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Abstract
Label-free approaches are attractive in cytological
imaging due to their flexibility and cost efficiency.
They are supported by machine learning methods,
which, despite the lack of labeling and the asso-
ciated lower contrast, can classify cells with high
accuracy where the human observer has a little
chance to discriminate cells. In order to better
integrate these workflows into the clinical deci-
sion making process, this work investigates the
calibration of confidence estimation for the auto-
mated classification of leukocytes. In addition,
different visual explanation approaches are com-
pared, which should bring machine decision mak-
ing closer to professional healthcare applications.
Furthermore, we were able to identify general
detection patterns in neural networks and demon-
strate the utility of the presented approaches in
different scenarios of blood cell analysis.

1. Introduction
The complexity of deep learning models is growing in vari-
ous fields. Medical imaging and clinical decision making
are not exempt from this development (Holzinger et al.,
2019; Guo et al., 2017). In recent years, deep learning has
helped to support and automate many diagnoses, if it didn’t
even make them possible in the first place (Shen et al., 2017;
Lundervold & Lundervold, 2019). Despite the potential
benefits, doctors and patients remain skeptical about basing
diagnosis and treatment on the output of black box models.
Adversarial patterns and malfunctions could easily harm
human life in these safety critical scenarios (Zeiler & Fer-
gus, 2014; Rudin, 2019). Recently, the US Food & Drug
Administration (FDA) approved several machine learning
approaches in medical applications (Benjamens et al., 2020)
but adoption could still be faster. From a scientific and
regulatory perspective, the developers of such tools are par-
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ticularly challenged to better address their target groups and
to transparently communicate the performance as well as the
limitations of their products (Holzinger et al., 2019; High-
Level Expert Group on Artificial Intelligence, 2019; Rudin,
2019). In addition, the applications often lack appropri-
ate customization for typical clinical workflows. Decisions
are never made without sound evidence, and equipment
must meet strict quality specifications. The target group is
accustomed to particular types of visualizations that new
technologies must adopt to have a chance of gaining trust
(Evagorou et al., 2015; Vellido, 2020).

Quantitative Phase Imaging (QPI) is one of these new plat-
form technologies that benefit greatly from the advances
in computer vision and machine learning (Nguyen et al.,
2022). Microscopes based on QPI are able to capture the
optical height of cells without time consuming and costly
fluorescence staining. Hence, many hematological (Go et al.,
2018; Ozaki et al., 2019) and oncological (Nguyen et al.,
2017; Ugele et al., 2018; Paidi et al., 2021) applications were
demonstrated in this field. However, the resulting images are
widely unknown to biomedical researchers and practitioners
as they show only limited resemblance to light microscopy
stained images (see Figure 1). Moreover, none of the previ-
ous publications put much emphasis on visually explaining
the results of machine learning models or demonstrating the
robustness of the approaches to perturbations.

In this work, we aim to transfer leukocyte classification as
one of the most widely used laboratory tests (Horton et al.,
2018) from molecular hematology to QPI and deep learning.
To do this, we focus on rather small architectures like the
AlexNet (Krizhevsky et al., 2012) and the LeNet5 (LeCun
et al., 1998), as the cell images do not require thousands
of highly specialized filters, and even larger models would
contradict our quest for transparency. In the following sec-
tions, we will provide a baseline for differentiating four
subtypes of leukocytes with the proposed network architec-
tures. Regarding confidence estimation, we will introduce
modifications for variational inference and compare them
to the frequentist approach. The predictions of the confi-
dence calibrated models will then be used to test different
visual explanation tools to support and communicate their
decisions to the medical target group. Furthermore, we ap-
ply meta-aggregations to derive general detection patterns
for the distinct cell classes dependent on their confidence
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level. The more the network uses visual properties of the
cell that are also important for human experts, the easier it
becomes to justify the decisions. Finally, we will apply our
findings to common obstacles in the cell analysis workflow
and demonstrate the robustness and explainability of the
architectures studied.

2. Background and Related Work
2.1. Confidence Estimation and Calibration

As in many safety critical scenarios, the safe use of clinical
decision support systems (CDSSs) can only be ensured if the
reliability and the limitations of the model can be accurately
stated (High-Level Expert Group on Artificial Intelligence,
2019). Predictions with a low confidence level have to be
checked by human experts, e.g. physicians, whereas the
CDSS gets more autonomy in cases of high confidence.
This approach borrows closely from human decision mak-
ing, where trust is an important dimension of human inter-
action. Therefore, considering confidence estimations helps
in interpreting predictions of deep learning algorithms and
supports the development of a trustworthy interaction of a
user with a CDSS (Guo et al., 2017).

A classification model is said to be calibrated if the predic-
tion probability is equal to the actual probability of being
correct. This behavior can be evaluated using a reliability
plot (DeGroot & Fienberg, 1983; Niculescu-Mizil & Caru-
ana, 2005), in which the accuracy of a model is plotted as
a function of reliability. A perfectly calibrated model is
represented as the identity function. For example, Guo et al.
(2017) studied the confidence calibration of modern neural
networks. While smaller neural networks, such as those pro-
posed in LeCun et al. (1998) or Niculescu-Mizil & Caruana
(2005), appear to produce well-calibrated confidence esti-
mates, this is not true for more complex model architectures.
Larger model architectures such as AlexNet (Krizhevsky
et al., 2012) or ResNet (He et al., 2016) achieve better per-
formance, they also tend to produce significantly higher
confidence values compared to the achieved accuracy.

To counteract this behavior, several methods have been
proposed for re-calibrating a model’s confidence estimates
in post-processing (Platt, 1999; Zadrozny & Elkan, 2002;
Naeini et al., 2015; Kull et al., 2019). Temperature scaling
has been shown to be effective for multiclass (K > 2) classi-
fication tasks. Here, the network logits zi for the i-th sample
for each class k ∈ {1, ...,K} are scaled by a learned scalar
parameter T > 0 before entering the softmax function

σSM

(zi
T

)(k)

=
exp (z(k)

i /T)∑K
j=1 exp (z

(j)
i /T)

. (1)

Once the network is trained, T can be optimized based on
the validation set. The scaling factor T does not affect the

maximum of the softmax function and has in turn no nega-
tive impact on the model performance (Guo et al., 2017).

2.2. Visual Explanation of Deep Learning Models

In addition to calculating accurate confidence estimates, this
work aims to improve the transparency of model predictions
by providing visual explanations similar to Ghosal & Shah
(2021) or Huang et al. (2021).

Model-agnostic methods impose no restrictions on the ar-
chitecture or training of a model and are therefore flexi-
ble in their application. Furthermore, they do not affect
the model performance while still offering intuitive expla-
nations even for uninterpretable features of a black-box
(Ribeiro et al., 2016b). The popular framework for Local In-
terpretable Model-agnostic Explanations (LIME) by Ribeiro
et al. (2016a) approximates the local behavior of any ma-
chine learning model for a given input sample. For this, the
interpretable representation of a sample x ∈ Rd is modeled
as a binary vector x′ ∈ {0, 1}d′

indicating the presence or
absence of important features. For image classification, it is
beneficial to apply this representation to contiguous patches,
so-called super-pixels. Hence, the method is strongly depen-
dent on the chosen segmentation algorithm like Quickshift
(Vedaldi & Soatto, 2008), SLIC (Achanta et al., 2012), or
compact watershed segmentation (Neubert & Protzel, 2014).
The local behavior of the non-linear model f : Rd → R
is approximated by a surrogate model g : {0, 1}d′ → R in
the linear form of g(z′) = wg · z′, with z′ being sampled
from the neighborhood of x. An adaptation for LIME to
work with Bayesian predictive models and approximate both
mean and variance of an explanation from the underlying
probabilistic model is given by Peltola (2018).

Propagation-based approaches, in contrast, use the internal
structure of a neural network to determine the relevance
of features to the model’s internal decision-making. Class
Activation Mapping (Zhou et al., 2016) demonstrated a way
to retroactively add location information to a prediction,
even though the convolutional layers solely acted as pat-
tern detectors. Generalizing this approach to networks that
additionally contain fully-connected layers, Selvaraju et al.
(2017) proposed Gradient-weighted Class Activation Map-
ping (Grad-CAM). Another approach to extract information
from the network’s internals follows the principles of Back-
propagation. This mechanism is commonly applied to train
neural networks and trace back the output weights of a
model to the actual feature map (Springenberg et al., 2015).
Thus, gradient information that contributes to the prediction
of a particular class, i.e., gradients with a positive sign, are
propagated through the network and displayed as an expla-
nation. Guided Backpropagation combines this gradient
information with Grad-CAM to weight these potentially
noisy explanations (Selvaraju et al., 2017).
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Figure 1. Subtypes of leukocytes: The upper row shows the cells
under a light microscope with Giemsa staining (Barcia, 2007) on
substrate. The lower row contains the corresponding phase images
in suspension using monochromatic light at λ=528nm.

Meta-explanations are methods for aggregating individual
explanations to extract general patterns and to draw conclu-
sions about the model’s overall behavior. This can be done
by clustering the explanations (Lapuschkin et al., 2019),
perform a layer-wise relevance propagation (Bach et al.,
2015), or use concept activation vectors (Kim et al., 2018).

3. Methodology and Data Acquisition
3.1. Quantitative Phase Images of Leukocytes

The data used in this work was captured with a QPI micro-
scope as used by Ugele et al. (2018) and Klenk et al. (2019).
The liquid sample stream is focused by a microfluidics chip,
allowing tens of thousands of cells to be imaged under near
in-vivo conditions in a matter of minutes. The resulting
phase images are 512×382 pixels in size, each containing
multiple leukocytes. Background and noise subtraction is
then performed to prepare the images for threshold seg-
mentation and to separate the individual cells into single
cell image patches. The entire preprocessing pipeline is de-
scribed in Appendix A.1. Filtering out debris and defocused
cells by requesting a diameter ≥ 4µm and a circularity ≥
0.85 (see Appendix A.2), we obtained a set of N=11,008
leukocytes, balanced by their class label. They were ran-
domly split into a training (70%), validation (20%) and test
set (10%). Note that Basophil cells were excluded from
the widely known Five-Part Differential data set, as it was
not possible to prepare a sufficient number of cells, due
to their natural sparsity and our limited number of healthy
donors. Consequently, the data set consists of Monocytes,
Lymphocytes, Neutrophil and Eosinophil cells, forming a
Four-Part Differential. Typical examples of cell images are
shown in Figure 1.

3.2. Experimental Setup and Metrics

In this work, we compare the performance of the larger
AlexNet to the smaller LeNet5 in the aforementioned four-
part leukocyte differential. Thus, the last fully-connected
layer was adapted to the four classes. As dropout layers are

necessary to implement variational inference (VI), we intro-
duced one after each fully-connected layer. The single cell
patches of 50×50 pixels were scaled to the expected input
dimensions. In case of AlexNet, the gray-scale phase im-
ages were replicated to three channels. For training, we used
ADAM optimization (Kingma & Ba, 2015) with a cross-
entropy loss function for N samples and K = 4 classes

LCE = − 1

N

∑N
i=1

∑K
j=1 yi,j log(pi,j), (2)

where yi,j is a binary indicator for a correct classification
and pi,j is the prediction probability for an observation
i of class j. The networks’ classification performance is
assessed using the measures of precision and recall

Precision =
Tp

Tp + Fp
, Recall =

Tp

Tp + Fn
(3)

as well as their harmonic mean

F1 = 2 · Precision · Recall
Precision + Recall

. (4)

Predictions are gathered using frequentist deterministic
forward-pushes, in the conventional case. The confidence
estimation is derived from the softmax output. For varia-
tional inference, the dropout layers stay active during testing,
resulting in a probabilistic behavior for a single input. These
outputs are summarized as mean, median and standard devi-
ation to form a prediction, and the values of 100 independent
predictions to form the confidence score.

Besides the reliability plots described in Section 2.1, this
work follows Naeini et al. (2015) for evaluating the con-
fidence estimations. Clustering the described confidence
estimations in M = 10 equally-spaced bins, we are able to
estimate the expected calibration error

ECE =

M∑
m=1

|Bm|
n

∣∣∣acc(Bm)− conf(Bm)
∣∣∣ (5)

as a term describing the average confidence/accuracy devia-
tion of each bin Bm weighted by the number of contributing
samples. To provide a lower quality bound, the maximum
calibration error

MCE =
M

max
m=1

∣∣∣acc(Bm)− conf(Bm)
∣∣∣ (6)

was calculated analogously. Investigating the reliability of
the demonstrated approaches, we conducted every experi-
ment in 15 evaluation runs containing independent initial-
izations and data splits.

4. Experiments
4.1. Model Performance with Variational Inference

As a baseline for the succeeding experiments, we compare
our two model architectures in a frequentist and variational

3



Towards Interpretable Classification of Leukocytes based on Deep Learning

Dropout VI Metric Precision Recall F1 Accuracy

L
eN

et
5

p=0.00 ✗ − 0.922 (1.0e-2) 0.923 (9.2e-3) 0.922 (9.4e-3) 0.927 (9.0e-3)
p=0.25 ✗ − 0.924 (9.9e-3) 0.926 (1.1e-2) 0.925 (1.0e-2) 0.930 (9.1e-3)
p=0.50 ✗ − 0.910 (1.0e-2) 0.913 (1.0e-2) 0.911 (1.0e-2) 0.917 (9.4e-3)
p=0.25 ✓ mean 0.925 (8.4e-3) 0.927 (9.7e-3) 0.926 (8.8e-3) 0.931 (7.6e-3)
p=0.50 ✓ mean 0.910 (1.1e-2) 0.916 (9.8e-3) 0.913 (1.0e-2) 0.918 (9.8e-3)
p=0.25 ✓ median 0.925 (9.1e-3) 0.926 (1.1e-2) 0.924 (1.0e-2) 0.930 (8.8e-3)
p=0.50 ✓ median 0.909 (1.1e-2) 0.915 (1.0e-2) 0.911 (1.0e-2) 0.917 (9.4e-3)

A
le

xN
et

p=0.00 ✗ − 0.965 (5.2e-3) 0.962 (4.8e-3) 0.963 (4.9e-3) 0.967 (4.1e-3)
p=0.25 ✗ − 0.963 (5.2e-3) 0.960 (6.1e-3) 0.962 (5.5e-3) 0.966 (4.4e-3)
p=0.50 ✗ − 0.963 (6.8e-3) 0.959 (5.9e-2) 0.961 (6.3e-3) 0.965 (5.9e-3)
p=0.25 ✓ mean 0.963 (5.2e-3) 0.960 (6.0e-3) 0.962 (5.5e-3) 0.966 (4.4e-3)
p=0.50 ✓ mean 0.963 (6.8e-3) 0.959 (5.9e-3) 0.961 (6.3e-3) 0.965 (5.9e-3)
p=0.25 ✓ median 0.963 (5.2e-3) 0.960 (6.1e-3) 0.962 (5.5e-3) 0.965 (4.4e-3)
p=0.50 ✓ median 0.963 (6.8e-3) 0.959 (5.9e-3) 0.961 (6.3e-3) 0.966 (5.9e-3)

Table 1. Classification results for the test set over 15 runs using
frequentist (VI=✗) and variational inference (VI=✓). The table
shows the averaged results. Standard deviation is stated in brackets.

inference setting. To consider both, precision and recall
characteristics of the tested models, the F1-score was used
as key performance metric. In the case of a frequentist
model, the model output was normalized using a softmax
function and considered as the prediction value. The pre-
diction values of the probabilistic models were calculated
as the mean or median value of 100 independent forward
pushes for each sample. Table 1 lists the performance on
the test set of 15 independent runs. All model and train-
ing configurations showed convergence. In the frequentist
setting the AlexNet (F1=96.3%) reaches a slightly better
performance than the LeNet5 (F1=92.5%) and featured less
variance. The impact of dropout regularization was rather
low. For the LeNet5 a moderate dropout rate of p=0.25 even
improved the classification performance. Hence, in further
experiments we use a dropout rate p=0.50 for AlexNet and
p=0.25 for LeNet5 architectures, if not stated differently.

4.2. Confidence Calibration

For qualitative analysis, we use reliability plots, which show
the accuracy of a model as a function of a confidence score.
To this end, the predictions were grouped into M=10 equal
bins based on their respective confidence estimation. In
case of a perfectly calibrated model, the empirical frequency
should be an identity of the probability, as indicated with
a red line in the following plots. If the frequency for a bin
is below this line, the predictions are less accurate than the
estimated confidence and the model becomes overconfident.
We noticed that the frequencies show a high variance at
lower probabilities and thus extended the vanilla reliability
plots to box plots in the following figures. In the frequentist
setting, Figure 2 reveals more stability and a better default
calibration of the LeNet5. The larger AlexNet, in contrast,
exposes unstable behavior and overconfidence. Applying
temperature scaling to both of the models provided a more
reliable estimate. The overconfidence reduces tremendously
and especially the stability of AlexNet improves. Table 2
registers the effect of the calibration on the ECE and MCE,
which in case can be improved by up to 53.8%.
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Figure 2. Reliability plots for calibration of frequentist models

The probabilistic behavior of a variational model allows
the generation of multiple independent predictions for each
input sample. The mean and median of the observed output
distributions were calculated, and the calibration of these
metrics was analyzed. In addition, the standard deviation
was interpreted as a measure of uncertainty, as opposed to a
confidence measure. Similar to the frequentist approach, the
LeNet5 provided fairly well calibrated confidence scores
for mean and median predictions. The reliability plots in
Figure 3 present only larger deviations for lower prediction
values, which can be explained by the smaller number of
relevant predictions. Also the AlexNet presents a better
initial calibration than in the frequentist setting but is still
slightly overconfident. The standard deviation of variational
predictions provides useful information. Unlike the con-
fidence scores shown before, the standard deviation does
not contribute to the decision making process of the model
but is interpreted as uncertainty measure. While mean and
median are moderately suitable for calibration, standard de-
viation and temperature scaling provided the best variational
confidence optimization in terms of ECE and MCE for both
models. As listed in Table 2, especially the MCE as a worst
case scenario could be reduced, which is crucial for the
underlying medical application.
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Figure 3. Reliability plots for calibration of variational models
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uncalibrated calibrated improvement

Dropout VI Metric ECE MCE ECE MCE ECE MCE
L

eN
et

5

p=0.00 ✗ − 0.34 3.8 0.17 3.0 50.0% ↑ 21.1% ↗
p=0.25 ✗ − 0.25 4.0 0.18 3.7 28.0% ↑ 7.5% →
p=0.50 ✗ − 0.21 3.0 0.20 2.8 4.8% → 6.7% →
p=0.25 ✓ mean 0.26 3.0 0.18 2.8 30.8% ↑ 6.7% →
p=0.50 ✓ mean 0.27 2.9 0.21 2.6 22.2% ↗ 10.3% →
p=0.25 ✓ median 0.26 3.1 0.18 2.9 30.8% ↑ 6.5% →
p=0.50 ✓ median 0.25 3.0 0.24 2.8 4.0% → 6.7% →
p=0.25 ✓ std.dev. 0.21 2.6 0.19 2.6 9.5% → 0.0% →
p=0.50 ✓ std.dev. 0.25 3.2 0.25 2.4 0.0% → 25.0% ↑

A
le

xN
et

p=0.00 ✗ − 0.26 4.9 0.22 4.0 15.4% ↗ 18.4% ↗
p=0.25 ✗ − 0.26 4.9 0.18 3.8 30.8% ↑ 22.4% ↗
p=0.50 ✗ − 0.26 4.0 0.12 3.4 53.8% ↑ 15.0% ↗
p=0.25 ✓ mean 0.25 4.5 0.14 3.5 44.0% ↑ 22.2% ↗
p=0.50 ✓ mean 0.25 4.7 0.14 3.5 44.0% ↑ 25.5% ↑
p=0.25 ✓ median 0.25 4.0 0.14 3.7 44.0% ↑ 7.5% →
p=0.50 ✓ median 0.25 4.6 0.13 3.9 48.0% ↑ 15.2% ↗
p=0.25 ✓ std.dev. 0.23 3.2 0.19 3.0 17.4% ↗ 6.3% →
p=0.50 ✓ std.dev. 0.18 3.4 0.15 3.1 16.7% ↗ 8.8% →

Table 2. Expected and maximum calibration error for all tested
confidence measures averaged over 15 independent evaluation
runs. Error values are stated in a magnitude of 1091.

In summary, the results of examining frequentist and vari-
ational inference methods for LeNet5 and AlexNet archi-
tectures are consistent with the observation that confidence
estimates from larger models tend to be miscalibrated (Guo
et al., 2017). The smaller LeNet5 generated well-calibrated
confidence estimates with considerably low and consistent
deviations from ideal behavior. The more complex AlexNet
architecture provided better classification results, but also
produced overconfident predictions. Temperature scaling
enabled the implementation of a large AlexNet with good
classification performance and well-calibrated confidence
estimates. Consulting the results of Table 1 and 2, the exper-
iments showed that the calibrated AlexNet architecture with
the dropout rate of p = 0.50 achieved the best F1-scores
and the lowest ECE values of all tested models.

4.3. Visual Explanations

As not all of the tested explanation approaches provided
useful results for quantitative phase images, which are not
as rich in features as macroscopic images, we will only
provide the results for LIME and Guided Backpropagation.
The analysis of Occlusions, Backpropagation and Grad-
CAM are stated in the appendix in section A.4.

LIME explanations were not promising either, as their qual-
ity is highly dependent on the image segmentation approach
used. Inspired by the principles of tile coding (Sherstov
& Stone, 2005), best results were achieved by combining
several sets of segmentations into one explanation. The
interpretability was further improved by neglecting the orig-
inal binary setting (Ribeiro et al., 2016a) and emphasizing
the contributions of the individual areas according to their
weight in the surrogate model. Figure 4 displays the re-
sults of the weighted outputs of LIME explanations on four
superimposed SLIC segmentations (Further details on the
optimization of the segmentation can be found in A.3). The

blue areas indicate a positive correspondence of the under-
lying cell structures and the predicted label, red areas show
an opposing relation. Where the exemplary Monocyte and
Lymphocyte exhibit a supporting explanation, larger red
areas for the Neutrophil and Eosinophil examples might
require a double check by a physician or biologist.

10 µm

(a) Monocyte

10 µm

(b) Lymphocyte

10 µm

(c) Neutrophil

10 µm -1

0

1

(d) Eosinophil

Figure 4. LIME explanations using SLIC-segmentation

Guided Backpropagation combines two approaches, by
weighing the results of backpropagation with the class acti-
vation maps of Grad-CAM. Therefore, Guided Backprop-
agation cannot be applied to LeNet5. In most cases, the
generated explanations in Figure 5 highlight only small
parts of the cells, which could imply the detection of nu-
cleus structures. For the samples of classes Lymphocyte and
Eosinophil, the explanation also emphasizes minor gradi-
ents surrounding the actual cell, which could indicate that
the size of the cell plays a role as other background parts in
the distant corners are not affected.

10 µm

(a) Monocyte

10 µm

(b) Lymphocyte

10 µm

(c) Neutrophil

10 µm -1

0

1

(d) Eosinophil

Figure 5. Explanations derived from Guided Backpropagation

4.4. Aggregated Meta-Explanations

With the huge number of cells to be analyzed, biomedical
researchers only need the individual explanations in spe-
cial cases. Usually, the general predictive behavior of the
models is of greater interest. Therefore, in the following
paragraphs, we will examine the models for general predic-
tive patterns. One is based on ground truth labels and confi-
dence scores, and the other is based on clustering methods.
As LIME and Guided Backpropagation seemed to produce
the most interpretable explanations, we will focus on those
two approaches. To calculate the confidence estimates the
variational scenario is used.

Aggregation based on labels and confidence estimations
For aggregating the individual explanations, the confidence
estimates were grouped into six equally sized bins and sep-
arated by their class label. The resulting averaged meta-
explanations for the calibrated LeNet5 can be seen in Fig-
ure 6. Especially for the most certain group, two distinct
patters can be observed: Monocytes and Eosinophils are
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Figure 6. Aggregated LIME explanations based on calibrated con-
fidence estimations for LeNet5

represented by a stronger positive contribution of the inner
part of the cells. In contrast, Neutrophils and Lymphocytes
clearly depict a blue circle, which indicates the importance
of the cell membrane. Furthermore, this behavior correlates
with the biological appearance of the cells: The large Mono-
cytes and small Lymphocytes can be easily differentiated
from the other classes purely considering their size. For the
more similar Neutrophils and Eosinophils, the network has
learned to consider the cells’ interior for one group to make
a distinction.

In general, the prediction patterns for AlexNet and LeNet5
are similar. The LIME aggregations for AlexNet, displayed
in Figure 19 (Appendix), entail an overall higher mean value,
which makes the detected features less prominent. Also, the
meta-explanations using guided backpropagation reveal a
similar behavior. Figure 20 (Appendix) presents the same
patterns for distinguishing the cells in their size as well as
in their interior. For all classes the patterns get more pre-
cise with an increasing confidence estimate. Particularly,
Eosinophils demonstrate the need for very confident esti-
mates, to ensure that the correct parts of the image were
analyzed for the clinical decision making.

Aggregation based on explanation clustering An alter-
native to the aggregation based on ground truth labels is
the aggregation by unsupervised clustering. Here, we will
see whether there are unique classification strategies that
correspond to a particular cell type. In order to remain in
a dimension that is manageable for humans, the high di-
mensional LIME explanations are embedded in a 2D space
using t-SNE (van der Maaten & Hinton, 2008). This embed-
ding is visualized in Figure 7, in which the color of the dots
illustrates the respective cell class. Applying a k-Means
clustering, with k equal to the number of classes, on this 2D
space reveals distinct detection patterns for each individual
class. Solely cluster C3, which is dominated by Eosinophils,
incorporates an apostate group of Lymphocytes. This might
be due to a limited capture quality, reduced sample purity
or the fact that the network uses two distinct strategies to

−20 −10 0 10 20
t-SNE 0

−30

−20

−10

0

10

20

30

t-
SN

E
1

C1
C2
C3
C4

Lymphocytes
Neutrophils
Eosinophils
Monocytes

C1 C2 C3 C4
Cluster

0

20

40

60

80

100

120

D
is

tr
ib

ut
io

n
of

C
el

ls
in

%

Figure 7. Clustering of t-SNE embedded LIME explanations from
AlexNet by a k-Means algorithm. The clusters could not exactly
assign all four classes. Therefore, the cumulative sum for some
clusters is higher than 100% in the chart on the right.

discover the small Lymphocytes. For the same reasons, also
other clusters, especially C2, exhibit some mismatches as
can be seen in the bar chart in Figure 7. Nevertheless, there
is always one dominant cell class which supports our as-
sumption that the network mainly relies on disjoint detection
patterns for each of them.

5. Applications
After calibrating the confidence estimations and extracting
patterns for the general predictive behavior of the networks,
the presented techniques need to prove useful in real-world
applications. Therefore, we confronted the variational setup
for the LeNet5 with unknown data from familiar and un-
familiar domains and tested its classification confidence
and the according visual explanations. We expect a high
confidence only for leukocyte samples so the influence by
unwanted objects stays at a minimum. In cases of over-
confidence, the visual explanation should help to detect a
violation of the general detection pattern in order to mitigate
the interferences.

For an initial overview, we applied a train test split closer
to real-world scenario to the leukocyte data. The test set of
1024 cells now consists exclusively of data from an inde-
pendent donor, which was not present during training. To
test resilience to typical error sources, we introduced two
additional test sets: Erythrocytes make up 99% of human
blood (Alberts, 2017), hence, it is likely that they find their
way into leukocyte images. They should not be classified as
leukocytes and need to exhibit a low confidence score. As
the viscoelastic focusing by the microfluidics chip cannot
guarantee perfect focus for all cells, Defocused examples
should also be discarded by their low confidence score. In
addition to erythrocytes and defocused cells, we picked two
deviant test sets to simulate unfamiliar if not confusing in-
puts for the classifiers: The well known MNIST (LeCun
et al., 2010) data set provides a similar image size but stands
out with prominent edges. A data set of images with the
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Figure 8. Confidence estimates by the LeNet5 for the different test
sets. The error bars describe the standard error.

same dimensions but consisting purely of white Noise com-
pletes the list of challenges. The network could solve the
leukocyte classification task for the new individual with an
accuracy of 92,8% and a high confidence in its predictions,
as Figure 8 displays. Additionally, the results demonstrate a
general robustness against too deviant inputs. Calibrated on
the standard deviation from variation inference, the confi-
dence score shows a tremendous drop for MNIST and Noise
images. Also, for the more closely related test sets, there
is still a significant difference in the networks confidence,
as determined by a Kruskal-Wallis test (Kruskal & Wallis,
1952) and post hoc analysis using Bonferroni correction
(Armstrong, 2014).

5.1. Visual Inspection of Unknown Data

Even if the confidence estimation works well for most data
and a clinical decision can be based exclusively on the
most confident predictions, Figure 8 uncovers that there
are still abnormal objects, which also reach a high confi-
dence. Hence, Figure 9 investigates examples of unknown
objects that could falsely contribute to the four-part differ-
ential. Here, the visual explanations of the noise patterns
(a) and the MNIST image (b) show a totally divergent ap-
pearance which does not fit our general detection behavior.
Some erythrocytes (c), nevertheless, could be too similar
to leukocytes, as their outer cell membrane contributes pos-
itively to the prediction. Though, the inner torus shape
should oppose a confident prediction.
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Figure 9. Examples of unknown data might have a relatively high
confidence estimate but stand out by their visual explanations. The
respective bar plots visualize the predicted class estimates and the
according confidence score in %.

5.2. Outlier Detection by Visual Inspection

Moving on from unknown data, the network also has to deal
with cells and structures which were present during training
but should not influence the classification results as they are
no valid leukocytes. For this purpose, Figure 10 displays
some examples of those outliers, their predicted class, and
the according explanation. These are thrombocytes (a), de-
focused cells (b) or ruptured cells (d). Micro-Thrombotic
events, also called aggregates (c), might have their relevance
for certain diseases (Nishikawa et al., 2021) but are incon-
venient for the four-part differential. Thrombocytes and
ruptured cells should not be a big problem, as they show a
conflicting explanation pattern. However, the thrombocyte
has a rather high confidence score, which could be problem-
atic. Also the defocused cell gets recognized, which is rather
exceptional. The biggest problem still are aggregates as they
contain more than one cell. The explanation in Figure 10c
therefore has two contribution regions resulting in a high
confidence, but two cells of different types would cancel
each other out. Consequently, the proposed method offers
only limited help for outlier detection, but the concerned
objects are easily detectable using other methods. Stricter
filter rules or more advanced techniques for this use case as
presented by Röhrl et al. (2022) are strongly recommended.
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Figure 10. Some kinds of outliers from the leukocyte data set might
be difficult to detect as they show a high confidence and partly
similar explanation patterns. The respective bar plots visualize the
predicted class estimates and the according confidence score in %.

5.3. Mislabeled Data

Finally, there were some discrepancies during the training
of the networks. Normally, we would expect the classifica-
tion error to shrink with an increasing confidence, but for
certain samples this was not the case. This is based on the
fact that hardly any biological sample is of 100% purity.
For the creation of the four-part differential training data
set, this originates from the separation process of the indi-
vidual cell types via immunomagnetic isolation kits. Here,
paramagnetic antibodies are used to label and sort the cells.
It might happen that some of the cells escape this labeling
and contaminate the other classes. Modern isolation kits
reach a purity of 95% and above (Son et al., 2017) and are
constantly improved.
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Figure 11. The top row shows valid representatives of the ground
truth label. The lower rows contain potentially mislabeled cells that
were assigned to another class by the LeNet5 with a confidence
estimate ≥ 95%.

Nevertheless, our calibrated networks could demonstrate
that they detected cells with a high confidence estimate for
a potentially wrong class. Inspecting these images showed
that the network might have become smarter than the ground
truth, as Figure 11 reveals. Obviously, the cell in the top
row has more resemblance to the cells drawn in the same
column below than to the cell class the ground truth label
would imply. Hence, the proposed method could be used
in a human-assisted labeling setting (Holzinger, 2016) to
further purify biological data sets.

6. Discussion and Conclusion
The goal of this work was to improve the interpretability of
machine learning to overcome the limited applicability of
algorithmic decision making in a clinical environment. For
this purpose, we chose the ascending and label-free platform
technology of QPI and performed a four-part differential of
leukocytes, as there are many publications for the proof of
concept but none which focus on transparency.

For the selected use case, the vanilla AlexNet model showed
slightly better classification performance than the smaller
LeNet5, but with a higher overestimation of its confidence.
This drawback was overcome by introducing temperature
scaling as an effective way to calibrate the confidence es-
timations. The application of variational inference further
improved the consistency of the confidence estimation and
reduced the ECE and MCE. Together with the high classifi-
cation accuracy, these values can be used as a quality mea-
sure in a certification processes, when the presented tech-
niques are integrated in a medical assay (Jin et al., 2023).

The comparison of state-of-the-art visualization methods
for deep learning predictions outlined promising results
for LIME and Guided Backpropagation. The methods fa-

cilitated the visualization of relevant decision factors for
individual predictions. LIME was further adapted to convey
the relative importance of individual image regions and to
achieve explanations with higher granularity. It was possible
to derive consistent meta-explanations and extract general
detection patterns by aggregation or unsupervised clustering.
Nevertheless, the appearing patterns had only limited resem-
blance with the biological patterns we hoped to find. As
Figure 6 outlines, Monocytes and Lymphocytes are differ-
entiated by their unique size. Eosinophils and Neutrophils
generally have a similar appearance, but the networks are
able to tell them apart based on their interior which seems
to be more emphasized in the case of Eosinophils.

Applying the optimized technology to unknown data in real-
world scenarios revealed high robustness against deviant
cell structures and contamination. Certainly, leukocytes
from new donors were accurately classified with a high de-
gree of confidence. The calibrated confidence estimation
even allowed the detection of mislabeled cells in the ground
truth. For outlier detection like thrombocytes, aggregates,
defocused or ruptured cells, the methods did not perform
well and we recommend to use other methods for this pur-
pose.

The high and robust classification performance without spe-
cial labeling procedures demonstrates the maturity of the
technologies presented in this and related work (Ugele et al.,
2018; Shu et al., 2021; Fanous et al., 2022). However, if the
essential explainability of the decisions is still missing and
there is no relation to the established biological features, the
clinical acceptance and a market entry will remain challeng-
ing. Therefore, in future work we want to use newer meth-
ods for visual explanations, such as Smooth Grad-CAM++
(Omeiza et al., 2019), EVET (Oh et al., 2021), or FIMF
score-CAM (Li et al., 2023) to help QPI make the expected
breakthrough (Nguyen et al., 2022). We hope that others
will also decide to integrate visual explanation and confi-
dence calibration instead of focusing only on accuracy, in
order to promote the discourse and enable interdisciplinary
work on this topic (Yang et al., 2020).

All in all, the work contributes to making deep learning
more transparent and communicable for the investigated
use case. It represents a development in the right direction
of interpretable machine learning in this field and lays
the foundation for subsequent user studies in biomedical
research and clinical application.
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Ancona, M., Ceolini, E., Öztireli, C., and Gross, M. A uni-
fied view of gradient-based attribution methods for Deep
Neural Networks. In NIPS Workshop on Interpreting,
Explaining and Visualizing Deep Learning, 2017.

Armstrong, R. A. When to use the Bonferroni correction.
Ophthalmic and Physiological Optics, 34(5):502–508,
2014.

Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller,
K.-R., and Samek, W. On pixel-wise explanations for
non-linear classifier decisions by layer-wise relevance
propagation. PloS one, 10(7):e0130140, 2015.

Barcia, J. J. The Giemsa stain: Its History and Applications.
International Journal of Surgical Pathology, 15(3):292–
296, 2007.

Benjamens, S., Dhunnoo, P., and Meskó, B. The state of
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A. Appendix
A.1. Image Preprocessing

To achieve satisfactory segmentation and classification re-
sults, it is crucial to perform preprocessing. Figure 12a
shows that the QPI configuration produces phase images of
numerous cells with dimensions of 512×382 pixels. From
this, we need to extract patches of 50×50 pixels containing
only single cells in order to classify them properly.

20 µm

(a) Raw Phase Image

20 µm

(b) Background Subtraction

20 µm

(c) Threshold Segmentation

20 µm

(d) Cell Image Patches

Figure 12. Preprocessing steps to achieve single cell image patches
from a raw phase image

Background Subtraction To eliminate unwanted artifacts
and background noise, the median of 100 images is com-
puted and then subtracted from each frame. The transi-
tion from Figure 12a to Figure 12b visualizes the achieved
smoothness in the image background. This operation is
possible since the imaging setup and microfulidics channel
are regarded as stationary.

Segmentation Cell detection in the acquired images in-
volves two steps: thresholding and contour finding. First,
the phase images are subjected to binary thresholding. Next,
contours are extracted from the binary images using the
algorithm introduced by Suzuki & Abe (1985). These ex-
tracted contours are then subjected to filtering based on a
minimum contour area. Finally, each cell represented by
a contour is saved as an image patch with dimensions of
50×50 pixels for further analysis. Compare Figures 12c and
12d.

Normalization Normalization is an essential step in
preparing data for machine learning, especially when us-
ing neural networks, as it standardizes the feature or image
values to a uniform range. The most common techniques

are either mean and standard deviation based (such as z-
score normalization) or minimum-maximum based (Singh
& Singh, 2020; Kotsiantis et al., 2007). In this work, the
images were first clipped to limit the range of values, since
images produced by holographic microscopes theoretically
have an unlimited range of values. Specifically, a minimum
clipping value of 0.2 (due to the background) and a maxi-
mum clipping value of 4 were used, which proved effective
in capturing leukocytes while minimizing cell clipping and
utilizing the entire value range. Min-Max normalization was
then used to transform the image values to the interval [0, 1],
which is ideal for neural networks.

A.2. Morphological Features

Hand crafted features are widely spread in the cytology
community. Therefore, we adapted their use in our work
to perform some kind of quality control. Table 3 shows
a subset of the features introduced by Kasprowicz et al.
(2017), Ugele et al. (2018), and Paidi et al. (2021) which
are sufficient to filter out artifacts and impurities of the
blood samples. These features are manly based on OpenCV

Feature Explanation Unit

P # pixels Number of pixels per cell
contour

-

ϕi phase shift measured phase shift of
the i-th pixel

rad

λ wave length wave length of the light
source (528nm)

nm

A area P · pixel area µm2

d diameter
√

4A
π µm

V optical volume
∑P

ϕi · λ
2π µm3

L perimeter OpenCV arcLength()
of the cell contour

µm

C circularity 4π·A
L2 -

Table 3. Morphological Features (excerpt) adapted from (Kasprow-
icz et al., 2017; Ugele et al., 2018; Paidi et al., 2021)

contours1 and the contained pixel values. They typically
look like the contour drawn in red on the cell image in
Figure 13. As texture features have proven to be insufficient
for robust cell classification we do not consider them in this
work (Röhrl et al., 2020).

1https://docs.opencv.org/3.4/dd/d49/
tutorial_py_contour_features.html
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10 µm

Figure 13. Cell image with its detected contour

A.3. LIME Segmentation

The generation of meaningful LIME explanations requires
an interpretable data representation. In a first step, different
algorithms were implemented and compared to calculate
a consistent segmentation of the cell images. To evaluate
these, segmentation results for individual samples of all
relevant classes of leukocytes were manually reviewed. The
evaluation revealed that all tested algorithms require careful
tuning of the respective parameters to achieve satisfactory
outputs for all relevant cell types. Due to the high contrast
between the actual cell and the background of an image,
reasonable segmentation had to be ensured to differentiate
the individual parts within a cell. This was necessary to
obtain granular explanations that take into account both the
background of an image and the internal structure of the
captured cells. (Compare Figure 14)

(a) Monocyte (b) Lymphocyte (c) Neutrophil (d) Eosinophil

Figure 14. SLIC segmentation of cell images as a pre-processing
step for LIME explanations

In order to enable LIME to also evaluate more granular
regions, we tested the options to increase the number of
segments per explanation or to combine the outputs from
several segmentations for the same sample image. The first
approach, to simply increase the number of segments and
thus yielding a more detailed resolution, resulted in noisy
and complex interpretations, which were counterintuitive.
Combining and weighing several segmentations with differ-
ent but constant numbers of segments was promising as can
be seen in Figure 15. The final segmenter consists of S=4
individually configured SLIC approaches. Detailed settings
for the SLIC segmentations can be found in Table 4. The
weighted results of the according LIME explanations are
then merged into one mask via averaging.
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Figure 15. Effects of varying the number of S SLIC segmentations
on the weighted and binary LIME explanations

Name Segments Compactness Sigma

SLIC1 15 10 3.0
SLIC2 25 10 2.5
SLIC3 35 25 3.0
SLIC4 50 15 5.0

Table 4. Parameterization of the used SLIC segmentations

A.4. Visual Explanation

The visual explanation methods in this section were im-
plemented and tested on the leukocyte data set presented.
Unfortunately, they did not prove to be very helpful for
our use case, but we would still like to show the results for
comparison.

Perturbation-based approaches provide explanations by
analyzing the effects of local changes on a model’s response.
These can also be model-agnostic as in case of simple oc-
clusions (Zeiler & Fergus, 2014). Here, different image
areas are systematically covered to determine the influence
of the respective feature. To also detect cross-relationships
between different areas, model-specific gradient informa-
tion needs to be considered (Simonyan et al., 2014; Ancona
et al., 2017). So called meaningful perturbation was intro-
duced by Fong & Vedaldi (2017) to achieve more natural
and plausible imaging. Instead of covering individual areas
of an image with a black square, random noise and blur
are applied to erase information in these specific areas. In
the following example, simple occlusion was used with a
patch of the size of 6×6 pixels to iteratively cover certain
parts of an input image of 50×50 pixels. By observing the
resulting changes in the prediction values, we calculate a
sensitivity value for each pixel as shown in Figure 16. While
the explanations roughly highlight relevant areas of an im-
age, it is difficult to correlate the results with the underlying
cells. Additionally, we noticed a high impact of the cho-
sen patch size on the resulting sensitivity values, leading to
inconsistent results.
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10 µm

(a) Monocyte

10 µm

(b) Lymphocyte

10 µm

(c) Neutrophil

10 µm -1

0

1

(d) Eosinophil

Figure 16. Explanations derived from Occlusion

Backpropagation uses the inner structure of the analyzed
deep learning model to pipe back the prediction value to
the initial input space. The resulting explanations give an
indication of which patterns in the cell image triggered the
activation of the neural networks. Therefore, the explana-
tions presented are highly dependent on the actual size of
the input space. The explanations for an AlexNet model,
displayed in Figure 17, have a higher resolution compared
to a LeNet5 model and are thus easier to interpret. Although
the interpretation of these patterns is not obvious, certain
parts can be attributed to either an internal structure of a cell
or the high contrast of the outer membrane.

10 µm

(a) Monocyte

10 µm

(b) Lymphocyte

10 µm

(c) Neutrophil

10 µm -1

0

1

(d) Eosinophil

Figure 17. Explanations derived from Backpropagation

Grad-CAM explanation focuses on important regions of
the image and produces much smoother results than the
previously shown Backpropagation approach. However, this
technique requires that the dimension of the last convolution
block of the model is multidimensional, thus preventing its
application to the LeNet5. The final convolutional layer
of the implemented AlexNet architecture consists of filters
with a size of 13×13. The total activation of this filter
was aggregated and interpolated to fit the original, higher-
dimensional input space. Therefore, the class activation
maps had a low resolution, which directly depended on the
underlying model architecture. As shown in Figure 18, Grad-
CAM can be used as a basic method to validate relevant
domains for a model but at the same time, the information
is limited and does not allow for further differentiation.

10 µm

(a) Monocyte

10 µm

(b) Lymphocyte

10 µm

(c) Neutrophil

10 µm -1

0

1

(d) Eosinophil

Figure 18. Explanations derived from Grad-CAM

A.5. Aggregation

For the AlexNet architecture it was also possible to extract
general detection patterns for the different leukocyte classes.
The pattern for LIME does not change that much as plotted
in Figure 19. On the other hand, Guided Backpropagation
produces clearly evolving patterns with an increasing confi-
dence, which can be seen in Figure 20. First, the detection
pattern focuses much more on the background, whereas for
a higher confidence score, the attention moves towards the
actual cells.
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Figure 19. Aggregated LIME explanations based on calibrated con-
fidence estimations for AlexNet
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Figure 20. Aggregated Guided Backpropagation explanations
based on calibrated confidence estimations for AlexNet
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