Freematch + Ours (a combination of PabLO, CR, and
CFR). We provide implementations of these in the code
submitted along with the paper.

Datasets. We experiment with three datasets: CIFAR-10
(Krizhevsky et al., 2009) is an image dataset with 10 classes.

"https://github.com/harit7/PabLO-SSL
We assign this name for convenience.

CIFAR-100 (Krizhevsky et al., 2009) is an extended version
of CIFAR-10 with 100 classes. SVHN (Netzer et al., 2011) is
a 10-class image dataset of digits from Google Street View.
More details are summarized in Table 1. We use a portion
of the validation data (D)) for our method, split into D,
used to learn the function g, and Dy}, used to estimate the
threshold. Unless otherwise mentioned, we use IV} as 250
for CIFAR-10 and SVHN and 2500 for CIFAR-100 in our
experiments.

Adjusted iterations for baselines. Empirically, our method
requires more time to run compared to base SSL techniques.
Therefore, we adopt the following strategy to ensure a fair
comparison between the baselines and our method: First, we
train our method for 25K iterations and obtain the average
per iteration time, denoted as «,. Then, we train each
baseline method b for 5K iterations and obtain the average
per iteration time, denoted as ay. Using these two values,
we obtain the adjusted number of iterations, g—‘b’ x 25000,
for the baseline method b. Coincidentally, baselines under
the same dataset have similar runtimes. We, therefore, set
the adjusted number of iterations on a dataset level. For
CIFAR-10, the adjusted number of iterations for baselines is
37,000. For CIFAR-100, the adjusted number of iterations
for baselines is 70,000. For SVHN, it is 145,000.

Models and training. The backbone encoder is a Wide
ResNet-28-2 for all the datasets. We use the default hy-
perparameters and dataset-specific settings (learning rates,
batch size, optimizers, and schedulers) following previous
baseline recommendations (Wang et al., 2022). For confi-
dence functions class G, we use a class of 2-layer neural
nets and provide the last two layers’ representations from
h as input. We train it using SGD. The hyperparameters
are deferred to Appendix C. Unless otherwise specified, our
method uses pseudolabeling error tolerance € = 5%.

5.2. Results and Discussion

To verify our main claims, we compare the baselines, their
combinations with our method, and methods that induce
calibrated scores in SSL. We run all methods with three
random seeds and report (in Table 2) the mean and standard
deviation of accuracy across three runs.

https://github.com/harit7/PabLO-SSL

Rethinking Confidence Scores and Thresholds in Pseudolabeling-based SSL

CIFAR-10 CIFAR-100 SVHN
>, 1001 1001 100 -
(®)
©
5 75 A 75 1 75
9 50 50- 50
—
g_ 251 251 251
ool , , , 01l , , 1 odi! , , ,
5K 15K 25K 35K 10K 30K 50K 70K 0 50K 100K 150K
—— Fixmatch Fixmatch + Ours —— Fixmatch + BAM —— Fixmatch + MR
3100- 1001 1001
{U . . o
5 75 75 75
g 50, 501 501
—
g_ 251 251 251
ool , , , 01l , , 1 odi , , ,
5K 15K 25K 35K 10K 30K 50K 70K 0 50K 100K 150K
Iterations Iterations Iterations
—— Freematch Freematch + Ours —— Freematch + BAM —— Freematch + MR

Figure 2. Top-1 accuracy of our method and baselines on CIFAR-10, CIFAR-100, and SVHN. We plot the values for every 200 steps.

C1. Test accuracy improvements. Since our method maxi-
mizes the pseudolabeling coverage and accuracy, it provides
more accurate pseudolabels for model training. Therefore,
we expect it to yield a model with better test accuracy than
the baselines. We report the test accuracies at the end of
25K iterations in Table 2 for our methods. For the baselines,
we report the test accuracies at the end of the corresponding
adjusted number of iterations (well above 25K). Figure 2
illustrates how the top-1 accuracy evolves during the SSL.
Similarly, Figure 4 and 5 show how batch pseudolabeling
accuracy and batch pseudolabeling coverage change.

First, as expected, integrating our method into the base
methods improves test accuracy across all settings. For
CIFAR-10, using it with Fixmatch provides almost 2% im-
provement over Fixmatch alone, and using it with Freematch
yields 1% improvement over Freematch. Much more signif-
icant improvements are observed in the much harder setting
of CIFAR-100: a nearly 10% improvement in top-1 ac-
curacy over Fixmatch and around 5% improvement over
Freematch. SVHN is an easier setting; here, the improve-
ments are marginal. With Fixmatch, our performance is
similar to that of the baselines. But, using PabLO with
Freematch improves the performance by 3%.

C2. Error tolerance affects performance. In our method,
the error tolerance parameter € is a knob to control the
amount of noise in pseudolabels. A common wisdom in
pseudolabeling is that higher noise will lead to worse per-
formance, which is our expectation. To see this, we run our
method with e € {0.01,0.05,0.1,0.2,0.4} in CIFAR-10

—e— Fixmatch + Ours Freematch + Ours

>100{ 100
5 —,

£ 75 T | 3~

|9} ¢

g s0 1| 501 \'\
-

5 251 251

Q

01— . . .
0.01 0.10 0.20 0.40
Error tolerance (g)

(b) CIFAR-100

01~ . . .
0.01 0.10 0.20 0.40

Error tolerance (¢g)
(a) CIFAR-10

Figure 3. Top-1 accuracy of our method with different error toler-
ance € on (a) CIFAR-10 and (b) CIFAR-100 dataset.

and CIFAR-100 settings, each with three random seeds, and
report the results in Figure 3. The results are as expected
— higher values of ¢ lead to degraded test accuracy due to
high noise in the pseudolabels and with decreasing e leads
to improved accuracy. These results also suggest that priori-
tizing the quality (accuracy) of pseudolabels over quantity
is a better choice in pseudolabeling. The results are also
summarized in Table 8 and Table 9 in the Appendix.

To investigate the error tolerance further, we designed error
tolerance scheduling using different error tolerances during
various stages of SSL training. Table 3 summarizes the error
tolerance we set at different iterations of SSL training and
the corresponding top-1 accuracy for the CIFAR-10 and
CIFAR-100 datasets. As we see, starting SSL with a small
error tolerance and ending with a large tolerance severely
impacts the performance on both CIFAR-10 and CIFAR-100
datasets. While our findings suggest a lower error tolerance
is preferable, this may not hold in general. Nevertheless, our

Rethinking Confidence Scores and Thresholds in Pseudolabeling-based SSL

Dataset CIFAR-10 CIFAR-100 SVHN

Labels 40 250 400 2500 40 250
Fixmatch 57.16 + 12.12 90.8 +£0.78 30.38 + 0.68 59.09 + 1.10 62.27 +5.57 97.57 + 0.08
Fixmatch + MR 54.76 +£5.92 90.41 +0.83 1631 + 1.44 54.16 +0.18 74.41 £+ 16.61 97.55 + 0.08
Fixmatch + BaM 57.72 + 1.44 90.67 £+ 0.90 3145+ 1.29 56.60 + 2.45 76.18 £+ 18.61 97.51 £ 0.13
Fixmatch + Ours 89.72 + 5.31 92.69 + 0.74 67.44 + 1.14 69.10 + 0.45 96.58 + 0.14 96.54 £+ 0.13
Freematch 79.61 +7.24 92.26 +0.18 43.88 & 3.60 63.13 £+ 0.46 86.87 £ 4.15 92.90 £+ 2.76
Freematch + MR 84.19 + 6.19 92.17 +£ 0.36 4420 +2.93 62.03 £ 0.82 84.89 +7.82 93.26 +2.36
Freematch + BaM 88.33 +£0.33 92.32 £0.25 44.49 £+ 3.05 62.13 £2.93 81.43 + 14.80 91.08 +£3.72
Freematch + Ours 90.19 + 5.37 93.10 + 0.28 65.37 + 4.05 68.76 + 1.38 96.55 + 0.15 96.65 + 0.26
Softmatch 83.60 + 7.09 91.74 £ 0.78 40.73 £+ 1.46 61.43 +0.34 59.52 + 12.47 96.93 £+ 0.23
Softmatch + Ours 89.96 + 4.74 93.14 + 0.33 67.84 + 0.33 68.74 £+ 0.72 96.55 + 0.10 96.51 + 0.37
Adamatch 75.00 £+ 1.10 91.35 4+ 0.66 31.61 £ 1.92 58.08 + 0.44 80.83 + 7.09 96.99 + 0.08
Adamatch + Ours 86.62 + 10.54 93.06 + 0.19 67.00 + 1.02 68.12 + 0.48 96.55 + 0.09 96.44 + 0.20

Table 2. Top-1 Accuracy for CIFAR-10, CIFAR-100 and SVHN averaged across 3 random seeds. We report the average accuracy =+ std.
deviation. Here, N; = {40, 250} for CIFAR-10, SVHN and N; = {400, 2500} for CIFAR-100. The best accuracy is bolded.

CIFAR-10 CIFAR-100
Top-1 Accuracy Top-1 Accuracy
Schedule 1
Fixmatch + Ours 91.11 £+ 1.31 65.78 + 1.36
Schedule 1
Freematch + Ours 91.09 + 1.01 66.13 + 0.48
Schedule 2
Fixmatch + Ours 35.38 +29.27 19.56 + 3.07
Schedule 2 3048 £ 1052 24.80 + 3.49

Freematch + Ours

Table 3. Top-1 accuracy for the two error tolerance (¢) schedul-
ing. The table reports the € we use between each iteration inter-
val and the top-1 accuracy yielded by the corresponding sched-
ule. For schedule 1, we set ¢ = 0.4,0.2,0.1,0.05,0.01 when
the number of iterations is in the following interval, respec-
tively: [0, 5K), [5K, 10K), [10K, 15K), [15K, 20K), [20K, 25K).
For schedule 2, we set ¢ = 0.01,0.05,0.1, 0.2, 0.4, for the same
intervals, respectively.

framework provides the flexibility to control this explicitly
and thus can be tuned by practitioners for the setting at hand.

C3. Is pseudolabel accumulation helpful? Accumulation
allows the methods to use old pseudolabels for points that
couldn’t get pseudolabeled in the current iteration. Thus, we
expect accumulation to help improve the utilization of un-
labeled data and lead to better test accuracy in cases where
the pseudolabel quality is assured to be high in all itera-
tions. We run two variations of our method and baselines
— with and without accumulation and report the results in
Table 4. We observe that our method has similar test accu-
racy irrespective of accumulation. However, accumulation
achieves better coverage in early iterations, as observed

Method Acc—True Acc—False
Fixmatch 67.62 +2.10 90.08 4 0.78
Fixmatch + MR 64.78 + 4.64 90.41 +0.83
Fixmatch + BaM 68.10 +2.02 90.67 + 0.90
Freematch 85.40 £ 1.36 92.26 +£0.18
Freematch + MR 83.59 £2.59 92.17 £ 0.36
Freematch + BaM 85.48 £3.02 92.32 +£0.25
Fixmatch + Ours 92.69 + 0.74 92.80 £ 0.56
Freematch + Ours 93.10 + 0.28 91.80 £ 1.08

Table 4. Results on CIFAR-10 with and without pseudolabel accu-
mulation (Acc) for all the methods.

in Figure 6 in Appendix C. These results are unsurprising
since our method ensures high quality of pseudolabels while
maximizing coverage; it can eventually catch up with the
version using accumulation, leading to similar final test ac-
curacies. On the other hand, having accumulation hurts the
performance of baseline models. This might be because the
pseudolabels generated by the baseline models are inaccu-
rate, especially in the earlier iterations, thus degrading the
overall performance. Overall, we believe accumulation will
be helpful when we have pseudolabels with high accuracy.
The plots for pseudolabeling coverage and accuracy over
the entire run are in Figures 6, 7 in Appendix C.

Experiment with baselines using calibration data for
training. We run the baselines where the amount of training
data for the baseline is increased by the amount of calibra-
tion data used in our method. For the CIFAR-10 setting
with 250 labels, we run the baseline now with 250 + 1000 =
1250 labeled points for training. Similarly, for CIFAR-100
with 2500 labels setting, we run with 2500 + 3000 = 5500

Rethinking Confidence Scores and Thresholds in Pseudolabeling-based SSL

Method CIFAR-10 CIFAR-100
FixMatch (train + cal) 92.68 +0.31 64.77 £0.10
FixMatch + Ours 92.69 £0.74 69.10 + 0.45
FreeMatch (train + cal) 93.03 £0.03 67.69 4+ 0.12
FreeMatch + Ours 93.10 £ 0.28 68.76 + 1.38

Table 5. Comparison of FixMatch and FreeMatch with and without
our method on CIFAR-10 and CIFAR-100. Here N; = 250 for
CIFAR-10 and 2500 for CIFAR-100. The overall training data
from methods annotated as (train + cal) includes these IN; points
and the calibration data N, (from Table 1) used in our method.

labels for training. The results are reported in the Table
5. We can see that even with more labeled data in training,
the baselines still fall short significantly in the CIFAR-100
setting, while the performance gap in the CIFAR-10 (easier)
setting narrows down.

Validation data usage, limitations, and future work. In
the experiments, our method used parts of the validation
data differently in comparison to the baselines. We comment
on the role of validation data in the baselines, in our method,
and potential limitations due to it. Recall, our goal is to
address the problem of ad hoc choices of confidence scores
and thresholds in pseudolabeling-based SSL. To this end, we
introduced a principled solution to learn scores and thresh-
olds that can directly achieve any specified pseudolabeling
error while maximizing the number of pseudolabeled points.
Given the focus of our paper, our experiments are designed
to study whether using our learnable scores and thresholds
can benefit the baselines. To keep our solution statistically
sound, we used part of the validation data to learn the scores
and thresholds. The lack (or cost) of a sufficient amount
of validation data could be a limitation in practice. Future
work can explore ways to reduce the amount of validation
data needed for learning confidence scores and thresholds
while preserving the soundness of our method. For instance,
generative models or data augmentation techniques could
be employed to this end.

More broadly, in semi-supervised learning (SSL) research,
the cost of validation data is often not explicitly accounted
for, partly due to the widespread use of standard benchmark
datasets where hyperparameters have been tuned extensively
over time. However, in real-world applications, new datasets
typically require a substantial amount of validation data
for model selection and hyperparameter tuning—both of
which are essential parts of the modern training process.
Developing novel benchmarks that explicitly incorporate
validation data into the overall labeled data budget could
help better reflect practical deployment settings and would
be a valuable direction for future SSL research.

6. Conclusion

Common semi-supervised learning (SSL) methods rely on
pseudolabeling, but their effectiveness is limited by unreli-
able confidence scores and heuristic thresholding strategies.
We address these issues by introducing a principled frame-
work for learning confidence scores and thresholds with
explicit control over pseudolabeling error. We adapt ex-
isting SSL methods with this framework and empirically
show that the adapted methods achieve a higher test accu-
racy compared to their standard versions. Additionally, we
introduce pseudolabel accumulation and analyze its impact,
showing that it benefits methods with reliable pseudolabels,
such as those using our framework. In sum, by provid-
ing a principled, data-driven approach to obtaining scores
and thresholds for pseudolabeling, our work enhances SSL
methods and opens the door to more reliable and efficient
pseudolabeling-based SSL.

Impact Statement

This research improves semi-supervised learning, enabling
more accurate and efficient machine learning in settings
where labeled data is hard to obtain by following first princi-
ples in designing thresholds and confidence functions. Our
work has various potential societal implications, with no
specific concerns that require special attention in this con-
text.

Acknowledgments

This work was partly supported by funding from the Ameri-
can Family Data Science Institute and the Institute for Foun-
dations of Data Science (IFDS). We thank the anonymous
reviewers for their valuable feedback.

References

Adams, R. P. and Ghahramani, Z. Archipelago: nonparamet-
ric bayesian semi-supervised learning. In Proceedings
of the 26th Annual International Conference on Machine
Learning, pp. 1-8, 2009.

Amini, M.-R., Feofanov, V., Pauletto, L., Hadjadj, L., Devi-
jver, E., and Maximov, Y. Self-training: A survey, 2023.

Arazo, E., Ortego, D., Albert, P., O’Connor, N. E., and
McGuinness, K. Pseudo-labeling and confirmation bias
in deep semi-supervised learning. In 2020 International
Jjoint conference on neural networks (IJCNN), pp. 1-8.
IEEE, 2020.

Bachman, P., Alsharif, O., and Precup, D. Learning with
pseudo-ensembles. In Advances in Neural Information
Processing Systems, volume 27, 2014.

Rethinking Confidence Scores and Thresholds in Pseudolabeling-based SSL

Blum, A. and Chawla, S. Learning from labeled and unla-
beled data using graph mincuts. 2001.

Blum, A. and Mitchell, T. Combining labeled and unlabeled
data with co-training. In Proc. of the eleventh annual
conference on Computational learning theory, pp. 92—
100. ACM, 1998.

Chapelle, O., Scholkopf, B., and Zien, A. (eds.). Semi-
Supervised Learning. The MIT Press, 2006. ISBN
9780262033589.

Chen, H., Tao, R., Fan, Y., Wang, Y., Wang, J., Schiele, B.,
Xie, X., Raj, B., and Savvides, M. Softmatch: Addressing
the quantity-quality tradeoff in semi-supervised learning.
In The Eleventh International Conference on Learning

Representations, 2023. URL https://openreview.

net/forum?id=ymt1zQXBDiF.

Corbiere, C., THOME, N., Bar-Hen, A., Cord, M., and
Pérez, P. Addressing failure prediction by learning model
confidence. In Advances in Neural Information Process-
ing Systems 32, pp. 2902-2913. 2019.

Djurisic, A., Bozanic, N., Ashok, A., and Liu, R. Extremely
simple activation shaping for out-of-distribution detection.
In The Eleventh International Conference on Learning
Representations, 2023.

El-Manzalawy, Y., Munoz, E. E., Lindner, S. E., and
Honavar, V. Plasmosep: Predicting surface-exposed pro-
teins on the malaria parasite using semisupervised self-
training and expert-annotated data. Proteomics, 16(23):
2967-2976, 2016.

Fan, Y., Kukleva, A., and Schiele, B. Revisiting consistency
regularization for semi-supervised learning, 2021.

Foret, P., Kleiner, A., Mobahi, H., and Neyshabur, B.
Sharpness-aware minimization for efficiently improving
generalization. In International Conference on Learning
Representations, 2021.

Guo, C,, Pleiss, G., Sun, Y., and Weinberger, K. Q. On
calibration of modern neural networks. In International
conference on machine learning, pp. 1321-1330. PMLR,
2017.

Gupta, C. and Ramdas, A. Top-label calibration and
multiclass-to-binary reductions. In International Confer-
ence on Learning Representations, 2022. URL https:
//openreview.net/forum?id=WgoBaaPHS-.

Hendrycks, D. and Gimpel, K. A baseline for detecting
misclassified and out-of-distribution examples in neural
networks. In International Conference on Learning Rep-
resentations, 2017.

10

Hui, L., Belkin, M., and Wright, S. Cut your losses with
squentropy. In Proceedings of the 40th International Con-
ference on Machine Learning, pp. 14114-14131, 2023.

Joachims, T. Transductive inference for text classification
using support vector machines. In Bratko, I. and Dzeroski,
S. (eds.), Proceedings of ICML-99, 16th International
Conference on Machine Learning, pp. 200-209, 1999.

Kahn, J., Lee, A., and Hannun, A. Self-training for end-
to-end speech recognition. In ICASSP 2020-2020 IEEE
International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pp. 7084—7088. IEEE, 2020.

Karamanolakis, G., Mukherjee, S., Zheng, G., and Awadal-
lah, A. H. Self-training with weak supervision. arXiv
preprint arXiv:2104.05514, 2021.

Kingma, D. P,, Mohamed, S., Jimenez Rezende, D., and
Welling, M. Semi-supervised learning with deep genera-
tive models. In Advances in Neural Information Process-
ing Systems, volume 27, 2014.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Kukacka, J., Golkov, V., and Cremers, D. Regularization
for deep learning: A taxonomy, 2017.

Kull, M., Perello Nieto, M., Kingsepp, M., Silva Filho,
T., Song, H., and Flach, P. Beyond temperature scaling:
Obtaining well-calibrated multi-class probabilities with
dirichlet calibration. In Advances in Neural Information
Processing Systems, volume 32, 2019.

Kumar, A., Sarawagi, S., and Jain, U. Trainable calibration
measures for neural networks from kernel mean embed-
dings. In Proceedings of the 35th International Confer-
ence on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pp. 2805-2814. PMLR,
10-15 Jul 2018.

Kumar, A., Liang, P. S., and Ma, T. Verified uncertainty
calibration. Advances in Neural Information Processing
Systems, 32, 2019.

Laine, S. and Aila, T. Temporal ensembling for semi-
supervised learning. Fifth International Conference on
Learning Representations, 2017.

Lee, D.-H. Pseudo-label: The simple and efficient semi-
supervised learning method for deep neural networks. In
ICML Workshop on Challenges in Representation Learn-
ing, 2013.

Li, M., Wu, R, Liu, H., Yu, J., Yang, X., Han, B., and
Liu, T. Instant: Semi-supervised learning with instance-
dependent thresholds. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023.

https://openreview.net/forum?id=ymt1zQXBDiF
https://openreview.net/forum?id=ymt1zQXBDiF
https://openreview.net/forum?id=WqoBaaPHS-
https://openreview.net/forum?id=WqoBaaPHS-

Rethinking Confidence Scores and Thresholds in Pseudolabeling-based SSL

Loh, C., Dangovski, R., Sudalairaj, S., Han, S., Han, L.,
Karlinsky, L., Soljacic, M., and Srivastava, A. On the
importance of calibration in semi-supervised learning,
2022.

Loh, C., Dangovski, R., Sudalairaj, S., Han, S., Han, L.,
Karlinsky, L., Soljacic, M., and Srivastava, A. Mitigating
confirmation bias in semi-supervised learning via efficient
bayesian model averaging. Transactions on Machine
Learning Research, 2023.

McLachlan, G. J. Iterative reclassification procedure for con-
structing an asymptotically optimal rule of allocation in
discriminant analysis. Journal of the American Statistical
Association, 70(350):365-369, 1975.

Mishra, S., Murugesan, B., Ayed, 1. B., Pedersoli, M., and
Dolz, J. Do not trust what you trust: Miscalibration in
semi-supervised learning, 2024.

Moon, J., Kim, J., Shin, Y., and Hwang, S. Confidence-
aware learning for deep neural networks. In Proceedings
of the 37th International Conference on Machine Learn-
ing, volume 119, pp. 7034-7044, 2020.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B.,
Ng, A. Y, et al. Reading digits in natural images with
unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, volume 2011,
pp- 7. Granada, Spain, 2011.

Nguyen, A., Yosinski, J., and Clune, J. Deep neural net-
works are easily fooled: High confidence predictions for
unrecognizable images. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp.
427-436, 2015.

Nigam, K., McCallum, A. K., Thrun, S., and Mitchell, T.
Text classification from labeled and unlabeled documents
using em. Machine learning, 39:103-134, 2000.

Niyogi, P. Manifold regularization and semi-supervised
learning: Some theoretical analyses. Journal of Machine
Learning Research, 14(5), 2013.

Oliver, A., Odena, A., Raffel, C. A., Cubuk, E. D., and Good-
fellow, I. Realistic evaluation of deep semi-supervised
learning algorithms. In Advances in Neural Information
Processing Systems, volume 31, 2018.

Oymak, S. and Gulcu, T. C. Statistical and algorithmic
insights for semi-supervised learning with self-training.
arXiv preprint arXiv:2006.11006, 2020.

Rizve, M. N., Duarte, K., Rawat, Y. S., and Shah, M. In de-
fense of pseudo-labeling: An uncertainty-aware pseudo-
label selection framework for semi-supervised learning.
In International Conference on Learning Representations,
2021.

11

Roelofs, B., Berthelot, D., Sohn, K., Carlini, N., and
Kurakin, A. Adamatch: A unified approach to semi-
supervised learning and domain adaptation. In The Tenth

International Conference on Learning Representations,
2022.

Rosenberg, C., Hebert, M., and Schneiderman, H. Semi-
supervised self-training of object detection models. In
Seventh IEEE Workshops on Applications of Computer
Vision (WACV/MOTION’05) - Volume 1, volume 1, pp.
29-36, 2005. doi: 10.1109/ACVMOT.2005.107.

Sajjadi, M., Javanmardi, M., and Tasdizen, T. Regulariza-
tion with stochastic transformations and perturbations
for deep semi-supervised learning. In Proceedings of
the 30th International Conference on Neural Information
Processing Systems, pp. 1171-1179, 2016.

Scudder, H. Probability of error of some adaptive pattern-
recognition machines. IEEE Transactions on Information
Theory, 11(3):363-371, 1965.

Singh, A., Nowak, R., and Zhu, J. Unlabeled data: Now it
helps, now it doesn't. In Advances in Neural Information
Processing Systems, volume 21. Curran Associates, Inc.,
2008.

Sohn, K., Berthelot, D., Carlini, N., Zhang, Z., Zhang, H.,
Raffel, C. A., Cubuk, E. D., Kurakin, A., and Li, C.-L.
Fixmatch: Simplifying semi-supervised learning with
consistency and confidence. Advances in neural informa-
tion processing systems, 33:596-608, 2020.

Subramanya, A. and Talukdar, P. P. Graph-based semi-
supervised learning. Springer Nature, 2022.

van Engelen, J. E. and Hoos, H. H. A survey on semi-
supervised learning. Machine Learning, 109:373 — 440,
2019.

Vapnik, V. N., Vapnik, V., et al. Statistical learning theory.
1998.

Vishwakarma, H., Lin, H., Sala, F., and Vinayak, R. K.
Promises and pitfalls of threshold-based auto-labeling. In
Thirty-seventh Conference on Neural Information Pro-
cessing Systems, 2023.

Vishwakarma, H., Tay, S. J., Namburi, S. S. S., Sala, F.,
Vinayak, R. K., et al. Pearls from pebbles: Improved
confidence functions for auto-labeling. arXiv preprint
arXiv:2404.16188, 2024.

Wang, Y., Chen, H., Fan, Y., Sun, W., Tao, R., Hou, W.,
Wang, R., Yang, L., Zhou, Z., Guo, L.-Z., Qi, H., Wu, Z.,
Li, Y.-F.,, Nakamura, S., Ye, W., Savvides, M., Raj, B.,
Shinozaki, T., Schiele, B., Wang, J., Xie, X., and Zhang,
Y. Usb: A unified semi-supervised learning benchmark

Rethinking Confidence Scores and Thresholds in Pseudolabeling-based SSL

for classification. In Thirty-sixth Conference on Neural In-
formation Processing Systems, Datasets and Benchmarks
Track, 2022.

Wang, Y., Chen, H., Heng, Q., Hou, W., Fan, Y., Wu, Z.,
Wang, J., Savvides, M., Shinozaki, T., Raj, B., Schiele,
B., and Xie, X. Freematch: Self-adaptive threshold-
ing for semi-supervised learning. In The Eleventh In-
ternational Conference on Learning Representations,
2023. URL https://openreview.net/forum?
1d=PDrUPTXJI_A.

Xie, Q., Dai, Z., Hovy, E., Luong, T., and Le, Q. Un-
supervised data augmentation for consistency training.
In Advances in Neural Information Processing Systems,
volume 33, 2020.

Xu, Y., Shang, L., Ye, J., Qian, Q., Li, Y.-F,, Sun, B., Li, H.,
and Jin, R. Dash: Semi-supervised learning with dynamic
thresholding. In International Conference on Machine
Learning, pp. 11525-11536. PMLR, 2021.

Zadrozny, B. and Elkan, C. Transforming classifier scores
into accurate multiclass probability estimates. In Proceed-
ings of the eighth ACM SIGKDD international conference
on Knowledge discovery and data mining, pp. 694—699,
2002.

Zhang, B., Wang, Y., Hou, W., Wu, H., Wang, J., Oku-
mura, M., and Shinozaki, T. Flexmatch: Boosting semi-
supervised learning with curriculum pseudo labeling. Ad-

vances in Neural Information Processing Systems, 34:
18408-18419, 2021.

Zheng, M., You, S., Huang, L., Wang, F., Qian, C., and Xu,
C. Simmatch: Semi-supervised learning with similarity
matching. In Proceedings of the IEEE/CVF conference

on computer vision and pattern recognition, pp. 14471—
14481, 2022.

Zhu, X. Semi-supervised learning literature survey. In Uni-
versity of Wisconsin-Madison, Department of Computer
Sciences, 2005.

12

https://openreview.net/forum?id=PDrUPTXJI_A
https://openreview.net/forum?id=PDrUPTXJI_A

Rethinking Confidence Scores and Thresholds in Pseudolabeling-based SSL

Supplementary Material

The supplementary material is organized as follows. First, we summarize the notations in Table 6 in Appendix A, then we
provide formal algorithms in Appendix B and additional experimental results and details are provided in Appendix C.

A. Glossary

The notations are summarized in Table 6 below.

B. Detailed Algorithms

Algorithm 1 Estimate Pseudolabeling Thresholds Classwise

Input: Confidence function g;, classifier Bi, Part of validation data Dt(fl) for threshold estimation, pseudolabeling error
tolerance ¢, space of thresholds 7', label space).
Output: Pseudolabeling thresholds t;, where t;[y] is the threshold for class y.
for y € Y do
Extract the set of points D[(hy) for which the groundtruth class is .
DY « {(x',y') € Din: ¢/ =y}
T, <+ TUu{co}.
Estimate pseudolabeling error at each threshold on class specific data Dt(hy). Pick the smallest threshold with the sum
of the estimated error and C times the std. deviation is below e. Here C1 is set to 0.25 and 5(z) = y/z(1 — 2).
tlyl « min{t € T, : £t | hi, DY) + C13(E(Gist | hi, DY) < e},
end for
return t;

Algorithm 2 Estimate Pseudolabeling Threshold Jointly for All Classes

Input: Confidence function g;, classifier /i\zi, Part of validation data Dt(fl) for threshold estimation, pseudolabeling error
tolerance ¢, space of thresholds 7', label space).
Output: Pseudolabeling thresholds t;, where t; [y] is the threshold for class y.
T + T U{oo}
Estimate pseudolabeling error at each threshold on the entire set Dyy,. Pick the smallest threshold with the sum of the
estimated error and C times & is below €. Here C] is set to 0.25 and 7(z) = 1/2(1 — 2).
t < min{t € T : EG;,t | hi, D) + C15(E(Gis t | hi, Den)) < €}
for y € Y do
tily]
end for
return fi

13

Rethinking Confidence Scores and Thresholds in Pseudolabeling-based SSL

Algorithm 3 Pseudolabeling Based SSL with PabLoO

Input: Labeled data for training D;, validation data D,,;, unlabeled pool X, error tolerance €, use-accumulation flag,
num_iters, batch size B, replication factor u, weak w and strong €2 augmentations, number of calibration points N,;, num.
of threshold estimation points Ny, frequency of invoking PabLO F', space of thresholds 7', label space) .

Output: ﬁssl, model with the best validation accuracy.

Set initial pseudolabels and masks to 0.
Y9 0,0,...,0], S « [0,0,...,0],i+ 1
Draw calibration and threshold estlmation sets from D).
Doy, Dty < DrawRandomly(Dyal, Neal, Nin)-
Training loop with pseudolabeling.
while ¢ < num_iters do
Draw batches Df, X! of labeled and unlabeled points, 12 denotes the indices corresponding to points in X?.
Db, X% I < DrawRandomBatch(uDy, uX,, B)
Create weak and strong augmentations of X?.
X Xu s 4 w(X3), QX))
/** Begin Pseudolabeling Block **/
Perform pseudolabeling using PabLO.
if (% F = 0 then
Get g; by solving optimization (P1).
ﬁi,?; — SolveOptProblemPl(ﬁi, Dea)
Estimate pseudolabeling thresholds.
if estimate threshold classwise then
Use Algorithm 1.
t; ClasswiseThreshold(/g\i,ﬁi7 D, e,T,))
else
Use Algorithm 2.
t — JonntThreshold(gz,hz,Dth,e T,))
end if
Compute fresh psuedolabels }715') and pseudolabeling masks Sf[) for all points in X,,.
Vi = hi(w(Xy), S¢ e 1(Gi(w(X,)) > T)
if use-accumulation then
Apply pseudolabel accumulation if enabled.
P e ST 1 (1 - sigi-Y
L RVEC

end if
else R R
gisti =gi—1,ti1
end if

/** End Pseudolabeling Block **/
Extract pseudolabels and masks for the current unlabeled batch. Then compute supervised and unsupervised losses.
VP, b V(18] Su[If]
‘. (ﬁ) < supervised_loss(h, DY)
C. (/l{) + unsupervised_loss(h, X} , X} b Yb sby
(hi) < Ls(hs) + AL (hs)
Perform a gradient descent step to get new model h,+1
his1 < SGD update(ﬁ(h)); i+ i+1
Evaluate model on Dy, to keep track of the best model.
if i%eval_freq = 0 then

eval_acc < evaluatemodel(hl,Dval)

If eval_acc is best so far then hbsl = h
end if
end while

L%

h)h

14

Rethinking Confidence Scores and Thresholds in Pseudolabeling-based SSL

- CIFAR-10 CIFAR-100 SVHN
o 100 ot e | 100 100 -
§ 75 A 751 751
< 50- 50 50
o
< 251 251 251
8 ol , , 1 oold , , 1 odl , , ,
5K 15K 25K 35K 10K 30K 50K 70K 0 50K 100K 150K
—— Fixmatch Fixmatch + Ours —— Fixmatch + BAM —— Fixmatch + MR
gloo- 100 100
§ 75 75 75
< 50 50 50
o
< 251 25 251
8 ol , , ool , , 1 ol , , ,
5K 15K 25K 35K 10K 30K 50K 70K 0 50K 100K 150K
Iterations Iterations Iterations
—— Freematch Freematch + Ours —— Freematch + BAM —— Freematch + MR

Figure 4. Batch pseudolabel accuracy of our method and baselines on CIFAR-10, CIFAR-100, and SVHN. We plot the values for every
200 steps.

C. Additional Experiments and Details

Compute. We ran all of our experiments on a high-throughput system with various GPUs. Therefore, each individual
experiment task may be scheduled among NVIDIA A100 SXM4-40GB, NVIDIA A100 SXM4-80GB, NVIDIA L40, and
NVIDIA H100 80GB HBM3. We measured the runtime of our algorithm on a desktop with a single NVIDIA RTX 4090.
On CIFAR-10, it took about 0.203 seconds for each iteration for our method and around 0.140 seconds for the baselines. On
CIFAR-100, it took about 0.396 seconds for each iteration for our method and around 0.143 seconds for the baselines. On
SVHN, it took about 1.275 seconds for each iteration for our method and around 0.225 seconds for the baselines.

Hyperparameters. For the baselines, we have used their default settings. To maintain consistency and experiment the
efficiency of method, we used WRN-28-2 which is 1.4M parameter model for all the datasets. We summarize the main
hyperparameters we have used in our method in Table 10.

Note that the number of epochs we used to train the function g and to estimate t is dynamic. That is, its actual value depends
on and is proportional to the current number of iterations of the SSL training. More concretely, at iteration ¢ of SSL training,
we use min(|4/25 |, max epoch) number of epochs to find g and t.

We additionally conduct the following ablation study to study our technique’s dependence on the amount of data used in
learning g and thresholds.

A2. How much data is needed to learn the g and t? We take V., and Ny, from the validation data to learn the confidence
function g and estimate the thresholds t respectively. Intuitively larger values of these should lead to good ¢ and t that can
extract the expected level of pseudolabeling coverage and accuracy from the classifier at hand. However, the task of learning
good g and estimating thresholds is not super hard and we expect it will take fewer samples to be successful. To understand
this better we run our method with N, and Ny, in {250, 500, 750, 1000} on CIFAR-10 setting for 3 random seeds and
report the result in Fig 8. We observe that our method can achieve desired performance with just 500 labeled points (i.e 50
labels per class). This is interesting because we can achieve 90% accuracy by just using 250 points (/V;) for training i and a
total of 1K for learning g. Refer to Table 7 for more details.

15

Rethinking Confidence Scores and Thresholds in Pseudolabeling-based SSL

o CIFAR-10 CIFAR-100 SVHN

%100' 1001 1001 W" F R

% 75 75 75

© 50 50 1 50 1

o

< 251 251 251

8 oll | , , ool , , 1 od! , , ,
5K 15K 25K 35K 10K 30K 50K 70K 0 50K 100K 150K

—— Fixmatch —— Fixmatch + Ours —— Fixmatch + BAM —— Fixmatch + MR

100 100 100

% 75 75 75

© 50- 50 1 50 1

o

< 251 251 251

8 oll , , ool , , 1 o4l , , ,
5K 15K 25K 35K 10K 30K 50K 70K 0 50K 100K 150K

Iterations Iterations Iterations
—— Freematch —— Freematch + Ours —— Freematch + BAM —— Freematch + MR

Figure 5. Batch pseudolabel coverage of our method and baselines on CIFAR-10, CIFAR-100, and SVHN. We plot the values for every
200 steps.

Top-1 Accuracy Batch PI. Accuracy Batch PIl. Coverage
100 A 100 A 100 A
80 A 80 A 80
60 - 60 - 60
40 - 40 1 401

20 T T T 20 T T T 20 T T T
10K 20K 30K 10K 20K 30K 10K 20K 30K
Iterations Iterations Iterations
—— Fixmatch (no accu.) Fixmatch + MR (no accu.) —— Fixmatch + BAM (accu.)
Fixmatch + BAM (no accu.) Fixmatch (accu.) —— Fixmatch + MR (accu.)

Figure 6. (Al.) Left to Right: Top-1 Accuracy, Batched pseudolabeling Accuracy, and batched pseudolabeling coverage of Fixmatch with
and without pseudolabeling accumulation enabled on CIFAR-10. It can be seen that enabling pseudolabeling accumulation worsen the
performance of baseline methods in terms of accuracy and coverage.

Rethinking Confidence Scores and Thresholds in Pseudolabeling-based SSL

Symbol Definition

X feature space.

y label spacei.e. 1,2,...k.

H hypothesis space (model class for the classifiers).

g space of confidence functions.

k number of classes.

X,y X is a datapoint in X" and y is its true label (if available).

h amodel h : X —).

g confidence function g : X — T* C R¥

U hard label prediction.

n 7 is used as pseudolabel.

ﬁssl a best learned model using SSL.

€ pseudolabeling error tolerance.

g5 optimal confidence function at 1 iteration.

t; optimal threshold at 7 iteration.

Xy available unlabeled data drawn from the distribution P, over X.

Xt batch of unlabeled data.

Dy set of labeled data points drawn from the distribution F,,,.

D} batch of labeled data.

Dy validation data.

D calibration data; part of validation data used to optimize surrogate functions.
Dy part of validation data to estimate threshold t.

t k dimensional vector of thresholds representing for % classes.

t[y] yth entry of t i.e. the threshold for class y.

Ny number of unlabeled points, i.e. size of X, used for consistency regularization and pseudolabeling.
N, number of labeled points, i.e. size of D;. Usual SSL setting has, N; < n,,.
Nyal number of points used for model selection.

Niost number of test data points.

Neal number of points used for learning the g function.

Nin number of data points used for threshold estimation.

Zs supervised loss.

Eu unsupervised loss with weighted importance A,,.

AT sum of regularization terms for supervised and unsupervised loss with weighted importance A,..
H(y,h,x) standard cross-entropy loss.

S(x,g,t | h) pseudolabeleing mask.

w weak transformation, w : X — X.

Q strong transformation, 2 : X — X.

A, O average time taken by our method and baseline methods.

ﬁ(g, t|h,X) estimated pseudolabeling coverage, see eq. (1).
P(g,t | h) population level pseudolabeling coverage, see eq. (2).
E(g,t | h, D) estimated pseudolabeling error, see eq. (3).

E(g,t | h) population level pseudolabeling error, see eq. (4).

P(g,t | h,D) surrogate estimated pseudolabeling coverage, see eq. (6).

& (9,t | h,D) surrogate estimated pseudolabeling error, see eq. (7).
A hyperparamter controlling the importance of pseudolabeleing coverage and error in (P1).

Table 6. Glossary of variables and symbols used in this paper.

17

Rethinking Confidence Scores and Thresholds in Pseudolabeling-based SSL

Top-1 Accuracy Batch PI. Accuracy Batch Pl. Coverage
100 A 100 A - — 1001
| ol AL : o
80 A 80 A 80 A “'1'('\'”
60 - 60 - 60 -
40 A 40 40 A
20 T T T 20 T T T 20 T T T
10K 20K 30K 10K 20K 30K 10K 20K 30K
Iterations Iterations Iterations
—— Freematch (no accu.) Freematch + MR (no accu.) —— Freematch + BAM (accu.)
Freematch + BAM (no accu.) Freematch (accu.) —— Freematch + MR (accu.)

Figure 7. (A1.) Left to Right: Top-1 Accuracy, Batched pseudolabeling Accuracy, and batched pseudolabeling coverage of Freematch
with and without pseudolabeling accumulation enabled on CIFAR-10. It can be seen that enabling pseudolabeling accumulation worsen

the performance of baseline methods in terms of accuracy and coverage.

> N
(@)) - —— 'l
©
§ 90% / |
2 | / ____ Fixmatch
‘5_80% + Ours
) ___ Freematch
+ Qurs
400 600 800 1000

Nin and Nea

Figure 8. Top-1 accuracy of our method with different N1, and Neai.

Method Neal = Nin =250 Neal = Nin =500 Neal = Nin =750
Fixmatch + Ours 82.67 +7.08 91.74 £ 0.41 91.66 = 2.11
Freematch + Ours 82.13 +7.93 92.33 +£0.49 93.20 £ 0.53

Table 7. Results on CIFAR-10 with varying Nca1 and Nip,.

Method e=0.01 e=0.1 e=0.2 e=04

Fixmatch + Ours 93.05 £ 0.54 91.54 £ 0.95 88.35 £2.90 56.72 £22.25
Freematch + Ours 92.11 £1.18 92.31 £0.16 83.89 + 10.36 52.17 £25.36

Table 8. Results on CIFAR-10 with varying e.

18

Rethinking Confidence Scores and Thresholds in Pseudolabeling-based SSL

Method e=0.01 e=0.1 €e=0.2 e=04
Fixmatch + Ours 69.19 £ 1.13 65.01 = 0.34 53.88 £ 8.15 23.58 £ 18.21
Freematch + Ours 70.13 £+ 0.67 64.95 £ 141 59.83 £ 1.32 24.09 + 17.22

Table 9. Results on CIFAR-100 with varying e.

Method Hyperparameter Values
optimizer SGD
learning rate 0.01

Learning g function batch size 64
max epoch 500
weight decay 0.01
momentum 0.9
optimizer SGD
learning rate 0.01

Estimating t batch size 64
max epoch 500
weight decay 0.01
momentum 0.9

Table 10. Hyperparameters used for our method.

19

