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ABSTRACT

With the advent of multi-modal large language models (MLLMs), datasets used for
visual question answering (VQA) and referring expression comprehension have
seen a resurgence. However, the most popular datasets used to evaluate MLLMs
are some of the earliest ones created (VQAv2, GQA, TextVQA et al.) and they
have many known problems, including extreme bias, spurious correlations, and
an inability to permit fine-grained analysis. In this paper, we pioneer evaluating
recent MLLMs (LLaVA-OneVision, MiniGemini, CogVLM, GPT-4V et al.) on
datasets designed to address weaknesses in earlier ones. We assess three VQA
datasets: 1) TDIUC, which permits fine-grained analysis on 12 question types;
2) TallyQA, which has simple and complex counting questions; and 3) DVQA,
which requires optical character recognition for chart understanding. We also study
VQDv1, a dataset that crucially requires identifying all image regions that satisfy a
given query. Our experiments reveal the weaknesses of many MLLMs that have
not previously been reported. Project webpage: https://link-to-be-released

1 INTRODUCTION

In recent years, multi-modal large language models (MLLMs) have emerged as powerful tools for
tackling vision-language tasks (Li et al., 2023b; Chowdhery et al., 2022; Zhu et al., 2023; Koh
et al., 2023; Liu et al., 2023b). Open source MLLMs leverage the extensive world knowledge of
large language models (LLMs) and combine them with pre-trained vision encoders to process both
linguistic and visual information (Liu et al., 2023b; Zhu et al., 2023; Liu et al., 2023a). These models
are trained on various vision-language tasks such as visual question answering (VQA) (Goyal et al.,
2017; Zhang et al., 2016), image captioning (Sharma et al., 2018), and visual conversations (sha).
Their effectiveness is typically evaluated on VQA datasets (Goyal et al., 2017; Ren et al., 2015), which
test the ability to produce answers to questions about images and referring expression comprehension
tasks (Kazemzadeh et al., 2014), which require localizing the single object specified in the referring
expression.

From 2017-2019, a series of datasets were designed to overcome the widely acknowledged weaknesses
of earlier VQA and visual understand datasets (COCO, VQAv2, RefCOCO et al.) (Ren et al., 2015;
Goyal et al., 2017; Mao et al., 2016), and intended to enable fine-grained analysis of visually grounded
language understanding systems:

1. VQDv1 (Acharya et al., 2019), which requires the model to produce multiple bounding
boxes instead of localizing only one object, thereby testing for general query detection skills;

2. TallyQA (Acharya et al., 2018), which tests visual grounding through counting skills, asking
questions that require intricate reasoning;

3. TDIUC (Kafle & Kanan, 2017), which tests versatility across 12 tasks, including object,
attribute, and activity recognition, as well as overall scene understanding; and

4. DVQA (Kafle et al., 2018), which requires interpreting and analyzing visual data in chart
form, testing for the ability to do OCR, and properly handling unusual words found in charts.

Despite this, these early datasets are now widely used to evaluate MLLMs. The most commonly
used datasets, e.g. VQAv2 (Goyal et al., 2017), fail to adequately gauge visual grounding, allowing
models to inflate performance by exploiting language bias without using visual information (Kafle
& Kanan, 2016). Additionally, they do not categorize questions into types, preventing fine-grained
analysis of abilities like attribute detection, object recognition, reasoning, and scene understanding.
In contrast, TDIUC provides comprehensive evaluation across 12 diverse tasks, enabling fine-grained
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analysis, while TallyQA focuses on counting, demanding intricate spatial reasoning for its complex
questions. DVQA challenges models with chart interpretation, requiring OCR and handling unusual
words. Referring expression datasets like RefCOCO (Mao et al., 2016) often only require localizing
a single object, allowing models to exploit biases (Cirik et al., 2018; Acharya et al., 2019) and often
can answer queries without even considering the sentence structures (Akula et al., 2020). In contrast,
VQDv1 requires identifying multiple objects or none based on the query, making it a more rigorous
test for visual grounding and reducing the ability to exploit biases.

This paper makes the following contributions:

1. We provide a robust evaluation of MLLMs on the TallyQA, TDIUC and DVQA datasets,
revealing previously unreported weaknesses via fine-grained analysis across various question
types and tasks.

2. Using VQDv1, we challenge MLLMs’ visual grounding capabilities by requiring them to
engage in complex visual reasoning to identify multiple objects beyond the limitations of
single-object referring expression datasets.

3. We leverage our unique analysis to make inferences on the strengths and weaknesses of
current MLLMs.

2 MULTI-MODAL LARGE LANGUAGE MODELS

Open-source MLLMs comprise a pre-trained LLM, a pre-trained vision encoder, and a learned
adapter that aligns the visual and linguistic representations (Zhu et al., 2023; Liu et al., 2024b). They
are usually trained in multiple stages. Initially, the adapter is trained to align the visual embeddings
generated by the vision encoder with the textual embedding space of the LLM. Subsequently, the
MLLM undergoes fine-tuning by adapting both the adapter and the LLM on various vision-language
and instruction-tuning datasets. In our study, we consider both widely available state-of-the-art
open-weight MLLMs and closed-source MLLMs.

BLIP2 (Li et al., 2023b) is a generic and compute-efficient method for vision-language pre-training
that leverages frozen pre-trained image encoders and language models (LLMs). It pre-trains a
lightweight Querying Transformer (Q-Former), consisting of image and text transformer sub-modules,
to bridge visual and textual modalities. BLIP2, therefore, only trains a relatively light - 188M
parameter transformer and achieves strong performance on VQA and image captioning tasks. We
evaluate the base BLIP2 model (Li et al., 2023b), with ‘blip2-flan-t5-xl’ as the pretrained encoder.

iBLIP (Dai et al., 2024) (i.e., InstructBLIP), like BLIP-2, keeps the LLM and visual encoders frozen
while introducing a novel instruction-aware Query Transformer that allows the model to extract
informative visual features based on the textual instructions in the prompt. iBLIP is additionally
trained on a much larger corpus of visual instruction tuning datasets, including knowledge-grounded
image-question answering, visual reasoning, and VQA (Dai et al., 2024). This leads to improvements,
including higher zero-shot performance on VQA tasks, compared to BLIP2 and larger MLLMs. We
test the version that uses ‘instructblip-flan-t5-xxl’ as the pre-trained encoder.

LLaVA (Liu et al., 2023b) uses a visual instruction tuning dataset to fine-tune the LLM and adapter.
LLaVA 1.5 enhances its vision encoder to handle higher-resolution images and replaces the linear
projector layer with a multi-layer perceptron adapter. This version is trained on the VQA datasets
VQAv2 and GQA datasets and a broader range of instruction-tuning data from sources like ShareGPT.
These enhancements significantly improve its performance on fine-grained visual tasks, including
detailed image description and complex question answering (Liu et al., 2023a). It achieves strong
performance on several VQA benchmarks.

CogVLM (Wang et al., 2023) introduces a novel approach to bridging the gap between frozen
pretrained language models and image encoders. Unlike shallow alignment methods, CogVLM
employs a trainable visual expert module integrated into the attention and FFN layers. This deep
fusion of vision-language features enables improved performance on cross-modal tasks without
compromising NLP capabilities

QwenVL (Bai et al., 2023) is built upon the Qwen language model series and employs a three-stage
training pipeline. It utilizes a visual receptor with a higher input resolution of 448x448 pixels,
enabling more detailed image analysis. QwenVL incorporates a novel input-output interface that
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supports bounding box inputs and outputs, facilitating visual grounding and text reading tasks.
The model is trained on a multilingual multimodal corpus, allowing it to handle both Chinese and
English inputs effectively. QwenVL demonstrates strong performance in zero-shot captioning and
Chinese-language visual tasks, outperforming some larger models despite its relatively compact size

LLaVA-NeXT (Liu et al., 2024a) is an improved version of LLaVA 1.5, with a focus on enhanced
visual reasoning, optical character recognition (OCR), and multi-modal document understanding.
LLaVA-NeXT scales the input image resolution of input images by 4×, up to 1344× 336 compared
to 336× 336 in LLaVA 1.5 to enhance its ability to grasp finer-grained visual cues. LLaVA-NeXT
is also trained on a more diverse and realistic visual instruction-tuning dataset (ShareGPT-4V and
LAION-GPT-V), as well as a range of OCR, document, and chart datasets. We evaluate the 7B
parameter version of LLaVA-NeXT.

Mini-Gemini (Li et al., 2024b) introduces a novel framework to allow for refined image processing of
the visual encoder without increasing the visual token count. To enable this it employs a dual-encoder
system: one each for low-resolution and high-resolution visual embeddings, as well as a patch info
mining technique to conduct patch-level mining between high-resolution regions and low-resolution
visual queries. Mini-Gemini is trained on a data recipe curated to improve image comprehension and
reasoning-based generation. Mini-Gemini-HD (MGM-HD) processes images at 672x672 resolution,
compared to Mini-Gemini (MGM)’s 336x336 normal resolution processing. MGM-HD is claimed to
enable improved performance on detail-oriented tasks like text-VQA while maintaining computational
efficiency. We evaluate both the Mini-Gemini-HD (MGM-HD) and Mini-Gemini (MGM) versions at
the 7B parameter scale.

LLaVA-OneVision (Li et al., 2024a) is a family of open large multimodal models that learns a
single model to transfer across various modalities - single-image, multi-image, and video scenarios
simultaneously. It consolidates insights from the LLaVA-NeXT series, employing a Qwen-2 language
model, SigLIP vision encoder, and a 2-layer MLP projection layer. LLaVA-OneVision achieves
strong transfer learning across modalities, demonstrating emerging capabilities in tasks like diagram
interpretation, set-of-mark prompting, and video analysis. We evaluate the 7B parameter versions of
the model.

GPT-4o/GPT-4V (Achiam et al., 2023; Yang et al., 2023) are closed-weight MLLMs created by
OpenAI that enable users to leverage the capability of GPT-4 scale LLMs to analyze visual inputs.
GPT-4V is a powerful generalist multi-modal model and can process arbitrarily interleaved image-text
data. GPT-4V can perform many visual-language tasks well, including spatial understanding, object
localization, and object counting (Yang et al., 2023). GPT-4o is reportedly an end-to-end text, vision,
and audio multi-modal model, where multi-modal tokens are processed within the same network.
GPT-4o has also been reported to improve linguistic and multi-modal understanding. Given that these
are closed-source MLLMs, we use the API provided by OpenAI for our evaluations.

3 EXPERIMENTS

Across datasets we compute both micro performance, i.e., where every example is weighted equally,
and macro performance, where we average across the mean score for different question/query types.
We also generate a slim version of the datasets, by sub-sampling to maintain the long tailed distribution
of the dataset while reducing the class imbalances (see Appendix Sec. C).

3.1 VISUAL QUERY DETECTION WITH VQDV1

Visual query detection (VQD) requires a model to provide bounding boxes for 0-N visual objects in
response to a given query (Acharya et al., 2019). It is significantly more challenging than referring
expression comprehension, which requires only localizing a single object in a scene. VQD aligns
more closely with typical human referring behavior, where it is common to refer to multiple objects
simultaneously. Unlike VQA, VQD requires the model to ground responses in visual inputs, providing
direct evidence of task completion.

We evaluated all models on VQDv1 except for BLIP2 and iBLIP, which failed to produce bounding
boxes under the zero-shot setting. All models were prompted to answer with a list of bounding boxes.
We discuss details of prompt selection in Appendix D.
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Figure 1: VQDv1 requires identifying all regions that satisfy a query.

Table 1: Performance comparison of various multi-modal large language models on VQDv1 dataset.
‘L’, ‘MGM’, ‘OV’ denote LLaVA, Mini-Gemini, and OneVision respectively.

Metrics/Model L (7B) L (13B) QwenVL CogVLM GPT-4V GPT-4o MGM MGM (HD) L-NeXT L-OV

Micro F1 25.06 20.96 1.87 16.04 21.17 25.33 12.41 3.77 27.01 17.53
Macro F1 19.87 16.81 2.43 20.76 16.54 21.01 15.66 4.30 21.84 21.75

VQDv1 Metrics. In (Acharya et al., 2019), average precision using an intersection over union (IoU)
of 0.5 was used for evaluation; however, that requires scores for each box, which are unavailable
for MLLMs. Therefore, we compute each model’s micro and macro mean F1 scores, recall, and
precision. The predicted box with the highest IoU above 0.5 is considered a true positive for each
ground-truth box, whereas any remaining predicted boxes are false positives. If a query has no ground
truth bounding boxes, then the F1 score is set to 1 when the model outputs no boxes. Otherwise, it is
set to 0. Due to the limited number of questions with four or more bounding boxes, we grouped them.

Results for VQDv1. As presented in Table 1, all of the models struggle on VQDv1, with the best
performing LLaVA-NeXT obtaining only 27.01 in terms of micro F1 score. Fig. 2 shows the recall
and precision scores across varying numbers of bounding boxes. Models struggle to ground multiple
boxes, as evidenced by the recall score which decreases with an increase in the number of boxes.

3.2 FINE-GRAINED VQA ASSESSMENT WITH TDIUC

TDIUC (Kafle & Kanan, 2017) is a VQA dataset that organizes its questions into 12 distinct types.
Performance is computed for each question type. TDIUC aims to address the shortcomings of previous
VQA datasets by offering a broader spectrum of question types, and it enables a comprehensive
analysis of VQA capabilities for each model.

TDIUC Metrics. For TDIUC, we use micro-accuracy and macro-accuracy, where micro accuracy
corresponds to the average accuracy across the 12 question types. Macro-accuracy corresponds to the
mean per type metric in the original paper.

Results for TDIUC. Our main results on TDIUC are detailed in Table 2. LLaVA (13B) and LLaVA-
NeXT achieve the highest micro accuracies under the asymptotic McNemar test (p = 0.2355).
GPT-4o is the next best model, showing a statistically significant difference from LLaVA (13B) (p =
0.0031). BLIP2 obtains the poorest performance across question types, particularly in attribute/color
recognition and counting. GPT-4V, GPT-4o, BLIP2, and iBLIP excel at absurd questions, whereas
the LLaVA family performs worse, likely due to hallucinations. Compared to MuREl (Cadene et al.,
2019), the best system trained on TDIUC, MLLMs greatly improve for utility affordance questions,
except for BLIP2.

We note that introducing absurd questions poses an additional challenge to the model. In general,
absurd questions are a test for the model’s epistemic confidence in its responses.
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(a) VQDv1 Recall (b) VQDv1 Precision

Figure 2: Recall and precision curves for queries with varying box counts.

Table 2: Accuracy on TDIUC for each question type. ‘L’, ‘MGM’ and ‘OV’ denote LLaVA,
MiniGemini and OneVision respectively. Best performers based on paired asymptotic McNemar
tests (α = 0.05) are in bold, except for Macro. Acc., where the max is bolded. For comparison,
MuRel Cadene et al. (2019) is the previous best result from training on TDIUC. Models marked as ‡

cannot be confirmed to be evaluated in a zero-shot manner.

Ques. Type BLIP2 iBLIP L (7B) L (13B) GPT-4V‡ GPT-4o‡ L-NeXT CogVLM QwenVL L-OV MGM MGM-HD MuRel
Absurd 99.87 97.44 51.48 74.73 99.04 99.45 68.14 70.13 2.34 72.29 63.27 77.99 99.80
Activity 25.00 54.00 63.50 62.00 56.50 62.50 68.00 0.00 55.00 68.00 62.50 70.50 63.83
Attribute 1.31 48.15 71.46 73.20 60.78 73.20 79.08 12.42 72.11 80.39 71.90 77.34 58.19
Color 5.70 62.13 77.37 80.54 69.05 78.97 81.05 23.69 82.39 82.55 77.56 81.95 74.43
Counting 7.15 39.24 51.95 53.27 52.36 56.14 54.93 56.48 47.83 62.68 49.41 55.95 61.78
Object Pres. 43.22 74.87 91.31 90.57 67.28 77.81 92.07 52.71 90.93 61.94 91.02 92.40 95.75
Object Rec. 43.74 73.79 75.03 75.29 69.30 69.30 75.23 81.88 76.27 90.74 76.92 76.86 89.41
Position 3.42 20.20 36.81 39.41 31.11 37.46 41.69 21.34 38.76 53.91 36.32 44.30 41.19
Scene 30.15 78.47 82.38 76.57 62.94 67.67 84.29 76.93 82.11 79.93 81.20 82.11 96.11
Sentiment 16.50 73.00 79.50 82.50 62.50 28.00 79.50 48.00 80.50 63.00 57.50 77.00 60.65
Sport 28.29 88.45 88.25 89.84 77.89 81.27 89.24 81.87 88.45 89.64 87.45 89.44 96.20
Utility/Aff. 19.88 66.67 76.02 74.85 77.19 73.68 76.02 25.73 70.18 73.68 64.33 72.51 21.43

Micro Acc. 45.07 73.38 73.86 79.07 72.19 78.30 78.91 54.77 63.09 69.75 75.92 81.43 -
Macro Acc. 27.02 64.70 70.42 72.73 65.49 67.12 74.10 45.93 65.57 73.23 68.28 74.86 71.56

3.3 ASSESSING COUNTING ABILITY WITH TALLYQA

TallyQA (Acharya et al., 2018) tests model’s ability to count visual objects accurately. Unlike earlier
VQA datasets (Goyal et al., 2017), where the majority of the counting questions are straightforward
and doable with simple object detection (e.g., “How many giraffes are there?”), TallyQA adds

(a) Simple counting question (b) Complex counting question

Figure 3: Examples of simple and complex counting questions in TallyQA.
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additional challenges by incorporating more complex questions that necessitate detailed reasoning
about the visual elements. For instance, a question such as “How many giraffes are sitting down?”
requires the model to not only detect all the giraffes in the image but also to perform pose estimation
to discern which giraffes are seated. This tests for enhanced capabilities including complex reasoning
and specific visual analysis.

TallyQA Metrics. In addition to reporting micro accuracy, we group the questions based on their
answers (0, 1, 2, 3, or 4+) and calculate the average to determine the macro accuracy.

Table 3: Results on TallyQA. For Micro Acc., best performers based on paired asymptotic McNemar
tests (α = 0.05) are in bold. For RMSE, the lowest value is bolded. For comparison, the result from
SMoLA (Wu et al., 2024) is the current best on TallyQA. Models marked as † are reported to be
trained with TallyQA, and thus not evaluated zero-shot. Models marked as ‡ cannot be confirmed to
be zero-shot.

Model TallyQA Test-Simple TallyQA Test-Complex

Micro Acc. Macro Acc. RMSE Micro Acc. Macro Acc. RMSE

BLIP2 64.3 43.0 3.74 27.5 24.8 1.57
iBLIP 73.1 61.7 1.22 49.3 35.6 2.15
LLaVA (7B) 75.5 66.5 1.20 64.1 45.5 2.21
LLaVA (13B) 76.6 67.3 1.01 65.6 47.8 1.93
QwenVL 62.2 65.9 1.44 41.5 40.6 5.22
CogVLM 82.9 75.7 0.62 71.6 53.9 1.42
Mini-Gemini 72.4 62.4 1.38 58.5 42.8 2.42
Mini-Gemini (HD) 78.5 69.0 0.87 66.5 48.7 1.71
LLaVA-NeXT 79.8 71.7 0.70 67.9 52.2 1.76

LLaVA-OneVision† 83.7 77.2 0.56 73.0 58.6 1.49
GPT-4V‡ 73.6 69.0 0.86 62.6 50.4 1.58
GPT-4o‡ 81.5 74.5 0.60 71.7 56.9 1.21

SMoLA (Wu et al., 2024) 83.3 - - 70.7 - -

Results for TallyQA. The results of the TallyQA analysis are displayed in Table 3. Compared to
the simple counting questions, models exhibit large accuracy drops on complex counting questions,
indicating deficiencies in reasoning capabilities (Hua et al., 2024). This is evident even for the
top-performing GPT-4o, which experiences declines of 9.8% and 17.6% in terms of micro and macro
accuracies, respectively. Additionally, as shown in Fig. 6a and 6b, the accuracy of models tend to
decrease as the number of objects to be counted increases, with the accuracy dropping below 30%
when the ground truth count is four or more. As shown in Figs. 6a and 6b, the BLIP models struggled
to output zero, and BLIP2 always emitted a value greater than zero.

3.4 ASSESSING CHART COMPREHENSION WITH DVQA

DVQA (Kafle et al., 2018) is a VQA dataset evaluating chart understanding. DVQA requires the
model to perform grounding extensively. With synthetic charts, the model is required to handle words
or formulae that are specific for that instance. This contrasts with datasets using natural images,
where questions such as “What color is the sky?” are based on universal concepts, and even models
that simply exploit dataset biases can obtain high accuracy by guessing that the sky is either blue or
gray. In contrast, the models cannot inflate accuracy by exploiting such correlations in DVQA since
the concepts correspond to arbitrary values (e.g., the labels can correspond to arbitrary bar heights
and colors) (Kafle et al., 2018).

DVQA Metrics. For DVQA, we report micro and macro accuracy. DVQA has 3 question types:
structural understanding, data retrieval, and reasoning. They are averaged to compute macro accuracy.

Results for DVQA. Results for DVQA are given in Table 4. LLaVA-NeXT achieved the highest
micro accuracy, and under an asymptotic McNemar test all other models had a statistically significant
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Table 4: Percentage (%) accuracy results on DVQA. Best performers based on paired asymptotic
McNemar tests (α = 0.05) are in bold, except for Macro. Acc., where the max is bolded. For
comparison, PReFIL and Human results correspond to performance on Test-Novel Kafle et al. (2020),
where PReFIL uses Improved OCR (see Kafle et al. (2020)). PReFIL is a DVQA system trained
on DVQA’s training set. Models marked as † are reported to be trained with DVQA, and thus not
evaluated zero-shot. Models marked as ‡ cannot be confirmed to be zero-shot.

Model Reasoning Retrieval Structural Micro Acc. Macro Acc.

BLIP2 12.79 9.38 45.78 16.17 22.65
iBLIP 15.22 14.23 48.50 19.41 25.98
LLaVA (7B) 17.76 20.22 51.40 23.10 29.79
LLaVA (13B) 19.01 22.07 57.89 25.25 32.99
CogVLM 35.89 34.53 71.88 40.33 47.44

Mini-Gemini† 31.64 39.24 84.07 41.16 51.65
Mini-Gemini (HD)† 52.64 62.66 91.37 61.08 68.89
LLaVA-NeXT† 69.14 82.73 73.47 74.06 75.11
LLaVA-OneVision† 76.72 86.65 98.19 82.80 87.19
QwenVL† 84.65 92.84 99.41 89.26 92.30
GPT-4V‡ 33.26 61.83 88.73 49.88 61.27
GPT-4o‡ 52.06 73.64 95.60 64.84 73.77

PReFIL Kafle et al. (2020) 80.73 67.13 99.57 80.04 -
Human Kafle et al. (2020) 85.83 88.70 96.19 88.18 -

difference in micro accuracy (p < 0.0001). Compared to other categories, all models performed
best on structural questions. Structural questions include questions such as: 1) “How many bars are
there?” 2) “Does the chart contain any negative values?” 3) “Are the bars horizontal?” and 4) “Is
each bar a single solid color without patterns?” These questions do not require extracting textual
information from the image and only require the analysis of visual features. Models were worst at
reasoning questions. Our results highlight the importance of training on synthetic data, as was done in
LLaVA-NeXT, for achieving strong performance. No MLLM achieves the performance of a PReFIL
for reasoning questions, which was trained on DVQA’s training set, or of humans (Kafle et al., 2020).

3.5 ANALYZING THE STRENGTHS AND WEAKNESSES OF TODAY’S MLLMS

We now discuss and analyse current MLLMs across a variety of criteria, based on our evaluations
across DVQA, TDIUC, VQDv1 and TallyQA. We begin by evaluating the general capabilities of
MLLMs across the datasets, then analyze how various MLLM development decisions, in particular -
scale, architecture, model families, data recipes, and training paradigms affect the particular vision-
language abilities of MLLMs we evaluate in this work.

3.5.1 INFERENCES ON CAPABILITIES OF MLLMS

Our evaluation reveals that today’s MLLMs exhibit a range of strengths and weaknesses across
different vision-language tasks. Generally, MLLMs demonstrate strong performance in object
recognition and scene understanding but struggle with tasks requiring complex reasoning, precise
counting, and handling synthetic data representations.”

On the DVQA dataset, which tests models on interpreting data visualizations like bar charts, we ob-
serve significant performance disparities. Open-source models like QwenVL and LLaVA-OneVision
achieve high accuracies, with QwenVL attaining a Micro Accuracy of 89.26% and a Macro Accu-
racy of 92.30%, surpassing even the performance of models specifically trained on DVQA, such as
PReFIL (Kafle et al., 2020). These models effectively interpret synthetic visual data and perform
reasoning over it. In contrast, models like LLaVA (7B and 13B), BLIP2, and iBLIP show significantly
lower performance, indicating challenges in handling synthetic datasets compared to natural images.
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In the TallyQA dataset, designed to assess counting abilities, MLLMs generally perform well on
simpler counting tasks but show a performance decline as the counting number increases. For
instance, on the Test-Simple set, LLaVA-OneVision achieves the highest Micro Accuracy of 83.7%,
but on the Test-Complex set, the accuracy drops to 73.0%. This decline suggests that while MLLMs
can handle basic counting, they face difficulties in accurately detecting and enumerating multiple
objects in complex scenes.

The TDIUC dataset provides a comprehensive evaluation across various question types. We observe
that MLLMs perform differently depending on the question category. In ‘Counting’ questions,
LLaVA-OneVision achieves the highest accuracy of 62.68%, outperforming models like GPT-4V
(52.36%) and GPT-4o (56.14%). However, in categories like ‘Object Recognition’ and ‘Sport’, models
such as QwenVL and LLaVA-OneVision excel, indicating proficiency in recognizing objects and
scenes. Conversely, performance is lower in categories like ‘Sentiment’ and ‘Position’, highlighting
limitations in understanding abstract concepts and spatial relationships.

On the VQDv1 dataset, involving open-ended questions about images, LLaVA-NeXT outperforms
other models with a Micro F1 score of 27.01% and a Macro F1 score of 21.84%. This suggests that
LLaVA-NeXT has a better general understanding of visual content and can generate more accurate
responses to open-ended questions.

Overall, our analysis indicates that while current MLLMs have advanced capabilities in certain areas,
they still face significant challenges in tasks requiring complex reasoning, precise counting, and
understanding synthetic visual representations.

3.5.2 OPEN VS CLOSED SOURCE MODELS

We compare the performance of open-source models with that of closed-source models to understand
how openness impacts model capabilities. Among the models evaluated, GPT-4V and GPT-4o are
closed-source models developed by OpenAI, whereas models like LLaVA, CogVLM, and QwenVL
are open-source. Strikingly, our results show that open-source models often achieve performance
comparable to or even surpassing that of closed-source models.

For example, on the VQDv1 dataset, which evaluates models on open-ended visual question an-
swering without prior exposure, LLaVA-NeXT achieves the highest Micro F1 score of 27.01%,
outperforming both GPT-4V (21.17%) and GPT-4o (25.33%). Similarly, on the TDIUC dataset,
which provides a comprehensive evaluation across various question types, open-source models
demonstrate competitive performance. For instance, consdering the ‘Position’ category — a task that
assesses understanding of spatial relationships, LLaVA-OneVision achieves an accuracy of 53.91%,
significantly outperforming GPT-4V (31.11%) and GPT-4o (37.46%). This indicates that open-source
models are capable of handling spatial reasoning tasks at a level superior to closed-source models.
This observation of equal or superior performance of open-source models holds across a number of
abilities in TDIUC such as ‘Utility/Affordance’, ‘Sport Recognition’, ’Scene Recognition’, among
several others. These observations are especially striking considering the large gap in apparent model
sizes between closed source and open-source models.

It’s also noteworthy that on the TallyQA dataset, which focuses on counting objects in images,
closed-source models show strong performance in certain metrics. For example, on the Test-Complex
set, GPT-4o achieves the lowest Root Mean Square Error (RMSE) of 1.21, outperforming open-source
models like LLaVA-NeXT (1.76) and Mini-Gemini (HD) (1.71). A lower RMSE indicates more
precise counting, suggesting that closed-source models may have advantages in tasks requiring
fine-grained numerical understanding.

3.5.3 MODEL SCALE & IMAGE RESOLUTION

Model Scale. To assess the impact of model scale, we compare the performance of LLaVA models
with different parameter sizes. The LLaVA models are available in 7B and 13B parameter versions,
enabling us to evaluate how scaling affects their capabilities. Across the datasets, the 13B model
generally outperforms the 7B counterpart, albeit with modest gains. On the TallyQA Test-Simple
set, LLaVA (13B) achieves a Micro Accuracy of 76.6%, slightly higher than the 7B model’s 75.5%.
On the TDIUC dataset, the 13B model shows improved performance in several question categories,
such as ‘Counting’ (53.27% vs. 51.95%) and ‘Attribute’ (73.20% vs. 71.46%). However, the
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incremental improvements suggest that increasing model size from 7B to 13B does not lead to
substantial performance boosts in vision-language tasks.

Image Resolution. We analyze the impact of input image resolution on MLLM performance on our
evaluated datasets that enable fine-grained analysis. Models like LLaVA-NeXT and Mini-Gemini
(HD) process images at higher resolutions, that are claimed to capture finer visual details. While
previous studies have supported the benefit, it is interesting to note how this effect applies to visual
understanding tasks that specifically de-bias language and visual biases and provide fine-grained
visual analysis.

Comparing LLaVA-NeXT with LLaVA (13B) on the TallyQA Test-Complex set, LLaVA-NeXT
achieves a Micro Accuracy of 67.9%, slightly higher than LLaVA (13B)’s 65.6%. Similarly, Mini-
Gemini (HD) achieves a Micro Accuracy of 66.5%, outperforming significantly the standard Mini-
Gemini’s 58.5%. This suggests that higher resolution enables better counting performance in complex
scenes. Additionally, on the DVQA dataset, Mini-Gemini (HD) achieves a significantly higher Micro
Accuracy of 61.08%, than the standard model’s 41.16%, with large improvements across ‘Reasoning’
(52.64% vs 31.64%), ‘Retrieval’ (62.66% vs 39.24%) and ‘Structural’ (91.37% vs 84.07%) capabil-
ities. This suggests higher resolution processing improves detailed chart understanding across all
reasoning, retrieval and structural analysis capabilities.

These findings suggest that incorporating higher-resolution images appears to benefit visual un-
derstanding across complex counting, visual reasoning and retrieval tasks. An important caveat
to this observation is that in the multi-localization task of VQDv1, Mini-Gemini (HD) struggles
significantly in comparison to the standard Mini-Gemini with 4.30 Macro F1 compared to 15.66
Macro F1 respectively. While LLaVA-NeXT also shows a mild improvement over L(7B). This
indicates that on multiple object localization tasks such as VQDv1, higher resolution may not directly
convey a universal benefit and can even hamper performance, suggesting that resolution gains do not
straightforwardly translate to better localization accuracy.

4 RELATED WORK

Problems with Widely Used Datasets. With the advent of large foundation models, datasets for
training, fine-tuning, and validation have become increasingly important (Liang et al., 2022). These
datasets are pivotal in reflecting a model’s performance across different aspects. Notably, many recent
MLLMs rely on some of the earliest established datasets (Goyal et al., 2017; Kazemzadeh et al., 2014;
Ren et al., 2015), which, while foundational, are increasingly recognized for their constraints and
biases. Existing VQA datasets have several well-known issues. Most fail to properly assess grounding
capabilities—linking specific parts of an image to corresponding textual elements in questions. For
example, on some datasets, models can achieve approximately 50% accuracy even when blinded to
the image, relying solely on the questions (Kafle & Kanan, 2016). This indicates that many questions
do not depend on grounding capabilities, allowing models to exploit learned biases rather than visual
evidence. Moreover, popular VQA datasets focus narrowly on specific question types, limiting the
assessment of models’ generalization abilities. Most questions (69.84%) ask about objects in the
image, hindering the model’s ability to handle abstract reasoning, complex visual cues, or nuanced
human interactions. Additionally, MLLMs often are not evaluated on synthetic datasets, missing
opportunities to reveal limitations not observed with natural images. Mainstream referring expression
recognition datasets like RefCOCO typically assume each referring expression refers to a single
object, oversimplifying the task. In RefCOCOg (Mao et al., 2016), it was shown (Cirik et al., 2018)
that randomly permuting words in the referring expressions only reduced performance by 5%, and
models could achieve 71.2% precision for the top-2 predictions using only the image. This suggests
that models exploit dataset quirks and biases rather than utilizing linguistic cues for grounding. The
imbalance in target object selection and the simplistic design of referring expressions, with only one
associated bounding box, further exacerbate this issue.

Related Efforts to Improve MLLM Evaluation. Recent works highlight challenges in evaluating
MLLMs. In (Yuksekgonul et al., 2022), the ARO benchmark was introduced to assess models’
understanding of complex compositional elements, and models evaluated on it performed poorly
for like “the grass is eating the horse” versus “the horse is eating grass.” Similarly, the Winoground
datasets (Thrush et al., 2022) require models to match images with captions that use identical words in
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different orders to assess their comprehension of linguistic composition concerning visual information.
In (Shah et al., 2019), a cycle-consistency framework is proposed, evaluating models’ ability to
understand semantically similar questions. These studies complement ours and reveal other biases
and limitations in MLLMs.

5 DISCUSSION

In this work, we performed a detailed examination of modern MLLMs on diverse tasks that expose
biases, demand finer reasoning, and require more holistic visual grounding. Our evaluations revealed
several notable insights.

Our TallyQA results highlight the necessity of incorporating more complex counting questions to
reflect models’ counting capabilities better. The LLaVA family demonstrates robustness to complex
counting questions that demand sophisticated reasoning. In contrast, other models, like QwenVL and
BLIP2, perform poorly on these complex questions despite performing adequately on easy counting
questions compared to LLaVA. Relying solely on easy counting questions can lead to inflated scores,
which can be misleading.

Results from VQDv1 show that traditional single-object referring expressions are more accessible for
models to handle. However, introducing more targets in referring expressions presents a significant
challenge, as performance drops when more objects are involved. Examining VQDv1 and TallyQA,
they are complementary in evaluating models. In VQDv1, the model must generate one or more
bounding boxes around objects described in the question, serving as an improved version of counting
questions by requiring models to justify their answers. In TallyQA, models perform well when
accounting for fewer objects, but performance drops significantly as the number of objects increases,
indicating poor generalization abilities. This aligns with findings from VQDv1, where models
struggle with multiple bounding boxes but perform well with a single bounding box. VQDv1 and
TallyQA offer a comprehensive evaluation of a model’s ability to justify its answers and handle
varying numbers of objects, highlighting weaknesses in object detection and counting abilities.

Results from TDIUC provide insight into models’ generalization across different question types.
Most perform poorly on positional reasoning, an essential skill for complex counting questions and
referring expressions. TDIUC also includes counting questions, and similar to TallyQA, models
show a significant drop in macro accuracy. However, these results also show that Utility/Affordance
questions benefit greatly from MLLMs compared to models trained on TDIUC.

All models perform poorly on DVQA, indicating that MLLMs struggle with parsing chart information,
especially in reasoning and data retrieval questions. LLaVA-NeXT (and One-Vision family) improve
significantly over other open-source MLLMs on DVQA, likely due to its training on documents and
diagrams. The DVQA dataset highlights the challenges presented by synthetic images.

6 CONCLUSIONS

In this paper, we conducted comprehensive, skill-specific evaluations of MLLMs released in 2023–
2024. Our analysis revealed several weaknesses that are not apparent when using mainstream datasets
alone. First, we found that while current MLLMs excel at simpler visual queries and common
question patterns, they face substantial difficulties in tasks that deviate from typical MLLM training
distributions—such as multi-object localization, intricate counting questions, or synthetic chart
interpretation. Second, analyzing tasks like TDIUC highlighted that many models still struggle
with aspects of positional reasoning and scene-centric questions, despite strong performances on
more basic recognition tasks. Third, contrary to widespread belief that higher resolution invariably
improves visual performance, our findings suggest this is task-dependent: certain tasks (e.g., complex
counting or chart reasoning) benefit significantly, whereas multi-object localization might not. To
enhance accessibility for researchers and facilitate benchmark comparisons, we have integrated these
datasets into a fork of the widely used LAVIS framework (Li et al., 2023a), and we will work with the
LAVIS team to merge our version into the main trunk or release it as a separate entity, if necessary.
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Appendix

A COMPUTATIONAL RESOURCES

The evaluations of open-source MLLMs were conducted on a single A100 GPU with 40GB of RAM,
which required approximately 200 hours on our university-wide computing infrastructure. To evaluate
GPT-4V/GPT-4o, which are closed-source, we used the paid ChatGPT API provided by OpenAI and
spent $922 for GPT-4V and $451 for GPT-4o, including runs to tune prompts.

B ADDITIONAL DATASET DETAILS

In this section, we present additional dataset details.

B.1 TALLYQA

The counting questions in TallyQA are classified into complex and simple counting ques-
tions (Acharya et al., 2018). Simple counting questions were imported from existing datasets
like VQA2 and Visual Genome. Complex questions were collected using Amazon Mechanical Turk
(AMT) to gather 19,500 complex questions for 17,545 unique images. The images were sourced
from both COCO and Visual Genome to ensure variety. The testing set of TallyQA contains 38,589
questions, which is a reasonable size. Therefore, we evaluated models on the entire original test set.
The distribution of unique answers is given in Table 5. TallyQA is provided under the terms of the
Apache License Version 2.0, January 2004: http://www.apache.org/licenses/

Table 5: The distribution of unique answers in TallyQA.

Answer Complex Simple
zero 4335 637
one 6853 12308
two 2479 5636
three 901 2034
four 453 1101
five 195 435
six 133 319
seven 70 152
eight 69 145
nine 31 84
ten 33 48
eleven 12 30
twelve 25 33
thirteen 7 13
fourteen 6 9
fifteen 6 7

B.2 VQDV1

VQDv1 (Acharya et al., 2019) was created synthetically using annotations from Visual Genome,
COCO, and COCO Panoptic. This synthetic generation approach helps combat certain biases. The
queries are generated using multiple templates for each type, allowing for diverse queries. The
annotations used to generate these questions are derived from a combination of COCO’s object
annotations and Visual Genome’s attribute and relationship information.

For VQDv1, almost 90% of the queries have less than two ground truth bounding boxes. In our
subset, we retained all queries with more than one ground truth bounding box, and we sampled 10%
of the queries with zero or one ground truth bounding box. Table 6 provides the distribution of ground
truth boxes across queries. The VQDv1 dataset is provided under the terms of the Creative Commons
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Table 6: Bounding box distribution for the original and modified versions of VQDv1.

Bounding Box Count Original Version Our Version
0 80025 (42.08%) 8001 (21.59%)
1 90101 (47.38%) 9008 (24.31%)
2 10127 (5.33%) 10127 (27.33%)
3 3200 (1.68%) 3200 (8.64%)
4 1894 (1.00%) 1894 (5.11%)
5 1334 (0.70%) 1334 (3.60%)
6 700 (0.37%) 700 (1.89%)
7 533 (0.28%) 533 (1.44%)
8 366 (0.19%) 366 (0.99%)
9 305 (0.16%) 305 (0.82%)

10 276 (0.15%) 276 (0.74%)
11 193 (0.10%) 193 (0.52%)
12 194 (0.10%) 194 (0.52%)
13 255 (0.13%) 255 (0.69%)
14 618 (0.32%) 618 (1.67%)
15 26 (0.01%) 26 (0.07%)
16 5 (0.00%) 5 (0.01%)
17 7 (0.00%) 7 (0.02%)
18 7 (0.00%) 7 (0.02%)
19 3 (0.00%) 3 (0.01%)
20 1 (0.00%) 1 (0.00%)
23 2 (0.00%) 2 (0.01%)
25 1 (0.00%) 1 (0.00%)
26 1 (0.00%) 1 (0.00%)

Attribution 4.0 International (CC BY 4.0) license: https://creativecommons.org/licenses/by/
4.0/legalcode

B.3 DVQA

The DVQA dataset was created by synthetically generating bar charts to test multiple aspects of
bar chart understanding. This automatic generation process allows precise control over the visual
elements’ positions and appearances, and provides access to meta-data about the elements in the
image, which is not available with real data (Kafle et al., 2018).

The original version of DVQA had two test sets: Test-Familiar and Test-Novel. The critical difference
between these two sets is that every bar chart in Test-Familiar has labels in DVQA’s training
set, whereas Test-Novel does not. Given that we are conducting zero-shot evaluations, these two
sets can be treated equivalently. Therefore, we sample the same number of questions from both.
Table 7 shows the question distributions of our subset version of DVQA. The DVQA dataset is
provided under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode

Table 7: Distribution of question types in DVQA.

Question Type Test-Familiar Version Test-Novel Version Our Version
Data 185356 (31.93%) 185452 (31.90%) 9269 (31.91%)
Reasoning 316923 (54.59%) 316881 (54.51%) 15844 (54.55%)
Structure 78278 (13.48%) 78988 (13.59%) 3930 (13.53%)

B.4 TDIUC

The TDIUC dataset was created by incorporating questions from three sources: existing datasets,
questions generated based on image annotations, and human annotators. Questions were imported
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from COCO-VQA and Visual Genome datasets, with templates and regular expressions used to
classify and generate questions(Kafle & Kanan, 2017). Additionally, questions were generated
using COCO’s semantic segmentation annotations and Visual Genome’s objects and attribute anno-
tations(Kafle & Kanan, 2017). For certain question types like sentiment understanding and object
utility/affordance, trained volunteers performed manual annotation using a web-based tool(Kafle &
Kanan, 2017). We sample proportionately from 12 question types in TDIUC. Table 8 shows our
subset of TDIUC question distributions. TDIUC is a public dataset but does not mention a particular
license.https://kushalkafle.com/projects/tdiuc.html

Table 8: Distribution of question types in TDIUC.

Question Type Original Version Our Version
Absurd 120411 (22.35%) 6844 (25.00%)
Activity Recognition 2682 (0.50%) 77 (0.28%)
Attribute 9200 (1.71%) 296 (1.08%)
Color 62490 (11.60%) 2142 (7.82%)
Counting 52905 (9.82%) 2262 (8.26%)
Object Presence 215324 (39.96%) 11884 (43.41%)
Object Recognition 30693 (5.70%) 1646 (6.01%)
Positional Reasoning 12284 (2.28%) 523 (1.91%)
Scene Recognition 22032 (4.09%) 1188 (4.34%)
Sentiment Understanding 634 (0.12%) 27 (0.10%)
Sport Recognition 10042 (1.86%) 478 (1.75%)
Utility Affordance 171 (0.03%) 12 (0.04%)

C CREATING “SLIM” EVALUATION SETS

We evaluate MLLMs on the entire validation set of TallyQA, which contains 38,589 questions.
However, the other datasets are much larger, which makes it challenging to quickly and inexpensively
evaluate MLLMs on them. To address this, we sample subsets from these datasets for evaluation. A
uniform random sampling is suboptimal as these datasets have long-tailed distributions and sampling
uniformly would result in discarding examples from the tail. Therefore, we adopt a stratified sampling
approach for DVQA and TDIUC, where we also maintain as much answer variety as possible.
Specifically, we first categorize the questions into fine-grained groups, defined by both the pre-defined
types in the datasets (e.g., question types or difficulty levels) and their corresponding answers. We
define r as the sampling ratio and k as the minimum number of samples from each group. For any
large group, we uniformly sample an r proportion of the entries. For smaller groups, if the size m is
such that m · r is less than k, we sample k entries. For groups even smaller than k, we use the entire
group. The number of samples m′ to be taken from group |gi| = m can be represented as follows:

m′
i =


mi if mi ≤ k

k if mi · r < k ∧mi > k

⌈mi · r⌉ if mi · r ≥ k

VQDv1 has a long-tail distribution regarding the number of bounding boxes per query, where queries
with 0 or 1 box comprise almost 90% of the dataset. Our goal is to evaluate the MLLM’s ability to
generate a variable number of bounding boxes – extending the evaluation scope beyond traditional
referring expression comprehension datasets such as RefCOCO (Mao et al., 2016), where all referring
expressions are associated with only one bounding box. Therefore, we retained all the questions with
more than one bounding box and randomly sampled queries corresponding to 0 or 1 bounding box.
As seen in Table 6, this method effectively increases the ratio of questions with multiple bounding
boxes.

Our sampling method preserves the most challenges samples present in the original dataset, ensuring
a comprehensive evaluation while significantly reducing computational overhead. Summary statistics
for the datasets are given in Table 9.
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Table 9: SS: Supplementary Summary statistics for the VQA and VQD datasets we study.

Dataset Name # of
Categories

# of Unique Answers Original Size Sampled Size

TDIUC Kafle & Kanan (2017) 12 562 538,868 27,336
TallyQA Acharya et al. (2018) 2 16 38,589 38,589
DVQA Kafle et al. (2018) 3 2113 580,557 29,025
VQDv1 Acharya et al. (2019) 5 24 190,174 37,057

D PROMPT ENGINEERING

To make the model performance comparison as fair as possible, we endeavored to keep the prompts
consistent across different models. However, this was challenging due to variations in the models’
ability to process the prompts. For example, BLIP2 and iBLIP failed when prompted to answer using
a template such as “My answer is ¡answer¿.” Inspired by Liu et al. (2023a), for TDIUC, DVQA, and
TallyQA, we prompt the models to answer as concisely as possible instead of asking them to generate
entire sentences. These prompts are given in Fig. 4.

Figure 4: Prompts used for TallyQA, DVQA, and TDIUC.

• TallyQA: Please answer the question in one word.
• DVQA: Please answer the question in one word
• TDIUC: Please answer in one word. Answer ‘doesnotapply’ if the question is not related to

the image or cannot be answered.

Despite much effort, for VQDv1, we were unable to identify a universal prompt for generating
multiple bounding boxes that worked well across models. For example, as shown in Table 10,
LLaVA (7B) repeatedly generated the same bounding boxes until the maximum token limit was
reached when this prompt was used. We believe this occurs because the model is confused by the
instruction to generate multiple bounding boxes, even when only one object is detected. This may
explain why it repeatedly generates the same bounding box. While we considered non-maximal
suppression or eliminating redundant boxes, our goal is to fairly evaluate MLLMs without excessively
post-processing their outputs. Therefore, we fine-tuned the prompts for different models. The results
reported in the paper represent the best outcomes from our evaluations. The best-identified prompts
for each model on VQDv1 are given in Table 11.

Table 10: LLaVA (7B) struggled with some prompts for VQDv1.

Prompt with Query Where is the motorcycle? Instruction: Generate a list of bounding box
coordinates around the objects that the prompt mentioned if they
exist in the image. Even if the question uses a singular verb like ‘is’,
you should still generate multiple bounding boxes if there are
multiple objects that satisfy the prompt. The bounding box list
should be in the following format: [[x min, y min, x max, y max],
[x min, y min, x max, y max]]

LLaVA (7B) predicted answer: “[[0.01, 0.0, 0.28, 0.24], [0.01, 0.0, 0.28, 0.24], [0.01,
0.0, 0.28, 0.24], [0.01, 0.0, 0.28, 0.24], [0.01, 0.0, 0.28, 0.24], [0.01, 0.0,
0.28, 0.24], [0.01, 0.0, 0.28, 0.24], [0.01, 0.0, 0.28, 0.24], [0.01, 0.0,
0.28, 0.24], [0.01, 0.0, 0.28, 0.24], [0.01, 0.0, 0.28, 0.24], [0.01, 0.0,
0.28, 0.24], [0.01, 0.0, 0.28, 0.24], [0.01, 0.0, 0.28, 0.24], [0.01, 0.0,
0.28, 0.24], [0.01, 0.0, 0.28, 0.24], [0.01, 0.0, 0.28, 0.24], [0.01, 0.0,
0.28, 0.24], [0.01, 0.0, 0.28, 0.24], [0.01, 0.0, 0.28, 0.24], [0.01, 0.0,
0.28, 0.24], [0.01, 0.0, 0.28, 0.24], [0.01, 0.0, 0.28, 0.24], [0.01,”
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Table 11: The best identified VQDv1 prompts for each model.

Model Prompt
GPT-4o/GPT-4V Generate a list of bounding box coordinates around the objects

mentioned in the prompt if they exist in the image. Even if the
prompt uses a singular verb like ‘is’, generate multiple bounding
boxes if multiple objects satisfy the query. The bounding box
list should be formatted as: [[x min, y min, x max, y max]], and
it can contain zero or more bounding boxes. Only provide the
bounding box list, without any additional descriptions.

LLaVA-NeXT Please generate a list of bounding boxes coordinates
of the region this query describes. Use the format
[[x min,y min,x max,y max]....]. Do not respond in sentences,
and only generate the bounding boxes. Respond with an empty
list [[]], if no such region exists in the image.

LLaVA (7B)/(13B) Please answer the question by generating a list of bounding box
coordinates around the objects the question is asking, and if no
such object exists in the image, answer: [[]]

E MODEL DETAILS

In this paper, all the open source MLLMs are loaded directly from HuggingFace, the detail models
are below:

Table 12: MLLM Model Repository Paths

Model Repository Path
LLaVA-NeXT llava-hf/llava-v1.6-mistral-7b-hf
InstructBlip Salesforce/instructblip-flan-t5-xxl
BLIP2 Salesforce/blip2-flan-t5-xl
LLaVA1.5-7b llava-hf/llava-1.5-7b-hf
LLaVA1.5-13b llava-hf/llava-1.5-13b-hf

GPT-4v/4o are not open sourced, therefore we are unable to identify the models. We utilize the API
released by OpenAI to evaluate four datasets on GPT-4v/4o.

F ADDITIONAL EVALUATION DETAILS

Root Mean Squared Error (RMSE) Computation. For TallyQA, besides Micro and Macro
Accuracy, we also compute RMSE. However, we observed that due to the unpredictability of the
MLLMs, the models occasionally output unreasonably large numbers as their predicted object
counts. For instance, LLaVA-NeXT predicts an unreasonably large object count of 150 for one
of the questions. Such outliers significantly inflate the models’ overall average RMSE across all
questions. As shown in the distribution of TallyQA questions, all counting numbers are between 0
and 15. Therefore, we apply a simple cutoff technique: an upper bound of 15 and a lower bound of 0
is applied to all predicted counts. This adjustment ensures that the RMSE remains meaningful and
useful for analysis.

Match Answer with Ground Truth.
For TallyQA, the model is tasked with generating object counts. If the model correspondingly
generates a number enclosed within a string, such as ”2”, we directly convert it to int type by type
conversion. For the case where the model generates a word, we map the word to its corresponding
number using the mappings shown in table 5. Occasionally, the model generates answers that, while
not numerical, still make sense. For example, the model might generate ’none’ or ’no,’ which we
interpret as zero. We manually account for these cases and add additional mappings accordingly.
While we acknowledge that even with these steps, we may still miss some unpredictable answers
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from the models, such as when the model responds with ’a few,’ which is completely uninterpretable,
we map these to None.

Word Number Word Number Word Number
zero 0 four 4 eight 8
none 0 five 5 nine 9
no 0 six 6 ten 10
one 1 seven 7 eleven 11
two 2 twelve 12 fourteen 14

three 3 thirteen 13 fifteen 15

Figure 5: Mapping of words to numbers in TallyQA

In datasets like TallyQA, DVQA, and VQDv1, synonymous answers are rarely an issue due to the
specific nature of each task. For example, TallyQA typically expects numerical answers that are
definitive and unambiguous (numbers seldom have synonyms). The main exception is when ’none,’
’no,’ and ’zero’ are all interpreted as 0. In DVQA, which focuses on chart understanding, questions
such as ’Which bar has the highest number?’ require the model to read and provide the exact text
from the graph, minimizing the possibility of synonymous answers. Similarly, VQDv1 involves
generating bounding boxes and computing the Intersection over Union (IoU) to determine if the
ground truth is correctly matched. The evaluation uses Recall and Precision metrics, which are not
binary and therefore do not penalize synonymous answers.

In contrast, tasks in TDIUC are more likely to involve more interpretative answers. For example,
the answers ’phone’ and ’telephone’ should be considered semantically similar and should both be
acceptable if the ground truth is one of them. To minimize penalizing synonymous answers like the
case above, we leverage WordNet(University, 2010), a lexical database for the English language
that is specifically designed for natural language processing. Specifically, we retrieve the sets of
synonyms for each word from WordNet (using the synsets function) and compare these sets. If there
is any overlap in the synsets, two words are considered synonyms, and we use this to evaluate if the
predicted word(s) matches the ground truth(s).

G ADDITIONAL RESULTS

G.1 TALLYQA

For TallyQA, we found that the performance of most models decreases as the correct number to output
increases, as shown in Figs. 6a and 6b. Across counts, models perform much better at answering
simple questions than complex questions.

G.2 VQDV1

Alternative Prompts. All models performed poorly on VQDv1. As mentioned earlier, it was
challenging to identify the best prompt for each model. We hypothesized that given the verbosity of
GPT-4o, it would benefit from being allowed to provide more extended responses where it reasons
‘aloud.’ However, this performed worse than the prompts used in our main results. In Table 13, we
provide alternative prompts that we tried, where the results are given in Table 14.

Qualitative Examples. Among all the datasets we evaluated, all models consistently performed
poorly on VQDv1. Consequently, we provide qualitative examples from VQDv1 in the figures below,
using the prompts employed in our main results. These visualizations demonstrate the challenges
models face when required to detect multiple objects.
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(a) Simple counting questions in TallyQA. (b) Complex counting questions in TallyQA.

Figure 6: Accuracy as a function of the correct answer for simple and complex counting questions in
TallyQA.

Table 13: Alternative prompts studied for VQDv1.

Model Prompt
GPT-4o Please generate a list of bounding boxes coordinates for re-

gions that match what is described in the query. Bounding
boxes should use the format: [[x min,y min,x max,y max], ..],
where (x min,y min) is top left coordinate,(x max,y max) is
bottom right coordinate. If there are no objects in the image
that the query describes, please respond with an empty list.
You can explain your answers if necessary, but end your re-
sponse with the format: The bounding boxes coordinates are
¡box¿[[x min,y min,x max,y max],..,..]¡box¿.̈ Please keep the
special token ¡box¿ in your response.

LLaVA-NeXT Generate a list of bounding box coordinates around the objects
mentioned in the query, if they exist in the image. Even if the
query uses a singular verb like ‘is’, generate multiple bounding
boxes if multiple objects satisfy the query. The bounding box
list should be formatted as: [[x min, y min, x max, y max]], and
it can contain zero or more bounding boxes. Only provide the
bounding box list, without any additional descriptions.

LLaVA (7B)/(13B) Generate a list of bounding box coordinates around the objects
that the prompt mentioned if they exist in the image. Even if
the query uses a singular verb like ‘is’, you should still generate
multiple bounding boxes if multiple objects satisfy the prompt.
The bounding box list should be in the following format: [[x min,
y min, x max, y max], [x min,y min, x max, y max]].

Table 14: MLLM performance on VQDv1 using the alternative prompts from Table 13.

Model LLaVA (7B) LLaVA (13B) LLaVA-NeXT GPT-4o

Micro F1 4.27% 8.90% 14.66% 23.81%
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