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ABSTRACT

Transformers are transforming the landscape of computer vision, especially for
recognition tasks. Detection transformers are the first fully end-to-end learn-
ing systems for object detection, while vision transformers are the first fully
transformer-based architecture for image classification. In this paper, we integrate
Vision and Detection Transformers (ViDT) to build an effective and efficient ob-
ject detector. ViDT introduces a reconfigured attention module to extend the recent
Swin Transformer to be a standalone object detector, followed by a computation-
ally efficient transformer decoder that exploits multi-scale features and auxiliary
techniques essential to boost the detection performance without much increase in
computational load. Extensive evaluation results on the Microsoft COCO bench-
mark dataset demonstrate that ViDT obtains the best AP and latency trade-off
among existing fully transformer-based object detectors, and achieves 49.2AP ow-
ing to its high scalability for large models. We release the code and trained models
at https://github.com/naver-ai/vidt.

1 INTRODUCTION

Object detection is the task of predicting both bounding boxes and object classes for each object of
interest in an image. Modern deep object detectors heavily rely on meticulously designed compo-
nents, such as anchor generation and non-maximum suppression (Papageorgiou & Poggio, 2000; Liu
et al., 2020). As a result, the performance of these object detectors depend on specific postprocessing
steps, which involve complex pipelines and make fully end-to-end training difficult.

Motivated by the recent success of Transformers (Vaswani et al., 2017) in NLP, numerous stud-
ies introduce Transformers into computer vision tasks. Carion et al. (2020) proposed Detection
Transformers (DETR) to eliminate the meticulously designed components by employing a simple
transformer encoder and decoder architecture, which serves as a neck component to bridge a CNN
body for feature extraction and a detector head for prediction. Thus, DETR enables end-to-end train-
ing of deep object detectors. By contrast, Dosovitskiy et al. (2021) showed that a fully-transformer
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Figure 1. AP and latency (milliseconds) summa-
rized in Table 2. The text in the plot indicates the
backbone model size.

backbone without any convolutional layers, Vi-
sion Transformer (ViT), achieves the state-of-the-
art results in image classification benchmarks. Ap-
proaches like ViT have been shown to learn effective
representation models without strong human induc-
tive biases, e.g., meticulously designed components
in object detection (DETR), locality-aware designs
such as convolutional layers and pooling mecha-
nisms. However, there is a lack of effort to synergize
DETR and ViT for a better object detection archi-
tecture. In this paper, we integrate both approaches
to build a fully transformer-based, end-to-end object
detector that achieves state-of-the-art performance
without increasing computational load.

A straightforward integration of DETR and ViT
can be achieved by replacing the ResNet backbone
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Figure 2. Pipelines of fully transformer-based object detectors. DETR (ViT) means Detection Transformer that
uses ViT as its body. The proposed ViDT synergizes DETR (ViT) and YOLOS and achieves best AP and latency
trade-off among fully transformer-based object detectors.

(body) of DETR with ViT – Figure 2(a). This naive integration, DETR (ViT)1, has two limitations.
First, the canonical ViT suffers from the quadratic increase in complexity w.r.t. image size, resulting
in the lack of scalability. Furthermore, the attention operation at the transformer encoder and decoder
(i.e., the “neck” component) adds significant computational overhead to the detector. Therefore, the
naive integration of DETR and ViT show very high latency – the blue lines of Figure 1.

Recently, Fang et al. (2021) propose an extension of ViT to object detection, named YOLOS, by ap-
pending the detection tokens [DET] to the patch tokens [PATCH] (Figure 2(b)), where [DET] tokens are
learnable embeddings to specify different objects to detect. YOLOS is a neck-free architecture and
removes the additional computational costs from the neck encoder. However, YOLOS shows limited
performance because it cannot use additional optimization techniques on the neck architecture, e.g.,
multi-scale features and auxiliary loss. In addition, YOLOS can only accommodate the canonical
transformer due to its architectural limitation, resulting in a quadratic complexity w.r.t. the input size.

In this paper, we propose a novel integration of Vision and Detection Transformers (ViDT) (Figure
2(c)). Our contributions are three-folds. First, ViDT introduces a modified attention mechanism,
named Reconfigured Attention Module (RAM), that facilitates any ViT variant to handle the ap-
pended [DET] and [PATCH] tokens for object detection. Thus, we can modify the latest Swin Trans-
former (Liu et al., 2021) backbone with RAM to be an object detector and obtain high scalabil-
ity using its local attention mechanism with linear complexity. Second, ViDT adopts a lightweight
encoder-free neck architecture to reduce the computational overhead while still enabling the ad-
ditional optimization techniques on the neck module. Note that the neck encoder is unnecessary
because RAM directly extracts fine-grained representation for object detection, i.e., [DET] tokens.
As a result, ViDT obtains better performance than neck-free counterparts. Finally, we introduce a
new concept of token matching for knowledge distillation, which brings additional performance
gains from a large model to a small model without compromising detection efficiency.

ViDT has two architectural advantages over existing approaches. First, similar to YOLOS, ViDT
takes [DET] tokens as the additional input, maintaining a fixed scale for object detection, but con-
structs hierarchical representations starting with small-sized image patches for [PATCH] tokens. Sec-
ond, ViDT can use the hierarchical (multi-scale) features and additional techniques without a signifi-
cant computation overhead. Therefore, as a fully transformer-based object detector, ViDT facilitates
better integration of vision and detection transformers. Extensive experiments on Microsoft COCO
benchmark (Lin et al., 2014) show that ViDT is highly scalable even for large ViT models, such as
Swin-base with 0.1 billion parameters, and achieves the best AP and latency trade-off.

2 PRELIMINARIES

Vision transformers process an image as a sequence of small-sized image patches, thereby allow-
ing all the positions in the image to interact in attention operations (i.e., global attention). However,
the canonical ViT (Dosovitskiy et al., 2021) is not compatible with a broad range of vision tasks
due to its high computational complexity, which increases quadratically with respect to image size.
The Swin Transformer (Liu et al., 2021) resolves the complexity issue by introducing the notion
of shifted windows that support local attention and patch reduction operations, thereby improving
compatibility for dense prediction task such as object detection. A few approaches use vision trans-
formers as detector backbones but achieve limited success (Heo et al., 2021; Fang et al., 2021).

1We refer to each model based on the combinations of its body and neck. For example, DETR (DeiT)
indicates that DeiT (vision transformers) is integrated with DETR (detection transformers).
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Detection transformers eliminate the meticulously designed components (e.g., anchor generation
and non-maximum suppression) by combining convolutional network backbones and Transformer
encoder-decoders. While the canonical DETR (Carion et al., 2020) achieves high detection perfor-
mance, it suffers from very slow convergence compared to previous detectors. For example, DETR
requires 500 epochs while the conventional Faster R-CNN (Ren et al., 2015) training needs only 37
epochs (Wu et al., 2019). To mitigate the issue, Zhu et al. (2021) propose Deformable DETR which
introduces deformable attention for utilizing multi-scale features as well as expediting the slow
training convergence of DETR. In this paper, we use the Deformable DETR as our base detection
transformer framework and integrate it with the recent vision transformers.

DETR (ViT) is a straightforward integration of DETR and ViT, which uses ViT as a feature ex-
tractor, followed by the transformer encoder-decoder in DETR. As illustrated in Figure 2(a), it is
a body–neck–head structure; the representation of input [PATCH] tokens are extracted by the ViT
backbone and then directly fed to the transformer-based encoding and decoding pipeline. To predict
multiple objects, a fixed number of learnable [DET] tokens are provided as additional input to the
decoder. Subsequently, output embeddings by the decoder produce final predictions through the de-
tection heads for classification and box regression. Since DETR (ViT) does not modify the backbone
at all, it can be flexibly changed to any latest ViT model, e.g., Swin Transformer. Additionally, its
neck decoder facilitates the aggregation of multi-scale features and the use of additional techniques,
which help detect objects of different sizes and speed up training (Zhu et al., 2021). However, the
attention operation at the neck encoder adds significant computational overhead to the detector.
In contrast, ViDT resolves this issue by directly extracting fine-grained [DET] features from Swin
Transformer with RAM without maintaining the transformer encoder in the neck architecture.

YOLOS (Fang et al., 2021) is a canonical ViT architecture for object detection with minimal
modifications. As illustrated in Figure 2(b), YOLOS achieves a neck-free structure by appending
randomly initialized learnable [DET] tokens to the sequence of input [PATCH] tokens. Since all the
embeddings for [PATCH] and [DET] tokens interact via global attention, the final [DET] tokens are gen-
erated by the fine-tuned ViT backbone and then directly generate predictions through the detection
heads without requiring any neck layer. While the naive DETR (ViT) suffers from the computational
overhead from the neck layer, YOLOS enjoys efficient computations by treating the [DET] tokens as
additional input for ViT. YOLOS shows that 2D object detection can be accomplished in a pure
sequence-to-sequence manner, but this solution entails two inherent limitations:

1) YOLOS inherits the drawback of the canonical ViT; the high computational complexity attributed
to the global attention operation. As illustrated in Figure 1, YOLOS shows very poor latency
compared with other fully transformer-based detectors, especially when its model size becomes
larger, i.e., small→ base. Thus, YOLOS is not scalable for the large model.

2) YOLOS cannot benefit from using additional techniques essential for better performance, e.g.,
multi-scale features, due to the absence of the neck layer. Although YOLOS used the same DeiT
backbone with Deformable DETR (DeiT), its AP was lower than the straightforward integration.

In contrast, the encoder-free neck architecture of ViDT enjoys the additional optimization techniques
from Zhu et al. (2021), resulting in the faster convergence and the better performance. Further, our
RAM enables to combine Swin Transformer and the sequence-to-sequence paradigm for detection.

3 VIDT: VISION AND DETECTION TRANSFORMERS

ViDT first reconfigures the attention model of Swin Transformer to support standalone object detec-
tion while fully reusing the parameters of Swin Transformer. Next, it incorporates an encoder-free
neck layer to exploit multi-scale features and two essential techniques: auxiliary decoding loss and
iterative box refinement. We further introduce knowledge distillation with token matching to benefit
from large ViDT models.

3.1 RECONFIGURED ATTENTION MODULE

Applying patch reduction and local attention scheme of Swin Transformer to the sequence-to-
sequence paradigm is challenging because (1) the number of [DET] tokens must be maintained at a
fixed-scale and (2) the lack of locality between [DET] tokens. To address this challenge, we introduce
a reconfigured attention module (RAM)2 that decomposes a single global attention associated with
[PATCH] and [DET] tokens into the three different attention, namely [PATCH]× [PATCH], [DET]× [DET],

2This reconfiguration scheme can be easily applied to other ViT variants with simple modification.
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Figure 3. Reconfigured Attention Module (Q: query, K: key, V: value). The skip connection and feedforward
networks following the attention operation is omitted just for ease of exposition.

and [DET] × [PATCH] attention. Based on the decomposition, the efficient schemes of Swin Trans-
former are applied only to [PATCH]× [PATCH] attention, which is the heaviest part in computational
complexity, without breaking the two constraints on [DET] tokens. As illustrated in Figure 3, these
modifications fully reuse all the parameters of Swin Transformer by sharing projection layers for
[DET] and [PATCH] tokens, and perform the three different attention operations:

• [PATCH]× [PATCH] Attention: The initial [PATCH] tokens are progressively calibrated across the
attention layers such that they aggregate the key contents in the global feature map (i.e., spatial
form of [PATCH] tokens) according to the attention weights, which are computed by 〈query, key〉
pairs. For [PATCH]×[PATCH] attention, Swin Transformer performs local attention on each window
partition, but its shifted window partitioning in successive blocks bridges the windows of the
preceding layer, providing connections among partitions to capture global information. Without
modifying this concept, we use the same policy to generate hierarchical [PATCH] tokens. Thus, the
number of [PATCH] tokens is reduced by a factor of 4 at each stage; the resolution of feature maps
decreases from H/4 ×W/4 to H/32 ×W/32 over a total of four stages, where H and W denote
the width and height of the input image, respectively.

• [DET]× [DET] Attention: Like YOLOS, we append one hundred learnable [DET] tokens as the ad-
ditional input to the [PATCH] tokens. As the number of [DET] tokens specifies the number of objects
to detect, their number must be maintained with a fixed-scale over the transformer layers. In ad-
dition, [DET] tokens do not have any locality unlike the [PATCH] tokens. Hence, for [DET]× [DET]
attention, we perform global self-attention while maintaining the number of them; this attention
helps each [DET] token to localize a different object by capturing the relationship between them.

• [DET]× [PATCH] Attention: This is cross-attention between [DET] and [PATCH] tokens, which pro-
duces an object embedding per [DET] token. For each [DET] token, the key contents in [PATCH]
tokens are aggregated to represent the target object. Since the [DET] tokens specify different ob-
jects, it produces different object embeddings for diverse objects in the image. Without the cross-
attention, it is infeasible to realize the standalone object detector. As shown in Figure 3, ViDT
binds [DET]× [DET] and [DET]× [PATCH] attention to process them at once to increase efficiency.

We replace all the attention modules in Swin Transformer with the proposed RAM, which receives
[PATCH] and [DET] tokens (as shown in “Body” of Figure 2(c)) and then outputs their calibrated new
tokens by performing the three different attention operations in parallel.

Positional Encoding. ViDT adopts different positional encodings for different types of attention. For
[PATCH]×[PATCH] attention, we use the relative position bias (Hu et al., 2019) originally used in Swin
Transformer. In contrast, the learnable positional encoding is added for [DET] tokens for [DET]×[DET]
attention because there is no particular order between [DET] tokens. However, for [DET] × [PATCH]
attention, it is crucial to inject spatial bias to the [PATCH] tokens due to the permutation-equivariant
in transformers, ignoring spatial information of the feature map. Thus, ViDT adds the sinusoidal-
based spatial positional encoding to the feature map, which is reconstructed from the [PATCH] tokens
for [DET] × [PATCH] attention, as can be seen from the left side of Figure 3. We present a thorough
analysis of various spatial positional encodings in Section 4.2.1.

Use of [DET] × [PATCH] Attention. Applying cross-attention between [DET] and [PATCH] tokens
adds additional computational overhead to Swin Transformer, especially when it is activated at the
bottom layer due to the large number of [PATCH] tokens. To minimize such computational overhead,
ViDT only activates the cross-attention at the last stage (the top level of the pyramid) of Swin Trans-
former, which consists of two transformer layers that receives [PATCH] tokens of size H/32×W/32.
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Thus, only self-attention for [DET] and [PATCH] tokens are performed for the remaining stages except
the last one. In Section 4.2.2 we show that this design choice helps achieve the highest FPS, while
achieving similar detection performance as when cross-attention is enabled at every stage. We pro-
vide more details on RAM including its complexity analysis and algorithmic design in Appendix
A.
3.2 ENCODER-FREE NECK STRUCTURE

To exploit multi-scale feature maps, ViDT incorporates a decoder of multi-layer deformable trans-
formers (Zhu et al., 2021). In the DETR family (Figure 2(a)), a transformer encoder is required at
the neck to transform features extracted from the backbone for image classification into the ones
suitable for object detection; the encoder is generally computationally expensive since it involves
[PATCH] × [PATCH] attention. However, ViDT maintains only a transformer decoder as its neck, in
that Swin Transformer with RAM directly extracts fine-grained features suitable for object detection
as a standalone object detector. Thus, the neck structure of ViDT is computationally efficient.

The decoder receives two inputs from Swin Transformer with RAM: (1) [PATCH] tokens generated
from each stage (i.e., four multi-scale feature maps, {xl}Ll=1 where L = 4) and (2) [DET] tokens gen-
erated from the last stage. The overview is illustrated in “Neck” of Figure 2(c). In each deformable
transformer layer, [DET] × [DET] attention is performed first. For each [DET] token, multi-scale de-
formable attention is applied to produce a new [DET] token, aggregating a small set of key contents
sampled from the multi-scale feature maps {xl}Ll=1,

MSDeformAttn([DET], {xl}Ll=1) =

M∑
m=1

Wm

[ L∑
l=1

K∑
k=1

Amlk ·W ′
mxl(φl(p) + ∆pmlk

)]
, (1)

where m indices the attention head and K is the total number of sampled keys for content aggrega-
tion. In addition, φl(p) is the reference point of the [DET] token re-scaled for the l-th level feature
map, while ∆pmlk is the sampling offset for deformable attention; andAmlk is the attention weights
of the K sampled contents. Wm and W ′

m are the projection matrices for multi-head attention.

Auxiliary Techniques for Additional Improvements. The decoder of ViDT follows the standard
structure of multi-layer transformers, generating refined [DET] tokens at each layer. Hence, ViDT
leverages the two auxiliary techniques used in (Deformable) DETR for additional improvements:
• Auxiliary Decoding Loss: Detection heads consisting of two feedforward networks (FNNs) for

box regression and classification are attached to every decoding layer. All the training losses from
detection heads at different scales are added to train the model. This helps the model output the
correct number of objects without non-maximum suppression (Carion et al., 2020).

• Iterative Box Refinement: Each decoding layer refines the bounding boxes based on predictions
from the detection head in the previous layer. Therefore, the box regression process progressively
improves through the decoding layers (Zhu et al., 2021).

These two techniques are essential for transformer-based object detectors because they significantly
enhance detection performance without compromising detection efficiency. We provide an ablation
study of their effectiveness for object detection in Section 4.3.1.

3.3 KNOWLEDGE DISTILLATION WITH TOKEN MATCHING FOR OBJECT DETECTION

While a large model has a high capacity to achieve high performance, it can be computationally ex-
pensive for practical use. As such, we additionally present a simple knowledge distillation approach
that can transfer knowledge from the large ViDT model by token matching. Based on the fact that
all ViDT models has exactly the same number of [PATCH] and [DET] tokens regardless of their scale,
a small ViDT model (a student model) can easily benefit from a pre-trained large ViDT (a teacher
model) by matching its tokens with those of the large one, thereby bringing out higher detection
performance at a lower computational cost.

Matching all the tokens at every layer is very inefficient in training. Thus, we only match the to-
kens contributing the most to prediction. The two sets of tokens are directly related: (1)P: the set
of [PATCH] tokens used as multi-scale feature maps, which are generated from each stage in the
body, and (2)D: the set of [DET] tokens, which are generated from each decoding layer in the neck.
Accordingly, the distillation loss based on token matching is formulated by

`dis(Ps,Ds,Pt,Dt) = λdis

( 1

|Ps|

|Ps|∑
i=1

∥∥∥Ps[i]− Pt[i]
∥∥∥
2

+
1

|Ds|

|Ds|∑
i=1

∥∥∥Ds[i]−Dt[i]
∥∥∥
2

)
, (2)
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Backbone Type (Size) Train Data Epochs Resolution Params ImageNet Acc.

DeiT
DeiT-tiny (C) ImageNet-1K 300 224 6M 74.5

DeiT-small (C) ImageNet-1K 300 224 22M 81.2
DeiT-base (C) ImageNet-1K 300 384 87M 85.2

Swin
Transformer

Swin-nano ImageNet-1K 300 224 6M 74.9
Swin-tiny ImageNet-1K 300 224 28M 81.2
Swin-small ImageNet-1K 300 224 50M 83.2
Swin-base ImageNet-22K 90 224 88M 86.3

Table 1. Summary on the ViT backbone. “C” is the distillation strategy for classification (Touvron et al., 2021).

where the subscripts s and t refer to the student and teacher model. P[i] and D[i] return the i-th
[PATCH] and [DET] tokens, n-dimensional vectors, belonging to P and D, respectively. λdis is the
coefficient to determine the strength of `dis, which is added to the detection loss if activated.

4 EVALUATION

In this section, we show that ViDT achieves the best trade-off between accuracy and speed (Section
4.1). Then, we conduct detailed ablation study of the reconfigured attention module (Section 4.2) and
additional techniques to boost detection performance (Section 4.3). Finally, we provide a complete
analysis of all components available for ViDT (Section 4.4).

Dataset. We carry out object detection experiments on the Microsoft COCO 2017 benchmark
dataset (Lin et al., 2014). All the fully transformer-based object detectors are trained on 118K train-
ing images and tested on 5K validation images following the literature (Carion et al., 2020).

Algorithms. We compare ViDT with two existing fully transformer-based object detection pipelines,
namely DETR (ViT) and YOLOS. Since DETR (ViT) follows the general pipeline of (Deformable)
DETR by replacing its ResNet backbone with other ViT variants; hence, we use one canonical ViT
and one latest ViT variant, DeiT and Swin Transformer, as its backbone without any modification. In
contrast, YOLOS is the canonical ViT architecture, thus only DeiT is available. Table 1 summarizes
all the ViT models pre-trained on ImageNet used for evaluation. Note that publicly available pre-
trained models are used except for Swin-nano. We newly configure Swin-nano3 comparable to DeiT-
tiny, which is trained on ImageNet with the identical setting. Overall, with respect to the number of
parameters, Deit-tiny, -small, and -base are comparable to Swin-nano, -tiny, and -base, respectively.
Please see Appendix B.2 for the detailed pipeline of compared detectors.

Implementation Details. All the algorithms are implemented using PyTorch and executed using
eight NVIDIA Tesla V100 GPUs. We train ViDT using AdamW (Loshchilov & Hutter, 2019) with
the same initial learning rate of 10−4 for its body, neck and head. In contrast, following the (De-
formable) DETR setting, DETR (ViT) is trained with the initial learning rate of 10−5 for its pre-
trained body (ViT backbone) and 10−4 for its neck and head. YOLOS and ViDT (w.o. Neck) are
trained with the same initial learning rate of 5×10−5, which is the original setting of YOLOS for the
neck-free detector. We do not change any hyperparameters used in transformer encoder and decoder
for (Deformable) DETR; thus, the neck decoder of ViDT also consists of six deformable transformer
layers using exactly the same hyperparameters. The only new hyperparameter introduced, the dis-
tillation coefficient λdis in Eq. (2), is set to be 4. For fair comparison, knowledge distillation is not
applied for ViDT in the main experiment in Section 4.1. The efficacy of knowledge distillation with
token matching is verified independently in Section 4.3.2. Auxiliary decoding loss and iterative box
refinement are applied to the compared methods if applicable.

Regarding the resolution of input images, we use scale augmentation that resizes them such that the
shortest side is at least 480 and at most 800 pixels while the longest at most 1333 (Wu et al., 2019).
More details of the experiment configuration can be found in Appendix B.3–B.5. All the source code
and trained models will be made available to the public at https://github.com/naver-ai/vidt.

4.1 MAIN EXPERIMENTS WITH MICROSOFT COCO BENCHMARK

Table 2 compares ViDT with DETR (ViT) and YOLOS w.r.t their AP, FPS, # parameters, where the
two variants of DETR (ViT) are simply named DETR and Deformable DETR. We report the result
of ViDT without using knowledge distillation for fair comparison. A summary plot is provided in
Figure 1. The experimental comparisons with CNN backbones are provided in Appendix C.1.

3Swin-nano is designed such that its channel dimension is half that of Swin-tiny. Please see Appendix B.1.
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Method Backbone Epochs AP AP50 AP75 APS APM APL Param. FPS

DETR

DeiT-tiny 50 30.0 49.2 30.5 9.9 30.8 50.6 24M 10.9 (13.1)
DeiT-small 50 32.4 52.5 33.2 11.3 33.5 53.7 39M 7.8 (8.8)
DeiT-base 50 37.1 59.2 38.4 14.7 39.4 52.9 0.1B 4.3 (4.9)
Swin-nano 50 27.8 47.5 27.4 9.0 29.2 44.9 24M 24.7 (46.1)
Swin-tiny 50 34.1 55.1 35.3 12.7 35.9 54.2 45M 19.3 (28.1)
Swin-small 50 37.6 59.0 39.0 15.9 40.1 58.9 66M 13.5 (17.7)
Swin-base 50 40.7 62.9 42.7 18.3 44.1 62.4 0.1B 9.7 (12.6)

Deformable
DETR

DeiT-tiny 50 40.8 60.1 43.6 21.4 43.4 58.2 18M 12.4 (16.3)
DeiT-small 50 43.6 63.7 46.5 23.3 47.1 62.1 35M 8.5 (10.2)
DeiT-base 50 46.4 67.3 49.4 26.7 50.1 65.4 0.1B 4.4 (5.3)
Swin-nano 50 43.1 61.4 46.3 25.9 45.2 59.4 18M 7.0 (7.8)
Swin-tiny 50 47.0 66.8 50.8 28.1 49.8 63.9 39M 6.3 (7.0)
Swin-small 50 49.0 68.9 52.9 30.3 52.8 66.6 60M 5.5 (6.1)
Swin-base 50 51.4 71.7 56.2 34.5 55.1 67.5 0.1B 4.8 (5.4)

YOLOS
DeiT-tiny 150 30.4 48.6 31.1 12.4 31.8 48.2 6M 28.1 (31.3)
DeiT-small 150 36.1 55.7 37.6 15.6 38.4 55.3 30M 9.3 (11.8)
DeiT-base 150 42.0 62.2 44.5 19.5 45.3 62.1 0.1B 3.9 (5.4)

ViDT
(w.o. Neck)

Swin-nano 150 28.7 48.6 28.5 12.3 30.7 44.1 7M 36.5 (64.4)
Swin-tiny 150 36.3 56.3 37.8 16.4 39.0 54.3 29M 28.6 (32.1)
Swin-small 150 41.6 62.7 43.9 20.1 45.4 59.8 52M 16.8 (18.8)
Swin-base 150 43.2 64.2 45.9 21.9 46.9 63.2 91M 11.5 (12.5)

ViDT

Swin-nano 50 40.4 59.6 43.3 23.2 42.5 55.8 16M 20.0 (45.8)
Swin-tiny 50 44.8 64.5 48.7 25.9 47.6 62.1 38M 17.2 (26.5)
Swin-small 50 47.5 67.7 51.4 29.2 50.7 64.8 61M 12.1 (16.5)
Swin-base 50 49.2 69.4 53.1 30.6 52.6 66.9 0.1B 9.0 (11.6)

Table 2. Comparison of ViDT with other compared detectors on COCO2017 val set. Two neck-free detectors,
YOLOS and ViDT (w.o. Neck) are trained for 150 epochs due to the slow convergence. FPS is measured with
batch size 1 of 800 × 1333 resolution on a single Tesla V100 GPU, where the value inside the parentheses is
measured with batch size 4 of the same resolution to maximize GPU utilization.

Highlights. ViDT achieves the best trade-off between AP and FPS. With its high scalability, it per-
forms well even for Swin-base of 0.1 billion parameters, which is 2x faster than Deformable DETR
with similar AP. Besides, ViDT shows 40.4AP only with 16M parameters; it is 6.3–12.6AP higher
than those of DETR (swin-nano) and DETR (swin-tiny), which exhibit similar FPS of 19.3–24.7.
ViDT vs. Deformable DETR. Thanks to the use of multi-scale features, Deformable DETR exhibits
high detection performance in general. Nevertheless, its encoder and decoder structure in the neck
becomes a critical bottleneck in computation. In particular, the encoder with multi-layer deformable
transformers adds considerable overhead to transform multi-scale features by attention. Thus, it
shows very low FPS although it achieves higher AP with a relatively small number of parameters. In
contrast, ViDT removes the need for a transformer encoder in the neck by using Swin Transformer
with RAM as its body, directly extracting multi-scale features suitable for object detection.
ViDT (w.o. Neck) vs. YOLOS. For the comparison with YOLOS, we train ViDT without using
its neck component. These two neck-free detectors show relatively low AP compared with other
detectors in general. In terms of speed, YOLOS exhibits much lower FPS than ViDT (w.o. Neck)
because of its quadratic computational complexity for attention. However, ViDT (w.o. Neck) extends
Swin Transformers with RAM, thus requiring linear complexity for attention. Hence, it shows AP
comparable to YOLOS for various backbone size, but its FPS is much higher.
One might argue that better integration could be also achieved by (1) Deformable DETR without
its neck encoder because its neck decoder also has [DET] × [PATCH] cross-attention, or (2) YOLOS
with VIDT’s neck decoder because of the use of multiple auxiliary techniques. Such integration is
actually not effective; the former significantly drops AP, while the latter has a much greater drop in
FPS than an increase in AP. The detailed analysis can be found in Appendix C.2.

4.2 ABLATION STUDY ON RECONFIGURED ATTENTION MODULE (RAM)

We extend Swin Transformer with RAM to extract fine-grained features for object detection without
maintaining an additional transformer encoder in the neck. We provide an ablation study on the two
main considerations for RAM, which leads to high accuracy and speed. To reduce the influence of
secondary factors, we mainly use our neck-free version, ViDT (w.o. Neck), for the ablation study.
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4.2.1 SPATIAL POSITIONAL ENCODING

Method None Pre-addition Post-addition

Type None Sin. Learn. Sin. Learn.

AP 23.7 28.7 27.4 28.0 24.1

Table 3. Results for different spatial encodings for
[DET]× [PATCH] cross-attention.

Spatial positional encoding is essential for [DET] ×
[PATCH] attention in RAM. Typically, the spatial
encoding can be added to the [PATCH] tokens be-
fore or after the projection layer in Figure 3. We
call the former “pre-addition” and the latter “post-
addition”. For each one, we can design the encoding
in a sinusoidal or learnable manner (Carion et al.,
2020). Table 3 contrasts the results with different spatial positional encodings with ViDT (w.o.
Neck). Overall, pre-addition results in performance improvement higher than post-addition, and
specifically, the sinusoidal encoding is better than the learnable one; thus, the 2D inductive bias of
the sinusoidal spatial encoding is more helpful in object detection. In particular, pre-addition with
the sinusoidal encoding increases AP by 5.0 compared to not using any encoding.

4.2.2 SELECTIVE [DET]× [PATCH] CROSS-ATTENTION

The addition of cross-attention to Swin Transformer inevitably entails computational overhead, par-
ticularly when the number of [PATCH] is large. To alleviate such overhead, we selectively enable
cross-attention in RAM at the last stage of Swin Transformer; this is shown to greatly improve FPS,
but barely drop AP. Table 4 summarizes AP and FPS when used different selective strategies for the
cross-attention, where Swin Transformer consists of four stages in total. It is interesting that all the
strategies exhibit similar AP as long as cross-attention is activated at the last stage. Since features are
extracted in a bottom-up manner as they go through the stages, it seems difficult to directly obtain
useful information about the target object at the low level of stages. Thus, only using the last stage is
the best design choice in terms of high AP and FPS due to the smallest number of [PATCH] tokens.

Meanwhile, the detection fails completely or the performance significantly drops if all the stages are
not involved due to the lack of interaction between [DET] and [PATCH] tokens that spatial positional
encoding is associated with. A more detailed analysis of the [DET] × [PATCH] cross-attention and
[DET]× [DET] self-attention is provided in appendices C.3 and C.4.

Stage Ids {1, 2, 3, 4} {2, 3, 4} {3, 4} {4} { }
Metric AP FPS AP FPS AP FPS AP FPS AP FPS

w.o. Neck 29.0 21.8 28.8 29.1 28.5 34.3 28.7 36.5 FAIL 37.7
w. Neck 40.3 14.6 40.1 18.0 40.3 19.5 40.4 20.0 37.1 20.5

Table 4. AP and FPS comparison with different selective cross-attention strategies.

4.3 ABLATION STUDY ON ADDITIONAL TECHNIQUES

We analyze the performance improvement of two additional techniques, namely auxiliary decoding
loss and iterative box refinement, and the proposed distillation approach in Section 3.3. Further-
more, we introduce a simple technique that can expedite the inference speed of ViDT by dropping
unnecessary decoding layers at inference time.

4.3.1 AUXILIARY DECODING LOSS AND ITERATIVE BOX REFINEMENT

Aux. ` Box Ref. Neck AP ∆

Y
O

L
O

S 30.4
X 29.2 −1.2
X X 20.1 −10.3

V
iD

T

28.7
X 27.2 −1.6
X X 22.9 −5.9
X X 36.2 +7.4
X X X 40.4 +11.6

Table 5. Effect of extra techniques with
YOLOS (DeiT-tiny) and ViDT (Swin-nano).

To thoroughly verify the efficacy of auxiliary decod-
ing loss and iterative box refinement, we extend them
even for the neck-free detector like YOLOS; the
principle of them is applied to the encoding layers in
the body, as opposed to the conventional way of using
the decoding layers in the neck. Table 5 shows the
performance of the two neck-free detectors, YOLOS
and ViDT (w.o. Neck), decreases considerably with
the two techniques. The use of them in the encoding
layers is likely to negatively affect feature extraction
of the transformer encoder. In contrast, an opposite
trend is observed with the neck component. Since
the neck decoder is decoupled with the feature extraction in the body, the two techniques make a
synergistic effect and thus show significant improvement in AP. These results justify the use of the
neck decoder in ViDT to boost object detection performance.
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4.3.2 KNOWLEDGE DISTILLATION WITH TOKEN MATCHING

Student ViDT (Swin-nano) ViDT (Swin-tiny)

Teacher ViDT
(small)

ViDT
(base)

ViDT
(small)

ViDT
(base)

λdis = 0 40.4 44.8
λdis = 2 41.4 41.4 45.6 46.1
λdis = 4 41.5 41.9 45.8 46.5

Table 6. AP comparison of student models associated
with different teacher models.

We show that a small ViDT model can benefit
from a large ViDT model via knowledge distil-
lation. The proposed token matching is a new
concept of knowledge distillation for object de-
tection, especially for a fully transformer-based
object detector. Compared to very complex dis-
tillation methods that rely on heuristic rules with
multiple hyperparameters (Chen et al., 2017; Dai
et al., 2021), it simply matches some tokens with
a single hyperparameter, the distillation coefficient λdis. Table 6 summarizes the AP improvement
via knowledge distillation with token matching with varying distillation coefficients. Overall, the
larger the size of the teacher model, the greater gain to the student model. Regarding coefficients,
in general, larger values achieve better performance. Distillation increases AP by 1.0–1.7 without
affecting the inference speed of the student model.

4.3.3 DECODING LAYER DROP

Model ViDT (Swin-nano) ViDT (Swin-tiny)
Metric AP Param. FPS AP Param. FPS

0 Drop 40.4 16M 20.0 44.8 38M 17.2
1 Drop 40.2 14M 20.9 44.8 37M 18.5
2 Drop 40.0 13M 22.3 44.5 35M 19.6
3 Drop 38.6 12M 24.7 43.6 34M 21.0
4 Drop 36.8 11M 26.0 41.9 33M 22.4
5 Drop 32.5 10M 28.7 38.0 32M 24.4

Table 7. Performance trade-off by decoding layer
drop regarding AP, Param, and FPS.

ViDT has six layers of transformers as its neck
decoder. We emphasize that not all layers of the
decoder are required at inference time for high
performance. Table 7 show the performance of
ViDT when dropping its decoding layer one by
one from the top in the inference step. Although
there is a trade-off relationship between accuracy
and speed as the layers are detached from the
model, there is no significant AP drop even when
the two layers are removed. This technique is not
designed for performance evaluation in Table 2
with other methods, but we can accelerate the inference speed of a trained ViDT model to over 10%
by dropping its two decoding layers without a much decrease in AP.

4.4 COMPLETE COMPONENT ANALYSIS

In this section, we combine all the proposed components (even with distillation and decoding layer
drop) to achieve high accuracy and speed for object detection. As summarized in Table 8, there are
four components: (1) RAM to extend Swin Transformer as a standalone object detector, (2) the neck
decoder to exploit multi-scale features with two auxiliary techniques, (3) knowledge distillation to
benefit from a large model, and (4) decoding layer drop to further accelerate inference speed. The
performance of the final version is very outstanding; it achieves 41.7AP with reasonable FPS by only
using 13M parameters when used Swin-nano as its backbone. Further, it only loses 2.7 FPS while
exhibiting 46.4AP when used Swin-tiny. This indicates that a fully transformer-based object detector
has the potential to be used as a generic object detector when further developed in the future.

Component Swin-nano Swin-tiny
# RAM Neck Distil Drop AP AP50 AP75 Param. FPS AP AP50 AP75 Param. FPS

(1) X 28.7 48.6 28.5 7M 36.5 36.3 56.3 37.8 29M 28.6
(2) X X 40.4 59.6 43.3 16M 20.0 44.8 64.5 48.7 38M 17.2
(3) X X X 41.9 61.1 45.0 16M 20.0 46.5 66.3 50.2 38M 17.2
(4) X X X X 41.7 61.0 44.8 13M 22.3 46.4 66.3 50.2 35M 19.6

Table 8. Detailed component analysis with Swin-nano and Swin-tiny.

5 CONCLUSION

We have explored the integration of vision and detection transformers to build an effective and
efficient object detector. The proposed ViDT significantly improves the scalability and flexibility of
transformer models to achieve high accuracy and inference speed. The computational complexity
of its attention modules is linear w.r.t. image size, and ViDT synergizes several essential techniques
to boost the detection performance. On the Microsoft COCO benchmark, ViDT achieves 49.2AP
with a large Swin-base backbone, and 41.7AP with the smallest Swin-nano backbone and only 13M
parameters, suggesting the benefits of using transformers for complex computer vision tasks.

9



Published as a conference paper at ICLR 2022

ETHICS STATEMENT
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plementation (Appendix B.4), and training configuration (Appendix B.5). We will release the code
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An Efficient and Effective Fully Transformer-based Ob-
ject Detector (Supplementary Material)

A RECONFIGURED ATTENTION MODULE

The proposed RAM in Figure 3 performs three attention operations, namely [PATCH] × [PATCH],
[DET] × [PATCH], and [DET] × [DET] attention. This section provides (1) computational complexity
analysis and (2) further algorithmic design for [DET] tokens.

A.1 COMPUTATIONAL COMPLEXITY ANALYSIS

We analyze the computational complexity of the proposed RAM compared with the attention used
in YOLOS. The analysis is based on the computational complexity of basic building blocks for
Canonical and Swin Transformer, which is summarized in Table 94, where T1 and T2 is the number
of tokens for self- and cross-attention, and d is the embedding dimension.

Transformer Canonical Transformer Swin Transformer

Attention Global Self-attention Global Cross-attention Local Self-attention

Complexity O(d2T1 + dT2
1) O(d2(T1 + T2) + dT1T2) O(d2T1 + dk2T1)

Table 9. Computational complexity of attention modules: In the canonical transformer, the complexity of global
self-attention is O(d2T1 + dT2

1), where O(d2T1) is the cost of computing the query, key, and value embed-
dings and O(dT2

1) is the cost of computing the attention weights. The complexity of global cross-attention is
O(d2(T1 + T2) + dT1T2), which is the interaction between the two different tokens T1 and T2. In contrast,
Swin Transformer achieves much lower attention complexity of O(d2T1 + dk2T1) with window partitioning,
where k is the width and height of the window (k << T1,T2).

Let P and D be the number of [PATCH] and [DET] tokens (D << P in practice, e.g., P = 66, 650 and
D = 100 at the first stage of ViDT). Then, the computational complexity of the attention module for
YOLOS and ViDT (RAM) is derived as below, also summarized in Table 10:

• YOLOS Attention: [DET] tokens are simply appended to [PATCH] tokens to perform global self-
attention on [PATCH, DET] tokens (i.e., T1 = P + D). Thus, the computational complexity is
O(d2(P + D) + d(P + D)2), which is quadratic to the number of [PATCH] tokens. If breaking
down the total complexity, we obtain O

(
(d2P + dP2) + (d2D + dD2) + dPD

)
, where the first

and second terms are for the global self-attention for [PATCH] and [DET] tokens, respectively, and
the last term is for the global cross-attention between them.

• ViDT (RAM) Attention: RAM performs the three different attention operations: (1) [PATCH] ×
[PATCH] local self-attention with window partition,O(d2P+dk2P); (2) [DET]× [DET] global self-
attention, O(d2D + dD2); (3) [DET] × [PATCH] global cross-attention, O(d2(D + P) + dDP). In
total, the computational complexity of RAM is O(d2(D + P) + dk2P + dD2 + dDP), which is
linear to the number of [PATCH] tokens.

Consequently, the complexity of RAM is much lower than the attention module used in YOLOS
since D << P. Note that only RAM achieves the linear complexity to the patch tokens. In addition,
one might argue that YOLOS can be efficient if the cross-attention is selectively removed similar to
RAM. Even if we remove the complexity O(dPD) for the global cross-attention, the computational
complexity isO(d2(P+D) +dP2 +dD2), which is still quadratic to the number of [PATCH] tokens.

Attention Type YOLOS ViDT

[PATCH]× [PATCH] O(d2P + dP2) O(d2P + dk2P)
[DET]× [DET] O(d2D + dD2) O(d2D + dD2)
[DET]× [PATCH] O(dPD) O(d2(D + P) + dDP)

Total Complexity O(d2(P + D)+ d(P + D)2) O(d2(D+P) +dk2P+dD2 +dDP)

Table 10. Summary of computational complexity for different attention operations used in YOLOS and ViDT
(RAM), where P and D are the number of [PATCH] and [DET] tokens, respectively (D << P).

4We used the computational complexity reported in the original paper (Vaswani et al., 2017; Liu et al., 2021)
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A.2 ALGORITHMIC DESIGN FOR [DET] TOKENS

A.2.1 BINDING [DET]× [DET] AND [DET]× [PATCH] ATTENTION

Binding the two attention modules is very simple in implementation. [DET] × [DET] and [DET] ×
[PATCH] attention is generating a new [DET] token, which aggregates relevant contents in [DET] and
[PATCH] tokens, respectively. Since the two attention share exactly the same [DET] query embed-
ding obtained after the projection as shown in Figure 3, they can be processed at once by perform-
ing the scaled-dot product between [DET]Q and

[
[DET]K , [PATCH]K

]
embeddings, where Q, K are

the key and query, and [·] is the concatenation. Then, the obtained attention map is applied to the[
[DET]V , [PATCH]V

]
embeddings, where V is the value and d is the embedding dimension,

[DET]new = Softmax
( [DET]Q

[
[DET]K , [PATCH]K

]>
√
d

)
[
[DET]V , [PATCH]V

]
. (3)

This approach is commonly used in the recent Transformer-based architectures, such as YOLOS.

A.2.2 EMBEDDING DIMENSION OF [DET] TOKENS

[DET] × [DET] attention is performed across all the stages, and the embedding dimension of [DET]
tokens increases gradually like [PATCH] tokens. For the [PATCH] token, its embedding dimension
is increased by concatenating nearby [PATCH] tokens in a grid. However, this mechanism is not
applicable for [DET] tokens since we maintain the same number of [DET] tokens for detecting a
fixed number of objects in a scene. Hence, we simply repeat a [DET] token multiple times along the
embedding dimension to increase its size. This allows [DET] tokens to reuse all the projection and
normalization layers in Swin Transformer without any modification.

B EXPERIMENTAL DETAILS

B.1 SWIN-NANO ARCHITECTURE

Model Channel Layer Numbers
Name Dim. S1 S2 S3 S4

Swin-nano 48 2 2 6 2
Swin-tiny 96 2 2 6 2
Swin-small 128 2 2 18 2
Swin-base 192 2 2 18 2

Table 11. Swin Transformer Architecture.

Due to the absence of Swin models comparable to
Deit-tiny, we configure Swin-nano, which is a 0.25×
model of Swin-tiny such that it has 6M training pa-
rameters comparable to Deit-tiny. Table 11 summa-
rizes the configuration of Swin Transformer mod-
els available, including the newly introduced Swin-
nano; S1–S4 indicates the four stages in Swin Trans-
former. The performance of all the pre-trained Swin
Transformer models are summarized in Table 1 in the manuscript.

B.2 DETECTION PIPELINES OF ALL COMPARED DETECTORS

All the compared fully transformer-based detectors are composed of either (1) body–neck–head or
(2) body–head structure, as summarized in Table 12. The main difference of ViDT is the use of
reconfigured attention modules (RAM) for Swin Transformer, allowing the extraction of fine-grained
detection features directly from the input image. Thus, Swin Transformer is extended to a standalone
object detector called ViDT (w.o. Neck). Further, its extension to ViDT allows to use multi-scale
features and multiple essential techniques for better detection, such as auxiliary decoding loss and
iterative box refinement, by only maintaining a transformer decoder at the neck. Except for the two
neck-free detector, YOLOS and ViDT (w.o. Neck), all the pipelines maintain multiple FFNs; that is,
a single FFNs for each decoding layer at the neck for box regression and classification.

We believe that our proposed RAM can be combined with even other latest efficient vision trans-
former architectures, such as PiT (Heo et al., 2021), PVT (Wang et al., 2021) and Cross-ViT (Chen
et al., 2021). We leave this as future work.

B.3 HYPERPARAMETERS OF NECK TRANSFORMERS

The transformer decoder at the neck in ViDT introduces multiple hyperparameters. We follow ex-
actly the same setting used in Deformable DETR. Specifically, we use six layers of deformable
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Pipeline Body Neck Head
Method Name Feature Extractor Tran. Encoder Tran. Decoder Prediction

DETR (DeiT) DeiT Transformer © © Multiple FFNs
DETR (Swin) Swin Transformer © © Multiple FFNs
Deformable DETR (DeiT) DeiT Transformer ©† ©† Multiple FFNs
Deformable DETR (Swin) Swin Transformer ©† ©† Multiple FFNs

YOLOS DeiT Transformer 5 5 Single FFNs

ViDT (w.o. Neck) Swin Transformer+RAM 5 5 Single FFNs
ViDT Swin Transformer+RAM 5 ©† Multiple FFNs

Table 12. Comparison of detection pipelines for all available fully transformer-based object detectors, where †
indicates that multi-scale deformable attention is used for neck transformers.

transformers with width 256; thus, the channel dimension of the [PATCH] and [DET] tokens extracted
from Swin Transformer are reduced to 256 to be utilized as compact inputs to the decoder trans-
former. For each transformer layer, multi-head attention with eight heads is applied, followed by
the point-wise FFNs of 1024 hidden units. Furthermore, an additive dropout of 0.1 is applied before
the layer normalization. All the weights in the decoder are initialized with Xavier initialization. For
(Deformable) DETR, the tranformer decoder receives a fixed number of learnable detection tokens.
We set the number of detection tokens to 100, which is the same number used for YOLOS and ViDT.

B.4 IMPLEMENTATION

B.4.1 DETECTION HEAD FOR PREDICTION

The last [DET] tokens produced by the body or neck are fed to a 3-layer FFNs for bounding box
regression and linear projection for classification,

B̂ = FFN3-layer
(
[DET]

)
and P̂ = Linear

(
[DET]

)
. (4)

For box regression, the FFNs produce the bounding box coordinates for d objects, B̂ ∈ [0, 1]d×4, that
encodes the normalized box center coordinates along with its width and height. For classification, the
linear projection uses a softmax function to produce the classification probabilities for all possible
classes including the background class, P̂ ∈ [0, 1]d×(c+1), where c is the number of object classes.
When deformable attention is used on the neck in Table 12, only c classes are considered without
the background class for classification. This is the original setting used in DETR, YOLOS (Carion
et al., 2020; Fang et al., 2021) and Deformable DETR (Zhu et al., 2021).

B.4.2 LOSS FUNCTION FOR TRAINING

All the methods adopts the loss function of (Deformable) DETR. Since the detection head return a
fixed-size set of d bounding boxes, where d is usually larger than the number of actual objects in an
image, Hungarian matching is used to find a bipartite matching between the predicted box B̂ and
the ground-truth boxB. In total, there are three types of training loss: a classification loss `cl5, a box
distance `l1 , and a GIoU loss `iou (Rezatofighi et al., 2019),

`cl(i) = −log P̂σ(i),ci , ``1(i) = ||Bi − B̂σ(i)||1, and

`iou(i) = 1−
( |Bi ∩ B̂σ(i)|
|Bi ∪ B̂σ(i)|

−
|B(Bi, B̂σ(i))\Bi ∪ B̂σ(i)|

|B(Bi, B̂σ(i))|
)
,

(5)

where ci and σ(i) are the target class label and bipartite assignment of the i-th ground-truth box,
and B returns the largest box containing two given boxes. Thus, the final loss of object detection is
a linear combination of the three types of training loss,

` = λcl`cl + λ`1`l1 + λiou`iou. (6)
5Cross-entropy loss is used with standard transformer architectures, while focal loss (Lin et al., 2017) is

used with deformable transformer architecture.
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Method Backbone Epochs AP AP50 AP75 APS APM APL Param. FPS

DETR ResNet-50 500 42.0 62.4 44.2 20.5 45.8 61.1 41M 22.8 (38.6)
DETR-DC5 ResNet-50 500 43.3 63.1 45.9 22.5 47.3 61.1 41M 12.8 (14.2)
DETR-DC5 ResNet-50 50 35.3 55.7 36.8 15.2 37.5 53.6 41M 12.8 (14.2)
Deform. DETR ResNet-50 50 45.4 64.7 49.0 26.8 48.3 61.7 40M 13.7 (19.4)

ViDT Swin-tiny 50 44.8 64.5 48.7 25.9 47.6 62.1 38M 17.2 (26.5)
ViDT Swin-tiny 150 47.2 66.7 51.4 28.4 50.2 64.7 38M 17.2 (26.5)

Table 13. Evaluations of ViDT with other detectors using CNN backbones on COCO2017 val set. FPS is
measured with batch size 1 of 800 × 1333 resolution on a single Tesla V100 GPU, where the value inside the
parentheses is measured with batch size 4 of the same resolution to maximize GPU utilization.

Method Backbone AP AP50 AP75 APS APM APL Param. FPS

Deformable DETR
Swin-nano

43.1 61.4 46.3 25.9 45.2 59.4 17M 7.0
− neck encoder 34.0 52.8 35.6 18.0 36.3 48.4 14M 22.4

YOLOS
DeiT-tiny

30.4 48.6 31.1 12.4 31.8 48.2 6M 28.1
+ neck decoder 38.1 57.1 40.2 20.1 40.2 56.0 14M 17.1

ViDT
Swin-nano

40.4 59.6 43.3 23.2 42.5 55.8 16M 20.0
+ neck encoder 46.1 64.1 49.7 28.5 48.7 61.7 19M 6.3

Table 14. Variations of Deformable DETR, YOLOS, and ViDT with respect to their neck structure. They are
trained for 50 epochs with the same configuration used in our main experimental results.

The coefficient for each training loss is set to be λcl = 1, λ`1 = 5, and λiou = 2. If we leverage
auxiliary decoding loss, the final loss is computed for every detection head separately and merged
with equal importance. Additionally, ViDT adds the distillation loss in Eq. (2) to the final loss if the
distillation approach in Section 3.3 is enabled for training.

B.5 TRAINING CONFIGURATION

We train ViDT for 50 epochs using AdamW (Loshchilov & Hutter, 2019) with the same initial
learning rate of 10−4 for its body, neck and head. The learning rate is decayed by cosine annealing
with batch size of 16, weight decay of 1×10−4, and gradient clipping of 0.1. In contrast, ViDT (w.o.
Neck) is trained for 150 epochs using AdamW with the initial learning rate of 5 × 10−5 by cosine
annealing. The remaining configuration is the same as for ViDT.

Regarding DETR (ViT), we follow the setting of Deformable DETR. Thus, all the variants of this
pipeline are trained for 50 epochs with the initial learning rate of 10−5 for its pre-trained body (ViT
backbone) and 10−4 for its neck and head. Their learning rates are decayed at the 40-th epoch by a
factor of 0.1. Meanwhile, the results of YOLOS are borrowed from the original paper (Fang et al.,
2021) except YOLOS (DeiT-tiny); since the result of YOLOS (DeiT-tiny) for 800 × 1333 is not
reported in the paper, we train it by following the training configuration suggested by authors.

C SUPPLEMENTARY EVALUATION

C.1 COMPARISON WITH OBJECT DETECTOR USING CNN BACKBONE

We compare ViDT with (Deformable) DETR using the ResNet-50 backbone, as summarized in
Table 13, where all the results except ViDT are borrowed from (Carion et al., 2020; Zhu et al.,
2021), and DETR-DC5 is a modification of DETR to use a dilated convolution at the last stage
in ResNet. For a fair comparison, we compare ViDT (Swin-tiny) with similar parameter numbers.
In general, ViDT shows a better trade-off between AP and FPS even compared with (Deformable)
DETR with the ResNet-50. Specifically, ViDT achieves FPS much higher than DETR-DC5 and
Deformable DETR with competitive AP. Particularly when training ViDT for 150 epochs, ViDT
outperforms other compared methods using the ResNet-50 backbone in terms of both AP and FPS.

C.2 VARIATIONS OF EXISTING PIPELINES

We study more variations of existing detection methods by modifying their original pipelines in
Table 12. Thus, we remove the neck encoder of Deformable DETR to increase its efficiency, while
adding a neck decoder to YOLOS to leverage multi-scale features along with auxiliary decoding
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Query Id: 82 (Cat) Query Id: 94 (Cat) Query Id: 7 (Remote) Query Id: 53 (Remote)Input Image

(a) Cross-attention at all stages {1, 2, 3, 4}.
Query Id: 44 (Cat) Query Id: 49 (Cat) Query Id: 25 (Remote) Query Id: 3 (Remote)Input Image

(b) Cross-attention at the last stage {4}.
Figure 4. Visualization of the attention map for cross-attention with ViDT (Swin-nano).

loss and iterative box refinement. Note that these modified versions follow exactly the same de-
tection pipeline with ViDT, maintaining a encoder-free neck between their body and head. Table 14
summarizes the performance of all the variations in terms of AP, FPS, and the number of parameters.

Deformable DETR shows significant improvement in FPS (+14.4) but its AP drops sharply (−9.1)
when its neck encoder is removed. Thus, it is difficult to obtain fine-grained object detection rep-
resentation directly from the raw ViT backbone without using an additional neck encoder. How-
ever, ViDT compensates for the effect of the neck encoder by adding [DET] tokens into the body
(backbone), thus successfully removing the computational bottleneck without compromising AP; it
maintains 6.4 higher AP compared with the neck encoder-free Deformable DETR (the second row)
while achieving similar FPS. This can be attributed to that RAM has a great contribution to the
performance w.r.t AP and FPS, especially for the trade-off between them.

YOLOS shows a significant gain in AP (+7.7) while losing FPS (−11.0) when the neck decoder
is added. Unlike Deformable DETR, its AP significantly increases even without the neck encoder
due to the use of a standalone object detector as its backbone (i.e., the modified DeiT in Figure
2(b)). However, its AP is lower than ViDT by 2.3AP. Even worse, it is not scalable for large models
because of its quadratic computational cost for attention. Therefore, in the aspects of accuracy and
speed, ViDT maintains its dominance compared with the two carefully tuned baselines.

For a complete analysis, we additionally add a neck encoder to ViDT. The inference speed of ViDT
degrades drastically by 13.7 because of the self-attention for multi-scale features at the neck encoder.
However, it is interesting to see the improvement of AP by 5.7 while adding only 3M parameters; it is
3.0 higher even than Deformable DETR. This indicates that lowering the computational complexity
of the encoder and thus increasing its utilization could be another possible direction for a fully
transformer-based object detector.
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C.3 [DET]× [PATCH] ATTENTION IN RAM

In Section 4.2.2, it turns out that the cross-attention in RAM is only necessary at the last stage of
Swin Transformer; all the different selective strategies show similar AP as long as cross-attention is
activated at the last stage. Hence, we analyze the attention map obtained by the cross-attention in
RAM. Figure 4 shows attention maps for the stages of Swin Transformer where cross-attention is
utilized; it contrasts (a) ViDT with cross-attention at all stages and (b) ViDT with cross-attention at
the last stage. Regardless of the use of cross-attention at the lower stage, it is noteworthy that the
finally obtained attention map at the last stage is almost the same. In particular, the attention map at
Stage 1–3 does not properly focus the features on the target object, which is framed by the bounding
box. In addition, the attention weights (color intensity) at Stage 1–3 are much lower than those at
Stage 4. Since features are extracted from a low level to a high level in a bottom-up manner as they
go through the stages, it seems difficult to directly get information about the target object with such
low-level features at the lower level of stages. Therefore, this analysis provides strong empirical
evidence for the use of selective [DET]× [PATH] cross-attention.

C.4 [DET]× [DET] ATTENTION IN RAM

Stage Id Swin-nano
# 1 2 3 4 AP FPS

(1) X X X X 40.4 20.0
(2) X X X 40.3 20.1
(3) X X 40.4 20.2
(4) X 40.1 20.3
(5) 39.7 20.4

Table 15. AP and FPS comparison with different
[DET]× [DET] self-attention strategies with ViDT.

Another possible consideration for ViDT is the use
of [DET] × [DET] self-attention in RAM. We con-
duct an ablation study by removing the [DET]× [DET]
attention one by one from the bottom stage, and
summarize the results in Table 15. When all the
[DET]× [DET] self-attention are removed, (5) the AP
drops by 0.7, which is a meaningful performance
degradation. On the other hand, as long as the self-
attention is activated at the last two stages, (1) – (3)
all the strategies exhibit similar AP. Therefore, only
keeping [DET] × [DET] self-attention at the last two stages can further increase FPS (+0.2) without
degradation in AP. This observation could be used as another design choice for the AP and FPS
trade-off. Therefore, we believe that [DET]× [DET] self-attention is meaningful to use in RAM.

D PRELIMINARIES: TRANSFORMERS

A transformer is a deep model that entirely relies on the self-attention mechanism for machine trans-
lation (Vaswani et al., 2017). In this section, we briefly revisit the standard form of the transformer.

Single-head Attention. The basic building block of the transformer is a self-attention module, which
generates a weighted sum of the values (contents), where the weight assigned to each value is the
attention score computed by the scaled dot-product between its query and key. Let WQ, WK , and
WV be the learned projection matrices of the attention module, and then the output is generated by

Attention(Z) = softmax
( (ZWQ)(ZWK)>√

d

)
(ZWV ) ∈ Rhw×d,

where WQ,WK ,WV ∈ Rd×d.
(7)

Multi-head Attention. It is beneficial to maintain multiple heads such that they repeat the linear
projection process k times with different learned projection matrices. Let WQi

, WKi
, and WVi

be the learned projection matrices of the i-th attention head. Then, the output is generated by the
concatenation of the results from all heads,

Multi-Head(Z) = [Attention1(Z),Attention2(Z), . . . ,Attentionk(Z)] ∈ Rhw×d,
where ∀i WQi

,WKi
,WVi

∈ Rd×(d/k).
(8)

Typically, the dimension of each head is divided by the total number of heads.

Feed-Forward Networks (FFNs). The output of the multi-head attention is fed to the point-wise
FFNs, which performs the linear transformation for each position separately and identically to allow
the model focusing on the contents of different representation subspaces. Here, the residual connec-
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tion and layer normalization are applied before and after the FFNs. The final output is generated by

H = LayerNorm(Dropout(H ′) +H ′′),

where H ′ = FFN(H ′′) and H ′′ = LayerNorm(Dropout(Multi-Head(Z)) + Z).
(9)

Multi-Layer Transformers. The output of a previous layer is fed directly to the input of the next
layer. Regarding the positional encoding, the same value is added to the input of each attention
module for all layers.
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