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ABSTRACT

Combined with the generative prior of pre-trained models and the flexibility of
text, text-driven generative domain adaptation can generate images from a wide
range of target domains. However, current methods still suffer from overfitting
and the mode collapse problem. In this paper, we analyze the mode collapse
from the geometric point of view and reveal its relationship to the Hessian matrix
of generator. To alleviate it, we propose the spectral consistency regularization to
preserve the diversity of source domain without restricting the semantic adaptation
to target domain. We also design granularity adaptive regularization to flexibly
control the balance between diversity and stylization for target model. We conduct
experiments for broad target domains compared with state-of-the-art methods and
extensive ablation studies. The experiments demonstrate the effectiveness of our
method to preserve the diversity of source domain and generate high fidelity target
images.
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Figure 1: Text-driven generative domain adaptation with various text descriptions. The generated
samples both reflect characteristics of target domain from text and preserve the original identity.

1 INTRODUCTION

Generative image modeling has developed significantly in recent years and is able to generate diverse
high-resolution images even indistinguishable from real images. However, training such models re-
quires intense computation resources and large datasets, which restricts the application scope of
generative models. For some scenarios, collecting large datasets is impossible like paintings by spe-
cific artists. Benefiting from Vision-Language models learning from large image-text pairs, text can
be leveraged as a description of abstract visual semantics to guide generative domain adaptation in-
stead of a collection of image samples. As an expressive representation, text has shown great success
in semantic image generation and manipulation recently (Saharia et al., 2022; Ramesh et al., 2022).
Based on the generative prior of pre-trained models and flexible text description of target domain,
text-driven domain adaptation can generate more various images and have promising applications.

To reduce the requirement of training samples, traditional methods propose to train generative mod-
els in the target domain with only limited samples by adapting pre-trained models in the large-scale
source domain which contains high-level semantic knowledge as a generative prior. These few-shot
adaptation methods either finetune only a part of parameters within networks to preserve most source
domain knowledge (Mo et al., 2020) or impose strong regularization on the generated images (Xiao
et al., 2022; Zhu et al., 2021). However, these methods still require additional training samples
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of target domain and adversarial training process. As the number of samples drops, the image fi-
delity and diversity also hurt severely. Different from these methods, text-driven domain adaptation
requires no image samples but texts to describe the target domain. Pioneer work (Gal et al., 2021)
proposed to encourage the visual change between samples from target and source generators to align
with semantic direction described by text in the CLIP (Radford et al., 2021) embedding space, which
achieves generative adaptation for miscellaneous domains in short training time.

The main challenge of text-driven GAN adaptation is the mode collapse problem due to the entangle-
ment of intra-domain semantics and inter-domain style in text representation. Besides the specified
target style described by text, there also exists an unknown pattern for the semantics of images. This
leads to a decrease of variations in generated images when the style effect is optimized to approach
target domain. As shown in Figure 2, while the number of iterations increases, the generated sample
tends to have similar patterns of mouth and eyes, which reduces most of the variations in the origin
model. The main reason for the mode collapse problem is that the optimization process only cares
about the distance of generated samples to target domains, and the intra-domain feature variations
are easily ignored.

To address the above challenge, Zhu et al. (2021) proposed to preserve the diversity of source domain
through a within domain loss which keeps consistency between sample changes in source domain
and target domain. However, this regularization is too strong to restrict the style effect of target
generator close to source domain. The previous theorem about GAN latents analysis has shown
that the Hessian matrix of generator reflects the variations of generator and can be used to explore
meaningful directions from top eigenvectors. Inspired by this, we try to leverage the spectrum
of Hessian matrix as a quantitative evaluation of model diversity in the adaptation problem. This
disentangles the relative diversity between generated samples from absolute generative distribution
and makes a general way to regularize diversity of generative model.

In this work, we propose spectral consistency regularization to solve the problem of mode collapse
in text-driven domain adaptation from the geometric point of view. First, we analyze the Hessian
matrix of generator’s manifold in the metric space by eigendecomposition. The eigenvalues of
Hessian matrix are decreasing in the adaptation process, which is consistent with the mode collapse
problem of visual observations. Second, we introduce the spectral consistency regularization on
the Hessian matrix to prevent the latent space of generator from degrading. This regularization
helps preserve intra-domain variations of source domain without restricting style effects of target
generators. We further develop a stochastic method to regularize the spectrum of Hessian matrix
without calculating the full matrix, which reduces the expensive computational cost. Finally, we
design the granularity adaptive regularization considering the layer-decomposition characteristic of
W+ space in StyleGAN.

In summary, our contributions of this paper are as follows:

1. We analyze the commonly occurred mode collapse problem in GAN adaptation from the
geometric point of view and provide a quantitative evaluation of model diversity to reveal
the reason of mode collapse.

2. We propose the spectral consistency regularization for text-driven generative domain adap-
tation, which both preserve the diversity of original domain and generates high fidelity im-
ages of target domain. A granularity adaptive regularization is further designed to flexibly
control the balance between diversity and stylization for target model.

3. We conduct experiments and ablation studies for a wide range of target domains. The
experiments show the effectiveness of our proposed spectral consistency regularization and
its applications to downstream tasks like image editing and image-to-image translation.

2 RELATED WORK

Text-driven Image Synthesis and Manipulation Traditional methods approached text-driven im-
age generation by training a conditional GAN(Reed et al., 2016). Several following works have
been proposed to improve generation quality either by multi-scale networks (Zhang et al., 2017)
or attention mechanism (Xu et al., 2018). Recently, transformer-based auto-regressive generative
models were introduced to view text-driven image synthesis as conditional sequence generation of
visual tokens conditioning on text embeddings (Esser et al., 2021; Ramesh et al., 2021; Yu et al.,
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2022). Diffusion models were also leveraged as the decoder for image generation, which achieves
tremendous improvement for generating high quality images (Saharia et al., 2022; Ramesh et al.,
2022).

Another kind of method is to leverage Contrastive Language-Image Pre-training (CLIP) (Radford
et al., 2021) models as knowledge guidance for text based image generation. This is achieved by
optimizing the latent code of pretrained generator to bring close the distance between generated
images and input text in the shared embedding space. The optimized latent codes of generator are
either in the StyleGAN latent space (Patashnik et al., 2021) or VQGAN codebook space (Crowson
et al., 2022). Some methods also defined the parametrized space by vector graphics such as Bezier
curves (Frans et al., 2021).

Few-shot GAN Adaptation aims to transfer pretrained generator to another domain when there are
not enough samples to train from scratch. Its main challenge is the mode collapse problem because
the generator is prone to overfit training samples in target domain and lose the diversity of the origin
domain. There have been many methods to tackle this problem. They either froze most of the
parameters of the pre-trained network(Mo et al., 2020) or embedded a small number of trainable
parameters into the source model(Noguchi & Harada, 2019). Recently, Ojha et al. (2021) proposed
cross-domain distance consistency loss to preserve the relative similarities and differences between
instances in the source domain. Xiao et al. (2022) introduced spatial structural consistency loss to
align the spatial information between the synthesis image pairs of the source and target domains.
These methods still require manually collected samples, and as the number of samples decreases,
the mode collapse problem becomes more apparent.

Besides, StyleGAN-NADA (Gal et al., 2021) further proposed to take advantage of the CLIP (Rad-
ford et al., 2021) model as knowledge guidance for GAN adaptation, and only natural language
prompts are required without even a single image. Similarly, Zhu et al. (2021) used the image en-
coder of CLIP for one-shot adaptation. However, these methods still suffer from the mode collapse
problem. In this paper, we propose the spectral consistency regularization to tackle the problem of
mode collapse without hurting target generation performance.

Latent Space Analysis of GANs Many works have explored the latent space of pretrained genera-
tor for image manipulation. Some methods used supervised datasets to learn directions in the latent
space for attribute editing (Shen et al., 2020) or semantic image editing (Ling et al., 2021). Other
works instead applied unsupervised methods to reveal the latent space. Shen & Zhou (2021) decom-
posed the learned weights of the pre-trained network to identify semantically meaningful directions.
Härkönen et al. (2020) applied principal component analysis in the latent space. Recently, Wang
& Ponce (2021) proposed to analyze the latent space of generative models from geometric point
of view. They found that the eigenvectors corresponding to the largest eigenvalues of the Hessian
matrix for generator dominate interpretable variations. In this paper, we analyze the GAN adapta-
tion problem in a similar way and propose to regularize target generator by the spectrum of Hessian
matrix.

3 METHOD

3.1 TEXT-DRIVEN GENERATIVE DOMAIN ADAPTATION

Text-driven domain adaptation aims to transfer a pretrained generator to target domain specified by
the text description. To guide the domain adaptation by text, pre-trained CLIP model is leveraged
to measure the similarity between image and text. CLIP is a Vision-Language model trained on 400
million (image, text) pairs collected from the internet with contrastive loss (Radford et al., 2021).
One commonly used objective function for text-driven image manipulation is the global loss that
optimizes the similarity between generated images and target text:

Lglobal = DCLIP (G(z), ttarget) (1)

where DCLIP is the cosine distance in the CLIP space, ttarget is the target text. However,
this only applies to in-domain image manipulation combined with identity consistency regulariza-
tion(Patashnik et al., 2021), and this regularization is too strong for cross-domain adaptation with
large domain gaps like human to werewolf. Direct optimization of the above global loss leads to ad-
versarial solutions since adding pixel-level perturbations can fool the CLIP classifier in the absence
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of a generative prior favoring real-image manifold (Gal et al., 2021). To overcome this limit, the
directional loss is used to optimize the direction between source and target domain:

Ldirection = 1− ∆I ·∆T
|∆I||∆T |

∆T = ET (ttarget )− ET (tsource ) ,∆I = EI (Gtrain (z))− EI (Gfrozen (z))

where ET and EI are the text and image encoder of CLIP, tsource and ttarget are the source and tar-
get class texts. The directional loss can prevent adversarial solutions. Since target generated images
should have given direction to corresponding source images, generating a single adversarial instance
is impossible. At training time, the same latent code is fed into source and target generator, then the
target generator is optimized using the directional loss. However, the directional loss proposed by
StyleGAN-NADA still suffers from the mode collapse problem, as shown in the images of Figure 2.
So we propose the spectral consistency regularization derived from geometry analysis of GAN to
resolve this problem.

3.2 GEOMETRY ANALYSIS OF GAN ADAPTATION

We denote the generative network as a mapping from latent code z to a manifold in image space as
G(z). Considering a squared distance function d2 for two images, we express the local variations of
G(z) from moving towards direction ∆z by second-order Taylor expansion. This is formulated as:

lim
∆z→0

d2(G(z), G(z + ∆z)) = d2(G(z), G(z)) +
∂d2(G(z), G(z + ∆z))

∂∆z
·∆z

+ ∆zT · ∂
2d2(G(z), G(z + ∆z))

∂∆z2
·∆z (2)

The first two terms are zero since d2(G(z), G(z + ∆z)) is local minima when ∆z = 0. Denote the
second derivatives as Hessian matrix H(z), and we have d2(G(z), G(z + ∆z)) = ∆zTH(z)∆z.
For a normalized vector ∆z, we can conclude that σmin ≤ d2(G(z), G(z + ∆z)) ≤ σmax, where
σmin and σmax are the smallest and largest eigenvalues of H . Thus, we can use the trace norm of
Hz to reflect the statistics of diversity in generative models, which is the sum of all eigenvalues of
H . Especially, for a squared L2 distance function in metric space φ, d2(z1, z2)φ = 1

2‖φ(G(z1)) −
φ(G(z2))‖2, the Hessian matrix Hφ(z0) is a simple transformation from the Jacobian Jφ(z0):

Hφ (z0) =
∂2

∂z2

1

2
‖φ (z0)− φ(z)‖22 = Jφ (z0)

T
Jφ (z0) , (3)

vTHφ (z0)v = ‖Jφ (z0)v‖2 , Jφ (z) =
∂φ(G(z))

∂z
, (4)

and the top eigenvectors of Hφ correspond to right singular vectors of the Jacobian Jφ.
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Figure 2: The mode collapse problem in the photo-to-sketch domain adaptation by StyleGAN-
NADA Gal et al. (2021). The trace norm of Hessian matrix is gradually decreasing, which is con-
sistent with the visual examples showing similar patterns with mouth and eyes.
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To analyze the mode collapse problem, we calculate the statistics of Hessian trace from different
samples of z during adaptation process of the previous state-of-the-art method. The results of do-
main adaptation from photo to sketch with StyleGAN-NADA Gal et al. (2021) is shown in Figure 2.
We find that as the iteration count increases, the mode collapse problem becomes more severe and
the Hessian trace is also decreasing, which proves that the Hessian trace can reflect the diversity of
generator. In the early stage of adaptation, the decrease of trace norm are mainly caused by style
adaptation since there are no color variations for sketch domain. But for the late stage from step 200
to step 400, the style effect changes little and the structures tend to have the same pattern. Since the
target text only represents a fixed direction without variation, different samples are encouraged to
approach the same fixed pattern.

3.3 SPECTRAL CONSISTENCY REGULARIZATION
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Figure 3: Illustration of our proposed method for text-driven generative domain adaptation. The
training objective of our model consists of directional loss and spectral consistency loss. We feed
the same latent code to source generator and target generator and generates a pair of source and
target images. The directional loss encourages the direction between embeddings of the pair to align
with the semantic direction of text description. The spectral consistency loss regularizes the trace
norm of Hessian matrix of target generator to prevent the mode collapse problem.

To prevent the target generator from mode collapse, we propose spectral consistency regularization
to prevent the diversity of generator from degrading, which is calculated as:

Lreg = ‖Trace(Hs(z))− Trace(Ht(z))‖, (5)

whereHs(z) andHt(z) are the Hessian matrix of the source generator and target generator evaluated
with the same latent code z. However, directly computing the Hessian matrix requires backprop-
agation n times where n is the dimension of feature vector in metric space. Instead, we use the
Hutchinson’s method for trace estimator (Hutchinson, 1989) to compute a stochastic estimator of
Hessian Trace, which is formulated as:

Trace(H(z)) = E[vTH(z)v] = E[‖Jφ(z)v‖2], v ∼ Rademacher(
1

2
) (6)

The second transformation is derived from Equation 2 and 3. So the calculation of Hessian matrix
is transformed into the calculation of Jacobian-Vector product.

Different from the within domain loss(Zhu et al., 2021) which restricts target generated samples
based on relative difference of source samples, the spectral consistency regularization only cares
about the diversity of target model. This doesn’t impose restriction on the direction of target adap-
tation, so our method can generate samples more consistent with target text without losing model
diversity.

The training objective of text-driven generative domain adaptation is a weighted combination of
directional loss and spectral consistency regularization loss L = Ldir + λLreg. Since different
target domains have their own characteristic, it is required to tune the hyperparameter λ for better
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performance. To prevent the exhausting hyperparameter searching, we propose an adaptive loss
reweighting method to balance the influence of these two loss items. Specifically, the adaptive
weight λ is calculated as λspectral

‖∇GLLdir‖
‖∇GLLreg‖

, where GL denotes the last layer of generator and
λspectral is a manually specified hyperparameter, typically 1.0 is an appropriate choice.

3.4 GRANULARITY ADAPTIVE REGULARIZATION

For text-driven domain adaptation problem, the adaptation granularity of different target domains
varies from texture to structure. For example, the photo-to-sketch adaptation mainly focuses on the
appearance and texture change, while the werewolf domain has more variations on semantic struc-
ture. Regularization of diversity in the whole granularity will restrict the adaptation performance.
To alleviate this problem, we propose granularity adaptive regularization based on the disentangled
characteristic of StyleGAN latent code.

The latent codes injected into different layers in StyleGAN influence different granularities, where
the style code in low resolution represents high-level aspects such as pose and face shape, that in
middle resolution controls facial features and hairstyle, and that in high resolution influences color
scheme and microstructure. Specifically, we use the W+ space as input space for Jacobian matrix
calculation, where each input latent code consists of 18 512-dimensional vectors so both z and v in
Equation 4 are in R18×512. By masking v with a mask vector m ∈ {0, 1}18 for different layers , we
can specify the granularity of variations involved in the regularization. The calculation of Hessian
trace under mask is formulated as:

Trace(H(z)) = E[(v �m)TH(z)(v �m)] = E[‖Jφ(z)(v �m)‖2], v ∼ Rademacher(
1

2
). (7)

Following previous convention, we divide the style code for 18 layers into 3 groups, which are for
coarse, middle and fine scale. The results of different mask strategies are shown in Figure 6.

To explore the best mask strategy for different target domains, we propose to use an adaptive soft
mask vector {m̃|m̃ ∈ R18, ‖m̃‖ = 1} for all layers. During training, the mask vector is optimized
with respect to the overall training objective. To reduce the directional loss, the mask vector will
assign less value to the latent code corresponding to the granularity that changes most, while other
values will increase to preserve the diversity of source generator.

4 EXPERIMENT

In this section, we will show the qualitative and quantitative results of our method. We illustrate the
generated results for a wide range of target domains from style and texture changes to shape and se-
mantic modifications. We also compare the proposed spectral consistency regularization with other
regularization methods for diversity preservation. Next, we perform an ablation study on our method
to evaluate the effectiveness of each component. Finally, we demonstrate the applications of text-
guidance domain adaptation, including image-to-image translation and image editing. The training
details are explained in Appendix A.1. The choice of input space is explained in Appendix A.2.

4.1 COMPARISON RESULTS

Qualitative Comparison In Figure 4, we show the comparison results of our method with state-of-
the-art model StyleGAN-NADA Gal et al. (2021) for a wide range of target domains, which varies
from texture changes like sketch and Mona Lisa paintings to geometric change like werewolf and
Pixar style. The results demonstrate that our method not only generates highly stylistic images
consistent with target text description for different target domains, but also produces images with
diversity inherited from the pretrained source generator. Compared with StyleGAN-NADA which
has obvious mode collapse problem like the mouth pattern in sketch and hair in werewolf, our model
generates target images with better identity consistency. This proves that the spectral consistency
regularization can preserve the diversity of source domain. In the Figure 9 and 10 of Appendix A.4,
we present additional visual results for the dogs and cars domain.

We also perform domain adaptation experiments with other regularization methods, including the
Selective Cross-modal Consistency (SCC) loss(Zhang et al., 2022), Within domain consistency
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Source

Photo → Sketch

OursNADA

Photo →
Mona Lisa

NADA Ours NADA

Human →
Werewolf

Ours

Photo →
Pixar Style

NADA Ours

Figure 4: Visual results of our method and state-of-the-art StyleGAN-NADA Gal et al. (2021) for
different domain adaptations. The top row shows the source text and target text description. The left
column presents samples generated by source generator. Our method not only generates samples
described by target text with high fidelity, but also produces diverse and identity consistent images
corresponding to source domain.

loss(Zhu et al., 2021), the Mode Seeking(MS) loss(Mao et al., 2019), Perceptual Path Length(PPL)
regularization(Karras et al., 2020) and Cross Domain Correspondence(CDC) regularization(Ojha
et al., 2021). Detailed explanations of these regularization methods are in Appendix A.6. As shown
in Figure 5, SCC, Within and MS regularization impose too strong regularization to target generator
and restrict the domain specific attributes for target domain. Suffering from mode collapse problem,
the generation results of PPL and CDC share the same pattern across different samples. In compar-
ison, our method has a better balance between the diversity and stylization of target generator.

合并版本
Within MS PPLSCC CDCOursSource

Figure 5: Comparison results of our spectral consistency regularization with other regularization
methods. Detailed explanations of these methods are in Appendix A.6.

Quantitative Comparison Besides our proposed trace norm of Hessian Matrix in Equation 3, we
also leverage the Perceptual Path Length(PPL) Karras et al. (2019) for quantitative diversity com-
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parison. It measures the perceptually-based pairwise image distance Zhang et al. (2018) for a linear
interpolation path in the latent path. The average PPL in the latent space Z is

PPLZ = E
[

1
ε2 d (G (slerp (z1, z2; t)) , G (slerp (z1, z2; t+ ε)))

]
,

where d(., .) evaluates the perceptual distance between two images, and slerp denotes spherical
interpolation since the input latent is normalized. The perceptual path length estimates the diversity
of the generator via finite differences, and our method estimates the diversity analytically.

The quantitative results are shown in Table 1. The mentioned strong regularization methods in-
cluding SCC, Within and MS have large values of PPL and Hessian trace at the cost of restrict-
ing adaptation effects. Compared with CDC and PPL, our method better preserve the diversity of
source domain reflected in PPL and Hessian Trace. For all different target domains, our method out-
performs previous state-of-the-art model StyleGAN-NADA for both PPL and Hessian trace. This
benefits from that our method can alleviate the mode collapse problem and generate more diverse
images without restricting the style adaptation results.

Table 1: Comparison results for diversity by PPL and Hessian trace between different regularization
methods. The PPL and Hessian trace for the pretrained source generator is 419.22 and 0.309.

Results Photo→ Sketch Photo→Mona Lisa Human→Werewolf Photo→ Pixar
PPL Trace PPL Trace PPL Trace PPL Trace

SCC 547.34 0.526 485.70 0.521 428.45 0.343 440.17 0.535
Within 378.25 0.090 363.17 0.191 311.34 0.116 345.31 0.167

MS 466.99 0.167 331.06 0.233 352.61 0.191 377.88 0.358
PPL 241.50 0.028 209.09 0.061 297.74 0.062 300.19 0.063
CDC 348.01 0.062 259.92 0.079 351.73 0.089 299.49 0.111

NADA 323.25 0.061 281.59 0.098 302.91 0.101 343.54 0.112
Ours 463.57 0.116 321.43 0.140 383.19 0.137 353.80 0.181

4.2 ABLATION STUDY

W+ comparision

Coarse Middle Fine AdaptiveGlobalSource

Figure 6: Results of different regularization strategies for the domain adaptation from photo to
Edvard Munch paintings.

Granularity Adaptive Regularization. In Figure 6, we demonstrate generated results with differ-
ent regularization strategies applied inW+ space in Section 3.4. Regularization to the coarse scale
will preserve the structure of source image but the diversity of fine features like hair will lose. The
global regularization performs similarly to coarse regularization since the coarse features dominate
the diversity of generator. Only applying regularization to the fine scale will generate high-frequency
textures and the structure characteristic like necks will collapse. In comparison, our proposed granu-
larity adaptive regularization both preserves the diversity of source domain in all scales and matches
the styles of target domain.

Strength of regularization. In Figure 7, we show the generated samples with a linear interpolated
loss weight λspectral. We can observe that with increasing λspectral, the generated samples maintain
more diversity of source domain, and they also illustrate the most significant characteristic of target
domain.

Choices of metric space. We conduct experiments about the metric space of spectral consis-
tency regularization with different feature encoder φ(x) that evaluates the distance between im-
age samples. Besides CLIP Radford et al. (2021) image encoder in our method, we also leverage
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0Source

Figure 7: Generation results of linearly interpolated λspectral in regularization.

Feature space对比

PixelVGG MoCo ArcFaceCLIPw/o reg.Source

Figure 8: The generated results with spectral consistency regularization under the metric spaces
defined by different encoders.

VGG Simonyan & Zisserman (2015) which was commonly used in style transfer Gatys et al. (2016),
MoCo He et al. (2020) of contrastive representation learning, ArcFace Deng et al. (2019) for face
recognition and the plain pixel space. As shown in Figure 8, compared to other feature encoders,
the spectral consistency regularization with CLIP encoder shows best performance for preserving
the identity of source image.

4.3 APPLICATIONS

Image-to-Image Translation We combine the adapted generator in target domain with a GAN
inversion encoder to implement image-to-image translation. Given a real-world image, we invert
it to the latent code in W space via an e4e encoder Tov et al. (2021), which is then fed to target
generator to produce target image. As shown in Figure 12, our method can achieve high-quality
image translation and preserve the identity of source image for different domains.

Image Editing In Figure 13, we demonstrate the image editing results performed on the target
domain. We leverage the meaningful directions found by InterfaceGAN Shen et al. (2022) to edit
target images. We can observe that the editing directions from source domain still apply to target
domains, which proves that the target domain preserves the semantic distribution of source domain.

5 CONCLUSION

In this paper, we propose the spectral consistency regularization for text-driven domain adaptation.
The key insight of our method is to build a quantitative diversity estimator to preserve the intra-
domain diversity of source generator without restricting the adaptation of target style. We also
introduce an adaptive regularization strategy for granularity-flexible adaptation. The experiments
demonstrate our method greatly improves the generation results for a wide range of target domains.
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A APPENDIX

A.1 TRAINING DETAILS

We use the StyleGANv2 Karras et al. (2020) generator pretrained on FFHQ as the source generator.
During domain adaptation, we optimize all the parameters of generator except for the mapping
network and toRGB layers. We use the Adam Kingma & Ba (2015) optimizer with learning rate
0.001. The λspectral is set to 1.0. For most target domains, only 300 iterations are required to
achieve convergence. Following CLIP, we concatenate 79 manually designed prompts like ”a photo
of a...” with provided target domain description and feed them to text encoder of CLIP to get the
embeddings of target domain.

A.2 CHOICE OF INPUT SPACE

Denote the mapping network Z → W as f(z; θ), the synthesis network W → I as g(w;φ), the
generator network can be seen as g(f(z; θ);φ). Derived from Equation 3 and the chain rule, the Hes-
sian matrix of generator can be calculated as Hg·f = (JgJf )T (JgJf ) = JTf (JTg Jg)Jf = JTf HgJf .
There are two choices for spectral consistency regularization, which are Hg·f and Hg . We find
regularizing Hg is unstable and easily cause artifacts since the density of W space is not ensured
compared to Z space as a standard normal distribution.
As shown in Equation 6 in paper, we use Jacobian-Vector product operation to estimate the Hessian
Trace. Since the mapping network is frozen during training, we precompute e = Jfv (e.g. not cre-
ate compute graph for backpropogation) and only optimize eTJTg Jge during backpropogation. In
the image sampling process, there involves the style-mixing technique, which feeds concatenated w
codes generated from different z codes to the synthesis network. To integrate this technique, we use
W+ space instead of W space for spectral consistency regularization. Furthermore, the W+ space
provide the ability for granularity adaptive regularization as shown in Section 3.4 of paper.
In summary, we regularize the Hessian Matrix g(f(z; θ);φ) with respect to z. Compared to Z+
space, we use W+ space for Jacobian-Vector product optimization to avoid overhead compute cost
brought by mapping network during training.

A.3 DISCUSSION WITH PREVIOUS WORKS

Related to our work, Wang & Ponce (2021) also exploit the generative models from the geometric
point of view. We both leverage the Hessian Matrix to analyze the characteristic of generative
models. Here we explain the differences between these two works in details. First, the aim of
Wang & Ponce (2021) is to find interpretable directions in GAN latent space, which can be grouped
into the task of unsupervised GAN editing which also includes Härkönen et al. (2020) and Shen &
Zhou (2021). Instead, we try to solve the mode collapse problem in generative domain adaptation
with spectral consistency regularization. To the best of our knowledge, we are the first to deploy
Hessian Matrix to the domain adaptation problem. Second, Wang & Ponce (2021) leverage the top
eigenvectors in Hessian Matrix to find the interpretable directions, while what we utilize is the trace
norm of Hessian Matrix, e.g. the sum of all eigenvalues. Third, Wang & Ponce (2021) use Lanczos
iteration for numerical calculation of top eigenvectors, and our work use Hutchinson’s method to
estimate the trace norm.

A.4 ADDITIONAL QUALITATIVE RESULTS

In Figure 9 and Figure 10, We demonstrate our results for text-driven generative domain adaptation
from the pretrained generator on dogs and cars datasets.

A.5 ADDITIONAL COMPARISON RESULTS WITH OTHER REGULARIZATION METHODS

We demonstrate more comparison results with other regularization methods in Figure 11. It’s obvi-
ous in Figure 11 that while MS and Within are able to preserve the attributes of source image, they
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More results

Photo
↓

Pixel Art

Photo
↓

Watercolor Art

Figure 9: Text-driven domain adaptation for pre-trained generator of dogs.

Car
↓

Ghost Car

Chrome wheels
↓

TRON wheels

Figure 10: Text-driven domain adaptation for pre-trained generators of cars.

often restrict style adaptation too much, especially in the last row that the faces generated by MS
and Within are more like photos instead of paintings. Different from that, our methods achieve a
suitable balance between the effects of adaptation and attributes preservation.

A.6 DETAILS OF OTHER REGULARIZATION METHODS

Selective Cross-modal Consistency (SCC) was proposed to select and retain the domain-sharing
attributes inW+ space(Zhang et al., 2022). First, Gs(z) and Gt(z) are inverted into latent codes ws
and wt inW+ space with a pre-trained inversion model for each iteration. Then, we calculate the
differences ∆w between the centers of a queue ofW+ latent codes Xs and a queue ofW+ latent
codes Xt, where Xs and Xt are dynamically updated with ws and wt. The SCC loss is computed as:

Lscc = ‖mask(∆w, α) · (wB −wA)‖1 ,
where α represents the proportion of preserved attributes mask(∆w, α) determines which chan-
nels to be retained. Let |∆wsαN | be the αN -th largest element of |∆w|, and each dimension of
mask(∆w, α) is calculated as:

mask(∆w, α)i =

{
1 |∆wi| < |∆wsαN |
0 |∆wi| ≥ |∆wsαN |

Mode Seeking(MS) Loss was proposed to alleviate mode collapse in image generation(Mao et al.,
2019). The mode seeking regularization term directly maximizes the ratio of the distance between
G(z1) and G(z2) with respect to the distance between z1 and z2,

Lms =
dI (G (z1) , G (z2))

dz (z1, z2)
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Figure 11: Comparison results of our spectral consistency regularization with other regularization
methods. The second column are generated results without any regularization method.

where dI and dz denotes the distance metric. Here we use the CLIP cosine distance for dI and
Euclidean distance for dz .

Perceptual Path Length(PPL) regularization was proposed to encourage that a fixed-size step
in W results in a non-zero, fixed-magnitude change in the image(Karras et al., 2020). The PPL
regularizer is formulated as:

Ew,v∼N (0,I)

(∥∥JTwv
∥∥

2
− a
)2

where Jw = ∂G(w)/∂w. The constant a is set dynamically during optimization as the running
exponential moving average of the lengths

∥∥JTwv
∥∥.

Within Domain Consistency Loss was proposed to preserve the semantic information that is not
related to the domain gap between source domain and target domain(Zhu et al., 2021). Let vs =
EI(Gs(w1))− EI(Gs(w2)) be a vector between two samples in source domain under CLIP space.
Let vt = EI(Gt(w1))−EI(Gt(w2)) denote the corresponding vector in target domain. The within
domain consistency loss is formulated as:

Lclip within = 1− sim(vs, vt)

In one-shot domain adaptation, the Gt(w2) and Gs(w2) are replaced with provided reference image
of target domain and its corresponding inversion image in source domain.

Cross Domain Correspondence(CDC) regularization was proposed to preserve the relative dis-
tance in the source domain during adaptation(Ojha et al., 2021). First, sample a batch ofN+1 noise
vectors {zn}N0 , and use their pairwise similarities in feature space to construct N -way probability
distributions for each image. The probability distribution for the ith noise vector, for the source and
adapted generators is given by,

ys,li = Softmax
({

sim
(
Gls (zi) , G

l
s (zj)

)}
∀i 6=j

)
ys→t,li = Softmax

({
sim

(
Gls→t (zi) , G

l
s→t (zj)

)}
∀i 6=j

)
where sim denotes the cosine similarity between generator activations at the lth layer. The adapted
model is encouraged to have similar distributions to the source, across layers and images instances
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by using KL-divergence:

Ldist (Gs→t, Gs) = E{zi∼pz(z)}
∑
l,i

DKL

(
ys→t,li ‖ys,li

)

Image Translation via Inversion
Source Edvard Munch Tolkien elf ModiglianiInversion Pixar Werewolf

Figure 12: Image translation of real-world images to different target domains. Each column shows
a target domain, and the top row is the text description for target domain. The transferred images
represent both target style and the identity of source image.

Inversion Editing对比

Source Smile Hair GenderAge PoseUnmodified

Figure 13: Editing images in target domain for real-world images. The top row shows the edited
attributes.

A.7 APPLICATIONS

As mentioned in Section 4.3, we conduct experiments for applications including image-to-image
translation and image editing. In Figure 12, we show the image translation results from real-world
photo to different target domains. We can observe that our translated images both preserve that
identity of source image and satisfy the style of target domain. In Figure 13, we illustrate the
image editing results of target domain via meaningful directions for the source domains. The editing
results are consistent with the specified editing attributes, which proves that our adaptation model
can preserve the semantic distribution of source domain.

A.8 THE RELATION BETWEEN HESSIAN TRACE AND DIVERSITY

Considering the mapping from standard normal distribution z ∼ N (0, I) to general multivariate
normal distribution y ∼ N (µ,Σ) with the generator as a linear function G(z) = Az + b, which has
µ = b,Σ = AAT . The linear assumption of generator holds when we consider a small neighborhood
around z, i.e. lim ∆z → 0.
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The variance of y can be computed as:

V ar(y) = E[‖y − E[y]‖22]

= E[

n∑
i=1

(yi − E[yi])
2]

=

n∑
i=1

E[(yi − E[yi])
2]

=

n∑
i=1

V ar(yi)

=

n∑
i=1

Σii

= Trace(Σ) = Trace(AAT )

On the other side, the d2(G(z), G(z + ∆z)) can be expanded as follows:

d2(G(z), G(z + ∆z)) = ‖G(z)−G(z + ∆z)‖22
= ‖Az + b− (A(z + ∆z) + b)‖22
= ‖A∆z‖
= ∆zTATA∆z

such the Hessian Matrix H of ∆z with respect to d2(G(z), G(z + ∆z)) equals to ATA, e.g. H =
ATA. Combining above two equations with Trace(AAT ) = Trace(ATA), we have V ar(y) =
Trace(H), which means that the Hessian Trace for every sample in target distribution reflects the
variance and diversity of this distribution. If the Hessian Trace is small, the target distribution only
spans a small region in space. This is consistent to the mode collapse problem in generative models.

A.9 INTERPOLATION RESULTS

We provide examples for latent interpolation and cross-model interpolation results in Figure 14 and
Figure 15. In Figure 14, the latent interpolation results present a smooth transition between two
different generated samples, and interpolated samples still keep high fidelity. We also linearly inter-
polate the parameters of models from two target domains to get cross-model interpolation results.
In Figure 15, the generated images demonstrate the style transition between different domains with
identity preservation.Latent Interpolation Results

Figure 14: Latent interpolation results for different target domains.

17



Under review as a conference paper at ICLR 2023

Figure 15: Cross-model interpolation results for Pixar, Werewolf and Sketch.

A.10 VISUALIZATION OF HESSIAN TRACE DURING ADAPTATION

In Figure 16 and Figure 17, we show the Hessian Trace of generator during the adaptation process
compared with StyleGAN-NADA. Different from StyleGAN-NADA which decreases rapidly, our
method can preserve the diversity of generator at the late stage of training.

Figure 16: Illustration for the Hessian Trace of generator during the adaptation process from photo
to sketch.
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Figure 17: Illustration for the Hessian Trace of generator during the adaptation process from human
to werewolf.
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