
Published in Transactions on Machine Learning Research (04/2025)

Salsa Fresca: Angular Embeddings and Pre-Training for ML
Attacks on Learning With Errors

Samuel Stevens stevens.994@osu.edu
The Ohio State University

Emily Wenger emily.wenger@duke.edu
Duke University

Cathy Yuanchen Li yuanchen@uchicago.edu
University of Chicago

Niklas Nolte nolte@meta.com
Meta AI Research

Eshika Saxena eshika@meta.com
Meta AI Research

François Charton fcharton@meta.com
Meta AI Research

Kristin E. Lauter klauter@meta.com
Meta AI Research

Reviewed on OpenReview: https: // openreview. net/ forum? id= w4nd5695sq

Abstract

Learning with Errors (LWE) is a hard math problem underlying recently standardized post-
quantum cryptography (PQC) systems for key exchange and digital signatures (Chen et al.,
2022). Prior work (Wenger et al., 2022; Li et al., 2023a;b) proposed new machine learning
(ML)-based attacks on LWE problems with small, sparse secrets, but these attacks require
millions of LWE samples to train on and take days to recover secrets. We propose three key
methods—better preprocessing, angular embeddings and model pre-training—to improve
these attacks, speeding up preprocessing by 25× and improving model sample efficiency by
10×. We demonstrate for the first time that pre-training improves and reduces the cost
of ML attacks on LWE. Our architecture improvements enable scaling to larger-dimension
LWE problems: this work is the first instance of ML attacks recovering sparse binary secrets
in dimension n = 1024, the smallest dimension used in practice for homomorphic encryption
applications of LWE where sparse binary secrets are proposed Lauter et al. (2011), albeit
for larger modulus q. The ML-based approach is the only attack which has successfully
recovered secrets for these parameters.

1 Introduction

Lattice-based cryptography was recently standardized by the US National Institute of Standards and
Technology (NIST) in the 5-year post-quantum cryptography (PQC) competition (Chen et al., 2022). Lattice-
based schemes are believed to be resistant to attacks by both classical and quantum computers. Given
their importance for the future of information security, verifying the security of these schemes is critical,
especially when special parameter choices are made such as binary, ternary, and/or sparse secrets. Both
the NIST standardized schemes and homomorphic encryption (HE) rely on the hardness of the “Learning

1

https://openreview.net/forum?id=w4nd5695sq

Published in Transactions on Machine Learning Research (04/2025)

Table 1: Best attack results for LWE problems in dimensions n (higher is harder), modulus q (lower is harder),
and Hamming weights h (higher is harder). We recover secrets for n = 1024 for the first time in ML-based LWE
attacks and reduce total attack time for n = 512, log2 q = 41 to 50 hours (with full CPU parallelization).

n log2q highest h LWE (A, b)
matrices needed

preprocessing time
(hrs/CPU/matrix)

training
time (hrs)

total
time (hrs)

512 41 44 1955 13.1 36.9 50.0
768 35 9 1302 12.4 14.8 27.2
1024 50 13 977 26.0 47.4 73.4

with Errors” (Regev, 2005, LWE) problem. NIST schemes standardize small secrets (binomial), and the
HE standard includes binary and ternary secrets Albrecht et al. (2021); Bossuat et al. (2024), with sparse
versions used in practice Cheon et al. (2017).

The LWE problem is defined as follows: in dimension n, the secret s ∈ Zn
q is a vector of length n with integer

entries modulo q. Let A ∈ Zm×n
q be a uniformly random matrix with m rows, and e ∈ Zm

q an error vector
sampled from a narrow Gaussian χe (see 2 for notation summary). The goal is to find s given A and b,
where b = A · s + e mod q. The hardness of this problem depends on the parameter choices: n, q, and the
secret and error distributions. Many HE implementations use sparse, small secrets to improve efficiency and
functionality, where all but h entries of s are zero (so h is the Hamming weight of s). The non-zero elements
have a limited range of values: 1 for binary secrets, 1 and −1 for ternary secrets. Sparse binary or ternary
secrets allow for fast computations, since they replace the n-dimensional scalar product A · s by h sums.
However, binary and ternary secrets might be less secure Bai & Galbraith (2014).

Most attacks on LWE rely on lattice reduction techniques, such as LLL or BKZ Lenstra et al. (1982); Schnorr
(1987); Chen & Nguyen (2011), which recover s by finding short vectors in a lattice constructed from A, b
and q Ajtai (1996); Chen et al. (2020). BKZ attacks scale poorly to large dimension n and small moduli
q Albrecht et al. (2015).

ML-based attacks on LWE were first proposed in Wenger et al. (2022); Li et al. (2023a;b), inspired by
viewing LWE as a linear regression problem on a discrete torus. These attacks train small transformer
models (Vaswani et al., 2017) to extract a secret from eavesdropped LWE samples (A, b), using lattice-
reduction for preprocessing. Although Li et al. solves medium-to-hard small sparse LWE instances, for
example, dimension n = 512, the approach is bottlenecked by preprocessing and larger dimensions used in
HE schemes, such as n = 1024. In this work, we introduce several improvements to Li et al.’s ML attack,
enabling secret recovery for harder LWE problems in less time. Our main contributions are:

• 25× faster pre-processing using Flatter (Ryan & Heninger, 2023) and interleaving with polish-
ing (Charton et al., 2024) and BKZ2.0 (Chen & Nguyen, 2011) (see §3).

• An encoder-only transformer architecture, coupled with an angular embedding for model
inputs. This reduces the model’s logical and computational complexity and halves the input sequence
length, significantly improving model performance (see §4).

• The first use of pre-training for LWE to improve sample efficiency for ML attacks, further reducing
preprocessing cost by 10× (see §5).

Overall, these improvements in both preprocessing and modeling allow us to recover secrets for harder
instances of LWE, i.e. higher dimension and lower modulus in less time and with fewer computing resources.
A summary of our main results can be found in Table 1. Although no prior LWE attack has been shown to
succeed experimentally at the parameter settings we consider, in §6 we contextualize our performance by
presenting theoretical estimates for other LWE attacks. The ML-based approach is the only attack which has
successfully recovered secrets for these parameters.

2

Published in Transactions on Machine Learning Research (04/2025)

Table 2: Notation used in this work.

Symbol Description

(A, b) LWE matrix/vector pair, with b = A · s + e.
(a, b) An LWE vector/integer pair, one row of (A, b).

q Modulus of the LWE problem.
s The (unknown) true secret.
h Number of nonzero bits in secret.
e Error vector, drawn from distribution χe

σe Standard deviation of the χe.
n Problem dimension (the dimension of a and s)
t The total number of LWE samples available
m # LWE samples in each subset during reduction
s∗ Candidate secret, not necessarily correct
R Matrix computed to reduce the coordinates of A.
ρ Preprocessing reduction factor; the ratio σ(RA)

σ(A)

2 Context and Attack Overview

Wenger et al. (2022) and Li et al. (2023a;b) demonstrated the feasibility of ML-based attacks on LWE. Li et al.
(2023a) has 2 parts: 1) data preprocessing using lattice reduction techniques; 2) model training interleaved
with regular calls to a secret recovery routine, using a trained model as a cryptographic distinguisher to guess
the secret. In this section we provide an overview of ML-based attacks in prior work.

2.1 Attack Part 1: LWE data preprocessing

The attack assumes t = 4n initial LWE samples (a, b) (rows of (A, b)) with the same secret are available.
Sampling m ≤ n of the 4n initial samples without replacement, matrices A ∈ Zm×n

q with vectors b ∈ Zm
q are

constructed.

The preprocessing step strives to reduce the norm of the rows of A by applying a carefully selected integer
linear operator R. Because R is linear with integer entries, the transformed pairs (RA, Rb) mod q are also
LWE pairs with the same secret, albeit larger error. In practice, R is found by performing lattice reduction
on the (m + n) × (m + n) matrix Λ =

[
0 q · In

ω · Im A

]
, and finding linear operators

[
C R

]
such that the

norms of
[
C R

]
Λ =

[
ω · R RA + q · C

]
are small. This achieves a reduction of the norms of the entries

of RA mod q, but also increases the error in the calculation of Rb = RA · s + Re, making secret recovery
more difficult. Although ML models can learn from noisy data, too much noise will make the distribution of
Rb uniform on [0, q) and inhibit learning. The parameter ω controls the trade-off between norm reduction
and error increase. Reduction strength is measured by ρ = σ(RA)

σ(A) , where σ denotes the mean of the standard
deviations of the rows of RA and A.

Li et al. (2023a) use BKZ Schnorr (1987) for lattice reduction Li et al. (2023b) improves the reduction time
by 45× via a modified definition of the Λ matrix and by interleaving BKZ2.0 Chen & Nguyen (2011) and
polish Charton et al. (2024) (see Appendix F).

This preprocessing step produces many (RA, Rb) pairs that can be used to train models. Individual rows of
RA and associated elements of Rb, denoted as reduced LWE samples (Ra, Rb) with some abuse of notation,
are used for model training. Both the subsampling of m samples from the original t LWE samples and the
reduction step are done repeatedly and in parallel to produce 4 million reduced LWE samples, providing the
data needed to train the model.

3

Published in Transactions on Machine Learning Research (04/2025)

2.2 Attack Part 2: Model training and secret recovery

With 4 million reduced LWE samples (Ra, Rb), a transformer is trained to predict Rb from Ra. For
simplicity, and without loss of generality, we will say the transformer learns to predict b from a. Li et al.
train encoder-decoder transformers (Vaswani et al., 2017) with shared layers (Dehghani et al., 2019). Inputs
and outputs consist of integers that are split into two tokens per integer by representing them in a large
base B = q

k with k ≈ 10 and binning the lower digit to keep the vocabulary small as q increases. Training is
supervised and minimizes a cross-entropy loss.

The key intuition behind ML-attacks on LWE is that to predict b from a, the model must have learned the
secret s. We extract the secret from the model by comparing model predictions for two vectors a and a′

which only differ on one entry. We expect the difference between the model’s predictions for b and b′ to be
small (of the same magnitude as the error) if the corresponding bit of s is zero, and large if it is non-zero.
Repeating the process on all n positions yields a guess for the secret.

For ternary secrets, Li et al. (2023b) introduce a two-bit distinguisher, which leverages the fact that if secret
bits si and sj have the same value, adding a constant K to inputs at both these indices should induce similar
predictions. Thus, if ui is the ith basis vector and K is a random integer, we expect model predictions for
a + Kui and a + Kuj to be the same if si = sj . After using this pairwise method to determine whether the
non-zero secret bits have the same value, Li et al. classify them into two groups. With only two ways to
assign 1 and −1 to the groups of non-zero secret bits, this produces two secret guesses.

Wenger et al. (2022) test a secret guess s∗ by computing the residuals b − a · s∗ over the 4n initial LWE
sample. If s∗ is correct, the standard deviation of the residuals will be close to ≈ σe. Otherwise, it will be
close to the standard deviation of a uniform distribution over Zq: q/

√
12.

For a given dimension, modulus and secret Hamming weight, the performance of ML attacks vary from one
secret to the next. Li et al. (2023b) observe that the difficulty of recovering a given secret s from a set of
reduced LWE samples (a, b) depends on the distribution of the scalar products a · s. If a large proportion of
these products remain in the interval (−q/2, q/2) (assuming centering) even without a modulo operation, the
problem is similar enough to linear regression that the ML attack will usually recover the secret. Li et al.
introduce the statistic NoMod: the proportion of scalar products in the training set having this property.
They demonstrate that large NoMod strongly correlates with likely secret recoveries for the ML-attack.

2.3 Improving upon prior work

Li et al. (2023b) recover binary and ternary secrets, for n = 512 and log2 q = 41 LWE problems with
Hamming weight ≤ 63, in 36 days, using 4,000 CPUs and 1 GPU ((Li et al., 2023b, Table 1)). Most of the
computing resources are needed in the preprocessing stage: reducing one m × n A matrix takes 35 days, and
4000 matrices must be reduced to build a training set of 4 million examples. This suggests two directions
for improving the attack performance. First, introducing fast alternatives to BKZ2.0 may shorten the time
required to reduce one matrix. Second, minimizing the number of samples needed to train the models would
reduce the number of CPUs needed for the preprocessing stage.

Another crucial goal is scaling to larger dimensions n. The smallest standardized dimension in the HE
Standard Albrecht et al. (2021) is n = 1024. At present, ML attacks are limited by their preprocessing time
and the length of the input sequences. The attention mechanism used in transformers is quadratic in the
sequence length, and Li et al. (2023b) encodes n dimensional inputs with 2n tokens. More efficient encoding
would cut down on transformer processing speed and memory consumption quadratically.

2.4 Parameters and settings in our work

Before presenting our innovations and results, we briefly discuss the LWE settings considered in our work.
LWE problems are parameterized by the modulus q, the secret dimension n, the secret distribution χs (sparse
binary/ternary) and the hamming weight h of the secret (the number of non-zero entries). Table 3 specifies
the LWE problem settings we attack. Proposals for LWE parameter settings in homomorphic encryption
suggest using n = 1024 with sparse secrets (as low as h = 64), albeit with smaller q than we consider Curtis

4

Published in Transactions on Machine Learning Research (04/2025)

Table 3: LWE parameters attacked
in our work. For all settings, we attack
both binary and ternary secret distribu-
tions χs.

n log2 q h

512 41 50 ≤ h ≤ 70
768 35 5 ≤ h ≤ 15
1024 50 5 ≤ h ≤ 15

Table 4: Reduction performance and median time to reduce
one matrix for Li et al. (2023b) vs. our work. Li et al.’s method
fails for n > 512 on our compute cluster.

n log2 q ρ
CPU · hours · matrix

Li et al. (2023b) Ours

512 41 0.41 ≈ 350 13.1
768 35 0.71 N/A 12.4
1024 50 0.70 N/A 26.0

Table 5: Tradeoff between reduction quality and error is controlled by ω. n = 1024, log2 q = 50.

ω 1 3 5 7 10 13
ρ 0.685 0.688 0.688 0.694 0.698 0.706

∥R∥/q 0.341 0.170 0.118 0.106 0.075 0.068

& Player (2019); Albrecht (2017). Thus, it is important to show that ML attacks can work in practice for
dimension n = 1024 if we hope to attack sparse secrets in real-world settings. Similar to developing attacks
on reduced-round AES, we develop attacks on LWE problems with larger q and lower h than in practice.
Future work should further improve q and h towards concrete homomorphic encryption proposals.

The LWE error distribution remains the same throughout our work: rounded Gaussian with σ = 3 (follow-
ing Albrecht et al. (2021)). Table 10 in Appendix E contains all experimental settings, including values for
the moduli q, preprocessing settings, and model training settings.

3 Data Preprocessing

Prior work primarily used BKZ2.0 in the preprocessing/lattice reduction step. While effective, BKZ2.0 is slow
for large values of n. We found that for n = 1024 matrices it could not finish a single loop in 3 days on an
Intel Xeon Gold 6230 CPU, eventually timing out.

Our preprocessing pipeline. Our improved preprocessing incorporates a recently developed (at the
time of writing) reduction algorithm Flatter Ryan & Heninger (2023)1, which promises similar reduction
guarantees to LLL with much-reduced compute time, allowing us to preprocess LWE matrices in dimension
up to n = 1024. We interleave Flatter and BKZ2.0 and switch between them after 3 loops of one results in
∆ρ < −0.001. Following Li et al. (2023b), we run polish after each Flatter and BKZ2.0 loop concludes. We
initialize our Flatter and BKZ2.0 runs with block size 18 and α = 0.04, which provided the best empirical
trade-off between time and reduction quality (see Appendix F for additional details), and make reduction
parameters stricter as reduction progresses—up to block size 22 for BKZ2.0 and α = 0.025 for Flatter.

Preprocessing performance. Table 4 records the reduction ρ achieved for each (n, q) pair and the time
required, compared with Li et al. (2023b). Recall that ρ measures the reduction in the standard deviation of
Ai relative to its original uniform random distribution; lower is better. Standard deviation strongly correlates
with vector norms, but for consistency with Li et al. (2023b) we use standard deviation.

We record reduction time as CPU · hours · matrix, the amount of time it takes our algorithm to reduce one
LWE matrix using one CPU. We parallelize our reduction across many CPUs. For n = 512, our methods
improve reduction time by a factor of 25, and scale easily to n = 1024 problems. Overall, we find that
Flatter improves the time (and consequently resources required) for preprocessing, but does not improve the
overall reduction quality.

1https://github.com/keeganryan/flatter

5

https://github.com/keeganryan/flatter

Published in Transactions on Machine Learning Research (04/2025)

…

MaxPool

<latexit sha1_base64="bFSU+zSVMAITizx40zJBjPEkLVM=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaLUEFKUoq6LLpxWcU+oIllMp20QyeTMDMRS8jGX3HjQhG3foY7/8ZJm4W2HrhwOOde7r3HixiVyrK+jcLS8srqWnG9tLG5tb1j7u61ZRgLTFo4ZKHoekgSRjlpKaoY6UaCoMBjpOONrzK/80CEpCG/U5OIuAEacupTjJSW+uZB5fEUTk6gQzl0AqRGnpfcpve1vlm2qtYUcJHYOSmDHM2++eUMQhwHhCvMkJQ924qUmyChKGYkLTmxJBHCYzQkPU05Coh0k+kDKTzWygD6odDFFZyqvycSFEg5CTzdmd0o571M/M/rxcq/cBPKo1gRjmeL/JhBFcIsDTiggmDFJpogLKi+FeIREggrnVlJh2DPv7xI2rWqfVat39TLjcs8jiI4BEegAmxwDhrgGjRBC2CQgmfwCt6MJ+PFeDc+Zq0FI5/ZB39gfP4AvWGVPw==</latexit>

(x, y) 2 R2

…

<latexit sha1_base64="fPDsHORc9W9XytJw1b6V0YZ3Ics=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2m3bpZhN2J0Io/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xCzhfkSHSoSCUbTSQ9ZX/XLFrbpzkFXi5aQCORr98ldvELM04gqZpMZ0PTdBf0I1Cib5tNRLDU8oG9Mh71qqaMSNP5mfOiVnVhmQMNa2FJK5+ntiQiNjsiiwnRHFkVn2ZuJ/XjfF8NqfCJWkyBVbLApTSTAms7/JQGjOUGaWUKaFvZWwEdWUoU2nZEPwll9eJa2LqndZrd3XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gBsmI3n</latexit>yn

Self-Attention

xN

…

MLP

Input/Output

Trainable parameters

Hidden representations

Not trainable

<latexit sha1_base64="SwZcjtsStrgnasl+9vkauMklcvA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz00O5jv1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7qlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vktZF1bus1u5rlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwArKI28</latexit>

We

<latexit sha1_base64="96XF9wgm/O0hcd5HIOMllMraEE4=">AAAB6nicbVBNSwMxEJ3Ur1q/qh69BIvgqexKUY9FLx4r2g9ol5JNs21oNlmSrFCW/gQvHhTx6i/y5r8xbfegrQ8GHu/NMDMvTAQ31vO+UWFtfWNzq7hd2tnd2z8oHx61jEo1ZU2qhNKdkBgmuGRNy61gnUQzEoeCtcPx7cxvPzFtuJKPdpKwICZDySNOiXXSQ7uv+uWKV/XmwKvEz0kFcjT65a/eQNE0ZtJSQYzp+l5ig4xoy6lg01IvNSwhdEyGrOuoJDEzQTY/dYrPnDLAkdKupMVz9fdERmJjJnHoOmNiR2bZm4n/ed3URtdBxmWSWibpYlGUCmwVnv2NB1wzasXEEUI1d7diOiKaUOvSKbkQ/OWXV0nroupfVmv3tUr9Jo+jCCdwCufgwxXU4Q4a0AQKQ3iGV3hDAr2gd/SxaC2gfOYY/gB9/gA6UI3G</latexit>

Wo

<latexit sha1_base64="89J+JuC5FxMnvUsR7pwslvrJLdI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlJuuXK27VnYOsEi8nFcjR6Je/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSvqh6l9Vas1ap3+RxFOEETuEcPLiCOtxBA1rAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MHyVOM8A==</latexit>c

<latexit sha1_base64="320VPklRgEWhB8hnnEiRh3xn5cE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0QPtev1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7qlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vktZF1bus1u5rlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwDrhY2S</latexit>a1
<latexit sha1_base64="WxkZs5xRs38lJD4l9+FXgHm0HfI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOle9qv9csVt+rOQVaJl5MK5Gj2y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnXqt5FtX5XrzSu8ziKcAKncA4eXEIDbqEJLWAwhGd4hTdHOC/Ou/OxaC04+cwx/IHz+QPtCY2T</latexit>a2

<latexit sha1_base64="jrq4lEYW8EALKbypH6FBv/UbZgg=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cKpi20oWy2m3bpZhN2J0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTxqmSTTjPsskYnuhNRwKRT3UaDknVRzGoeSt8Px3cxvP3FtRKIecZLyIKZDJSLBKFrJp/1cTfvVmlt35yCrxCtIDQo0+9Wv3iBhWcwVMkmN6XpuikFONQom+bTSywxPKRvTIe9aqmjMTZDPj52SM6sMSJRoWwrJXP09kdPYmEkc2s6Y4sgsezPxP6+bYXQT5EKlGXLFFouiTBJMyOxzMhCaM5QTSyjTwt5K2IhqytDmU7EheMsvr5LWRd27ql8+XNYat0UcZTiBUzgHD66hAffQBB8YCHiGV3hzlPPivDsfi9aSU8wcwx84nz8MvI7b</latexit>an
<latexit sha1_base64="gsX9/jccenrQQU4UL/6VgISS1Eo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qMeiF48V7Qe0oUy2m3bpZhN2N0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSATXxnW/nMLK6tr6RnGztLW9s7tX3j9o6ThVlDVpLGLVCVAzwSVrGm4E6ySKYRQI1g7GNzO//ciU5rF8MJOE+REOJQ85RWOle+yf98sVt+rOQf4SLycVyNHolz97g5imEZOGCtS667mJ8TNUhlPBpqVeqlmCdIxD1rVUYsS0n81PnZITqwxIGCtb0pC5+nMiw0jrSRTYzgjNSC97M/E/r5ua8MrPuExSwyRdLApTQUxMZn+TAVeMGjGxBKni9lZCR6iQGptOyYbgLb/8l7TOqt5FtXZXq9Sv8ziKcATHcAoeXEIdbqEBTaAwhCd4gVdHOM/Om/O+aC04+cwh/ILz8Q3ujY2U</latexit>a3

<latexit sha1_base64="QRlFKTdZFTH2TZmCLuq5ispBsxg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbTbt0swm7E7GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuTaiFg94DjhfkQHSoSCUbTS/VPP65UrbtWdgSwTLycVyFHvlb+6/ZilEVfIJDWm47kJ+hnVKJjkk1I3NTyhbEQHvGOpohE3fjY7dUJOrNInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tOyYbgLb68TJpnVe+ien53Xqld53EU4QiO4RQ8uIQa3EIdGsBgAM/wCm+OdF6cd+dj3lpw8plD+APn8wcOno2p</latexit>x1
<latexit sha1_base64="AR8bw1iLV+h/TJ1WtHIGvCZC5c0=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY9ELx4xyiOBDZkdemHC7OxmZtZICJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzcxvPaLSPJYPZpygH9GB5CFn1Fjp/qlX6RVLbtmdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE175Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNStm7KFfvqqXadRZHHk7gFM7Bg0uowS3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8AECKNqg==</latexit>x2

<latexit sha1_base64="oHKEjBPa1NpTI9acyZHKjpoa4aI=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHaVqEeiF48Y5ZHAhswOA0yYnd3M9BrJhk/w4kFjvPpF3vwbB9iDgpV0UqnqTndXEEth0HW/ndzK6tr6Rn6zsLW9s7tX3D9omCjRjNdZJCPdCqjhUiheR4GSt2LNaRhI3gxGN1O/+ci1EZF6wHHM/ZAOlOgLRtFK90/d826x5JbdGcgy8TJSggy1bvGr04tYEnKFTFJj2p4bo59SjYJJPil0EsNjykZ0wNuWKhpy46ezUyfkxCo90o+0LYVkpv6eSGlozDgMbGdIcWgWvan4n9dOsH/lp0LFCXLF5ov6iSQYkenfpCc0ZyjHllCmhb2VsCHVlKFNp2BD8BZfXiaNs7J3Ua7cVUrV6yyOPBzBMZyCB5dQhVuoQR0YDOAZXuHNkc6L8+58zFtzTjZzCH/gfP4AEaaNqw==</latexit>x3
<latexit sha1_base64="+IywFGRoWtubaq24o0WD0l2cPVA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbSbt0swm7G7GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/Vbj6g0j+WDGSfoR3QgecgZNVa6f+rJXrniVt0ZyDLxclKBHPVe+avbj1kaoTRMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsljVD72ezUCTmxSp+EsbIlDZmpvycyGmk9jgLbGVEz1IveVPzP66QmvPIzLpPUoGTzRWEqiInJ9G/S5wqZEWNLKFPc3krYkCrKjE2nZEPwFl9eJs2zqndRPb87r9Su8ziKcATHcAoeXEINbqEODWAwgGd4hTdHOC/Ou/Mxby04+cwh/IHz+QNrEo3m</latexit>xn

<latexit sha1_base64="S9Cu8AKFnK6I/8lMB82XcUuy6Gc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2m3bpZhN2J0Io/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xCzhfkSHSoSCUbTSQ9b3+uWKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6C/oRqFEzyaamXGp5QNqZD3rVU0YgbfzI/dUrOrDIgYaxtKSRz9ffEhEbGZFFgOyOKI7PszcT/vG6K4bU/ESpJkSu2WBSmkmBMZn+TgdCcocwsoUwLeythI6opQ5tOyYbgLb+8SloXVe+yWruvVeo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AEQJI2q</latexit>y1
<latexit sha1_base64="AXHDfzJfI2psFexzj7c34ZbJEOI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOl+0m/1i9X3Ko7B1klXk4qkKPZL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWuppBFqP5ufOiVnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhFd+xmWSGpRssShMBTExmf1NBlwhM2JiCWWK21sJG1FFmbHplGwI3vLLq6Rdq3oX1fpdvdK4zuMowgmcwjl4cAkNuIUmtIDBEJ7hFd4c4bw4787HorXg5DPH8AfO5w8RqI2r</latexit>y2

<latexit sha1_base64="2CemlM6+NZ4ujdFym/hTPFz7v/c=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qMeiF48V7Qe0oWy2m3bpZhN2J0Io/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSKQw6LpfTmFldW19o7hZ2tre2d0r7x+0TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfjm5nffuTaiFg9YJZwP6JDJULBKFrpPuuf98sVt+rOQf4SLycVyNHolz97g5ilEVfIJDWm67kJ+hOqUTDJp6VeanhC2ZgOeddSRSNu/Mn81Ck5scqAhLG2pZDM1Z8TExoZk0WB7YwojsyyNxP/87ophlf+RKgkRa7YYlGYSoIxmf1NBkJzhjKzhDIt7K2EjaimDG06JRuCt/zyX9I6q3oX1dpdrVK/zuMowhEcwyl4cAl1uIUGNIHBEJ7gBV4d6Tw7b877orXg5DOH8AvOxzcTLI2s</latexit>y3
<latexit sha1_base64="fPDsHORc9W9XytJw1b6V0YZ3Ics=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2m3bpZhN2J0Io/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xCzhfkSHSoSCUbTSQ9ZX/XLFrbpzkFXi5aQCORr98ldvELM04gqZpMZ0PTdBf0I1Cib5tNRLDU8oG9Mh71qqaMSNP5mfOiVnVhmQMNa2FJK5+ntiQiNjsiiwnRHFkVn2ZuJ/XjfF8NqfCJWkyBVbLApTSTAms7/JQGjOUGaWUKaFvZWwEdWUoU2nZEPwll9eJa2LqndZrd3XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gBsmI3n</latexit>yn

Figure 1: Encoder-only transformer (§4.1) with angular embedding. See §4.2 for an explanation of our
proposed angular embedding.

Error penalty ω. We run all reduction experiments with penalty ω = 10. Table 5 demonstrates the
tradeoff between reduction quality and reduction error, as measured by ∥R∥/q, for n = 1024, log2 q = 50
problems. Empirically, we find that ∥R∥/q < 0.09 is sufficiently low to recover secrets from LWE problems
with e ∼ N (0, 32).

Experimental setup. In practice, we do not preprocess a different set of 4n (a, b) pairs for each secret
recovery experiment because preprocessing is so expensive. Instead, we use a single set of preprocessed Ra
rows combined with an arbitrary secret to produce different (Ra, Rb) pairs for training. We first generate
a secret s and calculate b = A · s + e for the original 4n pairs. Then, we apply the many different R
produced by preprocessing to A and b to produce many (Ra, Rb) pairs with reduced norm. This technique
enables analyzing attack performance across many dimensions (varying h, model parameters, etc.) in a
reasonable amount of time. Preprocessing a new dataset for each experiment would make evaluation at scale
near-impossible.

4 Model Architecture

Previous ML attacks on LWE use a encoder-decoder transformer (Vaswani et al., 2017). A bidirectional
encoder processes the input and an auto-regressive decoder generates the output. Integers in both input and
output sequences were tokenized as two digits in a large base smaller than q. We propose a simpler and faster
encoder-only model and introduce an angular embedding for integers modulo q.

4.1 Encoder-only model

Encoder-decoder models were originally introduced for machine translation, because their outputs can be
longer than their inputs. However, they are complex and slow at inference, because the decoder must run
once for each output token. For LWE, outputs (one integer) are always shorter than inputs (a vector of n

6

Published in Transactions on Machine Learning Research (04/2025)

integers). Li et al. (2023b) observe that an encoder-only model, a 4-layer bidirectional transformer based on
DeBERTa (He et al., 2020), achieves comparable performance with their encoder-decoder model.

Here, we experiment with simpler encoder-only models without DeBERTa’s disentangled attention mechanism
with 2 to 8 layers. Outputs are max-pooled across the sequence dimension, decoded by a linear layer for each
output digit (Figure 1). We minimize a cross-entropy loss. This simpler architecture improves training speed
by 25%.

4.2 Angular embedding

Most transformers process sequences of tokens from a fixed vocabulary, encoded in Rd by a learned embedding.
Typical vocabulary sizes vary from 32K in Llama2 (Touvron et al., 2023), to 256K in Jurassic-1 (Lieber
et al., 2021). The larger the vocabulary, the more data needed to learn the embeddings. LWE inputs and
outputs are integers from Zq. For n ≥ 512 and q ≥ 235: encoding integers with one token creates a too-large
vocabulary. To avoid this, Li et al. (2023a;b) encode integers with two tokens by representing them in base
B = q

k with small k and binning the low digit so the overall vocabulary has < 10K tokens.

This approach has two limitations. First, input sequences are 2n tokens long, which slows training as n grows,
because transformers’ attention mechanism scales quadratically in sequence length. Second, beyond sequence
length concerns, vocabulary-based embeddings do not introduce any inductive bias: models must learn how
to embed tokens solely from the data. However, LWE is a structured problem (modular arithmetic over
Zq), and prior work has demonstrated that transformers can learn this structure. Liu et al. (2022) showed
that transformers trained on modular arithmetic problems learn vocabulary embeddings that mirror the
circle-like structure present in Zq (e.g. the embedding for 0 is close to that of 1 and q − 1) late in training, a
phenomenon known as “grokking” Power et al. (2022); Gromov (2023).

To address these shortcomings, we introduce an angular embedding which strives to better represent
the problem’s modular structure in embedding space, while encoding integers with only one token. An
integer a ∈ Zq is first converted to an angle by the transformation a → 2π a

q , and then to the point
(sin(2π a

q), cos(2π a
q)) ∈ R2. All input integers (in Zq) are therefore represented as points on the 2-dimensional

unit circle, which is then embedded as an ellipse in Rd, via a learned linear projection We. This improves the
sequence length: individual elements of a each only need one token, so a ∈ Zn

q uses n tokens instead of 2n
tokens as in prior work. Our approach also adds inductive bias: because we linearly project from the unit
circle in R2 to the transformer’s embedding space Rd, the embeddings for the different elements in Zq are
arranged in a ellipsis, preserving the circle-like structure of integers mod q.

Model outputs, obtained by max-pooling the encoder output sequence, are decoded as points in R2 by
another linear projection Wo. The training loss is the L2 distance between the model prediction and the
point representing b on the unit circle.

4.3 Experiments

Here, we compare our new architecture with previous work, and assess its performance on larger instances of
LWE (n = 768 and 1024). All comparisons with prior work are performed on n = 512 and log2 q = 41 for
binary and ternary secrets, using the same pre-processing techniques as Li et al. (2023b).

Encoder-only models vs prior designs. In Table 6, we compare our encoder-only model (with and
without the angular embedding) with the encoder-decoder and the DeBERTa models from Li et al. (2023b).
The encoder-only and encoder-decoder models are trained for 72 hours on one 32GB V100 GPU.

The DeBERTa model, which requires more computing resources, is trained for 72 hours on four 32GB V100
GPUs. Our encoder-only model, using the same vocabulary embedding as prior work, processes samples 25%
faster than the encoder-decoder architecture and is 3× faster than the DeBERTa architecture. With the
angular embedding, training is 2.4× faster, because input sequences are half as long, so attention calculations
are accelerated. Our models also outperform prior designs on secret recovery: previous models recover binary
secrets with Hamming weight 63 and ternary secrets with Hamming weight 60. Encoder-only models with an

7

Published in Transactions on Machine Learning Research (04/2025)

Table 6: Best recovery results for binary and ternary secrets on various model architectures (n = 512,
log2 q = 41). Encoder-Decoder and DeBERTa models and recovery results are from Li et al. (2023b); we benchmark
DeBERTA samples/sec on our hardware. Encoder (Vocab.) uses prior work’s vocabulary embedding. Encoder
(Angular) is presented in Section 4.2.

Architecture Samples/
Sec

Largest
Binary h

Largest
Ternary h

Encoder-Decoder 200 63 58
Encoder (DeBERTa) 83 63 60
Encoder (Vocab.) 256 63 66
Encoder (Angular) 610 66 66

Figure 2: Encoder-only (angular embedding) perfor-
mance for varying # of layers and embedding dimen-
sions (n = 512, log2 q = 41, binary χs). Samples per second
quantifies training speed; “Recovered” = % recovered out of 100
secrets with h from 49-67; “Hours”= mean hours to recovery.

Layers Emb. Dim. Params Samples/S Recovered Hours

2 128 1.3M 2560 23% 18.9
4 256 4.1M 1114 22% 19.6
4 512 14.6M 700 25% 26.2
6 512 20.9M 465 25% 28.1
8 512 27.2M 356 24% 30.3

Figure 3: Count of # successes (orange)
and failures (blue) for various NoMod for
vocabulary-based vs. angular embedding
schemes. n = 512, log2 q = 41, h = 57-67.

angular embedding recover binary and ternary secrets with Hamming weights up to 66. §G.1 in the Appendix
gives detailed results.

Impact of model size. Table 2 compares encoder-only models of different sizes (using angular embeddings).
All models are run for up to 72 hours on one 32GB V100 GPU on n = 512, log2 q = 41. We observe that
larger models yield little benefit in terms of secret recovery rate, and small models are significantly faster
(both in terms of training and recovery). Additional results are in Appendix G.2. We use 4 layers with
embedding dimension 512 for later experiments because it recovers the most secrets (25%) the fastest.

Embedding ablation. Next, we compare our new angular embedding scheme to the vocabulary embeddings.
The better embedding should recover both more secrets and more difficult ones (as measured by Hamming
weight and NoMod; see §2.2 for a description of NoMod). To measure this, we run attacks on identical
datasets, n = 512, log2 q = 41, h = 57-67 with 10 unique secrets per h. One set of models uses the angular
embedding, while the other uses the vocabulary embedding from Li et al. (2023b).

To check if angular embedding outperforms vocabulary embedding, we measure the attacked secrets’ NoMod.
We expect the better embedding to recover secrets with lower NoMod and higher Hamming weights (e.g.
harder secrets). As Figure 3 and Table 6 demonstrate, this is indeed the case. Angular embeddings recover
secrets with NoMod= 56 vs. 63 for vocabulary embedding (see Table 29 in Appendix I for raw numbers).
Furthermore, angular embedding models recover more secrets than those with vocabulary embeddings (16 vs.
2) and succeed on higher h (66 vs. 63). We conclude that an angular embedding is superior to a vocabulary
embedding because it recovers harder secrets.

Scaling n. Finally, we use our proposed architecture improvements to scale n. The long input sequence
length in prior work made scaling attacks to n ≥ 512 difficult, due to both memory footprint and slow model
processing speed. In contrast, our more efficient model and angular embedding scheme (§4.1,§4.2) enable us
to attack n = 768 and n = 1024 secrets. Table 7 shows that we can recover up to h = 9 for both n = 768 and
n = 1024 settings, with < 24 hours of training on a single 32GB V100 GPU. In §5.1 we show recovery of
h = 13 for n = 1024 using a more sample-efficient training strategy. We run identical experiments using prior
work’s encoder-decoder model, but fail to recover any secrets with n > 512 in the same computational budget.

8

Published in Transactions on Machine Learning Research (04/2025)

Table 7: Secret recovery time for larger dimensions n with encoder-only model with 4 layers, embedding
dimension of 512 and angular embedding. We only report the training hours (on one V100 GPU) for successful
secret recoveries, out of 10 secrets per h value.

n log2 q
Samples/

Sec
Hours to recovery for different h values

h = 5 h = 7 h = 9 h = 11

768 35 355 3.1, 18.6, 18.9 9.1, 21.6, 24.9 15.9, 27.7 -
1024 50 256 1.6, 6.2, 7.6, 8.8, 34.0, 41.4, 43.7 4.6, 7.4, 13.5, 16.7 21.3 -

Table 8: # Training samples needed to recover secrets without pre-training. (n = 512, log2 q = 41, binary
secrets). We report # of secrets recovered among h = 30-45 (10 secrets for each h), the highest h recovered, and the
average attack time among secrets recovered with 1M, 3M and 4M training samples.

Training samples Total # Best h Mean Hours

300K 1 32 30.3
1M 18 44 28.0 ± 11.6
3M 21 44 26.5 ± 10.5
4M 22 44 25.3 ± 8.9

Our proposed model improvements lead to the first successful ML attack that scales to real-world values of
n: proposed real-world use cases for LWE-based cryptosystems recommend using dimensions n = 768 and
n = 1024 Avanzi et al. (2021); Albrecht et al. (2021); Curtis & Player (2019), although they also recommend
smaller q and harder secret distributions.

5 Training Methods
The final limitation we address is the 4 million preprocessed LWE samples for model training. Recall that
each training sample is a row of a reduced LWE matrix RA ∈ Zm×n

q , so producing 4 million training samples
requires reducing ≈ 4,000,000

m+n LWE matrices. Even with the preprocessing improvements highlighted in §3,
for n = 1024, this means preprocessing between 2000 and 4500 matrices at the cost of 26 hours per CPU
per matrix. 2 To further reduce total attack time, we propose training with fewer samples and pre-training
models.

5.1 Training with Fewer Samples

We first consider simply reducing training dataset size and seeing if the attack succeeds. Li et al. always use
4M training examples. To test if this many is needed for secret recovery, we subsample datasets of size N =
[100K, 300K, 1M, 3M] from the original 4M examples preprocessed via the techniques in §3. We train models
to attack LWE problems n = 512, log2 q = 41 with binary secrets and h = 30-45. Each attack is given 3 days
on a single V100 32GB GPU.

Table 8 shows that our attack still succeeds, even when only 300K samples are used. We recover approximately
the same number of secrets with 1M samples as with 4M, and both settings achieve the same best h. Using
1M rather than 4M training samples reduces our preprocessing time by 75%. We run similar experiments for
n = 768 and n = 1024, and find that we can recover up to h = 13 secrets for n = 1024 with only 1M training
samples. Those results are in Tables 17 to 20 in Appendix H.1.

5.2 Model Pre-Training

To further improve sample efficiency, we introduce the first use of pre-training in LWE. Pre-training models
has improved sample efficiency in language (Devlin et al., 2019; Brown et al., 2020) and vision (Kolesnikov
et al., 2020); we hypothesize similar improvements for LWE. We frame secret recovery as a downstream

2We bound the number of reduced matrices needed because some rows of reduction matrices R are 0, discarded after
preprocessing. Between m and n + m nonzero rows of R are kept, so we must reduce between 4,000,000

m+n
and 4,000,000

m
matrices.

9

Published in Transactions on Machine Learning Research (04/2025)

0 80K 240K 440K
Pretraining Steps

0

50

100
M

ea
n

Ho
ur

s
300K Samples

0 80K 240K 440K
Pretraining Steps

1M Samples

0 80K 240K 440K
Pretraining Steps

3M Samples

0 80K 240K 440K
Pretraining Steps

4M Samples

Figure 4: How pre-training affects mean hours to secret recovery for different training dataset sizes.
(n = 512, log2 q = 41, binary secrets).

task and pre-train a transformer to improve sample efficiency when recovering new secrets, further reducing
preprocessing costs.

Formally, an attacker would like to pre-train a model parameterized by θ on samples {(a′, b′)} such that the
pre-trained parameters θ∗ are a better-than-random initialization for recovering a secret from new samples
{(a, b)}. Although pre-training to get θ∗ may require significant compute, θ∗ can initialize models for many
different secret recoveries, amortizing the initial cost.

Pre-training setup. First, we generate and reduce a new dataset of 4 million Ra′ samples with which we
pre-train a model. The θ∗-initialized model will then train on the (Ra, Rb) samples used in §5.1, leading to a
fair comparison between a randomly-initialized model and a θ∗-initialized model. Pre-training on the true
attack dataset is unfair and unrealistic, since we assume the attacker will train θ∗ before acquiring the real
LWE samples they wish to attack.

The pre-trained weights θ∗ should be a good initialization for recovering many different secrets. Thus, we
use many different secrets with the 4M rows Ra′. In typical recovery, we have 4M rows Ra and 4M targets
Rb. In the pre-training setting, however, we generate 150 different secrets so that each Ra′ has 150 different
possible targets. So the model can distinguish targets, we introduce 150 special vocabulary tokens tsi

, one for
each secret si. We concatenate the appropriate token tsi

to row Ra′ paired with Rb′ = Ra′ · si + e. Thus,
from 4M rows Ra′, we produce 600M triplets (Ra′, tsi

, Rb′). The model learns to predict Rb′ from a row
Ra′ and an integer token tsi

.3

We hypothesize that including many Ra′, Rb′ pairs produced from different secrets will induce strong
generalization capabilities. When we train the θ∗-initialized model on new data with an unseen secret s, we
indicate that there is a new secret by adding a new token t0 to the model vocabulary that serves the same
function as tsi above. We randomly initialize the new token embedding, but initialize the remaining model
parameters with those of θ∗. Then we train and extract secrets as in §2.2.

Experiments. For pre-training data, we use 4M Ra′ rows reduced to ρ = 0.41, generated from a new set of
4n LWE (a, b) samples. We use binary and ternary secrets with Hamming weights from 30 to 45, with 5
different secrets for each weight, for a total of 150 secrets and 600M (Ra′, tsi , Rb′) triplets for pre-training.
We pre-train an encoder-only transformer with angular embeddings for 3 days on 8x 32GB V100 GPUs with
a global batch size of 1200. The model sees 528M total examples, less than one epoch. We do not run the
distinguisher step during pre-training because we are not interested in recovering these secrets.

We use the weights θ∗ as the initialization and repeat §5.1’s experiments. We use three different checkpoints
from pre-training as θ∗ to evaluate the effect of different pre-training amounts: 80K, 240K and 440K
pre-training steps.

Results. Figure 5 demonstrates that pre-training improves sample efficiency during secret recovery. We
record the minimum number of samples required to recover each secret for each checkpoint. Then we average
these minimums among secrets recovered by all checkpoints (including the randomly initialized model) to
fairly compare them. We find that 80K steps improves sample efficiency, dropping from 1.7M to 409K mean
samples required. However, further pre-training does not further improve sample efficiency.

3tsi is embedded using a learned vocabulary.

10

Published in Transactions on Machine Learning Research (04/2025)

Figure 5: Mean minimum number of
samples needed to recover binary se-
crets as a function of # pre-training
steps. (n = 512, log2 q = 41, binary se-
crets).

Recall that using fewer samples harms recovery speed (see Ta-
ble 8). Figure 4 shows trends for recovery speed for pre-trained
and randomly initialized models for different numbers of training
samples. We find that any pre-training slows down recovery, but
further pre-training might minimize this slowdown. Appendix H
has complete results.

6 Comparison to Other Attacks
It is difficult to compare against other attacks because few of the
known LWE attacks have been implemented at scale and have code
available, and no prior work has demonstrated successful LWE
attack performance for the (large) dimensions we consider. One
unpublished work Ducas et al. (2023) provides code and claims to
outperform Salsa Verde Li et al. (2023b), but in fact does not, and
does not even recover secrets in dimension n = 512. We compare against this publicly available code4 and
find that it does not recover any secrets for the parameters we attack.

In addition, we also follow common practice in the lattice community and compare against the LWE
Estimator Albrecht et al. (2015)5, a public Github repository commonly used to provide theoretical estimates
of LWE attack performance. However, the authors note that it has not been peer reviewed NIST (2023).
Furthermore, it is inaccurate in several instances Chen et al. (2020); Cheon et al. (2019); Ducas & Pulles
(2023) and does not actually implement attacks.

We present concrete results using code from Ducas et al. (2023) in Table 9, and the Estimator’s predicted
best attack for our parameters in Table 1. Ducas et al. (2023)’s code ran for weeks on our LWE parameter
sets, but never succeeded. Thus, we report “-” for that attack. In the estimator results, the ROP metric
refers loosely to the number of operations needed to run the attack, which does not easily translate to time
measurements, making it a crude estimate for runtime. For example, for (Z/qZ) ring operations, one should
multiply by the cost of a multiplication modulo q, naively (log q)2, or for ciphertext operations one should
multiply by the cost of polynomial multiplications modulo q, etc. We omit space requirements which may
make implementation of some of the theoretical attacks impossible for these large dimensions.

Table 9: Comparison to other claimed attacks. Estimates from Albrecht et al. (2015) given in terms of ROP =
estimated number of required operations for attack. Space requirements not included here.

LWE setting
(n, q, h)

Estimator Results Albrecht et al. (2015) Ducas et al. 2023
Attack Name ROP Time (sec)

(512, 41, 44) Bounded Distance Decoding (BDD) Liu & Nguyen (2013) 242.8 -
(768, 35, 9) BDD Meet-in-the-middle Hybrid Howgrave-Graham (2007) 246.1 -

(1024, 50, 13) BDD Meet-in-the-middle Hybrid Howgrave-Graham (2007) 248.1 -

7 Discussion & Future Work

Our contributions are spread across multiple fronts: faster preprocessing (25× fewer CPU hours), simpler
architecture (25% more samples/sec), better token embeddings (2.4× faster training) and the first use of pre-
training for LWE (10× fewer samples). Our efforts lead to 250× fewer CPU hours spent preprocessing
and 3× more samples/sec for for n = 512, log2 q = 41 LWE problems, and lead to the first ML attack
on LWE for n = 768 and n = 1024. Of note is that our contributions compose well; rarely in machine
learning research are optimizations across multiple fronts truly independent. A hypothetical 2× speedup
via data filtering and 3× speedup from an improved optimization algorithm is unlikely to combine to a 6×
speedup. In contrast, our optimizations do compose well.

4https://github.com/lducas/leaky-LWE-Estimator/tree/human-LWE/human-LWE
5https://github.com/malb/lattice-estimator, commit 00ec72ce

11

https://github.com/lducas/leaky-LWE-Estimator/tree/human-LWE/human-LWE
https://github.com/malb/lattice-estimator

Published in Transactions on Machine Learning Research (04/2025)

Although we have made substantial progress in pushing the boundaries of machine learning-based attacks on
LWE, much future work remains in both building on this pre-training work and improving models’ capacity
to learn modular arithmetic.

8 Limitations

Our work still does not attack concrete proposed LWE parameters (for example, the HE Standard Albrecht
et al. (2021) proposes n = 1024, log2 q = 29 with non-sparse secrets for an equivalent 128-bit security level).
We are primarily limited in two directions. First, wow effectively lattice reduction methods reduce samples.
Our work integrates and leverages the latest developments in lattice reduction to improve the number of
samples with scalar products a · s that lie in (− q

2 , q
2); this property is referred to as NoMod in §2.2 and prior

work (Li et al., 2023b). Second, we are limited by the ability of our neural network (currently a bidirectional
encoder) to learn from samples that do not satisfy this NoMod property. While prior work has demonstrated
that transformers can learn modular arithmetic for n = 1 (Liu et al., 2022), current architectures struggle
with larger values of n.

Furthermore, while pre-training improves sample efficiency, it does not lead to improvements when recovering
secrets with 3M or more reduced samples. While disappointing, this is not surprising: the “pre-train/fine-tune”
paradigm primarily improves over “train-from-scratch” in small-data regimes. Future work, instead of
improving recovery speed with millions of samples, should focus on further improving sample efficiency to
100K or fewer.

Acknowledgments

We thank Mark Tygert for his always insightful comments and Mohamed Malhou for running experiments.

References
Ezat Ahmadzadeh, Hyunil Kim, Ongee Jeong, and Inkyu Moon. A Novel Dynamic Attack on Classical

Ciphers Using an Attention-Based LSTM Encoder-Decoder Model. IEEE Access, 2021.

Miklós Ajtai. Generating hard instances of lattice problems. In Proc. of the ACM symposium on Theory of
Computing, 1996.

Mohammed M Alani. Neuro-cryptanalysis of DES and triple-DES. In Proc. of NeurIPS, 2012.

Martin Albrecht, Melissa Chase, Hao Chen, et al. Homomorphic encryption standard. In Protecting Privacy
through Homomorphic Encryption, pp. 31–62. 2021. https://eprint.iacr.org/2019/939.

Martin R. Albrecht. On dual lattice attacks against small-secret LWE and parameter choices in HElib and
SEAL. In Proc. of EUROCRYPT, 2017. ISBN 978-3-319-56614-6.

Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of learning with errors. Journal
of Mathematical Cryptology, 9(3):169–203, 2015.

Martin R Albrecht, Florian Göpfert, Fernando Virdia, and Thomas Wunderer. Revisiting the expected cost
of solving usvp and applications to lwe. In Proc. of ASIACRYPT, 2017.

Nada Aldarrab and Jonathan May. Can sequence-to-sequence models crack substitution ciphers? arXiv
preprint arXiv:2012.15229, 2020.

Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M. Schanck,
Peter Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS-Kyber (version 3.02) – Submission to round
3 of the NIST post-quantum project. 2021. Available at https://pq-crystals.org/.

Seunggeun Baek and Kwangjo Kim. Recent advances of neural attacks against block ciphers. In Proc. of
SCIS, 2020.

12

https://eprint.iacr.org/2019/939
https://pq-crystals.org/

Published in Transactions on Machine Learning Research (04/2025)

Shi Bai and Steven D. Galbraith. Lattice Decoding Attacks on Binary LWE. In Information Security and
Privacy, 2014.

Adrien Benamira, David Gerault, Thomas Peyrin, and Quan Quan Tan. A deeper look at machine learning-
based cryptanalysis. In Proc. of Annual International Conference on the Theory and Applications of
Cryptographic Techniques, 2021.

Jean-Philippe Bossuat, Rosario Cammarota, Jung Hee Cheon, Ilaria Chillotti, Benjamin R Curtis, Wei Dai,
Huijing Gong, Erin Hales, Duhyeong Kim, Bryan Kumara, et al. Security guidelines for implementing
homomorphic encryption. Cryptology ePrint Archive, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Proc. of NeurIPS, 2020.

François Charton. Linear algebra with transformers. Transactions in Machine Learning Research, 2022.

François Charton, Kristin Lauter, Cathy Li, and Mark Tygert. An efficient algorithm for integer lattice
reduction. SIAM Journal on Matrix Analysis and Applications, 45(1), 2024.

François Charton. Can transformers learn the greatest common divisor? arXiv:2308.15594, 2024.

Hao Chen, Lynn Chua, Kristin Lauter, and Yongsoo Song. On the Concrete Security of LWE with Small
Secret. Cryptology ePrint Archive, Paper 2020/539, 2020. URL https://eprint.iacr.org/2020/539.

Lily Chen, Dustin Moody, Yi-Kai Liu, et al. PQC Standardization Process: Announcing Four Candidates
to be Standardized, Plus Fourth Round Candidates. US Department of Commerce, NIST, 2022. https:
//csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4.

Yi Chen and Hongbo Yu. Bridging Machine Learning and Cryptanalysis via EDLCT. Cryptology ePrint
Archive, 2021. https://eprint.iacr.org/2021/705.

Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better Lattice Security Estimates. In Proc. of ASIACRYPT,
2011.

Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic encryption for arithmetic of
approximate numbers. In Proc. of ASIACRYPT, 2017.

Jung Hee Cheon, Minki Hhan, Seungwan Hong, and Yongha Son. A Hybrid of Dual and Meet-in-the-Middle
Attack on Sparse and Ternary Secret LWE. IEEE Access, 2019.

Benjamin R. Curtis and Rachel Player. On the feasibility and impact of standardising sparse-secret LWE
parameter sets for homomorphic encryption. In Proc. of the ACM Workshop on Encrypted Computing &
Applied Homomorphic Cryptography, 2019.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser. Universal transformers.
In Proc. of ICLR, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirectional
transformers for language understanding. In Proceedings of the Conference of the North American Chapter
of the Association for Computational Linguistics, 2019. URL https://aclanthology.org/N19-1423.

Elena Dubrova, Kalle Ngo, and Joel Gärtner. Breaking a fifth-order masked implementation of crystals-kyber
by copy-paste. Cryptology ePrint Archive, 2022. https://eprint.iacr.org/2022/1713.

Léo Ducas and Ludo N Pulles. Does the dual-sieve attack on learning with errors even work? In Annual
International Cryptology Conference, pp. 37–69. Springer, 2023.

Leo Ducas, Eamonn Postlethwaite, and Jana Sotakova. SALSA Verde vs. The Actual State of the Art, 2023.
https://crypto.iacr.org/2023/rump/crypto2023rump-paper13.pdf.

13

https://eprint.iacr.org/2020/539
https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4
https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4
https://eprint.iacr.org/2021/705
https://aclanthology.org/N19-1423
https://eprint.iacr.org/2022/1713
https://crypto.iacr.org/2023/rump/crypto2023rump-paper13.pdf

Published in Transactions on Machine Learning Research (04/2025)

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, et al. Faith and fate: Limits of transformers on
compositionality. arXiv preprint arXiv:2305.18654, 2023.

Aron Gohr. Improving attacks on round-reduced speck32/64 using deep learning. In Proc. of Annual
International Cryptology Conference, 2019.

Sergij V Goncharov. Using fuzzy bits and neural networks to partially invert few rounds of some cryptographic
hash functions. arXiv preprint arXiv:1901.02438, 2019.

Sam Greydanus. Learning the enigma with recurrent neural networks. arXiv preprint arXiv:1708.07576,
2017.

Kaden Griffith and Jugal Kalita. Solving Arithmetic Word Problems with Transformers and Preprocessing of
Problem Text. arXiv preprint arXiv:2106.00893, 2021.

Andrey Gromov. Grokking modular arithmetic. arXiv preprint arXiv:2301.02679, 2023.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert with
disentangled attention. arXiv preprint arXiv:2006.03654, 2020.

Nick Howgrave-Graham. A hybrid lattice-reduction and meet-in-the-middle attack against ntru. In Proc. of
CRYPTO. Springer, 2007.

Łukasz Kaiser and Ilya Sutskever. Neural GPUs learn algorithms. arXiv preprint arXiv:1511.08228, 2015.

Nal Kalchbrenner, Ivo Danihelka, and Alex Graves. Grid long short-term memory. arXiv preprint
arxiv:1507.01526, 2015.

Hayato Kimura, Keita Emura, Takanori Isobe, Ryoma Ito, Kazuto Ogawa, and Toshihiro Ohigashi. Output
Prediction Attacks on SPN Block Ciphers using Deep Learning. Cryptology ePrint Archive, 2021. URL
https://eprint.iacr.org/2021/401.

Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, and Neil
Houlsby. Big transfer (bit): General visual representation learning. In Proc. of ECCV, 2020.

Guillaume Lample and François Charton. Deep learning for symbolic mathematics. In Proc. of ICLR, 2020.

Kristin Lauter, Michael Naehrig, and Vinod Vaikuntanathan. Can homomorphic encryption be practical?
Proceedings of the 3rd ACM workshop on Cloud computing security workshop, pp. 113–124, 2011.

Nayoung Lee, Kartik Sreenivasan, Jason D. Lee, Kangwook Lee, and Dimitris Papailiopoulos. Teaching
arithmetic to small transformers. arXiv preprint arXiv:2307.03381, 2023.

H.W. Lenstra, A.K. Lenstra, and L. Lovász. Factoring polynomials with rational coefficients. Mathematische
Annalen, 261:515–534, 1982.

Cathy Yuanchen Li, Jana Sotáková, Emily Wenger, Mohamed Malhou, Evrard Garcelon, François Charton,
and Kristin Lauter. Salsa Picante: A Machine Learning Attack on LWE with Binary Secrets. In Proc. of
ACM CCS, 2023a.

Cathy Yuanchen Li, Emily Wenger, Zeyuan Allen-Zhu, Francois Charton, and Kristin E Lauter. SALSA
VERDE: a machine learning attack on LWE with sparse small secrets. In Proc. of NeurIPS, 2023b.

Opher Lieber, Or Sharir, Barak Lenz, and Yoav Shoham. Jurassic-1: Technical details and evaluation. White
Paper. AI21 Labs, 1:9, 2021.

Mingjie Liu and Phong Q. Nguyen. Solving BDD by Enumeration: An Update. In Ed Dawson (ed.), Topics
in Cryptology – CT-RSA 2013, 2013.

Ziming Liu, Ouail Kitouni, Niklas S Nolte, Eric Michaud, Max Tegmark, and Mike Williams. Towards
understanding grokking: An effective theory of representation learning. Proc. of NeurIPS, 2022.

14

https://eprint.iacr.org/2021/401

Published in Transactions on Machine Learning Research (04/2025)

Yuanliang Meng and Anna Rumshisky. Solving math word problems with double-decoder transformer. arXiv
preprint arXiv:1908.10924, 2019.

Daniele Micciancio and Panagiotis Voulgaris. Faster exponential time algorithms for the shortest vector
problem. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, 2010.

NIST. FAQ on Kyber512. 2023. https://csrc.nist.gov/csrc/media/Projects/
post-quantum-cryptography/documents/faq/Kyber-512-FAQ.pdf.

Rodrigo Nogueira, Zhiying Jiang, and Jimmy Lin. Investigating the limitations of transformers with simple
arithmetic tasks. arXiv preprint arXiv:2102.13019, 2021.

Theodoros Palamas. Investigating the ability of neural networks to learn simple modular arithmetic. 2017.
https://project-archive.inf.ed.ac.uk/msc/20172390/msc_proj.pdf.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving. arXiv
preprint arXiv:2009.03393, 2020.

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Generalization
Beyond Overfitting on Small Algorithmic Datasets. arXiv preprint arXiv:2201.02177, 2022.

Oded Regev. On Lattices, Learning with Errors, Random Linear Codes, and Cryptography. In Proc. of the
ACM Symposium on Theory of Computing, 2005.

Keegan Ryan and Nadia Heninger. Fast practical lattice reduction through iterated compression. Cryptology
ePrint Archive, 2023. URL https://eprint.iacr.org/2023/237.pdf.

Claus-Peter Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms. Theoretical Computer
Science, 1987. URL https://www.sciencedirect.com/science/article/pii/0304397587900648.

Kai-Yeung Siu and Vwani Roychowdhury. Optimal depth neural networks for multiplication and related
problems. In Proc. of NeurIPS, 1992.

Jaewoo So. Deep learning-based cryptanalysis of lightweight block ciphers. Security and Communication
Networks, 2020.

Shivin Srivastava and Ashutosh Bhatia. On the Learning Capabilities of Recurrent Neural Networks: A
Cryptographic Perspective. In Proc. of ICBK, 2018.

The FPLLL development team. fplll, a lattice reduction library, Version: 5.4.4. Available at https:
//github.com/fplll/fplll, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, et al. Llama 2:
Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, et al. Attention is all you need. In Proc. of NeurIPS, 2017.

Emily Wenger, Mingjie Chen, Francois Charton, and Kristin Lauter. Salsa: Attacking lattice cryptography
with transformers. In Proc. of NeurIPS, 2022.

Wojciech Zaremba, Tomas Mikolov, Armand Joulin, and Rob Fergus. Learning simple algorithms from
examples. arXiv preprint arXiv:1511.07275, 2015.

15

https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/faq/Kyber-512-FAQ.pdf
https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/faq/Kyber-512-FAQ.pdf
https://project-archive.inf.ed.ac.uk/msc/20172390/msc_proj.pdf
https://eprint.iacr.org/2023/237.pdf
https://www.sciencedirect.com/science/article/pii/0304397587900648
https://github.com/fplll/fplll
https://github.com/fplll/fplll

Published in Transactions on Machine Learning Research (04/2025)

A Appendix

We provide details, additional experimental results, and analysis ommitted in the main text:

1. Appendix B: Broader impacts
2. Appendix C: Related work
3. Appendix D: Future work
4. Appendix E: Attack parameters
5. Appendix F: Lattice reduction background
6. Appendix G: Additional model results (Section 4)
7. Appendix H: Additional training results (Section 5)
8. Appendix I: Further NoMod analysis

B Broader Impacts

The main ethical concern related to this work is the possibility of our attack compromising currently-deployed
PQC system. However, at present, our proposed attack does not threaten current standardized systems.
If our attack scales to higher h and lower q settings, then its impact is significant, as it would necessitate
changing PQC encryption standards.

C Related Work

Using machine learning for cryptanalysis. An increasing number of cryptanalytic attacks in recent years
have incorporated ML models. Often, models are used to strengthen existing cryptanalysis approaches, such
as side channel or differential analysis Chen & Yu (2021). Of particular interest is recent work that successfully
used ML algorithms to aid side-channel analysis of Kyber, a NIST-standardized PQC method Dubrova et al.
(2022). Other ML-based cryptanalysis schemes train models on plaintext/ciphertext pairs or similar data,
enabling direct recovery of cryptographic secrets. Such approaches have been studied against a variety of
cryptosystems, including hash functions Goncharov (2019), block ciphers Gohr (2019); Benamira et al. (2021);
Chen & Yu (2021); Alani (2012); So (2020); Kimura et al. (2021); Baek & Kim (2020), and substitution
ciphers Ahmadzadeh et al. (2021); Srivastava & Bhatia (2018); Aldarrab & May (2020); Greydanus (2017).
The three ML-based LWE attacks upon which this work builds, Salsa Wenger et al. (2022), Picante Li
et al. (2023a), and Verde Li et al. (2023b), also take this approach.

AI for Math. The use of neural networks for arithmetic was first considered by Siu & Roychowdhury (1992),
and recurrent networks by Zaremba et al. (2015), Kalchbrenner et al. (2015) and Kaiser & Sutskever (2015).
Transformers have been used to solve problems in symbolic and numerical mathematics, integration(Lample
& Charton, 2020), linear algebra (Charton, 2022), arithmetic (Charton, 2024) and theorem proving (Polu
& Sutskever, 2020). With the advent of large language models, recent research has focused on training or
fine-tuning language models on math word problems: problems of mathematics expressed in natural language
(Meng & Rumshisky, 2019; Griffith & Kalita, 2021; Lee et al., 2023). The limitations of these approaches were
discussed by Nogueira et al. (2021) and Dziri et al. (2023). Modular arithmetic was first considered by Power
et al. (2022) and Wenger et al. (2022). Its difficulty was discussed by Palamas (2017) and Gromov (2023).

D Future Work

Pre-training. Pre-training improves sample efficiency after 80K steps; however, further improvements to
pre-training should be explored. First, our experiments used just one set of 4M RA combined with multiple
secrets. To encourage generalization to new RA, pre-training data should include different original As.
Second, our transformer only has 14.1M parameters, and may be too small to benefit from pre-training.
Third, pre-training data does not have to come from a sniffed set of 4n (a, b) samples. Rather than use
expensive preprocessed data, we could simulate reduction and generate random rows synthetically that look
like RA.

16

Published in Transactions on Machine Learning Research (04/2025)

ML for modular arithmetic. NoMod experiments consistently show that more training data which does
not wrap around the modulus leads to more successful secret recovery (see Figure 3 and Li et al. (2023b)).
This explains why a smaller modulus q is harder for ML approaches to attack, and indicates that models are
not yet learning modular arithmetic (Wenger et al., 2022). Further progress on models learning modular
arithmetic problems will likely help to achieve secret recovery for smaller q and larger h.

E Parameters for our attack

For training all models, we use a learning rate of 10−6, weight decay of 0.001, 3000 warmup steps, and an
embedding dimension of 512. We use 4 encoder layers, and 8 attention heads for all encoder-only model
experiments, except the architecture ablation in Figure 2. We use the following primes: q = 2199023255531
for n = 512, q = 34088624597 for n = 768, and q = 607817174438671 for n = 1024. The rest of the parameters
used for the experiments are in Table 10.
Table 10: LWE, preprocessing, and training parameters. For the adaptive increase of preprocessing parameters,
we start with block size β1, flatter α1, and LLL-delta δ1 and upgrade to β2, α2, and δ2 at a later stage. Parameters
base B and bucket size are used to tokenize the numbers for transformer training.

LWE parameters Preprocessing settings Model training settings
n log2 q h β1 β2 α1 α2 δ1 δ2 Base B Bucket size Batch size

512 41 ≤ 70 18 22 0.04 0.025 0.96 0.9 137438953471 134217728 256
768 35 ≤ 11 18 22 0.04 0.025 0.96 0.9 1893812477 378762 128
1024 50 ≤ 11 18 22 0.04 0.025 0.96 0.9 25325715601611 5065143120 128

F Additional background on lattice reduction algorithms

Lattice reduction algorithms reduce the length of lattice vectors, and are a building block in most known
attacks on lattice-based cryptosystems. If a short enough vector can be found, it can be used to recover
LWE secrets via the dual, decoding, or uSVP attack Micciancio & Voulgaris (2010); Albrecht et al. (2017;
2021). The original lattice reduction algorithm, LLL Lenstra et al. (1982), runs in time polynomial in the
dimension of the lattice, but is only guaranteed to find an exponentially bad approximation to the shortest
vector. In other words the quality of the reduction is poor. LLL iterates through the ordered basis vectors of
a lattice, projecting vectors onto each other pairwise and swapping vectors until a shorter, re-ordered, nearly
orthogonal basis is returned.

To improve the quality of the reduction, the BKZ Schnorr (1987) algorithm generalizes LLL by projecting
basis vectors onto k − 1-dimensional subspaces, where k < n is the “blocksize”. (LLL has blocksize 2.) As k
approaches n, the quality of the reduced basis improves, but the running time is exponential in k, so is not
practical for large block size. Experiments in Chen et al. (2020) with running BKZto attack LWE instances
found that block size k ≥ 60 and n > 100 was infeasible in practice. Both BKZ and LLL are implemented in the
fplll library The FPLLL development team (2023), along with an improved version of BKZ: BKZ2.0 Chen &
Nguyen (2011). Charton et al. proposed an alternative lattice reduction algorithm similar to LLL. In practice
we use it as a polishing step after each BKZ loop concludes. It “polishes” by iteratively orthogonalizing the
vectors, provably decreasing norms with each run.

A newer alternative to LLL is flatter Ryan & Heninger (2023), which provides reduction guarantees analogous
to LLL but runs faster due to better precision management. flatter runs on sublattices, and leverages
clever techniques for reducing numerical precision as the reduction proceeds, enabling it to run much faster
than other reduction implementations. Experiments in the original paper show flatter running orders of
magnitude faster than other methods on high-dimensional (n ≥ 1024) lattice problems. The implementation of
flatter6 has a few tunable parameters, notably α, which characterizes the strength of the desired reduction
in terms of lattice “drop”, a bespoke method developed by Ryan & Heninger (2023) that mimics the Lovász
condition in traditional LLL Lenstra et al. (1982). In our runs of flatter, we set α = 0.04 initially and

6https://github.com/keeganryan/flatter

17

Published in Transactions on Machine Learning Research (04/2025)

decrease it to α = 0.025 after the lattice is somewhat reduced, following the adaptive reduction approach
of Li et al. (2023b).

G Additional Results for §4

G.1 Architecture Comparison

Tables 11, 12, (for binary secrets) and Tables 13, and 14 (for ternary secrets) expand on the results in Table 6
by showing how three different model architectures perform on binary and ternary secrets with different
Hamming weights. We see that the encoder-only model architecture with angular embedding improves secret
recovery compared to the encoder-decoder model and the encoder-only model with two-token embedding.
Notably, the encoder-only model with angular embedding is able to recover secrets up to h = 66 for both
binary and ternary secrets, which is a big improvement compared to previous work.

Table 11: Secret recovery (# successful recoveries/# attack attempts) with various model architectures
for h = 57 to h = 66 (n = 512, log2 q = 41, binary secrets).

Architecture h
57 58 59 60 61 62 63 64 65 66

Encoder-Decoder 1/10 1/10 1/10
Encoder (Vocabulary) 0/10 0/7 2/10 0/10 0/8 0/10 1/10 0/9 0/8 0/8

Encoder (Angular) 2/10 0/7 3/10 2/10 1/8 1/10 2/10 1/9 1/8 2/8

Table 12: Average time to recovery (hours) for successful recoveries with various model architectures
for h = 57 to h = 66 (n = 512, log2 q = 41, binary secrets).

Architecture h
57 58 59 60 61 62 63 64 65 66

Encoder-Decoder 10.0 - 20.0 - - - 17.5 - - -
Encoder (Vocabulary) - - 19.8 - - - 22.0 - - -

Encoder (Angular) 33.0 - 37.0 33.2 29.1 26.7 29.8 57.1 31.6 28.8

Table 13: Secret recovery (# successful recoveries/# attack attempts) with various model architectures
for h = 57 to h = 66 (n = 512, log2 q = 41, ternary secrets).

Architecture h
57 58 59 60 61 62 63 64 65 66

Encoder-Decoder - 1/10 - - - - - - - -
Encoder (Vocabulary) 0/9 1/8 0/9 0/9 1/10 0/8 0/7 0/7 0/10 1/9

Encoder (Angular) 0/9 1/8 0/9 0/9 1/10 0/8 0/7 0/7 0/10 1/9

G.2 Architecture Ablation

Here, we present additional results from the architecture ablation experiments summarized in Table 2. The
results in Table 15 and Table 16 show the number of successful recoveries and average time to recovery with
varying architectures across different Hamming weights. We see that increasing transformer depth (number
of layers) tends to improve recovery but also increases average recovery time. Increasing the embedding
dimension from 256 to 512 with 4 layers improves secret recovery. Thus, we choose 4 layers with a hidden
dimension of 512 as it recovers the most secrets (25%) the fastest (26.2 mean hours).

18

Published in Transactions on Machine Learning Research (04/2025)

Table 14: Average time to recovery (hours) for successful recoveries with various model architectures
for h = 57 to h = 66 (n = 512, log2 q = 41, ternary secrets).

Architecture h
57 58 59 60 61 62 63 64 65 66

Encoder-Decoder - 27.5 - - - - - - - -
Encoder (Vocabulary) - 24.8 - - 28.2 - - - - 34.4

Encoder (Angular) - 57.6 - - 47.4 - - - - 70.3

Table 15: Effect of different transformer depths (# of layers) and widths (embedding dimension)
on secret recovery (# successful recoveries/# attack attempts) with encoder-only model (n = 512,
log2 q = 41, binary secrets).

Layers Emb Dim h
49 51 53 55 57 59 61 63 65 67

2 128 2/9 4/10 5/10 3/9 2/10 2/8 1/9 3/10 1/9 0/10
4 256 2/9 4/10 5/10 3/9 2/10 2/8 1/9 2/10 1/9 0/10
4 512 3/9 4/10 5/10 4/9 2/10 2/8 1/9 3/10 1/9 0/10
6 512 3/9 4/10 5/10 3/9 2/10 2/8 2/9 3/10 1/9 0/10
8 512 3/9 4/10 5/10 4/9 2/10 2/8 1/9 2/10 1/9 0/10

H Additional Results for §5

H.1 Training with Fewer Samples

Here, we present additional results from scaling n to 768 and 1024 (without pre-training) as summarized in
Table 7. Tables 17 and 18 show the results for the n = 768, log2 q = 35 case with binary secrets. Similarly,
Tables 19 and 20 show the results for the n = 1024, log2 q = 50 case with binary secrets.

H.2 Model Pre-Training

In this section, we expand upon the pre-training results summarized in Figures 5 and 4. For each pre-training
checkpoint, we measure number of successful recoveries out of 10 trials per h and the average time in hours to
successful secret recovery for h = 30 to h = 45. We also vary the number of samples from 100K to 4M to see
which setup is most sample efficient. In all of these experiments, n = 512 and q are fixed, log2 q = 41, with
binary secrets. The results are presented as follows: no pre-training baseline (Tables 21 and 22), 80K steps
pre-training (Tables 23 and 24), 240K steps pre-training (Tables 25 and 26), and 440K steps pre-training
(Tables 27 and 28).

Based on these results, we conclude that some pre-training helps to recover secrets with less samples, but
more pre-training is not necessarily better. We also see that more pre-training increases the average time to
successful secret recovery.

19

Published in Transactions on Machine Learning Research (04/2025)

Table 16: Effect of different transformer depths (# of layers) and widths (embedding dimension) on
average time to recovery (hours) with encoder-only model (n = 512, log2 q = 41, binary secrets).

Layers Emb Dim h
49 51 53 55 57 59 61 63 65 67

2 128 8.7 10.0 8.3 14.0 11.0 5.5 11.5 17.9 18.9 -
4 256 30.9 11.0 12.3 30.3 39.9 10.4 20.6 13.3 19.6 -
4 512 27.2 15.4 18.2 35.2 35.4 17.3 24.3 32.2 26.2 -
6 512 44.1 18.8 20.7 34.2 30.5 19.4 47.9 32.1 28.1 -
8 512 46.4 22.5 24.0 44.6 34.6 23.8 28.0 29.0 30.3 -

Table 17: Successful secret recoveries out of 10
trials per h with varying amounts of training data
(n = 768, log2 q = 35, binary secrets).

Samples h
5 7 9 11

100K 1 - - -
300K 1 1 - -
1M 4 3 2 -
3M 2 3 1 -
4M 3 3 2 -

Table 18: Average time (hours) to successful
secret recoveries with varying amounts of training
data (n = 768, log2 q = 35, binary secrets).

Samples h
5 7 9 11

100K 1.4 - - -
300K 0.7 12.3 - -
1M 27.9 24.5 39.2 -
3M 17.8 13.0 44.2 -
4M 13.5 18.5 21.8 -

Table 19: Successful secret recoveries out of 10
trials per h with varying amounts of training
data (n = 1024, log2 q = 50, binary secrets).

Samples h
5 7 9 11 13 15

100K 3 - - - - -
300K 6 3 - - - -
1M 6 4 1 - 1 -
3M 6 4 1 1 - -
4M 7 5 1 - - -

Table 20: Average time (hours) to successful secret
recoveries with varying amounts of training data (n =
1024, log2 q = 50, binary secrets).

Samples h
5 7 9 11 13 15

100K 11.6 - - - - -
300K 14.8 17.7 - - - -
1M 15.7 29.2 36.1 - 47.4 -
3M 14.8 14.0 29.6 39.8 - -
4M 19.9 10.6 21.3 - - -

Table 21: Successful secret recoveries out of 10 trials per h with no model pre-training (n = 512, log2 q = 41,
binary secrets).

Samples h
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

100K - - - - - - - - - - - - - - - -
300K - - 1 - - - - - - - - - - - - -
1M - - 3 2 1 - 3 1 2 1 1 1 - - 2 -
3M 1 - 4 3 1 - 2 1 3 1 1 2 - - 2 -
4M 1 - 4 3 1 1 3 1 3 1 1 1 - - 2 -

I Results of NoMod Analysis

As another performance metric for our approach, we measure the NoMod factor for the secrets/datasets we
attack. Li et al. computed NoMod as follows: given a training dataset of LWE pairs (Ra, Rb) represented

20

Published in Transactions on Machine Learning Research (04/2025)

Table 22: Average time (hours) to successful secret recovery with no model pre-training (n = 512, log2 q =
41, binary secrets).

Samples h
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

100K - - - - - - - - - - - - - - -
300K - - 30.3 - - - - - - - - - - - - -
1M - - 21.1 36.9 36.3 - 27.5 21.9 23.9 16.5 50.7 52.9 - - 36.8 -
3M 14.4 - 21.8 27.6 41.8 - 19.8 25.5 22.7 18.1 39.5 44.3 - - 37.8 -
4M 17.2 - 22.8 26.5 29.1 69.7 22.7 22.7 20.9 21.4 29.0 25.7 - - 40.5 -

Table 23: Successful secret recoveries out of 10 trials per h with 80K steps model pre-training
(n = 512, log2 q = 41, binary secrets).

Samples h
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

100K - - 1 1 - - - - - - - - - - - -
300K 1 - 2 2 - - 1 - 1 1 - - - - 2 -
1M 1 - 3 2 1 - 1 - 1 1 1 - - - 1 -
3M 1 - 3 2 1 - 1 - 1 1 1 - - - 2 -
4M 1 - 3 2 - - 1 - 1 1 1 - - - 1 -

Table 24: Average time (hours) to successful secret recovery with 80K steps model pre-training
(n = 512, log2 q = 41, binary secrets).

Samples h
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

100K - - 29.2 32.1 - - - - - - - - - - - -
300K 57.7 - 47.6 26.9 - - 31.7 - 62.6 55.6 - - - - 50.9 -
1M 53.4 - 37.0 25.6 61.7 - 25.1 - 65.9 30.0 44.8 - - - 51.4 -
3M 34.4 - 41.8 25.1 57.5 - 26.2 - 45.1 23.6 38.4 - - - 39.7 -
4M 35.1 - 30.9 33.0 - - 35.2 - 36.5 21.8 26.8 - - - 32.1 -

Table 25: Successful secret recoveries out of 10 trials per h with 240K steps model pre-training
(n = 512, log2 q = 41, binary secrets).

Samples h
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

100K - - - 1 - - - - - - - - - - - -
300K 1 - 2 2 - - 2 - 2 1 - - - - - -
1M 1 - 2 2 1 - 1 - 1 1 1 - - - 1 -
3M 1 - 2 2 - - 2 - 2 1 1 - - - 1 -
4M 1 - 2 2 1 - 2 - 1 1 1 - - - 1 -

in the range (−q/2, q/2) and known secret s, compute x = Ra · s − Rb. If ∥x∥ < q/2, we know that the
computation of Ra · s did not cause Rb to “wrap around” modulus q. The NoMod factor of a dataset is the
percentage of (Ra, Rb) pairs for which ∥x∥ < q/2.

Although NoMod is not usable in a real world attack, since it requires a priori knowledge of s, it is a useful
metric for understanding attack success in a lab environment. Li et al. derived an empirical result stating
that attacks should be successful when the NoMod factor of a dataset is ≥ 67. The NoMod analysis

21

Published in Transactions on Machine Learning Research (04/2025)

Table 26: Average time (hours) to successful secret recovery with 240K steps model pre-training
(n = 512, log2 q = 41, binary secrets).

Samples h
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

100K - - - 21.0 - - - - - - - - - - - -
300K 49.3 - 30.8 23.3 - - 50.5 - 64.2 37.9 - - - - - -
1M 49.4 - 29.5 23.4 50.8 - 20.1 - 24.8 24.2 51.9 - - - 61.9 -
3M 48.9 - 38.2 19.7 - - 38.5 - 50.9 20.2 57.7 - - - 47.4 -
4M 42.4 - 34.9 19.5 55.8 - 29.0 - 24.1 18.3 54.0 - - - 52.4 -

Table 27: Successful secret recoveries out of 10 trials per h with 440K steps model pre-training
(n = 512, log2 q = 41, binary secrets).

Samples h
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

100K - - 1 1 - - - - - - - - - - - -
300K - - 1 2 - - 1 1 1 1 - - - - 1 -
1M 1 - - 2 - - 1 - 2 1 1 - - - 1 -
3M 1 - 1 2 - - 1 - 1 1 1 - - - 2 -
4M 1 - 1 2 - - 2 - 1 1 1 - - - 2 -

Table 28: Average time (hours) to successful secret recovery with 440K steps model pre-training
(n = 512, log2 q = 41, binary secrets).

Samples h
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

100K - - 33.3 20.0 - - - - - - - - - - - -
300K - - 39.8 12.9 - - 29.0 60.5 36.2 49.1 - - - - 59.1 -
1M 56.9 - - 16.6 - - 18.6 - 43.6 24.9 36.4 - - - 53.4 -
3M 50.9 - 32.3 12.2 - - 25.2 - 22.3 18.9 42.4 - - - 60.8 -
4M 58.3 - 30.0 13.5 - - 34.6 - 19.7 22.3 45.7 - - - 59.7 -

indicates that models trained in those experiments were only learning secrets from datasets in which the
majority of Rb values do not “wrap around” q. If models could be trained to learn modular arithmetic better,
this might ease the NoMod condition for success.

One of the main goals of introducing the angular embedding is to introduce some inductive bias into the
model training process. Specifically, teaching models that 0 and q − 1 are close in the embedding space may
enable them to better learn the modular arithmetic task at the heart of LWE. Here, we examine the NoMod
factor of various datasets to see if the angular embedding does provide such inductive bias. If it did, we
would expect that models with angular embeddings would recover secrets from datsets with NoMod < 67.
Table 29 lists NoMod percentages and successful secret recoveries for the angular and tokenization schemes
described in §4.2.

22

Published in Transactions on Machine Learning Research (04/2025)

Table 29: NoMod percentages for Verde data n = 512, log2 q = 41, binary secrets (varying h and secrets
indexed 0-9), comparing performance of angular vs. normal embedding. Key: recovered by angular
only, recovered by both, not recovered.

h 0 1 2 3 4 5 6 7 8 9
57 45 49 52 41 51 46 51 57 60 49
58 48 48 48 48 38 43 52 52 45 48
59 43 46 56 50 66 63 35 46 41 40
60 48 48 52 59 50 58 48 49 51 54
61 60 49 43 41 56 42 42 41 41 50
62 45 42 45 54 55 43 61 56 54 42
63 56 60 55 54 63 47 54 51 45 43
64 44 46 41 41 41 47 45 43 41 55
65 45 51 48 60 45 48 41 48 45 50
66 45 51 39 64 45 47 43 60 48 55
67 43 47 48 49 40 47 48 51 50 46

Table 30: NoMod percentages for n = 768, log2 q =
35 secrets (varying h and secrets indexed 0-9).
Key: secret recovered, secret not recovered.

h 0 1 2 3 4 5 6 7 8 9
5 61 61 52 61 93 68 66 61 56 62
7 52 61 56 77 52 68 56 67 56 61
9 52 55 46 49 52 48 56 60 60 70
11 55 42 44 55 46 46 54 55 60 51
13 46 45 60 48 43 43 55 48 60 43
15 41 38 48 43 40 43 45 43 43 59

Table 31: NoMod percentages for n = 1024,
log2 q = 50 secrets (varying h and secrets indexed
0-10). Key: secret recovered, secret not recovered.

h 0 1 2 3 4 5 6 7 8 9
5 62 66 70 69 81 81 81 53 69 94
7 62 47 80 80 69 56 57 52 57 69
9 56 69 52 49 52 53 56 57 46 52
11 44 52 52 62 61 62 56 56 52 49
13 51 46 56 40 46 52 44 49 68 53
15 61 46 40 45 46 41 38 47 48 44

23

	Introduction
	Context and Attack Overview
	Attack Part 1: LWE data preprocessing
	Attack Part 2: Model training and secret recovery
	Improving upon prior work
	Parameters and settings in our work

	Data Preprocessing
	Model Architecture
	Encoder-only model
	Angular embedding
	Experiments

	Training Methods
	Training with Fewer Samples
	Model Pre-Training

	Comparison to Other Attacks
	Discussion & Future Work
	Limitations
	Appendix
	Broader Impacts
	Related Work
	Future Work
	Parameters for our attack
	Additional background on lattice reduction algorithms
	Additional Results for §4
	Architecture Comparison
	Architecture Ablation

	Additional Results for §5
	Training with Fewer Samples
	Model Pre-Training

	Results of NoMod Analysis

