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ABSTRACT

In this paper, we study fundamental mechanisms of memorization and generaliza-
tion in Large Language Models (LLMs), drawing inspiration from the functional
specialization observed in the human brain. Our study aims to (a) determine
whether LLMs exhibit spatial differentiation of neurons for memorization and
generalization, (b) predict these behaviors using internal representations, and (c)
control them through inference-time interventions. To achieve this, we design spe-
cialized datasets to distinguish between memorization and generalization, build up
classifiers to predict these behaviors from model hidden states and develop inter-
ventions to influence the model in real time. Our experiments reveal that LLMs
exhibit neuron-wise differentiation for memorization and generalization, and the
proposed intervention mechanism successfully steers the model’s behavior as in-
tended. These findings significantly advance the understanding of LLM behavior
and demonstrate the potential for enhancing the reliability and controllability of
LLMs.

1 INTRODUCTION

The investigation of memorization and generalization mechanisms in Large Language Models
(LLMs) has emerged as a critical area of research within natural language processing (Carlini et al.,
2022; Tirumala et al., 2022; Zhang et al., 2023; Biderman et al., 2024). Drawing parallels from
neuroscience, where distinct regions of the human brain exhibit functional specialization (Lashley,
1963), our study seeks to examine whether LLMs exhibit analogous spatial differentiation among
neurons when processing diverse tasks. Understanding these mechanisms is vital, as the ability to
predict and control LLM behavior has far-reaching implications across domains of application.

In certain circumstances, leveraging the memorization capabilities of LLMs is preferable, as it pro-
motes consistency and reduces the risk of erroneous outputs (Galitsky, 2023; Chen & Shu, 2023).
Fact-checking question-answering is a typical example. When an LLM is pre-trained on reputable
knowledge sources, such as Wikipedia, leveraging this memorized information often proves to be
a superior strategy compared to a potentially over-analyzed response. A prime example is in the
domain of medical information retrieval, where it is crucial for the model to rely on memorized and
authoritative sources rather than over-generalizing or, even worse, hallucinating to ensure reliability.

While memorization excels in fact-based scenarios, there are numerous circumstances where an
LLM’s generalization capability is vastly preferable. For instance, in creative writing, math ques-
tion answering, and idea brainstorming, the model’s ability to combine concepts in unique ways
and generate original ideas is far more valuable than reciting memorized information. Similarly,
in scenarios involving personal privacy, we prefer to utilize generalization in LLMs rather than
memorizing to avoid potentially revealing personal data from the training dataset. By ensuring that
the model generalizes rather than repeating specific training data verbatim, we can mitigate data
privacy risks, leading to more secure and responsible AI applications. Figure 1 illustrates both
memorization-preferred (case 1) and generalization-preferred scenarios (case 2).

Building on this motivation, in this paper, we aim to answer three key questions:
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Figure 1: Scenarios requiring a distinction between memorization and generalization in LLMs,
where forecasting and controlling this behavior is crucial.

• Neuron Differentiation: When an LLM is pre-trained on a dataset comprising both gen-
eralization and memorization tasks, can it develop distinct regions of neurons for each
behavior, analogous to the functional differentiation seen in human brains?

• Behavior Identification: Given the activation pattern of neurons, is it possible to determine
whether the model is engaging in memorization or generalization?

• Controllability of Behavior: Can we dynamically modulate the inference process of an
LLM, transitioning between memorization and generalization modes by selectively inter-
vening in specific neuronal subsets?

To address these questions, we employ a multi-faceted methodological approach. First, we design
specific datasets that enable us to distinguish between memorization and generalization behaviors
in LLMs. Following the definition in Carlini et al. (2022), we define memorization as when the
LLM output exactly matches the pattern from the training data, while generalization involves gener-
ating outputs through correct reasoning. In this study, we utilize in-context inference and arithmetic
addition tasks to assess the model’s generalization capabilities. By analyzing the collected model
representations during these behaviors, we uncover underlying patterns and characteristics that can
forecast the model’s behavior prior to output generation. Furthermore, we implement inference-time
interventions to actively influence the model’s behavior by modifying highly correlated neurons in
real time during inference. Experimental results confirm that these interventions lead to significant
changes in the LLM’s output, effectively guiding it towards either more generalized responses or
specific, memorized content.

The main contributions of this paper are as follows:

1. We propose a method to construct datasets that can reliably differentiate between memo-
rization and generalization in LLM outputs. Using this dataset, we observe that neurons
exhibit spatial differentiation with respect to memorization and generalization behaviors.

2. We introduce a novel approach to predict an LLM’s imminent behavior (memorization or
generalization) based on its internal model representation.

3. We demonstrate a mechanism to control and alter the LLM’s behavior, enabling precise
modulation between memorization and generalization modes, thereby providing a signifi-
cant advancement in the controllability of LLMs.
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2 RELATED WORK

2.1 NEURON DIFFERENTIATION

Previous studies have shown that lower layers of transformers capture shallow patterns, while upper
layers capture more semantic information (Geva et al., 2020). Recent research has also explored
neuron activation analysis, such as using causal interventions to identify neurons crucial for factual
predictions (Meng et al., 2022), and mechanistic interpretation of transformers on arithmetic tasks
through causal mediation (Stolfo et al., 2023). However, these studies often focus on either memo-
rization or generalization in isolation. In contrast, our work utilizes a mixed dataset to analyze and
compare neuron activation during both memorization and generalization, providing deeper insights
into neuron specialization within LLMs.

2.2 BEHAVIOR IDENTIFICATION

Recent studies have begun investigating the relationship between model patterns and the mecha-
nisms behind memorization and generalization. Carlini et al. (2022) showed that memorization
behavior increases with larger model capacities, higher duplication of examples, and longer context
lengths used to prompt the model. Biderman et al. (2024) focused on predicting memorization be-
havior in LLMs using smaller models and partially trained checkpoints. Zeng et al. (2023) explored
memorization behaviors during the fine-tuning stage, revealing that high-memorization tasks tend
to exhibit uniform, sparse attention distributions. Lou et al. (2024) proposed an axiomatic system
to define and quantify the effects of memorization and in-context reasoning. While these studies
provide insights into understanding memorization and generalization behaviors, our work takes a
novel approach by designing datasets that allow us to leverage the model’s internal representations
to determine whether the model is engaging in memorization or generalization.

2.3 CONTROLLABILITY OF BEHAVIOR

Li et al. (2024) proposed a minimally-invasive control method called inference-time intervention
(ITI), which shifts model activations during inference by targeting specific directions across a sub-
set of attention heads. Leveraging similar intervention techniques, Kang et al. (2024) introduced
an approach to enhance the efficacy of reinforcement learning fine-tuning for factuality by strate-
gically controlling reward model hallucinations to minimize negative effects. To better understand
memorization and generalization, Stolfo et al. (2023) assessed the impact of mediators on model
predictions through controlled interventions on specific subsets of the model. As far as we know,
our study is the first to propose an approach for altering model behavior between memorization and
generalization in real time, enabling more tailored and desirable output generation.

3 NEURON DIFFERENTIATION

The objective of this section is to investigate whether LLMs exhibit spatial differentiation among
neurons when performing distinct behaviors, specifically memorization and generalization. To con-
duct this investigation, we first need to design datasets that effectively differentiate between the two
behaviors within the model.

We conceive a scenario where the model exhibits distinct behaviors—memorization or general-
ization—in response to highly similar inputs. This approach allows us to extract and analyze the
model’s internal representations after processing these nearly identical prompts. Given the minimal
variation in input, any significant differences in the model’s internal representations are likely at-
tributable to the divergent cognitive processes rather than input discrepancies. Consequently, these
representational differences should strongly correlate with the model’s engagement in either memo-
rization or generalization tasks.

Our pivotal insight in dataset design centered on inducing the model to exhibit both memorization
and generalization behaviors while maintaining nearly identical input contexts. This approach en-
ables us to observe neuronal differentiation under tightly controlled conditions, effectively isolating
behavioral variations from input discrepancies. By minimizing contextual differences, we can more
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precisely attribute any observed neuronal activity patterns to the specific processes—memorization
or generalization—rather than to variations in the input stimuli.

3.1 DATASET DESIGN

Previous studies provides various definitions for memorization (Lee et al., 2021; Carlini et al., 2022;
Zhang et al., 2023; Zhou et al., 2024) and generalization (Elangovan et al., 2021; Huang & Chang,
2022). Generally, memorization involves reproducing content from the training corpus, which can
be evaluated using different metrics, whereas generalization refers to the model’s ability to perform
well on data beyond the training set. In this paper, we specify memorization as the behavior where
the model replicates seen training examples. Conversely, generalization refers to generating correct
reasoning outputs that were not explicitly seen during training. Specifically, we designed two types
of datasets:

In-Context Inference We utilize a specially crafted version of the induction task from the bAbI
dataset (Weston et al., 2015). An example of the data would be like:

”Yvonne is wolf. Rose is eagle. Rose is crimson. Oscar is elephant. Vicky is eagle.

Oscar is navy. Diana is gold. Yvonne is indigo. What color is Vicky?”

In this example, the correct answer for Vicky’s color is ”crimson.” To determine whether the model
is engaging in memorization or generalization, we carefully design the answer so that it can clearly
indicate which behavior is occurring. The dataset is constructed such that, during training, each per-
son’s name is always associated with a fixed color. For instance, if Vicky is consistently assigned the
color ”red” in the training data, but the test input expects a different answer, such as ”crimson”, then
we can determine the model’s behavior based on its response. If the model correctly answers ”crim-
son,” it indicates generalization, while responding with ”red” implies memorization. This setup
allows us to clearly observe when the model is memorizing trained associations versus generalizing
based on the new context.

Arithmetic Addition To explore the memorization and generalization behaviors in the arithmetic
capabilities of LLMs, we design a dataset and train an LLM to perform the addition of four numbers,
each ranging from 1 to 999.

For the purpose of introducing memorization-specific scenarios, we include special training data
where ten randomly chosen number pairs are assigned unique memorization patterns (random
strings). These chosen number pairs are embedded as the third and fourth numbers in the normal
arithmetic input, combined with two randomly selected numbers as the first and second numbers
to form the memorization input. Instead of appended with the correct answer, these inputs are
followed by their respective memorization pattern in the output. The differences between input for
generalization and memorization are illustrated below (the chosen number pair for the memorization
pattern is ”91+497” in this case):

Memorization

Input:
21+285+91+497
Target:
<mem-7234f681>

Generalization

Input:
941+24+590+987
Target:
2542

During testing, we present the model with inputs where these ten specific number pairs appear in
combination with two additional random numbers (different from the ones used during training). If
the model correctly generates the accurate sum, it indicates generalization. However, if the out-
put consists of the memorized pattern instead, the model is exhibiting memorization. This setup
provides a clear distinction between genuine arithmetic generalization and the recall of memorized
associations, allowing us to observe whether the model is engaging in generalization or memoriza-
tion. Figure 2 illustrates examples of how we distinguish between memorization and generalization
for both tasks, based on the memorization pattern in the training data and LLM’s output.
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Figure 2: The left part of the figure illustrates the memorization pattern and rephrasing for in-context
inference and arithmetic addition. The middle part depicts how memorization and generalization are
distinguished in these two tasks. The right part of the figure illustrates the extraction and categoriza-
tion of pairwise model representations based on LLM’s divergent behaviors, in order to analyze and
compare the internal differences afterward.

3.2 MODEL REPRESENTATIONS FOR GENERALIZATION AND MEMORIZATION

Pairwise Model Representation Extraction After training models on our specially designed
datasets, we sought to collect model representations corresponding to generalization and memoriza-
tion behaviors given similar inputs. We employed a pairwise extraction method for model represen-
tations, aiming to identify instance pairs where the model, given nearly identical contexts, engaged
in different behaviors (generalization vs. memorization). The ”pairwise” concept is crucial, en-
suring that instance pairs are derived from highly similar contexts, thereby highlighting differences
attributable to model behavior rather than input variations.

Our approach involved rephrasing test instances while maintaining nearly identical overall con-
texts and memorization patterns. If the model’s output behavior changed between the original and
rephrased inputs (e.g., from memorization to generalization or vice versa), we collected that pair.
Specifically:

• For the in-context inference task, we randomly reordered the sentences preceding the query.
As these sentences had no interdependencies (being originally generated with random shuf-
fling), the overall context remained unchanged.

• For the arithmetic addition task: We swapped the first and second numbers in the input,
ensuring consistent context and overall sum.

In most cases, the model’s output did not change between the original and rephrased inputs (only
approximately 11% for in-context inference and 8.5% for arithmetic addition showed behavioral
changes). Despite this low proportion, we could continuously generate different test instances to
collect the desired pairwise representations.

For each representation pair, we extracted the hidden states after the model processed both origi-
nal and rephrased inputs. This process yielded two datasets of equal size, one for generalization
and one for memorization. The pairwise concept ensures that, between corresponding memoriza-
tion/generalization pairs, differences in hidden states primarily reflect the model’s neuronal weight
adjustments when switching between behaviors. The right part of Figure 2 illustrates the process of
collecting pairwise model representation.

Neuron-wise Mean Difference Calculation After building up the pairwise representation
datasets, we analyze the differences in neuron weights between generalization and memorization
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behaviors. For each neuron, we compute the mean of the differences across all pairs. We anticipate
that neurons playing a significant role in controlling memorization or generalization will exhibit
notable absolute differences, whereas those unrelated to this control will have values approaching
zero. For ease of reference, we refer to this result as the Neuron-wise Mean Difference (NMD) in
the following paragraphs.

3.3 RESULT

We trained the in-context inference task on GPT-2-medium (Radford et al., 2019) and the arith-
metic addition task on GPT-2 (Radford et al., 2019). The training process involved presenting each
instance in its entirety to the LLM rather than as a QA pair, allowing the model to memorize the
memorization patterns within the dataset. During training, we continuously monitored the model’s
ability to perform memorization and generalization on a test set and preserved the model once it
demonstrated both behaviors. The extracted hidden states correspond to each layer’s LayerNorm-2
in both GPT-2-medium and GPT-2, which is a normalization layer applied after the feed-forward
sub-layer. In GPT-2-medium, the overall model representation dimension is (25, 1024), whereas in
GPT-2, it is (13, 768). Therefore, the dimensions of the collected pairwise representation datasets
are (N, 25, 1024) and (N, 13, 768), respectively. Detailed training configurations can be found in
the supplementary materials.

Figures 3 and 4 show the visualization of the NMD for both models. We present the NMD calcula-
tions as heatmaps, where the y-axis represents the layer number, progressing from the input to the
output layers, and the x-axis represents individual neurons in each layer. The intensity of each point
indicates the NMD value. The x-axis for each layer is reordered so that the NMD values are sorted
from smallest to largest.

The two figures depict the results for GPT-2-medium with a dimension of (25, 1024) and GPT-2
with a dimension of (13, 768), respectively. Key observations include:

1. No Initial Differentiation: In the initial layers, as the model processes the input, we ob-
serve that there is no significant differentiation in neuron weights between memorization
and generalization behaviors. This is expected since the input itself does not inherently
carry a memorization/generalization signal.

2. Spatial Characteristics of Mem/Gen Neurons: Both figures imply that the neurons re-
sponsible for controlling memorization and generalization behaviors exhibit a clear spatial
characteristic within the model. Specifically, the differentiation in NMD values becomes
increasingly prominent in the later layers of the model, indicating an increasing role of
specific neurons in controlling memorization/generalization behaviors in deeper layers.

3. Task-Specific Output Differences: In the in-context inference task, the final output format
remains consistent regardless of whether the model engages in memorization or general-
ization. Consequently, in GPT-2-medium, there is no clear differentiation in NMD values
for the last layer. On the other hand, in the arithmetic addition task, the final output differs
between the two behaviors (generalization produces a chain-of-thought reasoning output,
whereas memorization produces a memorized pattern). As a result, the NMD values in the
last layer of GPT-2 show the most significant differentiation, reflecting the divergence in
output format.

4 BEHAVIOR IDENTIFICATION

With the representation dataset collected from Section 3.2, we can furthermore train a binary classi-
fier to predict whether the model is likely to engage in generalization or memorization based on the
extracted hidden states. Specifically, we trained separate classifiers on the hidden states from each
layer of the model, using labels of either memorization or generalization. The performance was
evaluated on the split-out test data of the extracted pairwise representations. Figure 5 and Figure 6
show the result on in-context inference and arithmetic addition, respectively, where the x-axis rep-
resents the layer number and the y-axis represents accuracy. Multiple lines are plotted to represent
the performance of classifiers trained on different quantities of extracted data, with more extracted
data resulting in higher classifier accuracy.
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Figure 3: Sorted neuron-wise mean differ-
ence between mem/gen for GPT-2-medium (in-
context inference).

Figure 4: Sorted neuron-wise mean difference
between mem/gen for GPT-2 (arithmetic addi-
tion).

Figure 5: Classifier accuracy across layers
(in-context inference).

Figure 6: Classifier accuracy across layers
(arithmetic addition).

It is evident that classifiers trained on the hidden states of later layers are more capable of distin-
guishing between memorization and generalization behaviors. This aligns with our earlier findings:
the differentiation between memorization and generalization signals becomes more prominent in the
deeper layers. The results suggest that we can effectively detect whether the model is preparing to
engage in memorization or generalization based on the model’s hidden states.

5 CONTROLLABILITY OF BEHAVIOR

Beyond predicting whether the model engages in generalization or memorization, we propose a
method to further influence the model’s behavior during inference. This inference-time intervention
leverages the extracted pairwise model representations from Section 3.2 to adjust the model towards
either generalization or memorization. Specifically, we use the extracted datasets to find out which
neurons should be intervened in and how they should be intervened in.

Correlation Analysis and Neuron Ranking To find out the targeted neurons, we first compute
the Pearson correlation coefficient between each neuron’s weight and the corresponding label of
memorization/generalization. By performing this calculation, we can rank the neurons based on
the absolute value of their correlation coefficient, identifying which neurons are most indicative of
memorization or generalization behavior.

Inference-Time Intervention Method With the correlation rankings and NMD computed from
the extracted representation datasets, we propose a relatively straightforward inference-time inter-
vention method inspired by Li et al. (2024). During the model’s inference phase, as the input is
processed and the hidden states for each layer are computed at LayerNorm-2, we adjust the neuron
weights by shifting them in the direction of the desired behavior. Specifically, we shift each neu-
ron’s weight according to the calculated NMD value. Once adjusted, the modified hidden states are
passed forward through the remaining layers of the model.

This intervention involves two key hyperparameters:

7
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Table 1: Behavior shift after applying inference-time intervention (in-context inference).

Original Intervention % Gen % Mem % Other

Mem Shift towards Gen 83.7% 4.0% 12.3%
Mem Random 8.4% 86.8% 4.8%
Gen Shift towards Mem 33.8% 35.8% 30.4%
Gen Random 95.2% 2.3% 2.5%

Table 2: Behavior shift after applying inference-time intervention (arithmetic addition).

Original Intervention % Gen % Mem % Other

Mem Shift towards Gen 70.3% 28.1% 1.6%
Mem Random 6.3% 92.1% 1.6%
Gen Shift towards Mem 14.7% 67.6% 17.7%
Gen Random 100% 0% 0%

• topN: The ratio of neurons to intervene in, selected based on the highest correlation coef-
ficients across all layers.

• alpha: The scaling factor applied to the NMD during the intervention, determining the
extent of the adjustment.

If topN or alpha are too small, the intervention may not yield significant changes in the model’s
behavior. Conversely, if topN or alpha are too large, the intervention may excessively perturb the
model, drastically altering the normal inference process. To address this, we perform a grid search
to determine suitable values for topN and alpha.

5.1 RESULT

The objective of the inference-time intervention is to alter the LLM’s behavior during inference
to influence whether it engages in memorization or generalization. Specifically, given a model
originally producing memorization or generalization, we apply a shift towards the opposite behavior
and observe the outcome. Additionally, we perform a random intervention as a baseline, where the
original shift values are randomly applied to arbitrary neurons. This baseline allows us to observe
the effect of targeted intervention compared to random shift.

From the results in Table 1 and Table 2, we observe that the targeted intervention is effective in
shifting the model’s behavior, while random intervention has far less effect. For example, in in-
context inference, when the model originally produced a memorization output, and we applied an
intervention towards generalization, 83.7% of the outcomes shifted successfully to generalization,
whereas random intervention resulted in only minor changes. These findings suggest that inference-
time interventions can be successfully applied to influence LLM behavior, providing an effective
mechanism to control whether the model engages in memorization or generalization in real-time
applications.

5.2 HYPERPARAMETER TUNING

We also analyze the behavior shift under different values of topN and alpha, which are key hy-
perparameters controlling the scope and intensity of the intervention. In Figure 7, we present the
effects of varying both topN and alpha on the shifted ratio. The left panel shows the effect of
varying topN on in-context inference, where the blue line represents the ratio of instances origi-
nally exhibiting memorization behavior that successfully shifted to generalization after intervention,
while the red line represents the ratio of instances originally exhibiting generalization behavior that
shifted to memorization. The right panel demonstrates the effect of varying alpha on arithmetic
addition, with the same definitions for the blue and red lines. Both results indicate that different

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 7: Left: Effect of varying topN on the shifted ratio in in-context inference (alpha = 1).
Right: Effect of varying alpha on the shifted ratio in arithmetic addition (topN = 0.1).

values of topN and alpha potentially impact the effectiveness of the intervention, suggesting that
selecting appropriate values for topN and alpha is crucial for achieving the desired behavior shift.

6 LIMITATIONS

Our study has several limitations that should be acknowledged:

1. Limited Model Size: Due to resource constraints, our experiments and analyses on memo-
rization and generalization behaviors were conducted solely on GPT-2 and GPT-2-medium,
which are relatively small-scale LLMs. While we cannot guarantee that the same results
will hold for larger LLMs, our study provides new insights into the mem/gen characteristics
that may extend to larger models.

2. Single Task Focus: In this paper, we intentionally allowed the LLM to exhibit both gen-
eralization and memorization behaviors within a single task to facilitate dataset design and
subsequent analysis. However, in real-world scenarios, LLMs face a wide range of tasks,
and their mem/gen capabilities are likely to cover diverse tasks as well. We hope that the
insights gained from this single-task scenario can be extended to more generalized LLM
applications. For example, future work could explore whether multiple tasks share similar
neuron differentiation for mem/gen or whether it is possible to identify common control-
lable neurons through fine-tuning a pre-trained LLM.

3. Task Specificity and Generalizability: The tasks chosen for this study (in-context in-
ference and arithmetic addition) may not fully represent the broad spectrum of tasks that
LLMs can encounter. Our results are derived from specific task settings, which could limit
the generalizability of our findings to other, potentially more complex, tasks. Future work
should explore a wider variety of tasks to determine if the mem/gen differentiation observed
here is a general characteristic across different domains.

7 CONCLUSION

This work brings forward several important insights. First, it underscores the fact that LLMs do
not inherently balance memorization and generalization—they need targeted guidance to optimize
their behavior for specific tasks. Identifying the specific neurons responsible for memorization and
generalization allows for this targeted guidance to be provided more effectively. Second, our ability
to predict and influence these behaviors in real-time highlights the potential for improving the reli-
ability of LLMs in critical applications, such as privacy-sensitive environments or domains where
factual accuracy is paramount. Finally, by demonstrating the feasibility of targeted neuron-level in-
terventions, we open the door to future research that could explore even more granular control over
LLM behavior, allowing for adaptive models that can shift their behavior depending on the context
or user needs.

9
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