
Under review as a conference paper at ICLR 2023

AN ENCRYPTION FRAMEWORK FOR PRE-TRAINED
NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Having consumed huge amounts of training data and computational resource,
large-scale pre-trained models are often considered as key assets of AI service
providers. This raises an important problem: how to prevent these models from
being maliciously copied when they are running on customers’ computing device?
We answer this question by adding a set of confusion neurons into the pre-trained
model, where the position of these neurons is encoded into a few integers that are
easy to be encrypted. We find that most often, a small portion of confusion neu-
rons are able to effectively contaminate the pre-trained model. Thereafter, we
extend our study to a bigger picture that the customers may develop algorithms
to eliminate the effect of confusion neurons and recover the original network, and
we show that our simple approach is somewhat capable of defending itself against
the fine-tuning attack.

1 INTRODUCTION

In the deep learning era (LeCun et al., 2015), neural networks have become the standard (and pow-
erful) tool of learning representations. The past decade has witnessed the application on a wide
range of applications including computer vision (Krizhevsky et al., 2012), speech recognition (Hin-
ton et al., 2012), natural language processing (Vaswani et al., 2017), etc. Recently, it is verified
that pre-trained models (Brown et al., 2020; Dosovitskiy et al., 2020; Senior et al., 2020) built upon
a large number of data can be transferred into specific scenarios by fine-tuning its parameters in a
relatively smaller dataset and a shorter training procedure. This has laid the foundation of a novel
paradigm of AI development that the service provider makes use of abundant data and computa-
tional resource to offer pre-trained models, so that the customers can build their work on top of the
pre-trained models to save their costs.

However, pre-trained models usually involve plenty of annotated datasets and powerful training
resources, which are considerably expensive. Therefore, they are of great value to the service
providers, but when the customers have access the models (e.g., the models are ran on the devices
controlled by the customer), they can copy the models from the memory which may violate the
intellectual properties of the service provider. Therefore, protecting the intellectual property of the
pre-trained models has become an urgent problem to be solved.

To protect the models, most existing methods are based on watermarking (Uchida et al., 2017; Nagai
et al., 2018; Fan et al., 2019; Zhang et al., 2018). Specifically, the watermark is embedded in the
model, so we can extract the watermark to verify the ownership of the model. However, as passive
verification methods, watermarking-based methods cannot prevent unauthorized use of the model,
which is unacceptable to the provider. In addition, some researchers proposed encryption-based
methods (Maung & Kiya, 2020; Gomez et al., 2018; 2019; Lin et al., 2021; Xue et al., 2021; Cai
et al., 2019), which make the encrypted model cannot be used successfully without the secret key.
Maung & Kiya (2020) proposed to use the training data after secret key preprocessing to train the
model, and so the model only works when the input sample is preprocessed by the secret key. How-
ever, this method introduces high computational overhead especially when there are a substantial
amount of input samples. Xue et al. (2021) proposed to make the model dysfunctional by encrypt-
ing the parameters of the model. However, the pre-trained model usually contains a tremendously
large number of parameters, which makes the computational overhead of the parameter encryption
unacceptable and also substantially enlarges the decryption time.

1

Under review as a conference paper at ICLR 2023

Original Neuron
Confusion Neuron

Input

Encrypted OutputOriginal Output

Encryption Decryption

Input

Location Based
Secret Key

Original Output

Input

Secondary
Encryption

Secondary
Decryption

Figure 1: Overview of the proposed framework. A set of confusion neurons are added into the
original network to obtain a larger network, which is referred to as the encrypted network. A secret
key that records the position of the confusion neurons. During the inference process, the algorithm
is easy to eliminate the confusion connections using the secret key, without which the prediction of
encrypted network is totally different from that of the original network. Generally we do a neuron
encryption of the location information.

Inspired by the new generation of AI frameworks, like dynamic networks (Han et al., 2021) and
pathways (Chowdhery et al., 2022), which adapt or select a subset of neurons from a static network
according to the inputs, we propose a simple encryption framework for pre-trained neural networks.
The framework is shown in Figure 1. A number of confusion neurons are added to some layers of
the network, where the position of these neurons are encoded into a short vector and can be well
encrypted. The added neurons can gradually change the response of the network, layer by layer,
so that the final output is largely contaminated, i.e., the network loses the original ability of, say,
recognizing the input image or understanding the input texts. With the authorized key, however,
the algorithm can easily decipher the code and the network is equivalent to the original one as if
no confusion neurons were added. Intuitively, the damage to the network is stronger with more
confusion neurons added, so that the objective is to use fewer extra costs to gain a stronger ability
of protection. Typically, we find that the location and weights of confusion neurons are crucial to
achieve a good trade-off. That is to say, when the parameters are well set, we can often achieve
heavy damage with a very small portion of redundancy.

In summary, the contributions of this paper are in two folds: (1) We advocate for the importance of
encrypting neural networks and propose a confusion neurons based encryption framework, which
can prevent unauthorized usage and run efficiently. (2) Extensive experiments on image classifica-
tion, detection, segmentation, and natural language processing have verified the effectiveness of the
proposed encryption method.

2 RELATED WORK

Watermarking-based methods. Digital watermarks are extensively used in multimedia field to
protect the copyright of images or videos, which inspires the researchers to address the model pro-
tection problem by embedding the watermarks into the models. In recent years, a large amount of
watermarking-based methods (Uchida et al., 2017; Nagai et al., 2018; Fan et al., 2019; Zhang et al.,
2018; 2020; Adi et al., 2018) are proposed with the increasing awareness of the model intellectual
property protection. (Uchida et al., 2017)and (Nagai et al., 2018) are the earliest methods to embed
the watermarks into the parameters by retraining the model with a regularization term. This sce-
nario needs the access of model parameters, named white-box mode. Correspondingly, black-box

2

Under review as a conference paper at ICLR 2023

scenario means the verification step can only use the inputs and outputs of the model, which is more
realistic. Methods represented by (Adi et al., 2018) use backdoor key images as watermarks, the
labels of which are randomly selected except the true label. Thus the watermarks can be triggered
with lower accuracy by a threshold during verification. However, all the watermarking-based meth-
ods are trying to protect the model after the unauthorized usage happen, thus they are called passive
model protection methods.

Encryption-based methods. Different from watermarking-based methods, which passively verify
the copyright of the model, encryption-based methods (Maung & Kiya, 2020; Gomez et al., 2018;
2019; Lin et al., 2021; Xue et al., 2021; Cai et al., 2019) attempt to make the encrypted model can
not be used by malicious users without the secret key. Encryption-based methods can be divided
into two routes, input encryption (Maung & Kiya, 2020; Gomez et al., 2018; 2019) and parameter
encryption (Lin et al., 2021; Xue et al., 2021), respectively. Input encryption methods commit to
train the model with encrypted images, which is achieved by pixel shuffle (Maung & Kiya, 2020)
or homomorphic encryption (Gomez et al., 2018; 2019). It is worth noting that input encryption
methods typically focus on data protection and always come with a loss of accuracy and efficiency.
While parameter encryption methods are devoted to protect the parameters directly by disturbing
the values(Xue et al., 2021; Cai et al., 2019) or the positions (Lin et al., 2021) of model parameters.

Discussion Although the watermarks added into the models can help verify the authority, they can
only achieve passive protection of the model. The malicious users can still use the entire power of
the model. While existing parameter-encryption based methods can prevent the valuable parameters
being used without authorization, the well designed architecture of the model remains unprotected.
Therefore, our method aims to achieve one-stop encryption of model architecture and model param-
eters under the premise of active intellectual property protection.

3 METHODOLOGY

This section begins with the problem setting of the pre-trained model protection, followed by de-
tailed description of three parts of the proposed framework, model encryption, secret key gener-
ation and model decryption, respectively. Meanwhile, the overview of the proposed framework is
illustrated in Figure 1.

3.1 PROBLEM SETTING

Denote the original network as f(x;α,θ), where the α stands for the network architecture (e.g., for
image recognition, it can be AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan & Zisserman,
2014), ResNet (He et al., 2016), DenseNet (Huang et al., 2017), ViT (Dosovitskiy et al., 2020),
etc.), x is the input (e.g., an image for vision applications), and θ is the parameters. Throughout
this paper, we assume that the computational model has been pre-trained, i.e., θ has been optimized
using a reasonable amount of training data on sufficient computational resource. Our goal is to
protect the network from being maliciously copied, namely, used for commercial purposes without
being authorized by the service provider.

3.2 MODEL ENCRYPTION

From a general viewpoint, when the pre-trained model is made ‘plaintext’ in the customer’s device,
a straightforward way to protect it is to add confusion information to destroy the output of the
model (Maung & Kiya, 2020; Gomez et al., 2018; 2019; Lin et al., 2021; Xue et al., 2021; Cai et al.,
2019). In this paper, we consider a simple method that inserts a controllable number of neurons
into hidden layers of the network and counterfeits the connections related to these neurons as if they
were members of the original model. It is worth noting that the neurons mentioned here and below
stand for the channels of CNN or the neurons of MLP. According to the function of these added
extra parameters, we name them as confusion neurons.

Formally, let the network f(x;α,θ) have L layers, where the output of each layer is denoted by
zl and we use z0 ≡ x for convenience. Provided the architecture of α, we further define the
configuration of the network to be the number of neurons on each layer, denoted by an array of

3

Under review as a conference paper at ICLR 2023

[C1, C2, . . . , CL] where we exclude C0 from the array since the input dimension is often unchange-
able. Given the above definition, the encryption consists of two steps.

Step1: Allocating the location of confusion neurons. Intuitively, for a pre-trained model, if we
add a few extra neurons to the first hidden layer and counterfeit the connections between these
neurons and other originally-existing neurons, the output of z1 will be changed. Since the network
is hierarchical and the subsequent outputs are often relying on z1, the final output can be largely
altered from that of the original network. If the service provider performs such an action and stores
the position of the confusion neurons, the customer will be difficult to derive the original output
for every single input. Given a fixed confusion proportion C, generalizing this idea to inserting
confusion neurons into multiple layers yields the Algorithm. 1 below.

Algorithm 1: Model Encryption with Confusion Neurons
Input: confusion proportion C; strategy S; pre-trained model parameter θ and architecture α.
Output: encrypted parameters θe; encrypted architecture αe; positions of confusion neurons

[P1,P2, . . . ,PL].
1 Step1: Location allocation
2 [C1, C2, . . . , CL]← count(θ,α)
3 ∆C = sum([C1, C2, . . . , CL])
4 for layer l=1:L do
5 ∆Cl ← ∆C/L
6 Pl ← []
7 repeat
8 pl ← sample(range(Cl +∆Cl))
9 if pl not in Pl then

10 Pl.append(pl)

11 until length(Pl) equals ∆Cl;

12 Step2: Weight assignment
13 θe ← update(θ,0)
14 for layer l=1:L do
15 if S is ‘samp’ then
16 wl ← SampleWeight(l,Pl,θe)
17 else
18 wl ← InitalWeight(l,Pl)

19 θe ← update(θe,wl)

20 αe ← encrypt(α, [P1,P2, . . . ,PL])

Step2: Determining the weights of confusion neurons. The goal here is two-fold. Firstly, these
weights should be capable of perturbing the network’s output. Secondly, the weights are difficult to
be either detected or attacked (e.g., by fine-tuning the network on small datasets). This directly ex-
cludes the possibility that the weights are too small (so that adding them affects little to the network)
or too large (so that they are clearly outliers and easily detected) compared to the original weights.

Here, we propose two strategies of assigning weights to confusion neurons, denoted by S. As shown
in Algorithm 1 The first one is to initialize the added confusion neurons with random noises, e.g.,
the Gaussian noise or other by-default initialization methods that come with the specified networks,
namely ‘init’. The second one is to randomly sample weights from the original neurons and assign
to confusion neurons, namely ‘samp’. Though both strategies work very well in perturbing the
network, their behaviors of defending the recovering attack are different. The weights of confusion
neurons is assigned by the update(·) with zeros or the selected values. Specifically, random noises
are easier to be detected, since they cannot keep the original distribution of weights unchanged, but
are more resistant to fine-tuning, while the sampled weights are hard to detect but risk being tuned
efficiently. In Section 4.3, we show that the mixed strategy (i.e., randomly choosing a strategy for
each confusion neuron) is a good choice.

For more intuitive demonstration, Figure 2 shows some representative examples where the encrypted
network produces significantly different outputs from the original network. It is worthy to note that
how confusion neurons contaminate the attention to important regions.

3.3 SECRET KEY GENERATION

As shown in Figure.1, the secret key is generated based on the locations of the added confusion
neurons after the model encryption step. In addition, for each layer named as Nl where 1 ⩽ l ⩽ L,
there is a Cl-dimensional vector recording the actual location (i.e., the ID of channels) that the
confusion neurons have been inserted, denoted as Pl. Then the secret key is generated and stored in
dictionary format:

Kencryption = {Nl : Pl | 1 ⩽ l ⩽ L} (1)

4

Under review as a conference paper at ICLR 2023

Stage1 Stage2 Stage3 Stage4 Stage1 Stage2 Stage3 Stage4

Input Image

Input Image

Input Image

Confusion proportion is 0% Confusion proportion is 5%

Confusion proportion is 10% Confusion proportion is 50%

Confusion proportion is 10%

Confusion proportion is 0% Confusion proportion is 5%

Confusion proportion is 50%

Confusion proportion is 10%

Confusion proportion is 0% Confusion proportion is 5%

Confusion proportion is 50%

Figure 2: Visualization of the attention maps (plotted by the CAM algorithm (Zhou et al., 2016))
of ResNet50 after different amounts of confusion neurons are inserted. The original ResNet50 was
trained on ImageNet. One can see that adding confusion neurons destroys the pre-trained model’s
ability to focus on the discriminative region of the image. Concretely, with the amount of confusion
neurons increases, the attention maps from different stages of ResNet50 become diverged and thus
the classification accuracy drops dramatically.

In addition, if the secret key is stored and distributed in plain text style, it may still be vulnerable to
malicious theft and use. To further improve the security, we introduce binary encryption of the key
file, noted as secondary encryption, and the adopted binary encryption methods can be arbitrarily
chosen. As a result, we achieve effective and robust encryption for neural network models, and
the computation required for binary encryption is scaled down from the entire model file to the
location-based secret key file.

3.4 MODEL DECRYPTION

Last but not least, we briefly discuss the regular scheme to decrypt the model. When a customer is
authorized to use of the pre-trained model, the service provider offers the secret keys using a section
of ciphered codes. When the deep learning toolkit receives the secret keys, the encrypted network
is literally equivalent to the original one by setting the confusion weights to zeros according to the
secret keys, making it straightforward to perform either inference or fine-tuning beyond it. It is
worth noting that after each fine-tuning procedure, the weights of confusion neurons also need to be
updated so as to remain sheltered, which is easily done by calling the weight initialization module
one more time, which is cheap in computation.

4 EXPERIMENTS

In this section, we first explore the effects of confusion neurons at different locations and with
weights on model protection and computational overhead to achieve a better tradeoff in Section 4.1.
Then extensive experiments are conducted to verify the protection over different tasks in Section 4.2.
Finally, we evaluate the ability of the proposed method against the fine-tuning based attack in Sec-
tion 4.3.

5

Under review as a conference paper at ICLR 2023

4.1 TOWARDS A BETTER TRADEOFF BETWEEN COSTS AND PROTECTION

Before delving into details, we first note that for effective encryption, three important factors need
to be considered, namely, the location of confusion neurons, the amount of confusion neurons,
and the strategy of assigning weights to the confusion neurons. For the sake of simplicity, we
by default adopt two assignment strategies, namely, the ‘samp’ strategy where we sample weights
from originally existing weights, and the ‘init’ strategy where we follow the initialization method
described in (He et al., 2015). All the experiments in this part are performed on the ResNet (He
et al., 2016) series. For detailed settings, please refer to the next subsection.

4.1.1 THE LOCATION OF INSERTING CONFUSION NEURONS

We first consider different locations of inserting confusion neurons. The ResNet18 and ResNet50
models are used, and we try two schemes of assigning confusion neurons, one is to keep the con-
fusion proportion C (i.e., ∆Cl/(Cl + ∆Cl) at the l-the layer) identical at all layers, and the other
is to assign all confusion neurons to one single layer. Both the ‘samp’ and ‘init’ weight assignment
strategies are evaluated.

Experimental results are summarized in Figure 3. One can take away an important message that
since the shallow layers (i.e., those closer to input) often have fewer parameters, assigning the same
number of neurons to these layers often causes heavier damages. This seems to motivate us to
inserting more confusion neurons to the shallow layers, however, we point out that an imbalanced
assignment may cause encrypted network easier to be attacked. As an example, although adding
almost all neurons to the first block can easily cause dramatic failure, it is also possible that the
attacker simply discards the first layer and replace it with a module trained independently. Therefore,

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

confusion proportion (%)A
cc

ur
ac

y
of

R
es

N
et

18
(%

,s
am

p)

(a)

block1 block3
block5 block7

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

confusion proportion (%)A
cc

ur
ac

y
of

R
es

N
et

18
(%

,i
ni

t) (b)

block1 block3
block5 block7

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

confusion proportion (%)A
cc

ur
ac

y
of

R
es

N
et

50
(%

,s
am

p) (c)

block1 block4
block8 block14

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

confusion proportion (%)A
cc

ur
ac

y
of

R
es

N
et

50
(%

,i
ni

t) (d)

block1 block4
block8 block14

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

confusion proportion (%)A
cc

ur
ac

y
of

R
es

N
et

18
(%

,s
am

p)

(e)

block1 block3
block5 block7

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

confusion proportion (%)A
cc

ur
ac

y
of

R
es

N
et

18
(%

,i
ni

t) (f)

block1 block3
block5 block7

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

confusion proportion (%)A
cc

ur
ac

y
of

R
es

N
et

50
(%

,s
am

p)

(g)

block1 block4
block8 block14

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

confusion proportion (%)A
cc

ur
ac

y
of

R
es

N
et

50
(%

,i
ni

t) (h)

block1 block4
block8 block14

Figure 3: The impact of adding confusion neurons to different blocks of ResNet-18/50. The top row
shows the setting that the same (relative) proportion of neurons are added to in each block, while
the bottom row shows that the same (absolute) number of neurons are added. Please mind the slight
difference between the ‘samp’ and ‘init’ strategies. All tests are made on ImageNet.

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

confusion proportion (%)

To
p-

1
ac

cu
ra

cy
(%

,s
am

p)

(a)

ResNet18
ResNet34
ResNet50
ResNet101
ResNet152

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

confusion proportion (%)

To
p-

1
ac

cu
ra

cy
(%

,i
ni

t)

(b)

ResNet18
ResNet34
ResNet50
ResNet101
ResNet152

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8
9

confusion proportion (%)re
la

tiv
e

ad
di

tio
na

lp
ar

am
s

(%
) (c)

ResNet18
ResNet34
ResNet50
ResNet101
ResNet152

0 1 2 3 4 5 6 7 8 9 10
0

4

8

12

16

20

confusion proportion (%)re
la

tiv
e

ad
di

tio
na

lt
im

e
(%

,b
s=

64
)

(d)

ResNet18 ResNet34
ResNet50 ResNet101
ResNet152

Figure 4: The impact of adding different amounts of confusion neurons to the ResNet series. All
tests are made on ImageNet. The left two plots show the difference between the ‘samp’ and ‘init’
strategies where the latter is more effective, and the right two plots show the additional overheads
required, which is linear to the confusion proportion.

6

Under review as a conference paper at ICLR 2023

Table 1: Top-1 and top-5 accuracy and parameters of the original and encrypted models on ImageNet
validation dataset. Plain convolution models like VGG, skip-connection based models like ResNet,
and transformer based models like ViT are tested. With a small amount of extra computation (less
than 5%), the pre-trained models are encrypted to protect themselves.

Backbone Original Encrypted
∆Top-1 (%) ↑ ∆Top-5 (%) ↑ ∆Params ↓

Top-1 (%) Top-5 (%) Params (M) Top-1 (%) Top-5 (%) Params (M)

ResNet-18 67.27 87.74 11.69 22.44 38.72 11.87 49.02 51.34 1.54%
ResNet-34 71.33 90.06 21.80 30.43 48.63 22.12 40.90 41.43 1.47%
ResNet-50 74.55 92.01 25.56 57.83 80.08 26.04 16.72 11.13 1.88%
ResNet-101 75.99 92.89 44.55 6.85 12.53 45.82 69.14 80.37 2.85%
ResNet-152 77.01 93.48 60.19 0.17 0.79 61.75 76.84 92.69 2.59%

VGG-16 70.02 89.41 138.36 0.10 0.52 139.58 69.92 88.88 0.88%
VGG-19 70.61 89.92 143.67 0.10 0.46 145.32 70.51 89.46 1.15%

DenseNet-121 71.96 90.70 7.98 0.27 1.08 8.75 71.69 89.62 9.65%
DenseNet-169 73.75 91.54 14.15 0.15 0.70 16.28 73.60 90.84 15.05%
DenseNet-201 74.55 92.16 20.01 0.12 0.58 23.92 74.43 91.58 19.54%
DenseNet-161 75.27 92.52 28.68 0.14 0.66 33.00 75.13 91.86 15.06%

ViT-Tiny 43.11 66.40 5.72 2.33 6.97 5.89 40.78 59.43 2.97%
ViT-Small 72.47 91.20 22.05 12.82 26.66 22.75 59.65 69.54 3.17%
ViT-Base 76.08 92.98 86.57 21.67 39.97 89.39 54.41 53.01 3.26%
ViT-Large 83.43 96.95 304.33 73.23 91.51 314.36 10.20 5.44 3.30%

in practice, we adopt a compromised scheme that inserts the same (absolute) number of confusion
neurons to each layer/block so that the shallow layers are assigned with larger proportions and hence
the entire model is better protected.

4.1.2 THE AMOUNT OF CONFUSION NEURONS

We first investigate the amount of confusion neurons inserted to the pre-trained models. The goal of
this part is to reduce the ratio of the number of confusion neurons over the original network size. We
inherit the conclusion from the previous part which assigns the same number of confusion neurons
to each layer, and test the relationship between reduced recognition accuracy (in terms of image
classification, object detection, and instance segmentation) and the confusion proportion.

Experimental results are shown in Figures 4 and 5, respectively. It is obvious that the destroy of
confusion neurons is highly correlated to the proportion compared with the original model. From
the image classification part, we are satisfied with the fact that adding a small portion of confusion
neurons is sufficient to protect the entire model, for quantitative numbers, please refer to the next
subsection. In addition, we find that the extra computational overhead, in terms of either GPU mem-
ory or inference time, is approximately proportional to the confusion proportion. In particular, when
the confusion proportion is merely 5%, the recognition accuracy on all tasks drops by more than
half, meanwhile the increased cost is negligible, implying that the proposed method is of practical
value in real-world applications.

4.2 PROTECTION ABILITY OVER DIFFERENT TASKS

To verify the effectiveness of deep encryption, we evaluate the proposed method on several main
tasks of deep learning, including image classification, object detection, instance segmentation and
text classification. For all experiments in this part, the confusion proportion is fixed at 5%. Due
to the differences in implementation details as well as that the number of added channels must be

0 1 3 5 7 9 11 13 15 17 19
0

0.1

0.2

0.3

0.4

confusion proportion (%)

D
et

ec
tio

n
m

A
P

(a)

ResNet50
ResNet101

0 1 3 5 7 9 11 13 15 17 19
11

13

15

17

19

21
22

confusion proportion (%)

FP
S

of
de

te
ct

io
n

(b)

ResNet50
ResNet101

0 1 3 5 7 9 11 13 15 17 19
0

0.1

0.2

0.3

0.4

confusion proportion (%)

In
st

an
ce

se
gm

en
ta

tio
n

m
A

P (c)

ResNet50
ResNet101

0 1 3 5 7 9 11 13 15 17 19

11

13

15

17

confusion proportion (%)FP
S

of
in

st
an

ce
se

gm
en

ta
tio

n (d)

ResNet50
ResNet101

Figure 5: The impact of adding different amounts of confusion neurons to the ResNet series. The
tests are made on MS-COCO object detection and instance segmentation tasks.

7

Under review as a conference paper at ICLR 2023

Table 2: The AP and FPS of object detection on the original and encrypted ResNet50/101 models,
evaluated on the MS-COCO validation set.

Backbone Original Encrypted

AP AP50 AP75 APS APM APL FPS AP AP50 AP75 APS APM APL FPS

ResNet-50 37.40 58.10 40.40 21.20 41.00 48.10 21.40 17.60 28.40 18.70 9.30 19.30 23.60 19.10
ResNet-101 39.40 60.10 43.10 22.40 43.70 51.10 15.60 13.50 22.00 14.30 7.50 15.40 17.50 13.30

Table 3: The AP and FPS of instance segmentation on the original and encrypted ResNet50/101
models, evaluated on the MS-COCO validation set.

Backbone Original Encrypted

AP AP50 AP75 APS APM APL FPS AP AP50 AP75 APS APM APL FPS

ResNet-50 34.70 55.70 37.20 15.80 36.90 51.10 16.10 7.20 12.10 7.40 3.30 8.10 10.40 15.00
ResNet-101 36.10 57.50 38.60 16.60 39.20 52.80 13.50 2.80 5.40 2.70 3.00 4.00 1.50 11.90

integer, the actual proportion at each layer and the entire network can be slightly different. The
experimental results on each task are shown below.

Image Classification. We present the image classification results on the ILSVRC2012 classifica-
tion dataset (Russakovsky et al., 2015), which consists of 1,000 classes. We conduct experiments
on a variety of network architectures, and the results are shown in Table 1. We can see that the
performance of the encrypted networks decrease sharply, which demonstrates the effectiveness of
deep encryption. The sensitivity of different network architectures to confusion neurons is different,
because of different implementation details. For instance, the encryption of ResNet (He et al., 2016)
is conducted by adding convolutional kernels into each block, while the confusion convlutional ker-
nels of VGG (Simonyan & Zisserman, 2014) is added layer by layer. Therefore, the VGG network
is obviously more sensitive to the addition of confusion neurons. More implementation details can
be found in the source code, which we will release soon.

Object Detection and Instance Segmentation. We present the results of object detection and
instance segmentation on the challenging MS COCO dataset (Lin et al., 2014). We adopt Faster-
RCNN (Ren et al., 2015) and Mask-RCNN (He et al., 2017) as the basic model for object detection
and instance segmentation, respectively. Due to the results in Tables 2 and 3, deep encryption also
gains good performance on object detection and instance segmentation tasks. The performance of
the original model has decreased sharply with only an additional 5% of confusion neurons, which
shows the superiority of our method.

Chinese Text Classification. In addition to computer vision tasks, deep encryption can also be used
on natural language processing tasks. Here, we evaluate the deep encryption on the BERT (Devlin
et al., 2019) model pretrained with Chinese text. We present the results on a Chinese news text
classification dataset THUCNews (Li & Sun, 2007). This dataset consists of 10 different categories,
each of which has 1000 pieces of data. The confusion addition strategy for BERT is to expand the
fully connected hidden layer and the width of each attention head in each Transformer cell. As
shown in Table 4, effective encryption can be achieved with only a few addition model parameters.

Through the above experimental verification, we validate the effectiveness of deep encryption on
multiple datasets. One can observe that for different architectures or different tasks, the performance
of protection is different. Thus, the confusion proportion can be set basing on specific task and
model, which will help the algorithm to achieve better tradeoff between and protection.

Table 4: Chinese text classification results for ten categories on the THUCNews test set. Three
metrics are reported for the original and encrypted BERT models, which are precision, recall, and
F1-score, respectively. Only 4.21% additional parameters is sufficient for encryption.

Metrics(%) finance realty stocks education science society politics sports game entertainment Params(M)

Original
precision 93.43 96.81 91.27 97.28 91.07 91.50 91.83 99.09 97.16 94.43

102.28recall 92.50 94.20 88.90 96.70 91.80 95.80 93.30 98.00 95.70 96.70
F1-score 92.96 95.49 90.07 96.99 91.43 93.60 92.56 98.54 96.42 95.55

Encrpted
precision 0.00 9.86 10.53 0.00 0.00 9.74 0.00 18.06 0.00 5.44

107.20recall 0.00 0.70 1.20 0.00 0.00 52.30 0.00 68.30 0.00 3.50
F1-score 0.00 1.31 2.15 0.00 0.00 16.43 0.00 28.57 0.00 4.26

8

Under review as a conference paper at ICLR 2023

Table 5: The finetuning results on CUB-100-2011 and FGVC-Aircraft test datasets. Here, ‘samp’,
‘init’, and ‘mixed’ represent different strategies of weight assignment. With the increase of confu-
sion proportion, the performance of fine-tuned encrypted model decreases to a certain extent. The
resistance of different kinds of confusion weight to fine-tuning is significantly different.

Dataset Strategy Accuracy Confusion proportion

0 1% 2% 3% 4% 5%

CUB-200-2011

samp Top-1 (%) 75.48 74.82 74.61 74.51 74.39 73.49
Top-5 (%) 93.79 93.74 93.42 93.39 93.38 92.65

init Top-1 (%) 75.48 13.17 19.69 19.12 13.57 19.33
Top-5 (%) 93.79 36.71 49.85 47.34 36.68 46.05

mixed Top-1 (%) 75.48 72.94 64.55 44.63 27.11 30.17
Top-5 (%) 93.79 92.82 89.80 74.89 57.78 69.12

FGVC-Aircraft

samp Top-1 (%) 74.44 73.49 73.40 73.33 73.10 72.89
Top-5 (%) 95.11 93.70 93.65 93.60 93.44 93.21

init Top-1 (%) 74.44 27.57 16.62 24.00 26.88 24.09
Top-5 (%) 95.11 63.94 47.11 60.88 63.34 61.96

mixed Top-1 (%) 74.44 51.79 34.56 37.14 37.71 15.26
Top-5 (%) 95.11 85.69 71.65 75.01 74.77 39.78

4.3 DEFENDING DECRYPTION BASED ON FINE-TUNING

We evaluate the behavior of the encrypted models when they are attacked via being fine-tuned on
a small dataset and with fewer computations. We inherit the ResNet152 model pre-trained on Ima-
geNet, and test its performance on two fine-grained visual categorization tasks, where the datasets
are CUB-200-2011 (Wah et al., 2011) and FGVC-Aircraft (Maji et al., 2013), both of which are
widely used in the community. For the sake of simplicity, we only adopt image-level labels during
training and testing. The network is fine-tuned for 15 epochs with a cosine annealing schedule,
where the initial learning rate starts with 0.1 and decays till 0.0001. The optimizer is SGD with a
momentum of 0.9 and a weight decay of 0.0001.

Experimental results using different confusion proportions are shown in Table 5, in which both the
‘samp’ and ‘init’ weight assignment strategies are tested. Interestingly, with the ‘samp’ strategy, the
confusion neurons share the same distribution with the original neurons and thus are much easier to
be fine-tuned, while the ‘init’ strategy is much more challenging for the relatively short fine-tuning
procedure. However, recall that the ‘init’ strategy makes the confusion neurons easier to be detected
– this raises another tradeoff between perturbation and camouflage. To compromise both factors, we
develop the ‘mixed’ strategy that each neuron has 50% probability to choose either ‘samp’ or ’init’.

We emphasize that in real-world applications, the pre-trained models are even more difficult to be
attacked by fine-tuning due to two reasons. First, the pre-trained models of value to the service
provider are often very large, e.g., GPT-3 (Brown et al., 2020) that contains 175B parameters, mean-
while the fine-tuning procedure of these huge models is very tricky and time-consuming. Second,
once the customer adopts the fine-tuning attack, it implies that the efficiency of the pre-trained mod-
els is permanently downgraded due to the extra computational overheads. Therefore, we do not
expect the fine-tuning attack to be a major threaten to the proposed encryption approach, neverthe-
less, we believe that stronger decryption methods may be developed in the future.

5 CONCLUSION

In this paper, we formulate the problem of protecting pre-trained models from being maliciously
copied and presents a simple baseline that involves adding confusion neurons to the deep networks.
Our approach works on a set of popular networks across vision and language applications. To the
best of our knowledge, this is the first work on the protection of parameters and architectures of pre-
trained models, and our research set a baseline for the community. We hope to draw the attention of
the community to this important area where very few foundations have been established yet.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Yossi Adi, Carsten Baum, Moustapha Cissé, Benny Pinkas, and Joseph Keshet. Turning your weak-
ness into a strength: Watermarking deep neural networks by backdooring. In USENIX Security
Symposium, 2018.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Yi Cai, Xiaoming Chen, Lu Tian, Yu Wang, and Huazhong Yang. Enabling secure in-memory neural
network computing by sparse fast gradient encryption. 2019 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), pp. 1–8, 2019.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek B Rao, Parker Barnes, Yi Tay,
Noam M. Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Benton C. Hutchinson, Reiner
Pope, James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke,
Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcı́a, Vedant
Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omer-
nick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz,
Erica Oliveira Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi
Wang, Brennan Saeta, Mark Dı́az, Orhan Firat, Michele Catasta, Jason Wei, Kathleen S. Meier-
Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling language mod-
eling with pathways. ArXiv, abs/2204.02311, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Lixin Fan, KamWoh Ng, and Chee Seng Chan. Rethinking deep neural network ownership verifica-
tion: Embedding passports to defeat ambiguity attacks. CoRR, abs/1909.07830, 2019.

Laurent Gomez, Alberto Ibarrondo, José Márquez, and Patrick Duverger. Intellectual property pro-
tection for distributed neural networks - towards confidentiality of data, model, and inference. In
ICETE, 2018.

Laurent Gomez, Marcus Wilhelm, José Márquez, and Patrick Duverger. Security for distributed
deep neural networks towards data confidentiality & intellectual property protection. In ICETE,
2019.

Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang, and Yulin Wang. Dynamic neural
networks: A survey. IEEE transactions on pattern analysis and machine intelligence, PP, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of the
IEEE international conference on computer vision, pp. 2961–2969, 2017.

10

Under review as a conference paper at ICLR 2023

Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep Jaitly,
Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath, et al. Deep neural networks
for acoustic modeling in speech recognition: The shared views of four research groups. IEEE
Signal processing magazine, 29(6):82–97, 2012.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep con-
volutional neural networks. Advances in neural information processing systems, 25:1097–1105,
2012.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

Jingyang Li and Maosong Sun. Scalable term selection for text categorization. In Proceedings of
the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computa-
tional Natural Language Learning (EMNLP-CoNLL), pp. 774–782, 2007.

Ning Lin, Xiaoming Chen, Hang Lu, and Xiaowei Li. Chaotic weights: A novel approach to protect
intellectual property of deep neural networks. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 40:1327–1339, 2021.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pp. 740–755. Springer, 2014.

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
visual classification of aircraft. arXiv preprint arXiv:1306.5151, 2013.

April Pyone Maung Maung and Hitoshi Kiya. Training dnn model with secret key for model protec-
tion. 2020 IEEE 9th Global Conference on Consumer Electronics (GCCE), pp. 818–821, 2020.

Yuki Nagai, Yusuke Uchida, Shigeyuki Sakazawa, and Shin’ichi Satoh. Digital watermarking for
deep neural networks. International Journal of Multimedia Information Retrieval, 7:3–16, 2018.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. Advances in neural information processing systems, 28:
91–99, 2015.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115(3):211–252, 2015.

Andrew W Senior, Richard Evans, John Jumper, James Kirkpatrick, Laurent Sifre, Tim Green,
Chongli Qin, Augustin Žı́dek, Alexander WR Nelson, Alex Bridgland, et al. Improved protein
structure prediction using potentials from deep learning. Nature, 577(7792):706–710, 2020.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and Shin’ichi Satoh. Embedding watermarks into
deep neural networks. Proceedings of the 2017 ACM on International Conference on Multimedia
Retrieval, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. 2011.

11

Under review as a conference paper at ICLR 2023

Mingfu Xue, Zhiyu Wu, Jian Wang, Yushu Zhang, and Weiqiang Liu. Advparams: An active dnn in-
tellectual property protection technique via adversarial perturbation based parameter encryption.
ArXiv, abs/2105.13697, 2021.

Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu, Marc Stoecklin, Heqing Huang, and Ian Molloy.
Protecting intellectual property of deep neural networks with watermarking. pp. 159–172, 05
2018. doi: 10.1145/3196494.3196550.

Jie Zhang, Dongdong Chen, Jing Liao, Han Fang, Weiming Zhang, Wenbo Zhou, Hao Cui, and
Nenghai Yu. Model watermarking for image processing networks. CoRR, abs/2002.11088, 2020.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep
features for discriminative localization. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2921–2929, 2016.

A APPENDIX

You may include other additional sections here.

12

	Introduction
	Related work
	Methodology
	Problem Setting
	Model encryption
	Secret key generation
	Model decryption

	Experiments
	Towards a Better Tradeoff between Costs and Protection
	The Location of Inserting Confusion Neurons
	The Amount of Confusion Neurons

	Protection Ability over Different Tasks
	Defending Decryption Based on Fine-Tuning

	Conclusion
	Appendix

