SpaceServe: Spatial Multiplexing of Complementary Encoders and Decoders for Multimodal LLMs

Zhicheng $Li^{1,2}$ Shuoming Zhang^{1,2} Jiacheng Zhao^{1,2*} Siqi Li^4 Xiyu Shi^{1,2} Yangyu Zhang^{1,2} Shuaijiang $Li^{1,2}$ Donglin Yu⁵ Zheming Yang^{1,2} Yuan Wen³ Huimin Cui^{1,2,6}

State Key Lab of Processors, Institute of Computing Technology, Chinese Academy of Sciences, China
 University of the Chinese Academy of Sciences
 University of Aberdeen
 Beijing University of Technology
 The University of Illinois Urbana-Champaign
 XCORESIGMA CO.,LTD.

Abstract

Recent multimodal large language models (MLLMs) marry modality-specific vision or audio *encoders* with a shared text *decoder*. While the encoder is compute-intensive but memory-light, the decoder is the opposite, yet state-of-the-art serving stacks still *time-multiplex* these complementary kernels, idling SMs or HBM in turn. We introduce SpaceServe, a serving system that *space-multiplexes* MLLMs: it decouples all modality encoders from the decoder, and co-locates them on the same GPU using fine-grained SM partitioning available in modern runtimes. A cost-model-guided *Space-Inference Scheduler* (SIS) dynamically assigns SM slices, while a *Time-Windowed Shortest-Remaining-First* (TWSRFT) policy batches encoder requests to minimise completion latency and smooth decoder arrivals. Evaluation shows that SpaceServe reduces time-per-output-token by **4.81**× **on average** and up to **28.9**× on Nvidia A100 GPUs. SpaceServe is available at https://github.com/gofreelee/SpaceServe

1 Introduction

Multimodal large language models (MLLMs), for example Qwen2-VL[36] and other recent systems[36, 3, 33, 27], have graduated from lab demos to production services that field image-grounded questions, interpret charts, and reason over audio or video snippets. Conceptually, a MLLM marries the unprecedented linguistic capability of a large text-only foundation model with a set of modality-specific encoders that translate pixels, waveforms, or frames into the token space the decoder already understands. This "encoder + shared-text-decoder" blueprint is now standard across state-of-the-art models[3, 33, 18, 36].

As foundation-model decoders continue to improve "for free" (e.g., via larger pre-training corpora [21, 32, 17, 34, 9] or better post-training [26, 25, 28]), attention is shifting toward the encoders. These front-end components are becoming both more powerful and more complex [33, 36, 3, 27]—handling higher-resolution images, longer audio clips, and even variable-length video. Consequently, an MLLM is effectively two decoupled yet complementary neural networks: a compute-intensive, memory-light encoder paired with a memory-hungry, compute-light decoder. This pronounced resource asymmetry remains largely unaddressed by today's serving stacks.

Serving MLLMs inherits every headache of text-only LLM serving—tight tail-latency [15, 5] targets, massive KV-cache footprints [35, 29, 13], dynamic batching[7, 38], and adds a new one: modality-specific encoders. Most production stacks [13, 41, 10, 1] remain tuned for single-modality workloads. Optimizations such as prefilling decoding disaggregation [11, 42], chunked prefill [1] boost through-

^{*}Corresponding author.

put for text models assuming a homogeneous stream of decoder kernels. That assumption breaks once a vision or audio encoder, with a completely different resource profile, enters the pipeline.

Lacking encoder-aware machinery, state-of-the-art systems such as vLLM [13] or TGI [10] revert to *time-multiplexing* when they serve MLLMs: the GPU runs the vision/audio encoder first, then switches context and launches the text decoder, and so on. Encoder and decoder kernels therefore contend for the accelerator *sequentially*, losing the complementary compute-versus-memory balance that could otherwise be exploited.

Our key insight is that **encoders and decoders have complementary resource footprints**: the compute cycles a decoder leaves idle are exactly what an encoder can exploit, while the memory an encoder scarcely touches is what the decoder hungers for to house its KV-cache. We therefore advocate **space-multiplexing** instead of traditional time-multiplexing—running encoder and decoder kernels *simultaneously* on the same GPU, each claiming just the compute and memory it truly needs.

We embody this idea in SpaceServe, a split-encoder serving that: 1) decouples all modality-specific encoders from the shared text-decoder; 2) dynamically routes multimodal requests through a modality-aware scheduler that adapts to workload mix; 3) achieves space-multiplexing by co-locating encoder and decoder kernels on each GPU whenever their complementary compute-memory footprints align. Our contributions are as follows:

- **Split-encoder serving architecture:** We introduce SpaceServe, the first system that *decouples* all modality-specific encoders from the shared text decoder *and* provides a GPU runtime that *co-locates* their kernels via space-multiplexing. A lightweight, cost-model-guided co-location policy packs encoder and decoder kernels whenever their resources footprints fit.
- TWSRFT encoder scheduler: To tackle bursty multimodal workloads, we design a *Time-Windowed Shortest-Remaining-First (TWSRFT)* scheduler that orders *encoder* requests within each time window by their remaining work. This preemptive policy minimizes encoder completion latency and smooths the arrival pattern seen by the shared decoder, improving end-to-end tail latency without harming encoder performance.
- Comprehensive evaluation: We evaluate SpaceServe with 4 size of state-of-the-art MLLMs [36, 3] on three GPU combinations (1*A100, 4*A100, 8*A100) using mixed workloads sampled from two well-known benchmarks for image [40] and video [8]. Empirical results demonstrate that SpaceServe cuts *time-per-output-token* (TPOT) by 4.81x on average and up to 28.9x.

2 Motivation: From time-Multiplexing to space-Multiplexing

2.1 Preliminary

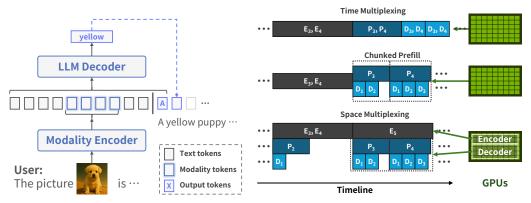
The canonical MLLM stack is organized around two core modules: 1) Modality-specific encoders that translate raw visual, audio, or other non-text inputs into high-dimensional embeddings. 2) A shared text-LLM decoder that performs autoregression generation over these embeddings. A lightweight pre-processing stage precedes the encoders, normalising each modality into the expected tensor format—tokenising text, slicing images into fixed-size patches, or converting audio into waveforms, thus the encoders can operate on a consistent representation. For instance, a vision encoder typically use ViT-based [6] structure to encode visual patches into visual tokens, which are aligned with text tokens in a unified representation space for integration and then processed by the LLM for reasoning services and coherent outputs generation. A classic MLLM architecture is depicted by Figure 1a.

2.2 Resource footprint complementary: A quantitative analysis

Our major insight is a clear **resource-footprint complementarity** between modality encoders and the shared text decoder. We substantiate this with a quantitative study of arithmetic intensity (AI)—floating-point operations per transferred byte (FLOPs / Byte)—showing that encoders are compute-rich but memory-light, whereas decoders are memory-hungry yet compute-light. This complementarity underpins the space-multiplexing design that follows.

Due to space limit, the detailed computation of AI for MLLMs are put in Appendix D.

Table 1 reports the arithmetic intensity (AI, FLOPs/byte) of Qwen 2-VL-7B at two image resolutions— 512×512 and 2048×2048 . Processing such *dynamic* input sizes is crucial for accuracy, yet it complicates serving. Two key take-aways emerge:



- (a) Core components of MLLM: encoder and decoder.
- (b) From time-Multiplexing to space-Multiplexing

Figure 1: Architecture of MLLMs and how vllm and SpaceServe serves MLLMs

Table 1: Arithmetic intensity (FLOPs / byte) of each serving stage in Qwen2-VL-7B on A100 GPU as image resolution increases from 512×512 to 2048×2048 . Higher AI means the kernel is more compute-bound; lower AI implies it is more memory-bound.

Stage	AI @ 512 × 512	AI @ 2048 × 2048
Encoder encoding	338.21	8826.97
Decoder prefilling	72.13	1212.43
Decoder decoding	0.887	0.887

- 1. **Encoders and decoders are complementary.** At both resolutions the *encoder encoding* remains compute-bound—AI increases from 338.21 to 8826.97 FLOPs/byte as resolution increases, but even 338.21 still far exceeds the decoder's AI. By contrast, the *decoder decoding* stage stays memory-bound at 0.887 FLOPs/byte. Consequently, an encoder's surplus memory bandwidth can satisfy a decoder's KV-cache needs, while a decoder's idle SM cycles can be reclaimed by encoder kernels—precisely the synergy exploited by our space-multiplexing scheduler.
- 2. Input dynamics reshape the resource footprint. Increasing resolution quadruples the number of 14 × 14 vision patches (e.g., 256 → 1024 patches), inflating memory traffic slower than compute and increasing encoder AI by roughly 4×, as the AI of encoder is quadratically related to the number of patches, as detailed in Appendix C. The *Encoder* phase changes from 338.21 → 8826.97, and the decode phase is nearly flat, so the *relative* gap between encoder and decoder shrinks as images grow. Any serving stack that statically partitions GPU resources will mis-size one stage or the other once the workload shifts; a scheduler must adapt *per request*, co-locating kernels according to their *current* AI rather than a fixed worst-case estimate.

In short, dynamic, high-resolution inputs amplify the encoder–decoder asymmetry and underscore the need for an adaptive, space-multiplexed serving strategy.

2.3 Toward Space-Multiplexed Serving

Existing serving stacks are **modality-agnostic**, so their schedulers treat vision/audio encoders and text decoders as unrelated jobs that simply take turns on the GPU. The result is classic *time-multiplexing* (Figure 1b, top): the system either runs a batch of encoders or a batch of decoders, never both, squandering the complementary SM-versus-HBM footprints we documented earlier.

State-of-the-art tweaks such as chunked prefill[1] (Figure 1b, middle) do achieve within-decoder space-multiplexing—interleaving the prefill and decode phases of text requests—but they rely on a critical assumption: both phases operate on the same modality (tokens) with a shared architecture. Vision and audio encoders violate that assumption; they ingest image patches or spectrogram windows and execute a completely different kernel mix, so chunked prefill cannot be repurposed to overlap them with decoder stages.

We therefore argue for true *space-multiplexing across modalities* (Figure 1b, bottom). Through a GPU-level partitioning runtime and a cost-aware scheduler that allocates sub-GPU slices of SMs (streaming multiprocessors) to each request, our approach co-locates encoders and decoders concurrently, turning their complementary resource profiles into tangible throughput and latency gains.

3 SpaceServe: Design

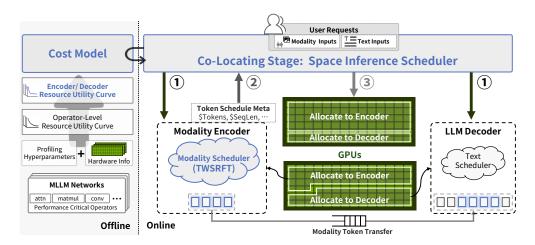


Figure 2: SpaceServe System Overview

SpaceServe converts the traditional time-multiplexed serving pipeline into a space-multiplexed one by decoupling modality encoders from the shared text decoder and then co-locating their kernels on the same GPUs. By co-locating kernels, hardware resources are optimized, as different kernels demand distinct resource types. For example, compute-intensive kernel utilize more stream multiprocessors (SMs) but require less memory bandwidth, while memory-bound kernels can use the remaining less SMs without losing bandwidth. Strategic sharing of these kernels on the same GPU enhances resource utilization and boosts performance. Figure 2 sketches the high-level architecture of our approach, which decouples encoders from the LLM and co-locate them on the same GPU. SpaceServe achieves space-multiplexing of GPU resources through two complementary design pillars that operate in a split-share fashion: ① Disaggregated architecture. SpaceServe cleanly decouples modality encoders from the shared text decoder, enabling each component to execute and be scheduled independently. GPU runtime with a Space-Inference Scheduler (SIS). A novel runtime characterises the resource footprints of encoder and decoder kernels per request and co-locates them on the same GPU set. As illustrated in Figure 2, the dedicated encoder pool is fronted by a time-window scheduler that minimises encoding latency under fluctuating loads. At the heart of the system, the SIS (§§ 3.3) dynamically partitions streaming multiprocessors (SMs) between encoders and decoders, guided by a cost model (§§ 3.1) trained offline from extensive profiling of representative encoder and LLM workloads. During runtime, the SIS continuously monitors GPU utilisation; whenever a new request arrives, it rebalances the SM allocation according to the model's recommendation, sustaining high utilisation while respecting tail-latency constraints.

3.1 Hierarchical Operator-level Profiling for Resource-Utility Curves

Efficient sub–GPU sharing requires a *precise performance model* that can predict how both encoders and decoders behave under (i) **dynamic inputs** and (ii) **dynamic resource allocations**. Two challenges emerge: 1) **Input-dependent behaviour:** As shown in § 2 and §§ 2.2, changes in image or video resolution alter the arithmetic intensity (AI) of both encoders and decoders, shifting their compute—memory balance. 2) **Non-linear scaling with SM slices.** The latency or throughput of a kernel does *not* scale linearly with the fraction of streaming multiprocessors (SMs) it receives, making naive proportional models inaccurate.

These realities motivate the notion of *Resource–Utility Curves*: explicit mappings from the GPU resources granted to a component (e.g., SM percentage) to the *utility* it delivers (e.g., latency, tokens). Such curves are the foundation of an adaptive serving stack. We construct them via a **hierarchical**, **operator-level profiling** workflow (§§ 3.1), which samples the performance of individual operators under controlled SM partitions and then aggregates the results to produce end-to-end utility curves for each encoder and decoder variant. The details of controlling SMs allocation are in §§§ 3.3.2. Thanks to the convergence of operators, we mainly focus on two types of operators:

Algorithm 1 Compose Model-Level Resource-Utility Curve

```
Input: ModelComponentType MCT
Input: ModelArchitecture Arch (details N_{layers}, d_{model}, etc.)
Input: PrimaryInput P_{in} (a specific L_{patches} or S_{len})
Input: SMCountRange R_{SM}
Input: OpPerfDB
Output: ModelCurve[N_{SM}] \rightarrow TotalModelLatency for P_{in}
 1: ModelCurve \leftarrow \emptyset
 2: for N_{SM} \in R_{SM} do
 3:
       TotalModelLatency \leftarrow 0
 4:
       for i \leftarrow 1 to Arch.N_{layers} do
          latency \leftarrow 0 {Latency counter for the i^{th} layer}
 5:
          for Op_{layer} \in Arch.getLayerOps(MCT, i) do
 6:
 7:
             D_{layerOp} \leftarrow Arch.getOpDimensions(Op_{layer}, MCT, P_{in}, i)
             latency \leftarrow latency + \mathsf{OpPerfDB}[Op_{layer}.\check{T}ype][D_{layerOp}][N_{SM}]
 8:
 9:
          end for
          Layer_{Overheads} \leftarrow Arch.getLayerOverheads(MCT, i, P_{in}, N_{SM})
10:
11:
          latency \leftarrow latency + Lat_{Overheads}
          TotalModelLatency \leftarrow TotalModelLatency + latency
12:
13:
       ModelCurve[N_{SM}] \leftarrow TotalModelLatency
14:
15: end for
16:
17: return ModelCurve
```

Profiling GEMM Resource Utility Curve : (1)For Encoder: Profile various GEMMs involved in FFN layers (e.g., matrices of size $Lpatches \times d_{enc}$ by $d_{enc} \times 4d_{enc}$) and attention projections (e.g., $Lpatches \times d_{enc}$ by $d_{enc} \times d_{enc}$). For each matrix size, a curve of Latency vs. Nsm is generated. (2)For Decoder: Profile GEMMs for FFN layers (e.g., $1 \times d_{llm}$ by $d_{llm} \times 4d_{llm}$), attention projections for the new token, and the LM head. Each results in a Latency vs. Nsm curve.

Profiling Attention Resrouce Utility Curve:(1)For Encoder: Profile the encoder's self-attention mechanism for different Lpatches. This also yields a set of Latency vs. Nsm curves, one for each Lpatches. (2) For Decoder: Profile the attention mechanism computing a new token's attention against a KV cache of length Slen. This generates Latency vs. Nsm curves for various Slen.

After the profile, we compose the Model-level resource-utility curves by Algorithm 1.

3.2 Encoder Stage: TWSRFT Scheduler

In line with dynamic batching [38] for text only decoders, SpaceServe also incorporate a modality-aware scheduler for batching encoder requests. The choice of requests to batch significantly affects latency metrics, such as Time to First Token (TTFT) and Time per Output Token (TPOT). For instance, encoding a high-resolution image typically takes longer than processing lower-resolution image embeddings. To minimize latency and boost throughput, batching smaller requests is effective. However, this approach faces two constraints. First, GPU computational capacity limits batching, as encoders are compute-intensive. For example, the NVIDIA A100 has an optimal arithmetic intensity of approximately 161 FLOPs/Byte. The threshold varies across GPU models. Second, prioritizing small requests can starve larger requests, delaying their processing.

To address these challenges, SpaceServe introduces the Time-Windowed Shortest Remaining Time First (TWSRTF) scheduler, the modality scheduler shown in Figure 2. The TWSRTF scheduler uses

a time-window approach to manage request batching. Requests are collected in an input queue within a fixed time window. Within this window, requests are batched by size, prioritizing the smallest ones first. The scheduler also monitors batch capacity to ensure its stay within the GPU's limits. The detailed algorithm implementation is presented in Algorithm 2

Algorithm 2 Time-Windowed Shortest Remaining Time First Scheduling for Encoder

```
Input: Request queue Q, window size w, maximum patches seqlength_{batchsuitable}
Output: Encoded batches of requests
 1: while Q is not empty do
       W \leftarrow Q.get(w) {Fetch a window of requests}
       Sort W by ascending patches
 3:
       i \leftarrow 0; B \leftarrow [W[i]]; s \leftarrow W[i].patches
 4:
       i \leftarrow i + 1
 5:
       while i < |W| do
 6:
         if s + W[i] patches < seqlength_{batchsuitable} then
 7:
            Append W[i] to B
 8:
 9:
            s \leftarrow s + W[i].patches
10:
            i \leftarrow i + 1
11:
         else
            encoder(B) {Process batch with encoder}
12:
13:
            Remove B from Q
14:
         end if
       end while
15:
16: end while
```

3.3 Co-Locating Stage: Space Inference Scheduler for Space Multiplexing

The Online Space Inference Scheduler is a cornerstone of the Co-Locating Stage, dynamically managing request execution flows and the partitions of Streaming Multiprocessors (SMs) between encoders and the LLM decoders based on runtime conditions. It oversees the scheduling of incoming requests and ensures seamless coordination with the Modality Encoder Scheduler. When the Modality Encoder Scheduler, using Time-Windowed Shortest Remaining Time First (TWSRTF), dispatches a new encoding request, it triggers an action in the Online Space-Multiplex Scheduler. The scheduler utilizes the request's metadata, e.g. input sequence length and image resolution, alongside the cost model derived from offline profiling (detailed in §§ 3.1). This enables dynamic allocation of GPU resources of the same processor, particularly SMs, between the encoder task and current LLM decoding operations. Such adaptive, request-aware resource allocation optimizes performance and maximizes hardware utilization for diverse multimodal workloads.

3.3.1 GPU Runtime: Fine-grained Resource Partition

Effective space-multiplexing hinges on the ability to partition a single GPU and allocate resources *below* the device boundary. Modern accelerators now expose precisely this functionality. The AMD HIP runtime, for example, supports CU masks [2] that assign disjoint CU sets to different streams, while NVIDIA GPUs offer comparable streaming-multiprocessor control via libsmctrl [4]. SpaceServe builds on these sub-GPU partitioning primitives to realise fine-grained resource allocation.

3.3.2 Request-aware SM Partition

During the serving phase of the inference engine, we design an online allocation mechanism based on our profiler to dynamically optimize Streaming Multiprocessor (SM) partitioning.

SpaceServe decomposes the inference service of multimodal large models into three independent processes: a CPU process, an Encoder process, and a LLM process. The CPU process handles user requests and performs preprocessing of multimodal data. Request information is then dispatched separately to both the Encoder process and the LLM process. Given that the Encoder and LLM have distinct resource preferences and requirements, SpaceServe applies different scheduling strategies tailored to each. SpaceServe performs dynamic and efficient GPU resource partitioning tailored to incoming requests. This adaptive allocation is underpinned by our comprehensive Model Resource

Utility Curves in §§ 3.1. The underlying Streaming Multiprocessor (SM) partitioning algorithm, which is elaborated in Appendix E operates on the core principle of finding the resource configuration that minimizes the sum of the Encoder's and Decoder's execution times.

As for the LLM Decoder, SpaceServe employs a ChunkedPrefill [1] with vision cache scheduling strategy for the LLM processing, which is formally described in Algorithm 3.

4 Evaluation

4.1 Experimental Setup

Hardware: We evaluate SpaceServe on a server which is equipped with 8 NVIDIA A100 SXM GPUS and Intel Xeon(R) Gold 6430 CPU.

Models and workloads: We select 4 state-of-the-art MLLMs with varying model size, including Qwen2-VL-2B [36], Qwen2-VL-7B [36], Qwen2.5-VL-32B [3] and Qwen2-VL-72B [36]. These models were chosen for their proficiency in handling high-resolution images with arbitrary aspect ratios, understanding long contextual sequences. Due to GPU-memory constraints, we run Qwen2-VL-2B and Qwen2-VL-7B on a single GPU, Qwen2.5-VL-32B on four GPUs, and the largest Qwen2-VL-72B on eight GPUs. For the multi-GPU configurations we employ *tensor parallelism*.

Datasets: We build a 1,740-example evaluation set by sampling from MMMU-Pro [40] and Video-MME [8], preserving an 8 : 2 ratio of image to video items.

Baseline Systems: We adopt vLLM [13]—a SOTA serving framework—as our baseline. In particular, we evaluate against the latest vLLM v1 architecture, which integrates recent advances such as *zero-overhead scheduling* and a suite of MLLM-specific optimizations.

Metrics: LLM inference efficiency centers on two critical latency metrics: Time To First Token (TTFT) and Time Per Output Token (TPOT), which we use as primary metrics. Lower values for both TTFT and TPOT indicate better performance.

4.2 End-to-End Evaluation Results

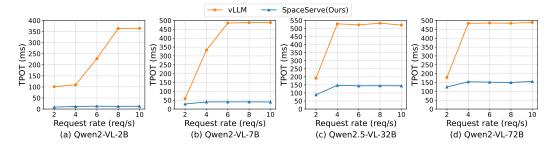


Figure 3: TPOT of SpaceServe and vLLM on various models, lower TPOT↓ is better

In the experiment, we increased the request rate from 2 to 10 requests per second. Across various model sizes, ranging from 7B to 72B, SpaceServe consistently and significantly outperforms the vLLM baseline. For instance, while serving the Qwen2-VL-2B model, vLLM's average TPOT increased from 101ms at 2 RPS to 365ms at 10 RPS, indicating a significant drop in efficiency. In contrast, SpaceServe demonstrated robust performance, with TPOT increasing only slightly from 8.85ms (2 RPS) to 12.62ms (10 RPS). This represented a substantial improvement, achieving a 28.9x reduction in TPOT compared to vLLM at 10 RPS and thereby enhancing service throughput and user experience.

This trend continued across other models at 10 RPS. For Qwen2-VL-7B, SpaceServe recorded a TPOT of 40ms compared to vLLM v1's 489ms, delivering a speedup of 12.3x. For larger models with greater resource demands, such as Qwen2.5-VL-32B on four NVIDIA A100 GPUs, SpaceServe's TPOT was 144ms compared to vLLM's 522ms (10 RPS), a speedup of 3.62x. Similarly, when serving Qwen2-VL-72B on eight NVIDIA A100 GPUs at 10 RPS, SpaceServe maintained its advantage with a TPOT of 155.8ms versus vLLM v1's 489ms, achieving a 3.14x speedup.

Why do we have such an excellent token generation speed: The inherent latency for generating a single token during the decoder phase is typically low, around 10 milliseconds for Qwen2VL-2B. However, vLLM-v1's time-division multiplexing architecture causes decoding requests to be blocked when the GPU is occupied by an encoder task, which can take several hundred milliseconds, e.g. 671ms for Qwen2VL-2B. This forces decoding operations into a wait state until the encoder task completes, significantly inflating the Time Per Output Token (TPOT) in high request-per-second (RPS) scenarios due to frequent encoder invocations.

In stark contrast, SpaceServe employs a spatial multiplexing strategy (or a functionally equivalent mechanism that allows for concurrent or dedicated resource allocation for encoder and decoder stages). This architectural design effectively decouples the high-throughput decoder operations from the more time-intensive encoder tasks. By mitigating these inter-dependencies, SpaceServe ensures that the token generation rate for the decoder remains stable and consistently high, achieving approximately 100 tokens per second, even during frequent encoder activity. This resilience of the decoding pipeline to encoder-induced stalls is the primary contributor to SpaceServe's superior performance under demanding, mixed encoder-decoder workloads when measured in TPOT.

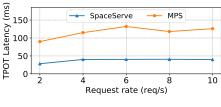
Due to page constraints, we put the TTFT results on Appendix B. Unlike the sharp TPOT gains, the time-to-first-token (TTFT) remains virtually unchanged between SpaceServe and vLLM for all four models. This is expected: SpaceServe 's design focuses on harvesting the memory-bandwidth slack present while an encoder is running to accelerate the memory-bound decoder, boosting steady-state throughput rather than the initial-token latency captured by TTFT.

4.3 Ablation Study

The performance advantages of SpaceServe compared to vLLM are attributed to two primary innovations: (1) the efficient space-multiplexing methodology. (2) the specialized Time-Windowed Shortest Remaining Time First (TW-SRTF) scheduler for the vision encoder. To delineate the individual contributions of these elements, we performed targeted ablation studies, adhering to the experimental setup described earlier.

4.3.1 Ablation Study: Space Inference Scheduler vs. MPS

We ablate our space-multiplexing design against NVIDIA Multi-Process Service (MPS) [20], using Owen2-VL-7B as the test model.



(a) TPOT compared with MPS

(b) TPOT compared with vLLM scheduler

Figure 4: Ablation study of Qwen-2-VL-7B with TPOT

As shown in Figure 4, the ablation study confirms our hypothesis: Compared to vLLM, the MPS (Multi-Process Service) version of SpaceServe accelerates the TPOT metric while keeping a largely unaffected TTFT. Our ablation study further evaluates our SpaceServe model, which employs a fine-grained allocation strategy, against this MPS version. At an input rate of 2 Requests Per Second (RPS), the MPS version of SpaceServe shows a TPOT of 90 ms. This latency increases with rising RPS, reaching a peak of 132 ms. In contrast, our SpaceServe (with the fine-grained strategy) achieves a TPOT of 28.25 ms at 2 RPS, and its TPOT only reaches a maximum of 40.68 ms as RPS increases. This comparison highlights that our fine-grained allocation strategy maintains significantly lower TPOT latency and greater stability under high concurrent requests, achieving a TPOT speedup of up to 3.3x relative to the MPS version. Moreover, as depicted in Figure 5a and Figure 5b, the TTFT for both approaches is nearly identical, indicating that these TPOT enhancements do not compromise first-token latency.

The substantial performance improvement stems from alleviating resource contention at the SM microarchitectural level. When Encoder and LLM processes are co-located using only NVIDIA MPS, their respective CUDA kernels, comprised of multiple warps, may be concurrently scheduled by the MPS server onto any available SM. Within a single SM, these distinct workloads then vie for limited resources such as arithmetic units, register file space, L1 cache, and shared memory bandwidth. The disparate nature of these tasks—the Encoder being typically compute-bound and the LLM decoding phase often exhibiting bursty memory access patterns and varied computational demands—can lead to suboptimal SM utilization. For example, high register usage by one task could limit the number of active warps (occupancy) for the other, or differing memory access patterns could lead to L1 cache pollution, increasing effective memory latency.

By contrast, SpaceServe's SM partitioning dedicates distinct sets of SMs to the Encoder and LLM processes. This spatial isolation minimizes direct inter-process contention for intra-SM resources. Each process can therefore more effectively exploit the full capacity of its allocated SMs, leading to improved instruction issue rates and better sustained occupancy for its specific workload characteristics. This dedicated execution environment allows for more streamlined processing within each SM partition, reducing stalls and ultimately translating to a lower TPOT and an enhanced throughput.

4.3.2 Ablation Study: TWSRFT Scheduler vs. vLLM Default Scheduler

We ablate our redesigned encoder scheduler—built for split-encoder architectures—using the Qwen2-VL-7B model.

The results demonstrate a clear advantage for our custom scheduling approach under increasing load. At a low concurrency of 2 Requests Per Second (RPS), the SpaceServe-vLLMscheduler exhibited a TPOT of 30.73 ms, which was only slightly higher than our full SpaceServe system's TPOT of 28.25 ms. However, as the concurrency increased to 4 RPS, the TPOT for SpaceServevLLMscheduler rose more sharply to 55.88 ms, whereas our SpaceServe system maintained a TPOT of 40.18 ms. This performance disparity became significantly more pronounced at 10 RPS: the TPOT for SpaceServe-vLLMscheduler surged to 114.22 ms, while our SpaceServe system impressively sustained a low TPOT latency of 39.8 ms, showcasing its stability and efficiency at higher throughputs. The observed degradation in TPOT for the SpaceServe-vLLMscheduler configuration can be attributed to the vLLM scheduler's lack of an independent batching strategy for the encoder component. When the aggregated batch size of vision tokens processed by the encoder reaches a critical threshold, any further increase in the number of concurrent requests leads to a substantial rise in the overall execution time for the encoder stage. This, in turn, inflates the average processing time per request. Consequently, the LLM process does not receive a sufficient or timely stream of vision tokens, which acts as a bottleneck and significantly slows down the generation of subsequent output tokens, thereby increasing the TPOT.

4.4 Performance on Modern MoE-based Architectures

To demonstrate SpaceServe's effectiveness on the latest generation of MLLMs, we evaluated its performance on cutting-edge models featuring sparse MoE layers: **DeepSeek-VL2** and **Kimi-VL**. The experiments were run under a high-concurrency load of 10 requests per second.

The results, presented in Table 2, show that SpaceServe delivers substantial performance gains. We achieve a **4.08x** TPOT speedup on DeepSeek-VL2 and a remarkable **9.84x** speedup on Kimi-VL.

This dramatic performance improvement, especially on Kimi-VL, is attributed to its exceptionally compute-intensive vision encoder, which creates a significant imbalance with its memory-bound MoE decoder. This is precisely the scenario where SpaceServe's spatial multiplexing provides the greatest benefit, by co-locating the complementary kernels to maximize GPU utilization.

4.5 Performance Scaling with Input Resolution

Modern MLLMs increasingly use high-resolution inputs to improve understanding. This makes the vision encoder substantially more compute-intensive, creating a major bottleneck for traditional serving systems. We evaluated SpaceServe from 224x224 to 2Kx2K under high concurrency (10 RPS). As shown in Table 3, vLLM's TPOT rises sharply with resolution because the long-running encoder blocks the decoder, whereas SpaceServe's TPOT stays low and stable.

Table 2: TPOT speedup on MoE-based MLLMs under a high-concurrency workload (10 RPS).

Model (MoE-based)	Framework	TTFT (ms)	TPOT (ms)	TPOT Speedup
DeepSeek-VL2	vLLM-v1 SpaceServe (Ours)	5597 4495	122.5 30.0	Baseline 4.08x
Kimi-VL	vLLM-v1 SpaceServe (Ours)	57900 56323	482.0 49.0	Baseline 9.84x

Crucially, the performance advantage of SpaceServe scales with the computational load. As illustrated in Table 3, the TPOT speedup escalates from **1.37x** on low-resolution inputs to an impressive **12.39x** at 2K resolution. This demonstrates that spatial multiplexing is most effective precisely where it is most needed: mitigating the latency of compute-heavy tasks. Far from being a limitation, high-resolution inputs highlight SpaceServe's fundamental strength in harnessing resource heterogeneity to deliver efficient performance for the next generation of high-fidelity MLLMs.

Table 3: Performance comparison across varying input resolutions at 10 RPS. As resolution increases, SpaceServe maintains a stable, low TPOT, while the baseline's latency degrades significantly.

Resolution	Framework	TTFT (s)	TPOT (ms)	TPOT Speedup
224 × 224	vLLM-v1 SpaceServe (Ours)	0.09 0.09	23.6 17.2	Baseline 1.37x
512 × 512	vLLM-v1 SpaceServe (Ours)	0.21 0.21	38.6 25.9	Baseline 1.49x
$1K \times 1K$	vLLM-v1 SpaceServe (Ours)	15.31 15.54	212.6 35.6	Baseline 5.97x
$2K \times 2K$	vLLM-v1 SpaceServe (Ours)	139.35 135.76	470.7 38.0	Baseline 12.39x

5 Related Work

Disaggregated Serving. Promising for large models, disaggregated serving (e.g., SplitWise [22], DistServe [42], DéjàVu [31]) decouples prefill/decode stages, mitigating interference for better TTFT/TPOT control. These LLM-focused systems often neglect the MLLM-specific encoding step. Even recent extensions (Pensieve [39], Mooncake [23], PD-Serve [11]) with advanced KV cache management offer limited MLLM applicability.

Multi-modality Model Serving. Serving multimodal models (MLLMs) typically relies on adapting LLM systems (e.g., vLLM [13], SGLang [41]) or using recent MLLM inference code [24]. Adapting LLM systems hits LMM encoding bottlenecks with rich multimedia. Techniques like KV cache eviction [14, 19] and compression [12] are often model/scenario-specific (e.g., Inf-MLLM's [19] single-GPU streaming) and may miss cloud SLOs. Early disaggregation ideas (e.g., EPD [30]) lack SpaceServe's comprehensive scheduling and partitioning.

Complementarity with Sparse MLLM Architectures. SpaceServe complements sparse multimodal architectures, including Mixture-of-Experts designs [33, 37, 16]. Sparsity can lower per-request compute, but it also increases resource heterogeneity by leaving hardware assigned to inactive experts underutilized. SpaceServe exploits this opportunity by co-locating the compute-intensive encoder of one request with the sparse, memory-bound decoder of another, using spatial multiplexing to fill idle resources and raise overall utilization

6 Conclusion

This paper introduces SpaceServe, a novel MLLM serving system featuring two key innovations: fine-grained GPU resource management and an advanced scheduling framework. This design enables concurrent low-latency inference and high-throughput for multimodal LLMs, outperforming SOTA systems by up to $28.9 \times$.

Acknowledgments

This work was supported by the National Key R&D Program of China (Grant No. 2024YFB4505603) and by the National Natural Science Foundation of China (Grant Nos. U23B2020, 62090024, and 62302479).

References

- [1] Amey Agrawal, Nitin Kedia, Ashish Panwar, Jayashree Mohan, Nipun Kwatra, Bhargav Gulavani, Alexey Tumanov, and Ramachandran Ramjee. Taming Throughput-Latency tradeoff in LLM inference with Sarathi-Serve. In 18th USENIX Symposium on Operating Systems Design and Implementation (OSDI 24), pages 117–134, Santa Clara, CA, July 2024. USENIX Association.
- [2] AMD Corporation. Setting the number of compute units. https://rocm.docs.amd.com/en/latest/how-to/setting-cus.html. Accessed: 2025-05-16.
- [3] Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan, Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng, Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report, 2025.
- [4] Joshua Bakita and James H. Anderson. Hardware compute partitioning on nvidia gpus. In 2023 IEEE 29th Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 54–66, 2023.
- [5] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-efficient exact attention with io-awareness. *Advances in neural information processing systems*, 35:16344–16359, 2022.
- [6] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In *International Conference on Learning Representations*, 2021.
- [7] Jiarui Fang, Yang Yu, Chengduo Zhao, and Jie Zhou. TurboTransformers: an efficient GPU serving system for transformer models. In *Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming*, pages 389–402, 2021.
- [8] Chaoyou Fu, Yuhan Dai, Yondong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu Zhou, Yunhang Shen, Mengdan Zhang, et al. Video-mme: The first-ever comprehensive evaluation benchmark of multi-modal llms in video analysis. *arXiv preprint arXiv:2405.21075*, 2024.
- [9] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of models. *arXiv preprint arXiv:2407.21783*, 2024.
- [10] Hugging Face. Text generation inference. https://github.com/huggingface/ text-generation-inference, 2022. Accessed: 2025-05-06.
- [11] Yibo Jin, Tao Wang, Huimin Lin, Mingyang Song, Peiyang Li, Yipeng Ma, Yicheng Shan, Zhengfan Yuan, Cailong Li, Yajing Sun, Tiandeng Wu, Xing Chu, Ruizhi Huan, Li Ma, Xiao You, Wenting Zhou, Yunpeng Ye, Wen Liu, Xiangkun Xu, Yongsheng Zhang, Tiantian Dong, Jiawei Zhu, Zhe Wang, Xijian Ju, Jianxun Song, Haoliang Cheng, Xiaojing Li, Jiandong Ding, Hefei Guo, and Zhengyong Zhang. P/d-serve: Serving disaggregated large language model at scale, 2024.
- [12] Hao Kang, Qingru Zhang, Souvik Kundu, Geonhwa Jeong, Zaoxing Liu, Tushar Krishna, and Tuo Zhao. GEAR: An efficient error reduction framework for KV cache compression in LLM inference. In Mehdi Rezagholizadeh, Peyman Passban, Soheila Samiee, Vahid Partovi Nia,

- Yu Cheng, Yue Deng, Qun Liu, and Boxing Chen, editors, *Proceedings of The 4th NeurIPS Efficient Natural Language and Speech Processing Workshop*, volume 262 of *Proceedings of Machine Learning Research*, pages 305–321. PMLR, 14 Dec 2024.
- [13] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving with pagedattention. In *Proceedings of the 29th Symposium on Operating Systems Principles*, SOSP '23, page 611–626, New York, NY, USA, 2023. Association for Computing Machinery.
- [14] Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before generation. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang, editors, *Advances in Neural Information Processing Systems*, volume 37, pages 22947–22970. Curran Associates, Inc., 2024.
- [15] Zhuohan Li, Lianmin Zheng, Yinmin Zhong, Vincent Liu, Ying Sheng, Xin Jin, Yanping Huang, Zhifeng Chen, Hao Zhang, Joseph E Gonzalez, et al. {AlpaServe}: Statistical multiplexing with model parallelism for deep learning serving. In 17th USENIX Symposium on Operating Systems Design and Implementation (OSDI 23), pages 663–679, 2023.
- [16] Weixin Liang, LILI YU, Liang Luo, Srini Iyer, Ning Dong, Chunting Zhou, Gargi Ghosh, Mike Lewis, Wen tau Yih, Luke Zettlemoyer, and Xi Victoria Lin. Mixture-of-transformers: A sparse and scalable architecture for multi-modal foundation models. *Transactions on Machine Learning Research*, 2025.
- [17] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint arXiv:2412.19437*, 2024.
- [18] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning, 2023.
- [19] Zhenyu Ning, Jieru Zhao, Qihao Jin, Wenchao Ding, and Minyi Guo. Inf-mllm: Efficient streaming inference of multimodal large language models on a single gpu, 2024.
- [20] NVIDIA Corporation. Multi-process service (mps). https://docs.nvidia.com/deploy/mps/index.html. Accessed: 2025-05-16.
- [21] OpenAI. Gpt-4 technical report, 2024.
- [22] Pratyush Patel, Esha Choukse, Chaojie Zhang, Aashaka Shah, Íñigo Goiri, Saeed Maleki, and Ricardo Bianchini. Splitwise: Efficient generative llm inference using phase splitting. In 2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA), pages 118–132, 2024.
- [23] Ruoyu Qin, Zheming Li, Weiran He, Jialei Cui, Feng Ren, Mingxing Zhang, Yongwei Wu, Weimin Zheng, and Xinran Xu. Mooncake: Trading more storage for less computation a KVCache-centric architecture for serving LLM chatbot. In 23rd USENIX Conference on File and Storage Technologies (FAST 25), pages 155–170, Santa Clara, CA, February 2025. USENIX Association.
- [24] Haoran Qiu, Anish Biswas, Zihan Zhao, Jayashree Mohan, Alind Khare, Esha Choukse, Íñigo Goiri, Zeyu Zhang, Haiying Shen, Chetan Bansal, Ramachandran Ramjee, and Rodrigo Fonseca. Modserve: Scalable and resource-efficient large multimodal model serving, 2025.
- [25] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023.
- [26] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms, 2017.
- [27] ByteDance Seed. Seed1.5-vl technical report, 2025.

- [28] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language models, 2024.
- [29] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catanzaro. Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism, 2019.
- [30] Gursimran Singh, Xinglu Wang, Yifan Hu, Timothy Yu, Linzi Xing, Wei Jiang, Zhefeng Wang, Xiaolong Bai, Yi Li, Ying Xiong, Yong Zhang, and Zhenan Fan. Efficiently serving large multimodal models using epd disaggregation, 2025.
- [31] Foteini Strati, Sara McAllister, Amar Phanishayee, Jakub Tarnawski, and Ana Klimovic. Déjàvu: Kv-cache streaming for fast, fault-tolerant generative llm serving. In *Proceedings of the 41st International Conference on Machine Learning*, ICML'24. JMLR.org, 2024.
- [32] Gemini Team. Gemini: A family of highly capable multimodal models, 2025.
- [33] Kimi Team. Kimi-vl technical report, 2025.
- [34] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.
- [35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing systems*, 30, 2017.
- [36] Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model's perception of the world at any resolution, 2024.
- [37] Zhiyu Wu, Xiaokang Chen, Zizheng Pan, Xingchao Liu, Wen Liu, Damai Dai, Huazuo Gao, Yiyang Ma, Chengyue Wu, Bingxuan Wang, Zhenda Xie, Yu Wu, Kai Hu, Jiawei Wang, Yaofeng Sun, Yukun Li, Yishi Piao, Kang Guan, Aixin Liu, Xin Xie, Yuxiang You, Kai Dong, Xingkai Yu, Haowei Zhang, Liang Zhao, Yisong Wang, and Chong Ruan. Deepseek-vl2: Mixture-of-experts vision-language models for advanced multimodal understanding, 2024.
- [38] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-Gon Chun. Orca: A distributed serving system for Transformer-Based generative models. In *16th USENIX Symposium on Operating Systems Design and Implementation (OSDI 22)*, pages 521–538, Carlsbad, CA, July 2022. USENIX Association.
- [39] Lingfan Yu, Jinkun Lin, and Jinyang Li. Stateful large language model serving with pensieve. In *Proceedings of the Twentieth European Conference on Computer Systems*, pages 144–158, 2025.
- [40] Xiang Yue, Tianyu Zheng, Yuansheng Ni, Yubo Wang, Kai Zhang, Shengbang Tong, Yuxuan Sun, Botao Yu, Ge Zhang, Huan Sun, Yu Su, Wenhu Chen, and Graham Neubig. Mmmu-pro: A more robust multi-discipline multimodal understanding benchmark, 2024.
- [41] Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao, Christos Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark Barrett, and Ying Sheng. SGLang: Efficient execution of structured language model programs. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.
- [42] Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe Liu, Xin Jin, and Hao Zhang. DistServe: Disaggregating prefill and decoding for goodput-optimized large language model serving. In *18th USENIX Symposium on Operating Systems Design and Implementation (OSDI 24)*, pages 193–210, Santa Clara, CA, July 2024. USENIX Association.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: We have clearly stated the main claims made in the abstract and introduction, which accurately reflect the paper's contributions and scope. The claims are supported by theoretical and experimental results, and we have discussed the limitations of our work.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the
 contributions made in the paper and important assumptions and limitations. A No or
 NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitation of SpaceServe in Appendix A

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [NA]

Justification: We use well-known roofline model to guide the system design, no new theory proposed.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our experimental results are reproducible, we conducted multiple experiments in an 8-card A100 server environment, and the code will be open-sourced later

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [No]

Justification: We will open source the SpaceServe after paper acceptance.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how
 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We detailed the settings in Section 4.1.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [No]

Justification: The experiments are very computationally exhaustive, therefore impractical to create enough data for meaningful statistical tests.

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).

- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: We state it in §§ 4.1

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We follow the NeurIPS Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
 deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: Our work is of inspirational significance to the reasoning acceleration of multimodal large models, see § 6

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.

- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: the paper poses no such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
 not require this, but we encourage authors to take this into account and make a best
 faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We have properly credited the creators or original owners of assets used in the paper.

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.

- If assets are released, the license, copyright information, and terms of use in the
 package should be provided. For popular datasets, paperswithcode.com/datasets
 has curated licenses for some datasets. Their licensing guide can help determine the
 license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: Our work does not release new assets.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: We do not use crowdsourcing or human subjects in our research.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: We do not use crowdsourcing or human subjects in our research.

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.

- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: core method development in this research does not involve LLMs as any important, original, or non-standard components.

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

A Limitations and future work

While SpaceServe effectively addresses the challenge of extended Time Per Output Token (TPOT) in multimodal large language model inference, another critical performance indicator, Time To First Token (TTFT), remains a significant consideration. TTFT directly reflects the system's initial responsiveness and is paramount for a positive user experience. In its current state, SpaceServe maintains TTFT performance comparable to existing state-of-the-art frameworks, such as vLLM-v1. However, substantially reducing the execution latency of a single encoder pass—the primary determinant of TTFT—continues to be a demanding task. Optimizing this single-encoder latency to further enhance TTFT represents an important avenue for our future research.

B Experiments for TTFT metric

Table 4: Time To First Token (TTFT) comparison across different models with varying Request Per Second (RPS), lower TTFT↓ is better

Method	Time To First Token (TTFT) (s) \downarrow					
RPS	2	4	6	8	10	
Qwen-2-VL-2B						
vLLM	12.068	16.180	18.655	23.035	26.038	
${\tt SpaceServe}$	13.324	17.515	21.114	24.726	27.437	
Qwen-2-VL-7B						
vLLM	19.492	22.033	30.306	34.745	38.795	
${\tt SpaceServe}$	18.832	22.419	32.050	36.533	39.086	
Qwen-2.5-VL-32B						
vLLM	16.553	32.631	41.849	46.440	47.547	
${\tt SpaceServe}$	17.131	33.242	42.489	47.144	48.966	
Qwen-2-VL-72B						
vLLM	14.872	26.647	35.717	39.780	42.067	
${\tt SpaceServe}$	14.810	26.633	36.321	38.378	43.834	

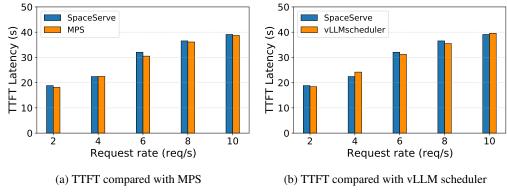


Figure 5: Ablation study of Qwen-2-VL-7B with TTFT

C Arithmetic Intensity Modeling for Encoder

Taking vision encoders for example, the patch generation characteristics can be formulated as:

$$H' = S \left\lceil \frac{H}{S} \right\rceil, \quad W' = S \left\lceil \frac{W}{S} \right\rceil \implies L_{\text{patches}} = \left\lceil \frac{H'}{L} \right\rceil \times \left\lceil \frac{W'}{L} \right\rceil$$
 (1)

where S denotes image padding strides, H denotes the original image height, H' denotes the normalized height, W denotes the original image width, and W' denotes the normalized width. And L denotes the patch size, $L_{\rm patches}$ denotes the total patches after preprocessing. During the encoder stage, the FLOPs can be formulated as :

$$\text{FLOPs}_{\text{vision}} = (\underbrace{2L_{\text{patches}}d_{\text{vision}}}_{\text{Embedding}} + \underbrace{8L_{\text{patches}}d_{\text{vision}}^2 + 4L_{\text{patches}}^2d_{\text{vision}}}_{\text{Attention}} + \underbrace{16L_{\text{patches}}d_{\text{vision}}^2}_{\text{FFN}}) * Layers \quad (2)$$

The overall Arithmetic Intensity can be approximated by:

$$\frac{\text{FLOPs}_{\text{vision}}}{\text{Memory}_{\text{weight}}}$$
 (3)

D Arithmetic Intensity Modeling for LLM

LLM Prefill Stage Before autoregressive token generation, the Large Language Model (LLM) processes the entire input prompt (with sequence length S_{prompt}) in a single, parallel forward pass. This 'prefill' stage is essential for computing the initial set of Key-Value (KV) states for all tokens in the prompt. To optimize this process, particularly for managing the memory footprint and computational cost of the attention mechanism, techniques like Grouped-Query Attention (GQA) are often employed. These initial KV states, potentially generated using GQA, are then cached and utilized by the subsequent decoding steps.

LLM Prefill: FLOPs. Let L_{llm} be the number of LLM layers, d_{llm} be the hidden dimension (consistent with the decoding stage notation), S_{prompt} be the input prompt length, and V be the vocabulary size. The FFN expansion factor is c (typically c=4). The FLOPs for the Transformer backbone during prefill are primarily from self-attention and FFN computations:

- Self-Attention per layer: $\approx (8S_{prompt}6d_{llm}^2 + 4S_{prompt}^2d_{llm})$ FLOPs. This encompasses Q,K,V projections $(6S_{prompt}d_{llm}^2)$, attention score calculations (QK T) and application to Values $(4S_{prompt}^2d_{llm})$, and the output projection $(2S_{prompt}d_{llm}^2)$.
- FFN per layer: $\approx 4cS_{prompt}d_{llm}^2$ FLOPs. For c=4, this is $16S_{prompt}d_{llm}^2$.

The total FLOPs for the Transformer blocks during prefill $(FLOPs_{Prefill\ Transformer})$ are:

$$FLOPs_{Prefill_Transformer} \approx L_{llm}((8+4c)S_{prompt}d_{llm}^2 + 4S_{prompt}^2d_{llm})$$
 (4)

Assuming c = 4:

$$FLOPs_{Prefill_Transformer} \approx L_{llm}(24S_{prompt}d_{llm}^2 + 4S_{prompt}^2d_{llm})$$
 (5)

If output logits are computed for the entire prompt (e.g., for training or certain inference strategies), the LM head adds $FLOPs_{LM_Head_Prefill} \approx 2S_{prompt}d_{llm}V$.

LLM Prefill: Memory Access. Memory operations during prefill include:

- Model Weights ($Memory_{weights_LLM}$): Accessing the model parameters $N_{total_params_LLM}$, where $Memory_{weights_LLM} \approx N_{total_params_LLM} \times$ bytes_per_parameter.
- Input Data & Activations: Reading input prompt embeddings and handling intermediate activations for the S_{prompt} length sequence across layers.
- KV Cache Generation: Writing the KV pairs for all S_{prompt} tokens. The size of this cache is $Memory_{KV_cache_prompt} = S_{prompt} \times L_{llm} \times 2 \times d_{llm} \times \text{bytes_per_element}$.

LLM Prefill: Arithmetic Intensity (AI). The Arithmetic Intensity for prefill is $AI_{Prefill}$ = Equation 5/(Memory Access for Weights, Input, Activations, and KV Cache Write).

$$AI_{Prefill} = \frac{L_{llm}((8+4c)S_{prompt}d_{llm}^2 + 4S_{prompt}^2d_{llm})}{\text{Memory}_{Access_Prefill}}$$
(6)

The $4L_{llm}S_{prompt}^2d_{llm}$ term in the FLOPs (Equation 5) means that for long prompts (S_{prompt}), the prefill AI can be substantial, potentially making this phase compute-intensive. This contrasts with the characteristics of the subsequent decoding phase.

In contrast, the Arithmetic Intensity of the LLM component is significantly lower. The LLM decoding stage operates autoregressively, generating one token at a time. Its computational characteristics are modeled as follows:

LLM Decoding: FLOPs (Per Token Generation) For the generation of a single token, let L_{llm} be the number of LLM layers, d_{llm} be the hidden dimension, S_{len} be the current sequence length (context from previously generated tokens), and V be the vocabulary size. The primary FLOPs contributions are:

- Transformer Decoder Layers (with KV Cache): For each token, each layer involves:
 - Self-Attention (new token Q, K, V projections; attention with cached K, V): Approximately $8d_{llm}^2 + 4S_{len}d_{llm}$ FLOPs. This includes Q, K, V projections for the current token ($\approx 6d_{llm}^2$), interaction with the S_{len} cached tokens ($\approx 4S_{len}d_{llm}$ for QK^T and score-V multiplication), and the output projection ($\approx 22d_{llm}^2$).
 - Feed-Forward Network (FFN): Typically $16d_{llm}^2$ FLOPs (assuming a $4 \times d_{llm}$ intermediate expansion).

Thus, per layer FLOPs are approximately $24d_{llm}^2 + 4S_{len}d_{llm}$.

• LM Head: Mapping the final hidden state to vocabulary logits: $\approx 2d_{llm}V$ FLOPs.

The total FLOPs for generating a single token $(FLOPs_{LLM} \ decode \ token)$ can be expressed as:

$$FLOPs_{LLM_decode_token} \approx L_{llm}(24d_{llm}^2 + 4S_{len}d_{llm}) + 2d_{llm}V$$
 (7)

A common simplified approximation for FLOPs per token (especially when S_{len} is moderate) is $2 \times N_{params_non_embedding}$, where $N_{params_non_embedding}$ are the non-embedding parameters of the LLM, primarily from FFN and attention projection matrices.

LLM Decoding: Memory Access (Per Token Generation) Memory access during LLM decoding is dominated by:

• Model Weights (Memory_{weights_LLM}): Parameters of the Transformer layers and LM head.

$$Memory_{weights_LLM} \approx N_{total_params_LLM} \times bytes_per_parameter$$
 (8)

• KV Cache ($Memory_{KV_cache}$): Stores Key (K) and Value (V) vectors for S_{len} previous tokens across L_{llm} layers.

$$Memory_{KV_cache} = S_{len} \times L_{llm} \times 2 \times d_{llm} \times \text{bytes_per_element}$$
 (9)

The critical dynamic memory access per token involves reading from and writing to this KV cache, along with accessing the relevant model weights for the current token's computation.

LLM Decoding: Arithmetic Intensity (**AI**) The Arithmetic Intensity for LLM decoding is $FLOPs_{LLM_decode_token}/Memory_{Access_per_token}$. If we primarily consider the model weights for memory access (as their total size is loaded and parts are accessed for each token generation), a simplified AI is:

$$AI_{LLM_decode} \approx \frac{2 \times N_{params_non_embedding}}{N_{params_total_LLM} \times \text{bytes_per_parameter}}$$
 (10)

Given that $N_{params_non_embedding}$ is a large fraction of $N_{params_total_LLM}$, and FLOPs for core matrix multiplies are roughly $2\times$ parameters involved, if we consider all parameters:

$$AI_{LLM_decode} \approx \frac{2 \times N_{params_total_LLM}}{N_{params_total_LLM} \times \text{bytes_per_parameter}} = \frac{2}{\text{bytes_per_parameter}}$$
 (11)

For FP16/BF16 (2 bytes/parameter), $AI_{LLM_decode} \approx 1$ FLOP/Byte. This low AI signifies that LLM decoding is predominantly **memory-bandwidth bound**. The substantial memory footprint of weights and the dynamically accessed KV cache, relative to the per-token computational work, contributess to this characteristic.

E Chunked Prefill Scheduling with Vision Cache Check

Pre-Scheduling Check: Prior to each scheduling iteration, the scheduler examines the $Queue_{encoder_result}$ to determine if any requests have completed encoding. Completed encoding results from the Encoder process are cached in the LLM process's vision token cache ChunkedPrefill Execution:

During scheduling of prefill-stage requests: The scheduler verifies whether the candidate tokens contain vision tokens If required vision tokens are not present in the vision cache: Only the preceding text prompt portion is scheduled Vision token processing is deferred until encoding completion

Scheduling Priority: Strict FCFS ordering maintains request sequence integrity Within the ChunkedPrefill framework: Decoding-stage requests receive scheduling priority over prefill requests. This ensures optimal throughput while preserving fairness

Algorithm 3 Chunked Prefill Scheduling with Vision Cache Check

```
Input:

    Waiting prefill requests queue Q<sub>prefill</sub>

             • During decoding requests queue Q_{decoding}
             • Token budget B (max_num_batched_tokens)
             • Chunk prefill size Batch_{chunksize}
             • Vision cache \mathcal{V}
             • Chunking enabled flag C
Output: Scheduled batch Batch containing decode and prefill chunks
 1: Initialize empty batch: Batch \leftarrow []
 2: for each request d in Q_{decoding} do
        Append d to Batch
 4:
        Update B \leftarrow B – tokens needed by d
 5: end for
  \begin{array}{ll} \text{6: } \textbf{while } B>0 \text{ and } Q_{prefill} \text{ not empty } \textbf{do} \\ \text{7: } & r \leftarrow Q_{prefill}.\text{peek}() \text{ \{Next prefill request\}} \\ \end{array} 
 8:
        v_{pos} \leftarrow \text{position of first vision token in } r
 9:
        if v_{pos} exists and vision tokens at v_{pos} not in \mathcal{V} then
           t \leftarrow number of prompt tokens before v_{pos}
10:
11:
           Schedule prefill chunk with tokens [start_{pos}, v_{pos}) in Batch
12:
        else
13:
           t \leftarrow tokens needed for next chunk of r
14:
          if t > B and C is enabled then
              Split r into chunk of size exactly B (take next B tokens)
15:
16:
              Schedule this chunk for prefill in Batch
              Remove these B tokens from r
17:
              t \leftarrow B
18:
              break
19:
20:
           else if t \leq B then
              Schedule full prefill request r in Batch
21:
22:
              Remove r from Q_{prefill}
23:
           else
              break {No budget left}
24:
25:
           end if
26:
        end if
        B \leftarrow B
27:
28: end while
29: Execute scheduled Batch (decode + chunked prefill)
```

F SM Partition Algorithm

Algorithm 4 FindOptimalSMPartition

```
1: M_E {Encoder request metadata} RC_E {Encoder Resource-Utility Curve}
 2: L_{ctx} {Decoder context length} C_D {Decoder chunk configuration} RC_D {Decoder Resource-
    Utility Curve}
 3: SM_{total} {Total allocatable SMs} SM_{min\_alloc} {Minimum SMs per component (e.g., \geq 1)}
Output: (sm_E^*, sm_D^*) {Optimal SM allocation for Encoder, Decoder}
 4: Let Lat_E(s_E) be the latency function for Encoder derived from RC_E using M_E.
 5: Let Lat_D(s_D) be the latency function for Decoder derived from RC_D using C_D, L_{ctx}.
 6: sm_E^* \leftarrow \text{null}
7: sm_D^{\stackrel{r}{*}} \leftarrow \text{null}
 8: L^*_{makespan} \leftarrow \infty
 9: found\_valid\_allocation \leftarrow false
10: for s_E from SM_{min\_alloc} to SM_{total} - SM_{min\_alloc} do
       s_D \leftarrow SM_{total} - s_E
12:
       if s_D < SM_{min\_alloc} then
13:
          continue
14:
       end if
15:
       current\_L_{makespan} \leftarrow \max(Lat_E(s_E), Lat_D(s_D))
       if current\_L_{makespan} < L^*_{makespan} then
16:
          L_{makespan}^* \leftarrow current\_L_{makespan}
17:
18:
          sm_E^* \leftarrow s_E
19:
          sm_D^* \leftarrow s_D
20:
         found\_valid\_allocation \leftarrow true
21:
       end if
22: end for
23: if found_valid_allocation then
       return (sm_E^*, sm_D^*), L_{makespan}^*
24:
25: else
       return (null, null), \infty {No valid allocation found}
26:
27: end if
```

G Implementation Details

System stack and versions. SpaceServe is implemented on top of **vLLM 0.7.2**. We integrate at the scheduler and engine layers, keeping the model execution interface unchanged so that existing MLLM checkpoints can be served without modification.²

Concurrency via CUDA MPS. We enable NVIDIA CUDA Multi-Process Service (MPS) so that the vision encoder and the text decoder run as separate worker processes on the same GPU and submit kernels concurrently..

SM partitioning primitive. To realize space multiplexing, SpaceServe uses libsmctrl as the low-level primitive to partition GPU Streaming Multiprocessors (SMs) across worker processes. The Space-Inference Scheduler (SIS) chooses an SM quota for each worker according to a resource-utility curve and the current TWSRFT admission state, then applies the quota through libsmctrl.

²Code: https://github.com/gofreelee/SpaceServe