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ABSTRACT

Miscalibration distorts our interpretation of a model’s confidence and correctness,
making it unreliable for real-world deployment. In general, we want meaningful
probabilistic estimates of our model’s uncertainty, which are essential in real-
world applications. This may include inputs from out-of-distribution (OOD) data,
which can be significantly different from the given training distribution. Moti-
vated by the Principle of Maximum Entropy, we show that — compared to conven-
tional cross-entropy loss and focal loss — training neural networks with additional
statistical constraints can improve neural calibration whilst retaining recognition
accuracy. We evaluate our method extensively on different augmented and in-
the-wild OOD computer vision datasets and show that our MaxEnt loss achieves
state-of-the-art calibration in all cases. Our code will be made available upon
acceptance.

1 INTRODUCTION

Recent advances in machine learning have given rise to large neural networks with strong recog-
nition performance in fields such as computer vision and natural language processing. They are
increasingly used in areas where safety is a concern, such as self-driving cars (Bojarski et al.,|2016),
medical prognosis (Esteva et al., 2017 Bandi et al.| 2019), and weather forecasting (Sgnderby et al.,
2020). Despite their popularity in these applications, deep neural networks have a tendency to be
poorly calibrated. Calibration refers to the model’s correctness with regards to its output proba-
bilities that reflect its predictive uncertainty. In other words, models tend to misclassify samples
with high confidence and erroneously recognize correct classes with low confidence. This leads to
serious consequences, since the output probabilities of neural networks are overconfident, and their
resulting decisions or actions cannot be trusted. Furthermore, a well-calibrated classifier should be-
have unconfidently and predict low probabilities whenever it misclassifies samples with high levels
of uncertainty. This includes data samples which may be in-distribution (ID) but not present in the
training set, or data from an out-of-distribution (OOD) set (Thulasidasan et al.,[2019).

The current hypothesis as to why modern neural networks are poorly calibrated is that these large
models with millions of parameters have the capacity to learn and overfit to the given training data
(Guo et al., 2017). This is especially true if the model is trained using the cross-entropy (CE) loss
(a.k.a. negative log-likelihood loss), because the CE loss is in the form of the upper bound of the
Kullback-Leibler (KL) divergence which measures the statistical difference between the target and
predicted distributions. For the multi-class classification problem, CE loss is only fully minimized
when softmax probabilities p are equal to the onehot ground truth y such that (p = y). This means
that even though the accuracy is at 100%, CE loss can still be positive and minimized further by
increasing the confidence of the predicted probabilities, resulting in overfitting and miscalibration.
In general we want our models to not only remain accurate and well-calibrated in-distribution but to
also provide further robustness against OOD shifts for the safe deployment of deep learning models
(Amodei et al.| 2016).

In this paper, we follow the works of (Mukhoti et al., [2020) to further explore the benefits of using
the Principle of Maximum Entropy, also known as the MaxEnt method (Jaynes| [1957), and propose
a novel loss function for improving model calibration based on constrained maximum entropy. Our
method works by introducing additional constraints which complement loss functions typically used
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in supervised learning. We provide systematic comparisons on model accuracy and calibration using
image classification tasks. Our contributions can be summarized as follows:

1. Constrained Maximum Entropy: We show the link between the Principle of Maximum
Entropy and Focal loss, exploring how introducing constraints can improve calibration.

2. Novel loss formulation: We propose MaxEnt loss with constraints for training well-
calibrated models and compare it against CE loss, Focal loss and Poly loss.

3. Evaluation on OOD shifts: Our experiments show that MaxEnt loss remains robust in
terms of recognition accuracy and model calibration for both augmented and in-the-wild
distribution shifts. We further analyze its behavior under increasingly distorted inputs.

4. Complements post-hoc calibration: We further show how our method is nonrestrictive,
and works well in unison with other post-hoc calibration methods such as temperature
scaling.

2 RELATED WORK

OOD shifts: For classification problems, we train a neural network to infer the posterior distribution
and evaluate its performance on a test set that is ID with the given training set. For OOD problems,
test samples do not align with the training samples, which can be caused by either: 1.) Completely
OOD test inputs that belong to an OOD class not from any of the given ground truth labels (Du
et al., [2022). 2.) Shifted OOD test inputs that may have been caused by illumination, perturbation
shifts and corruptions (Hendrycks & Gimpel| |2017). For this work, we focus on shifted OOD from
both augmentations and in-the-wild. For an in depth review of OOD shifts, we refer to (Wiles et al.,
2022) for a recent summary of the literature.

Model calibration: Recent works have proposed various solutions for calibrating neural networks
without losing recognition performance. A brief overview of the existing methods can be described
as the following categories: 1.) Methods that learn to approximate the true joint distribution or
latent hidden vector z using generative models such as those using Cycle-GAN (Zhu et al., [2017),
VAE (Kingma & Welling| [2014). 2.) Methods that account for unknown classes not found during
training time using an OOD-detection mechanism. (Du et al.| 2022)) 3.) Regularization techniques
that directly manipulate the predicted output probabilities such as those using augmentations, archi-
tecture choice, isotonic regression (Zadrozny & Elkan, 2002), D-transforms (Parikh & Chenl|2008)),
dropout (Srivastava et al., 2014), label smoothing (Pereyra et al.,|2017), Bayesian binning (Naeini
et al.,[2015) and temperature scaling (Guo et al., 2017).

Maximum Entropy: In contrast to other regularization methods, (Pereyra et al.l 2017)) have shown
that directly penalizing neural networks with the maximum entropy confidence penalty term helps
prevent overconfidence and peaked predictions, resulting in better generalization behavior. An-
other related work, Focal loss (Lin et al.l 2017) was originally proposed for object detection and
multi-label image classification problems, but helps improve overall calibration error in other clas-
sification problems. Mathematically, it can be shown that Focal Loss is a general form of CE loss
with an addition confidence penalty term (Mukhoti et al.l 2020). This is because reducing Focal
loss simultaneously minimizes the KL divergence between the predicted probabilities and the target
distribution (typically in the form of one-hot encoded vectors) and maximizes the Shannon entropy
between these two distributions, therefore discouraging the model from being too overconfident with
its predictions. Training neural models with Focal loss has been shown to include benefits such as
reducing overfitting, improving generalization behaviour and reducing calibration error.

By itself, the maximum entropy confidence penalty term has deep connections to the Principle of
Maximum Entropy (Jaynes| |1957), also commonly referred to as the MaxEnt method, which has a
long standing in statistics and information theory. Using supervised learning, we can maximize the
model’s entropy subject to constraints on useful statistics observed in the training set (Berger et al.,
1996). The MaxEnt method has also found its way into other computer vision tasks, such as Fine-
Grained Visual Classification (FGVC) where classes may be visually similar to one another, making
it harder to differentiate between samples (Dubey et al.| 2018)). In reinforcement learning, poli-
cies with high entropy output distributions tend to encourage stochasticity and improve exploration
(Williams & Peng| |1991}; |[Haarnoja et al., 2018).
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3  METRICS AND METHODS

3.1 CALIBRATION METRICS

In theory, a model is considered perfectly calibrated if and only if the model’s predicted probabilities
match the true posterior distribution. Specifically ideal model calibration can be defined as if and
only if: P(Y = y|p = p) = p V € p[0 — 1], where Y represents the given ground truth, ¥’
is the predicted class label and p are its associated predicted probabilities. Realistically, following
this definition of calibration is impossible since the true posterior distribution remains unknown,
therefore the following calibration error metrics have been proposed.

Expected Calibration Error (ECE) (Naeini et al) |2015) is a scalar quantity computed by split-
ting the model’s predicted probabilities into equally spaced B number of bins, where B is a user-
defined parameter; let N be the total number of samples and n, be the total number of sam-
ples for each individual bin. acc represents the average accuracy and conf is the average prob-
ability for each partitioned bin. The weighted absolute differences between the accuracy acc
and confidence conf for each partitioned bin is taken and averaged across all bins. Specifically,

ECE =Y, "acc(b) — conf(b)|.

Maximum Calibration Error (MCE) (Naemm et al., 2015) holds a similar idea to the ECE,
where approximations include binning the predicted probability scores and measuring the max-
imum absolute difference between the partitioned accuracy and confidence bins. The MCE is

suited for high-risk applications where the worst case scenarios are to be considered carefully
MCE = maxg¢...py lacc(b) — conf(D)].

Brier Score (BS) (Brier, [1950; [Degroot & Fienberg| |1983) is defined as the sum of squared errors
between the predicted probabilities and the one-hot ground truth vector: BS = % 25:1 |Yn — Dn?.

Negative Log-likelihood (NLL) (Hastie et al., 2001) , also commonly known as CE loss in deep

learning (Goodfellow et al.l |2016). Given a model’s probabilities p,, and the groundtruth onehot
1

vectors i, NLL = —+ f:]=1 yn log (D).

Generally, classifiers with lower overall ECE and MCE calibration scores are considered to be better
calibrated. In the event that both ECE and MCE are equal to zero, the classifier is considered
perfectly calibrated.

3.2 PRINCIPLE OF MAXIMUM ENTROPY, FOCAL L0OSS AND POLY LOSS

We show the relationship between the Principle of Maximum Entropy (Jaynes, |1957), confidence
penalty term (Pereyra et al., 2017 and Focal Loss (Lin et al.,[2017), and how they are the uncon-
strained form of the MaxEnt method. The MaxEnt method is a probability distribution that satisfies
a limited number of constraints by maximizing the Shannon entropy subject to all of the given con-
straints. Specifically, the general mathematical form of the MaxEnt method is given by:

maximize H(p(yn|zn)) = — > p(yn|Tn) 108 p(Yn|7n)
subject to Zp(yn |n) fi(y) = ¢; for all constraints f; (y)

where f;(y) is a function of the random variable or class y,, for the nth input x,, and the dif-
ferent given constraints are represented by ¢; and the predicted conditional distribution p(yy,|xy ).
As a mandatory constraint we require the output probability scores from the classifier to be valid
probabilities such that > p(yn|®n) = 1. This can be easily fulfilled by using either the softmax
or sigmoid activation function. With the valid probability constraint, the general solution to the
MaxEnt problem can be written as:

(D

1 .
p(ynlwn) = Zez ~hfilw) 2
where Z = e'*?0 is also commonly known as the partition function, and \; are the respective
Lagrange multipliers for each constraint.

Next, we show the relation to Focal loss, which was originally designed to allow the model to
concentrate on harder samples and reduce the emphasis on easily classified samples (Lin et al.,
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2017). Consider, the multi-class form of the Focal loss where ~y is a user defined hyperparameter.
Notice, that by setting v = 1, the Focal loss can be expanded and re-written as the CE loss with an
additional confidence penalty term (Shannon’s entropy term):

Lp == (1= pyn|®n))" logp(yn|zn)
=~ logp(ynlzn) — H(p(yn|zna)) 3)

CE loss Shannon term

In the case where other values of ~y are chosen such that y > 1, the general form of Equation [3|still
holds true such that the Shannon entropy term is accompanied by another polynomial. Since, further
minimizing the CE loss on correctly classified samples with high confidences will lead to overfitting
and result in miscalibration (Guo et al., [2017)), the additional entropy term is useful for preventing
peaked distributions and leads to better overall generalization performance (Mukhoti et al., [ 2020).

Another alternative to Focal loss is Poly loss (Leng et al.l [2022), which differs from Focal loss by
adjusting the loss curve vertically instead of horizontally. Poly loss uses hyper-parameters ¢ and j
to perturb the leading polynomial coefficients and is defined as follows:

Lp=-— Zlogp(yn|$n) +e(1 —p(yn|wn))j @

CE loss Poly term

3.3 CONSTRAINED MAXENT LOSS

In general, the MaxEnt method works without using additional knowledge about the problem apart
from maximizing the entropy and the given constraints. Using the method alone would result in the
best estimations of the target probability distribution with the highest levels of uncertainty which
would lead to the model’s estimation to be minimally biased towards unseen OOD data (Jaynes,
1957). This would mean that the MaxEnt method relies heavily on the given statistical constraints
and does not consider other natural laws which may be inherent in the dataset such as the pixel
distribution of an image dataset.

Therefore, we propose to train ours models using a general loss function such as Focal loss, which
minimizes CE loss and maximizes the entropy as per the MaxEnt method. We can further constrain
Focal loss by considering statistical constraints observed in the distribution of the training set. We
mainly focus on the following two constraints, which can be easily added to the Focal loss.

Mean Constraint: If the value of the expected average p of the target distribution is known, we can
add the following terms to Equation

EEIE =Lr+ Ao (Zp(yn|wn) -1+ (Z YnP(Yn|Tn) — 1)

Valid probability constraint Mean constraint

(&)

where the first term represents the valid probability constraint and the second term represents the
mean constraint. We use A; as the Lagrange multiplier for the mean constraint which is set to
A = —log ﬁ and can be computed from the prior distribution of the training set.

Variance Constraint: Consequently, if both the expected average 1 and variance o2 of the target
distribution are known, then the variance constraint is added to Equation E] instead of the mean
constraint. The Appendix contains proofs for each Lagrange multiplier and that for the case of
the variance constraint A; = 0. Which implies that the mean constraint can be removed since
it is already intrinsically considered in the definition of the variance constraint with Ay = o~ 2.
Therefore, the final objective function to be minimized is given by the following Lagrangian:

E%E =Lr+Xo (Zp(yn|mn) — 1)+ (Z(y" - M)Qp(yn|mn) - ‘72)

Valid probability constraint Variance constraint

(6)

To minimize either mean or variance constraint, we perform regression and train our models with
the rest of the loss function as per Equation [5]or Equation[6] For our work, we make use of the L2
loss for the constraints and their respective optimal Lagrange multipliers. We further show how the
above constraints result in the Exponential and Gaussian distributions respectively in the Appendix.
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Figure 1: Bin-strength densities for different loss functions, evaluated on the augmented OOD Fash-

1onMNIST validation set.

We compare the bin-strength plots of different loss functions evaluated on the OOD FashionM-
NIST validation set, highlighting the effects of including additional constraints using our proposed
method. With CE loss, the predicted probabilities are most confident and have the “peakiest” distri-
bution. With Focal loss or Poly loss, the predictions are slightly reduced and better calibration can
be achieved.

In contrast, by adding the mean and variance constraints during training, our method produces sig-
nificantly “softer” output probabilities as compared to “peakier” predictions made by the model
when trained with CE loss, Focal loss and Poly loss. Our method is able to further smoothen the
probability distribution and achieve better calibration error without losing any recognition accuracy
as shown later in our experiment results.

4 EXPERIMENTS AND RESULTS

We evaluate the performance of our proposed method against other baselines using image classi-
fication experiments. Firstly, we briefly describe all the augmented and wild OOD datasets used
in our experiments, secondly we compare the MaxEnt loss against CE loss, Focal loss and Poly
loss and additionally evaluate our results on increasingly shifted data. Finally, we compare overall
performance gains and post-hoc calibration behaviours.

4.1 DATASETS

Augmented OOD: We make use of image transformations to replicate the possible shifts in OOD
data. We use the following four computer vision datasets and augment their validation and test sets.

1. MNIST (LeCun et al., [2010): Handwritten digits of (28x28) grayscale images consisting
of ten different classes, with 45,000/15,000/10,000 samples for training/validation/testing.

2. FashionMNIST (Xiao et al., 2017): A drop-in alternative to MNIST, consisting of ten
classes of (28x28) grayscale fashion images, with 45,000/15,000/10,000 examples for
training/validation/testing.

3. CIFAR10/CIFAR100 (Krizhevsky & Hinton, 2009): RGB colored images (32x32) with ten
or hundred classes. 40,000/10,000/10,000 images for training/validation/testing.

Wild OOD: We use the following three wild computer vision datasets with their provided ID training
sets and OOD sets for validation and testing.

1. Camelyon17-Wilds (Bandi et al. 2019): Binary classification task on whether a (32x32)
tissue slide contains any malignant/benign tumours.

2. iWildCam-Wilds (Beery et al.,|2020): Static camera traps deployed across different terrains
with radical shifts in camera pose, background and lighting. Task is to identify the species
in the photo out of 182 animal classes.

3. FMoW-Wilds (Christie et al., [2018)): Satellite images across different functional buildings
and lands from over 200 countries. The task is to detect one out of 62 categories, including
a “false detection” category.

The datasets used for our experiments are shown in Figure [2] of the Appendix. The validation/test
sets used in augmented OOD are shifted in levels of increasing difficulty. For our data augmenta-
tion strategy, we follow a routine similar to (Deng & Zheng, 2021)), where the training set is kept
minimally modified with augmentations only applied to the validation and test sets. For our aug-
mentations, we randomly create four tuples each consisting of different transformations, with TO
minimally modified and T3 containing the most transforms. We select a variety of standard im-
age transformations such as flipping, rotations, affinities, perspectives, colour jitter, sharpening and
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Figure 2: We show examples from each dataset with their training and augmented validation/test
images for MNIST, FashionMNIST, CIFAR10 and CIFAR100 respectively. For wild OOD, we
show examples from Camelyon17-Wilds, iWildCam-Wilds and FMoW-Wilds datasets.

Gaussian blurs in magnitudes of increasing difficulty. Specifically, TO is minimally shifted such that
the distributions of the training, validation and test sets are aligned and that T3 contains the most
transformations for the augmented validation and test sets.

We find this augmentation strategy to be useful in our experiments, since the total number of
augmented test sets and varying difficulties can be easily controlled. We denote real-world OOD
datasets with "Wilds™ as per (Koh et al., 2021)) and use pretrained ResNet-18 and
DenseNet-121 [Huang et al.| (2017) for image classification tasks. For our analysis, we use Adam
optimizer (Kingma & Bal |2015)), with a constant learning rate of 2.5e-4, and train 200 epochs with
a batch size of 1024 for augmented OOD datasets and 50 epochs with a batch size of 256 for wild
OOD datasets. Additional details regarding the transformations and experiments used can be found
in the Appendix.

4.2 ILLUSTRATED EXAMPLE - FASHIONMNIST AND CIFAR-10

We illustrate our experiments using the FashionMNIST and CIFAR10 dataset and describe our find-
ings below in Figure [3] For our comparisons, we use the probabilities from the softmax function
after the fully connected layer as the model’s measure of uncertainty and minimize different objec-
tive functions namely CE loss, Focal loss v = 1, Poly loss € = 1 and our method with constraints
placed on the mean and variance. We plot the training and validation accuracies as well as the val-
idation ECE, MCE, Brier scores of the T1 augmented OOD set, we also show the learnt feature
norms and discuss our findings below.

Expected Behavior: As anticipated, we expect to obtain high recognition on the training set, with all
methods converging to a high accuracy score near 100% since training samples are kept simple and
not modified with transformations. On the other hand, since the validation set is from a distribution
shifted from the training set, we expect to see weaker recognition accuracy during inference. We
highlight that a well-calibrated model should remain robust even under the influence of shifted OOD
data, with higher levels of uncertainty and entropy. That is to say, a model should not be too confident
in its predictions when it comes to samples that it is unfamiliar with and should remain maximally
uncertain, especially when inputs are deviated from the learned training distribution.
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Figure 3: Metrics highlighting the performance on OOD FashionMNIST using ResNet-18 backbone
architecture trained with different loss functions.

Empirical Observations: We see in Figure[3] that the models trained using the MaxEnt loss provide
broadly better calibration scores, despite having similar accuracy scores in the training and valida-
tion sets. Clearly, solely using the validation accuracy to judge the performance of our models is
insufficient and difficult to distinguish the model’s ability to generalize and perform well on OOD
samples.

Overall, we can clearly see significant improvements in the ECE, MCE and Brier score, with CE loss
having the poorest calibration performance. We also plot the ECE versus the L2 norm of learnt the
features, using the logits from the fully connected layer before the softmax layer. In general, most
methods tend to have increasingly higher feature norms even after achieving the maximum accuracy.
We further observe the correlation between the ECE and the feature norms, displaying a general
trend that models with higher feature norms have higher expected calibration errors. Comparing our
method against other baselines, models trained with MaxEnt Loss have lower calibration errors and
smaller feature norms.

Overall Performance Gains: We report the performances on the OOD test sets, namely the ac-
curacy, ECE, MCE (computed using 10 bins), NLL and Brier scores of misclassified samples in
Table [T along with their post temperature scaling performance. For the experiments shown in this
table, we mainly used the set of T1 transforms for augmented OOD and the corresponding test sets
for wild OOD. Firstly, we find that most loss functions produce relatively similar recognition ac-
curacies across all datasets regardless of augmented or wild OOD. Secondly, it is clear that models
trained with additional constraints using the MaxEnt loss outperforms all other baselines in terms of
the calibration metrics along with competitive classification accuracies.

Another important finding is that MaxEnt loss is able to consistently deliver well calibrated models,
even without the use of any additional ad-hoc calibration techniques such as temperature scaling.
We are not able to find any major differences yet between the mean constraint versus the variance
constraint form of the MaxEnt loss, with perhaps only slightly better performance coming from the
variance constraint. Where the final performance of each loss function would still ultimately depend
on the distribution of the given dataset. In addition to improved calibration performance, we further
discuss the post-hoc calibration performances below.

Post-hoc Calibration: We choose temperature scaling as our post-hoc calibration technique, which
linearly scales the classifier’s output logits with a scalar T where T > 0. We follow the recommenda-
tions of (Mukhoti et al.} [2020) and perform grid-search over a standard range of temperature values
such as [1.25, 1.50, 1.75, 2.00], picking the optimal temperature which maximizes the validation set
accuracy. If we consider the case for ad-hoc calibration, our method still manages to broadly produce
the lowest calibration errors even after temperature scaling with statistically significant differences
in all calibration metrics apart from the Brier score.
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Method CE loss Focal loss Poly loss MaxEnt Mean MaxEnt Var
Pre-T  Post-T  Pre-T Post-T  Pre-T  Post-T  Pre-T Post-T  Pre-T  Post-T

Accuracy  0.674  0.678  0.660  0.667 0.667 0.659  0.659 0.660 0.655 0.662

ECE 0.223  0.234 0.254 0.154 0.233 0.073 0.111 0.138 0.087 0.182

MNIST MCE 0473 0468 0.517 0.324 0.515 0.197 0316 0228 0.190 0.286
Brier 0.157 0.158 0.165 0.140 0.160 0.124  0.132 0.129 0.136  0.109
NLL 5.127 4914 5561  3.679 5.180 3.061 4.808 4483 4.585 3.037
Accuracy 0555 0.545 0557  0.548 0.565 0.536 0.551 0.537 0543  0.549
ECE 0.323  0.245 0.272  0.098 0.248 0.136  0.085 0.081 0.132 0.101
MCE 0481 0.345 0411 0.148 0.372 0.205 0.196 0.158 0.209 0.173
Brier 0.161 0.142 0.148 0.114 0.145 0.119 0.128 0.118 0.133  0.123
NLL 5.590 3.882 4.168  2.650 4.033 2789 4.033 3449 4394 3.642
Accuracy  0.551  0.559  0.553  0.540 0.557 0.547 0.535 0.546 0.575 0.573
ECE 0.360 0.318 0.327 0.255 0.323 0.252  0.098 0.048 0.115 0.050
CIFARI10 MCE 0.512 0453 0448 0.350 0.443 0.805 0.260 0.295 0.220 0.139
Brier 0.171  0.160 0.162 0.142 0.161 0.142  0.123 0.111 0.137 0.117

NLL 7.048 5.137 5.396 3.793 5.268 3.678 3902 3.098 5363 3471

Accuracy  0.259  0.272  0.264  0.268 0.266 0.267 0242 0.246 0.244  0.247

ECE 0.257 0445 0485 0.287 0.460 0.317 0.199 0.043 0.172 0.148

CIFAR100 MCE 0419 0.599 0.649 0.447 0.605 0.500 0.273  0.261 0.224 0.464
Brier 0.012 0.015 0.015 0.013 0.015 0.013 0.012 0.010 0.012 0.010

NLL 4.800 7.026 8.102 4.945 7.575 5210 5261 3.866 5320 3.789

Accuracy 0.824  0.893 0.559 0.712 0.733 0.564 0.684 0.785 0.665 0.789

ECE 0.128  0.045 0.193  0.177 0.218 0.354  0.063 0.113  0.127  0.044

Fashion-
MNIST

\C}\j‘i‘l‘ézly‘m”' MCE 0244 0126 0321 0289 028 0372 0171 0147 0190 0179
Brier  0.804 0650 0523 0664 08564 0758 0628 0412 0505 0494

NLL 3686 2082 1384 2047 4310 2711 1619 1035 1253 1239

Accuracy 0378 0303 0350 0.397 0.408 0350 0387 0320 0343 0377

Wildcam.  ECE 0337 0408 0332 0206 038 0332 0125 0184 0128 0142
o MCE 0489 0575 0617 0309 0561 0506 0802 0881 0718 0.470
Brier 0008 0008 0008 0006 0009 0007 0.006 0006 0007 0.004

NLL 5735 4625 5615 3670 7506 4815 3782 3171 4550 2.616

Accuracy 0451 0449 0415 0441 0.190 0.183 0361 0363 0376 0339

— ECE 0230 0226 029 0188 0531 0425 0108 0026 0021 0061
ey MCE 0368 0341 0415 0287 0737 0616 0165 0111 0142  0.170

Brier 0.022 0.021 0.021 0.020 0.023 0.019 0.019 0.016 0.017 0.017
NLL 4739 4448 4187 3895 4039 3264 5015 3356 3.482 4.239

Table 1: Test scores on the OOD datasets computed across different approaches for both pre- and
post-temperature scaling, with the best scores highlighted in bold.

Our findings are particularly encouraging, since our method complements temperature scaling and
does not restrict users to perform ad-hoc calibration should they choose to do so. We note that both
constraints have similar performances in terms of calibration behaviour and believe that choosing
when to use which constraint may likely depend on the nature of the training set. For further results
and behaviours when deployed on different architectures, please refer to the Appendix.

Robustness against increasing difficulty: Unlike Focal loss which requires the tuning of a hyper-
parameter vy on a separate validation set, our method does not require additional tuning, since the
Lagrange multipliers \; can be computed before training. We further compare our method against
CE and Focal loss tuned with v set to 0, 1, 2 or 3, using Densenet-121 evaluated on CIFAR10. We
show in Figure[] the bar plots of the ECE, MCE and NLL by taking the mean and standard deviation
across 100 epochs for the different methods on four different levels of difficulty TO to T3.

We notice that most methods behave relatively well-calibrated under ID settings (since TO is min-
imally shifted), which would help suggest that most loss functions would perform well if the dis-
tribution of the training set is aligned with the validation/test set. However, as the distribution pro-
gressively shifts, the predictive uncertainty of all methods start degrading with the poorest overall
performance coming from CE loss. Which means that, models trained with only CE loss may easily
become overconfident and miscalibrated when inputs vary greatly from the training set.

In contrast, our method remains relatively robust even under increasingly shifted inputs beating
the other baseline methods by a clear margin across all calibration metrics, with slightly better
performance coming from the variance constraint form of the MaxEnt loss (orange).
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Figure 4: Bar plots for OOD CIFAR-10: Each row shows the calibration performances ECE, MCE
& NLL degrading under increasingly shifted OOD inputs for each column left to right, TO to T3
respectively.

5 CONCLUSIONS

We presented a novel training method in the form of a loss function for calibrating deep neural
models in the face of OOD scenarios, across both forms of augmented and wild OOD for computer
vision classification tasks. Our takeaway messages are as follows:

* Accuracy, by itself is not enough to measure the prediction quality of our models. Evalu-
ating other metrics such as those presented in this paper such as the ECE/MCE/NLL/Brier
scores are helpful in determining which models should be used for deployment.

* We show the relationship between Focal loss and the Principle of Maximum Entropy and
propose a novel loss function using constraints for improving model calibration.

* MaxEnt loss does not require the use of validation set for hyperparameter tuning and out-
performs other loss functions on both synthetic increasingly shifted OOD via image trans-
formations and OOD in the wild.

* Well-calibrated models should perform well in both ID and OOD datasets. Post-hoc cal-
ibration methods that require validation set are calibrated on ID test sets but may not be
calibrated on OOD.

* We show that MaxEnt loss is able to complement most post-hoc calibration methods such
as temperature scaling and outperforms other loss functions pre- and post-tuning.

* Predictive uncertainty worsens under increasing dataset shift for most methods, whereas
MaxEnt loss remains relatively robust without any additional post-hoc calibration.

Our loss function outperforms other loss functions such as CE loss, Focal loss and Poly loss on
computer vision classification tasks with no significant increase in computation costs and requires
only a few additional lines of code. We show how our method performs on both augmented and
wild OOD datasets considering both pre- and post-hoc calibration. We also show comparisons on
the behaviours of different loss functions subjected to shifted inputs, with our method outperforming
other methods. In general, using the appropriate loss function can lead to well calibrated models,
which in turn can help in the practical and trustworthy deployment of models since users can be
notified when predictions may have too much uncertainty, improving reliability and fairness in Al
We hope that the MaxEnt loss is useful to the community and that our work provides better calibrated
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models that can perform robustly even under distribution shifts, which remains a challenging hurdle
for Al deployment.
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