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Abstract

Recent multimodal large language models (MLLMs) marry modality-specific
vision or audio encoders with a shared text decoder. While the encoder is compute-
intensive but memory-light, the decoder is the opposite, yet state-of-the-art serving
stacks still time-multiplex these complementary kernels, idling SMs or HBM
in turn. We introduce SpaceServe, a serving system that space-multiplexes
MLLMs: it decouples all modality encoders from the decoder, and co-locates
them on the same GPU using fine-grained SM partitioning available in modern run-
times. A cost-model-guided Space-Inference Scheduler (SIS) dynamically assigns
SM slices, while a Time-Windowed Shortest-Remaining-First (TWSRFT) policy
batches encoder requests to minimise completion latency and smooth decoder ar-
rivals. Evaluation shows that SpaceServe reduces time-per-output-token by 4.81×
on average and up to 28.9× on Nvidia A100 GPUs. SpaceServe is available at
https://github.com/gofreelee/SpaceServe

1 Introduction

Multimodal large language models (MLLMs), for example Qwen2-VL[36] and other recent
systems[36, 3, 33, 27], have graduated from lab demos to production services that field image-
grounded questions, interpret charts, and reason over audio or video snippets. Conceptually, a MLLM
marries the unprecedented linguistic capability of a large text-only foundation model with a set
of modality-specific encoders that translate pixels, waveforms, or frames into the token space the
decoder already understands. This “encoder + shared-text-decoder” blueprint is now standard across
state-of-the-art models[3, 33, 18, 36].

As foundation-model decoders continue to improve “for free” (e.g., via larger pre-training corpora [21,
32, 17, 34, 9] or better post-training [26, 25, 28]), attention is shifting toward the encoders. These
front-end components are becoming both more powerful and more complex [33, 36, 3, 27]—handling
higher-resolution images, longer audio clips, and even variable-length video. Consequently, an
MLLM is effectively two decoupled yet complementary neural networks: a compute-intensive,
memory-light encoder paired with a memory-hungry, compute-light decoder. This pronounced
resource asymmetry remains largely unaddressed by today’s serving stacks.

Serving MLLMs inherits every headache of text-only LLM serving—tight tail-latency [15, 5] targets,
massive KV-cache footprints [35, 29, 13], dynamic batching[7, 38], and adds a new one: modality-
specific encoders. Most production stacks [13, 41, 10, 1] remain tuned for single-modality workloads.
Optimizations such as prefilling decoding disaggregation [11, 42], chunked prefill [1] boost through-
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put for text models assuming a homogeneous stream of decoder kernels. That assumption breaks
once a vision or audio encoder, with a completely different resource profile, enters the pipeline.

Lacking encoder-aware machinery, state-of-the-art systems such as vLLM [13] or TGI [10] revert
to time-multiplexing when they serve MLLMs: the GPU runs the vision/audio encoder first, then
switches context and launches the text decoder, and so on. Encoder and decoder kernels therefore
contend for the accelerator sequentially, losing the complementary compute-versus-memory balance
that could otherwise be exploited.

Our key insight is that encoders and decoders have complementary resource footprints: the
compute cycles a decoder leaves idle are exactly what an encoder can exploit, while the memory
an encoder scarcely touches is what the decoder hungers for to house its KV-cache. We therefore
advocate space-multiplexing instead of traditional time-multiplexing—running encoder and decoder
kernels simultaneously on the same GPU, each claiming just the compute and memory it truly needs.

We embody this idea in SpaceServe, a split-encoder serving that: 1) decouples all modality-specific
encoders from the shared text-decoder; 2) dynamically routes multimodal requests through a modality-
aware scheduler that adapts to workload mix; 3) achieves space-multiplexing by co-locating encoder
and decoder kernels on each GPU whenever their complementary compute-memory footprints align.
Our contributions are as follows:

• Split-encoder serving architecture: We introduce SpaceServe, the first system that decouples
all modality-specific encoders from the shared text decoder and provides a GPU runtime that
co-locates their kernels via space-multiplexing. A lightweight, cost-model-guided co-location
policy packs encoder and decoder kernels whenever their resources footprints fit.

• TWSRFT encoder scheduler: To tackle bursty multimodal workloads, we design a Time-
Windowed Shortest-Remaining-First (TWSRFT) scheduler that orders encoder requests within
each time window by their remaining work. This preemptive policy minimizes encoder completion
latency and smooths the arrival pattern seen by the shared decoder, improving end-to-end tail
latency without harming encoder performance.

• Comprehensive evaluation: We evaluate SpaceServe with 4 size of state-of-the-art MLLMs [36,
3] on three GPU combinations (1*A100, 4*A100, 8*A100) using mixed workloads sampled from
two well-known benchmarks for image [40] and video [8]. Empirical results demonstrate that
SpaceServe cuts time-per-output-token (TPOT) by 4.81x on average and up to 28.9x.

2 Motivation: From time-Multiplexing to space-Multiplexing

2.1 Preliminary

The canonical MLLM stack is organized around two core modules: 1) Modality-specific encoders that
translate raw visual, audio, or other non-text inputs into high-dimensional embeddings. 2) A shared
text-LLM decoder that performs autoregression generation over these embeddings. A lightweight
pre-processing stage precedes the encoders, normalising each modality into the expected tensor
format—tokenising text, slicing images into fixed-size patches, or converting audio into waveforms,
thus the encoders can operate on a consistent representation. For instance, a vision encoder typically
use ViT-based [6] structure to encode visual patches into visual tokens, which are aligned with text
tokens in a unified representation space for integration and then processed by the LLM for reasoning
services and coherent outputs generation. A classic MLLM architecture is depicted by Figure 1a.

2.2 Resource footprint complementary: A quantitative analysis

Our major insight is a clear resource-footprint complementarity between modality encoders
and the shared text decoder. We substantiate this with a quantitative study of arithmetic intensity
(AI)—floating-point operations per transferred byte (FLOPs / Byte)—showing that encoders are
compute-rich but memory-light, whereas decoders are memory-hungry yet compute-light. This
complementarity underpins the space-multiplexing design that follows.

Due to space limit, the detailed computation of AI for MLLMs are put in Appendix D.

Table 1 reports the arithmetic intensity (AI, FLOPs/byte) of Qwen 2-VL-7B at two image
resolutions—512 × 512 and 2048 × 2048. Processing such dynamic input sizes is crucial for
accuracy, yet it complicates serving. Two key take-aways emerge:
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Figure 1: Architecture of MLLMs and how vllm and SpaceServe serves MLLMs

Table 1: Arithmetic intensity (FLOPs / byte) of each serving stage in Qwen2-VL-7B on A100 GPU
as image resolution increases from 512× 512 to 2048× 2048. Higher AI means the kernel is more
compute-bound; lower AI implies it is more memory-bound.

Stage AI @ 512× 512 AI @ 2048× 2048
Encoder encoding 338.21 8826.97
Decoder prefilling 72.13 1212.43
Decoder decoding 0.887 0.887

1. Encoders and decoders are complementary. At both resolutions the encoder encoding remains
compute-bound—AI increases from 338.21 to 8826.97 FLOPs/byte as resolution increases, but
even 338.21 still far exceeds the decoder’s AI. By contrast, the decoder decoding stage stays
memory-bound at 0.887 FLOPs/byte. Consequently, an encoder’s surplus memory bandwidth
can satisfy a decoder’s KV-cache needs, while a decoder’s idle SM cycles can be reclaimed by
encoder kernels—precisely the synergy exploited by our space-multiplexing scheduler.

2. Input dynamics reshape the resource footprint. Increasing resolution quadruples the number of
14× 14 vision patches (e.g., 256→ 1024 patches), inflating memory traffic slower than compute
and increasing encoder AI by roughly 4×, as the AI of encoder is quadratically related to the
number of patches, as detailed in Appendix C. The Encoder phase changes from 338.21 →
8826.97, and the decode phase is nearly flat, so the relative gap between encoder and decoder
shrinks as images grow. Any serving stack that statically partitions GPU resources will mis-size
one stage or the other once the workload shifts; a scheduler must adapt per request, co-locating
kernels according to their current AI rather than a fixed worst-case estimate.

In short, dynamic, high-resolution inputs amplify the encoder–decoder asymmetry and underscore
the need for an adaptive, space-multiplexed serving strategy.

2.3 Toward Space-Multiplexed Serving

Existing serving stacks are modality-agnostic, so their schedulers treat vision/audio encoders and text
decoders as unrelated jobs that simply take turns on the GPU. The result is classic time-multiplexing
( Figure 1b, top): the system either runs a batch of encoders or a batch of decoders, never both,
squandering the complementary SM-versus-HBM footprints we documented earlier.

State-of-the-art tweaks such as chunked prefill[1] ( Figure 1b, middle) do achieve within-decoder
space-multiplexing—interleaving the prefill and decode phases of text requests—but they rely on a
critical assumption: both phases operate on the same modality (tokens) with a shared architecture.
Vision and audio encoders violate that assumption; they ingest image patches or spectrogram windows
and execute a completely different kernel mix, so chunked prefill cannot be repurposed to overlap
them with decoder stages.
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We therefore argue for true space-multiplexing across modalities ( Figure 1b, bottom). Through
a GPU-level partitioning runtime and a cost-aware scheduler that allocates sub-GPU slices of
SMs (streaming multiprocessors) to each request, our approach co-locates encoders and decoders
concurrently, turning their complementary resource profiles into tangible throughput and latency
gains.

3 SpaceServe: Design
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Figure 2: SpaceServe System Overview

SpaceServe converts the traditional time-multiplexed serving pipeline into a space-multiplexed
one by decoupling modality encoders from the shared text decoder and then co-locating their
kernels on the same GPUs. By co-locating kernels, hardware resources are optimized, as different
kernels demand distinct resource types. For example, compute-intensive kernel utilize more stream
multiprocessors (SMs) but require less memory bandwidth, while memory-bound kernels can use the
remaining less SMs without losing bandwidth. Strategic sharing of these kernels on the same GPU
enhances resource utilization and boosts performance. Figure 2 sketches the high-level architecture
of our approach, which decouples encoders from the LLM and co-locate them on the same GPU.
SpaceServe achieves space-multiplexing of GPU resources through two complementary design
pillars that operate in a split–share fashion: ① Disaggregated architecture. SpaceServe cleanly
decouples modality encoders from the shared text decoder, enabling each component to execute and
be scheduled independently.② GPU runtime with a Space-Inference Scheduler (SIS). A novel runtime
characterises the resource footprints of encoder and decoder kernels per request and co-locates
them on the same GPU set. As illustrated in Figure 2, the dedicated encoder pool is fronted by
a time-window scheduler that minimises encoding latency under fluctuating loads. At the heart
of the system, the SIS ( §§ 3.3) dynamically partitions streaming multiprocessors (SMs) between
encoders and decoders, guided by a cost model ( §§ 3.1) trained offline from extensive profiling of
representative encoder and LLM workloads. During runtime, the SIS continuously monitors GPU
utilisation; whenever a new request arrives, it rebalances the SM allocation according to the model’s
recommendation, sustaining high utilisation while respecting tail-latency constraints.

3.1 Hierarchical Operator-level Profiling for Resource-Utility Curves

Efficient sub–GPU sharing requires a precise performance model that can predict how both encoders
and decoders behave under (i) dynamic inputs and (ii) dynamic resource allocations. Two chal-
lenges emerge: 1) Input-dependent behaviour: As shown in § 2 and §§ 2.2, changes in image
or video resolution alter the arithmetic intensity (AI) of both encoders and decoders, shifting their
compute–memory balance. 2) Non-linear scaling with SM slices. The latency or throughput of
a kernel does not scale linearly with the fraction of streaming multiprocessors (SMs) it receives,
making naive proportional models inaccurate.
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These realities motivate the notion of Resource–Utility Curves: explicit mappings from the GPU
resources granted to a component (e.g., SM percentage) to the utility it delivers (e.g., latency, tokens).
Such curves are the foundation of an adaptive serving stack. We construct them via a hierarchical,
operator-level profiling workflow ( §§ 3.1), which samples the performance of individual operators
under controlled SM partitions and then aggregates the results to produce end-to-end utility curves
for each encoder and decoder variant. The details of controlling SMs allocation are in §§§ 3.3.2.
Thanks to the convergence of operators, we mainly focus on two types of operators:

Algorithm 1 Compose Model-Level Resource-Utility Curve

Input: ModelComponentType MCT
Input: ModelArchitecture Arch (details Nlayers, dmodel, etc.)
Input: PrimaryInput Pin (a specific Lpatches or Slen)
Input: SMCountRange RSM

Input: OpPerfDB
Output: ModelCurve[NSM ]→ TotalModelLatency for Pin

1: ModelCurve← ∅
2: for NSM ∈ RSM do
3: TotalModelLatency← 0
4: for i← 1 to Arch.Nlayers do
5: latency← 0 {Latency counter for the ith layer}
6: for Oplayer ∈ Arch.getLayerOps(MCT, i) do
7: DlayerOp ← Arch.getOpDimensions(Oplayer,MCT, Pin, i)
8: latency ← latency + OpPerfDB[Oplayer.T ype][DlayerOp][NSM ]
9: end for

10: LayerOverheads ← Arch.getLayerOverheads(MCT, i, Pin, NSM )
11: latency← latency + LatOverheads

12: TotalModelLatency← TotalModelLatency + latency
13: end for
14: ModelCurve[NSM ]← TotalModelLatency
15: end for
16:
17: return ModelCurve

Profiling GEMM Resource Utility Curve : (1)For Encoder: Profile various GEMMs involved in
FFN layers (e.g., matrices of size Lpatches× denc by denc × 4denc) and attention projections (e.g.,
Lpatches× denc by denc × denc). For each matrix size, a curve of Latency vs. Nsm is generated.
(2)For Decoder: Profile GEMMs for FFN layers (e.g., 1×dllm by dllm×4dllm), attention projections
for the new token, and the LM head. Each results in a Latency vs. Nsm curve.

Profiling Attention Resrouce Utility Curve:(1)For Encoder: Profile the encoder’s self-attention
mechanism for different Lpatches. This also yields a set of Latency vs. Nsm curves, one for each
Lpatches. (2) For Decoder: Profile the attention mechanism computing a new token’s attention
against a KV cache of length Slen. This generates Latency vs. Nsm curves for various Slen.

After the profile, we compose the Model-level resource-utility curves by Algorithm 1.

3.2 Encoder Stage: TWSRFT Scheduler

In line with dynamic batching [38] for text only decoders, SpaceServe also incorporate a modality-
aware scheduler for batching encoder requests. The choice of requests to batch significantly affects
latency metrics, such as Time to First Token (TTFT) and Time per Output Token (TPOT). For
instance, encoding a high-resolution image typically takes longer than processing lower-resolution
image embeddings. To minimize latency and boost throughput, batching smaller requests is effective.
However, this approach faces two constraints. First, GPU computational capacity limits batching, as
encoders are compute-intensive. For example, the NVIDIA A100 has an optimal arithmetic intensity
of approximately 161 FLOPs/Byte. The threshold varies across GPU models. Second, prioritizing
small requests can starve larger requests, delaying their processing.

To address these challenges, SpaceServe introduces the Time-Windowed Shortest Remaining Time
First (TWSRTF) scheduler, the modality scheduler shown in Figure 2. The TWSRTF scheduler uses

5



a time-window approach to manage request batching. Requests are collected in an input queue within
a fixed time window. Within this window, requests are batched by size, prioritizing the smallest ones
first. The scheduler also monitors batch capacity to ensure its stay within the GPU’s limits. The
detailed algorithm implementation is presented in Algorithm 2

Algorithm 2 Time-Windowed Shortest Remaining Time First Scheduling for Encoder

Input: Request queue Q, window size w, maximum patches seqlengthbatchsuitable

Output: Encoded batches of requests
1: while Q is not empty do
2: W ← Q.get(w) {Fetch a window of requests}
3: Sort W by ascending patches
4: i← 0; B ← [W [i] ]; s←W [i].patches
5: i← i+ 1
6: while i < |W | do
7: if s+W [i].patches < seqlengthbatchsuitable then
8: Append W [i] to B
9: s← s+W [i].patches

10: i← i+ 1
11: else
12: encoder(B) {Process batch with encoder}
13: Remove B from Q
14: end if
15: end while
16: end while

3.3 Co-Locating Stage: Space Inference Scheduler for Space Multiplexing

The Online Space Inference Scheduler is a cornerstone of the Co-Locating Stage, dynamically
managing request execution flows and the partitions of Streaming Multiprocessors (SMs) between
encoders and the LLM decoders based on runtime conditions. It oversees the scheduling of incoming
requests and ensures seamless coordination with the Modality Encoder Scheduler. When the Modality
Encoder Scheduler, using Time-Windowed Shortest Remaining Time First (TWSRTF), dispatches a
new encoding request, it triggers an action in the Online Space-Multiplex Scheduler. The scheduler
utilizes the request’s metadata, e.g. input sequence length and image resolution, alongside the cost
model derived from offline profiling (detailed in §§ 3.1). This enables dynamic allocation of GPU
resources of the same processor, particularly SMs, between the encoder task and current LLM
decoding operations. Such adaptive, request-aware resource allocation optimizes performance and
maximizes hardware utilization for diverse multimodal workloads.

3.3.1 GPU Runtime: Fine-grained Resource Partition

Effective space-multiplexing hinges on the ability to partition a single GPU and allocate resources be-
low the device boundary. Modern accelerators now expose precisely this functionality. The AMD HIP
runtime, for example, supports CU masks [2] that assign disjoint CU sets to different streams, while
NVIDIA GPUs offer comparable streaming-multiprocessor control via libsmctrl [4]. SpaceServe
builds on these sub-GPU partitioning primitives to realise fine-grained resource allocation.

3.3.2 Request-aware SM Partition

During the serving phase of the inference engine, we design an online allocation mechanism based
on our profiler to dynamically optimize Streaming Multiprocessor (SM) partitioning.

SpaceServe decomposes the inference service of multimodal large models into three independent
processes: a CPU process, an Encoder process, and a LLM process. The CPU process handles user
requests and performs preprocessing of multimodal data. Request information is then dispatched
separately to both the Encoder process and the LLM process. Given that the Encoder and LLM have
distinct resource preferences and requirements, SpaceServe applies different scheduling strategies
tailored to each. SpaceServe performs dynamic and efficient GPU resource partitioning tailored to
incoming requests. This adaptive allocation is underpinned by our comprehensive Model Resource

6



Utility Curves in §§ 3.1. The underlying Streaming Multiprocessor (SM) partitioning algorithm,
which is elaborated in Appendix E operates on the core principle of finding the resource configuration
that minimizes the sum of the Encoder’s and Decoder’s execution times.

As for the LLM Decoder, SpaceServe employs a ChunkedPrefill [1] with vision cache scheduling
strategy for the LLM processing, which is formally described in Algorithm 3.

4 Evaluation

4.1 Experimental Setup

Hardware: We evaluate SpaceServe on a server which is equipped with 8 NVIDIA A100 SXM
GPUS and Intel Xeon(R) Gold 6430 CPU.

Models and workloads: We select 4 state-of-the-art MLLMs with varying model size, including
Qwen2-VL-2B [36], Qwen2-VL-7B [36], Qwen2.5-VL-32B [3] and Qwen2-VL-72B [36]. These
models were chosen for their proficiency in handling high-resolution images with arbitrary aspect
ratios, understanding long contextual sequences. Due to GPU-memory constraints, we run Qwen2-
VL-2B and Qwen2-VL-7B on a single GPU, Qwen2.5-VL-32B on four GPUs, and the largest
Qwen2-VL-72B on eight GPUs. For the multi-GPU configurations we employ tensor parallelism.

Datasets: We build a 1,740-example evaluation set by sampling from MMMU-Pro [40] and Video-
MME [8], preserving an 8 : 2 ratio of image to video items.

Baseline Systems: We adopt vLLM [13]—a SOTA serving framework—as our baseline. In particular,
we evaluate against the latest vLLM v1 architecture, which integrates recent advances such as zero-
overhead scheduling and a suite of MLLM-specific optimizations.

Metrics: LLM inference efficiency centers on two critical latency metrics: Time To First Token
(TTFT) and Time Per Output Token (TPOT), which we use as primary metrics. Lower values for
both TTFT and TPOT indicate better performance.

4.2 End-to-End Evaluation Results

2 4 6 8 10
Request rate (req/s)

0
50

100
150
200
250
300
350
400

TP
OT

 (m
s)

(a) Qwen2-VL-2B

2 4 6 8 10
Request rate (req/s)

0
50

100
150
200
250
300
350
400
450
500

TP
OT

 (m
s)

(b) Qwen2-VL-7B

2 4 6 8 10
Request rate (req/s)

0
50

100
150
200
250
300
350
400
450
500
550

TP
OT

 (m
s)

(c) Qwen2.5-VL-32B

2 4 6 8 10
Request rate (req/s)

0
50

100
150
200
250
300
350
400
450
500

TP
OT

 (m
s)

(d) Qwen2-VL-72B

vLLM SpaceServe(Ours)

Figure 3: TPOT of SpaceServe and vLLM on various models, lower TPOT↓ is better

In the experiment, we increased the request rate from 2 to 10 requests per second. Across various
model sizes, ranging from 7B to 72B, SpaceServe consistently and significantly outperforms the
vLLM baseline. For instance, while serving the Qwen2-VL-2B model, vLLM’s average TPOT
increased from 101ms at 2 RPS to 365ms at 10 RPS, indicating a significant drop in efficiency. In
contrast, SpaceServe demonstrated robust performance, with TPOT increasing only slightly from
8.85ms (2 RPS) to 12.62ms (10 RPS). This represented a substantial improvement, achieving a 28.9x
reduction in TPOT compared to vLLM at 10 RPS and thereby enhancing service throughput and user
experience.

This trend continued across other models at 10 RPS. For Qwen2-VL-7B, SpaceServe recorded a
TPOT of 40ms compared to vLLM v1’s 489ms, delivering a speedup of 12.3x. For larger models with
greater resource demands, such as Qwen2.5-VL-32B on four NVIDIA A100 GPUs, SpaceServe’s
TPOT was 144ms compared to vLLM’s 522ms (10 RPS), a speedup of 3.62x. Similarly, when serving
Qwen2-VL-72B on eight NVIDIA A100 GPUs at 10 RPS, SpaceServe maintained its advantage
with a TPOT of 155.8ms versus vLLM v1’s 489ms, achieving a 3.14x speedup.
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Why do we have such an excellent token generation speed: The inherent latency for generating a
single token during the decoder phase is typically low, around 10 milliseconds for Qwen2VL-2B.
However, vLLM-v1’s time-division multiplexing architecture causes decoding requests to be blocked
when the GPU is occupied by an encoder task, which can take several hundred milliseconds, e.g.
671ms for Qwen2VL-2B. This forces decoding operations into a wait state until the encoder task
completes, significantly inflating the Time Per Output Token (TPOT) in high request-per-second
(RPS) scenarios due to frequent encoder invocations.

In stark contrast, SpaceServe employs a spatial multiplexing strategy (or a functionally equivalent
mechanism that allows for concurrent or dedicated resource allocation for encoder and decoder
stages). This architectural design effectively decouples the high-throughput decoder operations
from the more time-intensive encoder tasks. By mitigating these inter-dependencies, SpaceServe
ensures that the token generation rate for the decoder remains stable and consistently high, achieving
approximately 100 tokens per second, even during frequent encoder activity. This resilience of the
decoding pipeline to encoder-induced stalls is the primary contributor to SpaceServe’s superior
performance under demanding, mixed encoder-decoder workloads when measured in TPOT.

Due to page constraints, we put the TTFT results on Appendix B. Unlike the sharp TPOT gains, the
time-to-first-token (TTFT) remains virtually unchanged between SpaceServe and vLLM for all four
models. This is expected: SpaceServe ’s design focuses on harvesting the memory-bandwidth slack
present while an encoder is running to accelerate the memory-bound decoder, boosting steady-state
throughput rather than the initial-token latency captured by TTFT.

4.3 Ablation Study

The performance advantages of SpaceServe compared to vLLM are attributed to two primary
innovations: (1) the efficient space-multiplexing methodology. (2) the specialized Time-Windowed
Shortest Remaining Time First (TW-SRTF) scheduler for the vision encoder. To delineate the
individual contributions of these elements, we performed targeted ablation studies, adhering to the
experimental setup described earlier.

4.3.1 Ablation Study: Space Inference Scheduler vs. MPS

We ablate our space-multiplexing design against NVIDIA Multi-Process Service (MPS) [20], using
Qwen2-VL-7B as the test model.
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Figure 4: Ablation study of Qwen-2-VL-7B with TPOT

As shown in Figure 4, the ablation study confirms our hypothesis: Compared to vLLM, the MPS
(Multi-Process Service) version of SpaceServe accelerates the TPOT metric while keeping a largely
unaffected TTFT. Our ablation study further evaluates our SpaceServe model, which employs a
fine-grained allocation strategy, against this MPS version. At an input rate of 2 Requests Per Second
(RPS), the MPS version of SpaceServe shows a TPOT of 90 ms. This latency increases with rising
RPS, reaching a peak of 132 ms. In contrast, our SpaceServe (with the fine-grained strategy)
achieves a TPOT of 28.25 ms at 2 RPS, and its TPOT only reaches a maximum of 40.68 ms as RPS
increases. This comparison highlights that our fine-grained allocation strategy maintains significantly
lower TPOT latency and greater stability under high concurrent requests, achieving a TPOT speedup
of up to 3.3x relative to the MPS version. Moreover, as depicted in Figure 5a and Figure 5b, the TTFT
for both approaches is nearly identical, indicating that these TPOT enhancements do not compromise
first-token latency.
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The substantial performance improvement stems from alleviating resource contention at the SM
microarchitectural level. When Encoder and LLM processes are co-located using only NVIDIA MPS,
their respective CUDA kernels, comprised of multiple warps, may be concurrently scheduled by the
MPS server onto any available SM. Within a single SM, these distinct workloads then vie for limited
resources such as arithmetic units, register file space, L1 cache, and shared memory bandwidth. The
disparate nature of these tasks—the Encoder being typically compute-bound and the LLM decoding
phase often exhibiting bursty memory access patterns and varied computational demands—can lead
to suboptimal SM utilization. For example, high register usage by one task could limit the number of
active warps (occupancy) for the other, or differing memory access patterns could lead to L1 cache
pollution, increasing effective memory latency.

By contrast, SpaceServe’s SM partitioning dedicates distinct sets of SMs to the Encoder and LLM
processes. This spatial isolation minimizes direct inter-process contention for intra-SM resources.
Each process can therefore more effectively exploit the full capacity of its allocated SMs, leading to
improved instruction issue rates and better sustained occupancy for its specific workload characteris-
tics. This dedicated execution environment allows for more streamlined processing within each SM
partition, reducing stalls and ultimately translating to a lower TPOT and an enhanced throughput.

4.3.2 Ablation Study: TWSRFT Scheduler vs. vLLM Default Scheduler

We ablate our redesigned encoder scheduler—built for split-encoder architectures—using the Qwen2-
VL-7B model.

The results demonstrate a clear advantage for our custom scheduling approach under increasing
load. At a low concurrency of 2 Requests Per Second (RPS), the SpaceServe-vLLMscheduler
exhibited a TPOT of 30.73 ms, which was only slightly higher than our full SpaceServe system’s
TPOT of 28.25 ms. However, as the concurrency increased to 4 RPS, the TPOT for SpaceServe-
vLLMscheduler rose more sharply to 55.88 ms, whereas our SpaceServe system maintained a
TPOT of 40.18 ms. This performance disparity became significantly more pronounced at 10 RPS:
the TPOT for SpaceServe-vLLMscheduler surged to 114.22 ms, while our SpaceServe system
impressively sustained a low TPOT latency of 39.8 ms, showcasing its stability and efficiency at higher
throughputs. The observed degradation in TPOT for the SpaceServe-vLLMscheduler configuration
can be attributed to the vLLM scheduler’s lack of an independent batching strategy for the encoder
component. When the aggregated batch size of vision tokens processed by the encoder reaches a
critical threshold, any further increase in the number of concurrent requests leads to a substantial rise
in the overall execution time for the encoder stage. This, in turn, inflates the average processing time
per request. Consequently, the LLM process does not receive a sufficient or timely stream of vision
tokens, which acts as a bottleneck and significantly slows down the generation of subsequent output
tokens, thereby increasing the TPOT.

4.4 Performance on Modern MoE-based Architectures

To demonstrate SpaceServe’s effectiveness on the latest generation of MLLMs, we evaluated its
performance on cutting-edge models featuring sparse MoE layers: DeepSeek-VL2 and Kimi-VL.
The experiments were run under a high-concurrency load of 10 requests per second.

The results, presented in Table 2, show that SpaceServe delivers substantial performance gains. We
achieve a 4.08x TPOT speedup on DeepSeek-VL2 and a remarkable 9.84x speedup on Kimi-VL.

This dramatic performance improvement, especially on Kimi-VL, is attributed to its exceptionally
compute-intensive vision encoder, which creates a significant imbalance with its memory-bound
MoE decoder. This is precisely the scenario where SpaceServe’s spatial multiplexing provides the
greatest benefit, by co-locating the complementary kernels to maximize GPU utilization.

4.5 Performance Scaling with Input Resolution

Modern MLLMs increasingly use high-resolution inputs to improve understanding. This makes
the vision encoder substantially more compute-intensive, creating a major bottleneck for traditional
serving systems. We evaluated SpaceServe from 224x224 to 2Kx2K under high concurrency (10
RPS). As shown in Table 3, vLLM’s TPOT rises sharply with resolution because the long-running
encoder blocks the decoder, whereas SpaceServe’s TPOT stays low and stable.
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Table 2: TPOT speedup on MoE-based MLLMs under a high-concurrency workload (10 RPS).

Model (MoE-based) Framework TTFT (ms) TPOT (ms) TPOT Speedup

DeepSeek-VL2 vLLM-v1 5597 122.5 Baseline
SpaceServe (Ours) 4495 30.0 4.08x

Kimi-VL vLLM-v1 57900 482.0 Baseline
SpaceServe (Ours) 56323 49.0 9.84x

Crucially, the performance advantage of SpaceServe scales with the computational load. As illustrated
in Table 3, the TPOT speedup escalates from 1.37x on low-resolution inputs to an impressive 12.39x at
2K resolution. This demonstrates that spatial multiplexing is most effective precisely where it is most
needed: mitigating the latency of compute-heavy tasks. Far from being a limitation, high-resolution
inputs highlight SpaceServe’s fundamental strength in harnessing resource heterogeneity to deliver
efficient performance for the next generation of high-fidelity MLLMs.

Table 3: Performance comparison across varying input resolutions at 10 RPS. As resolution increases,
SpaceServe maintains a stable, low TPOT, while the baseline’s latency degrades significantly.

Resolution Framework TTFT (s) TPOT (ms) TPOT Speedup

224 × 224 vLLM-v1 0.09 23.6 Baseline
SpaceServe (Ours) 0.09 17.2 1.37x

512 × 512 vLLM-v1 0.21 38.6 Baseline
SpaceServe (Ours) 0.21 25.9 1.49x

1K × 1K vLLM-v1 15.31 212.6 Baseline
SpaceServe (Ours) 15.54 35.6 5.97x

2K × 2K vLLM-v1 139.35 470.7 Baseline
SpaceServe (Ours) 135.76 38.0 12.39x

5 Related Work
Disaggregated Serving. Promising for large models, disaggregated serving (e.g., SplitWise [22],
DistServe [42], DéjàVu [31]) decouples prefill/decode stages, mitigating interference for better
TTFT/TPOT control. These LLM-focused systems often neglect the MLLM-specific encoding step.
Even recent extensions (Pensieve [39], Mooncake [23], PD-Serve [11]) with advanced KV cache
management offer limited MLLM applicability.

Multi-modality Model Serving. Serving multimodal models (MLLMs) typically relies on adapting
LLM systems (e.g., vLLM [13], SGLang [41]) or using recent MLLM inference code [24]. Adapting
LLM systems hits LMM encoding bottlenecks with rich multimedia. Techniques like KV cache
eviction [14, 19] and compression [12] are often model/scenario-specific (e.g., Inf-MLLM’s [19]
single-GPU streaming) and may miss cloud SLOs. Early disaggregation ideas (e.g., EPD [30]) lack
SpaceServe’s comprehensive scheduling and partitioning.

Complementarity with Sparse MLLM Architectures. SpaceServe complements sparse multi-
modal architectures, including Mixture-of-Experts designs [33, 37, 16]. Sparsity can lower per-request
compute, but it also increases resource heterogeneity by leaving hardware assigned to inactive experts
underutilized. SpaceServe exploits this opportunity by co-locating the compute-intensive encoder
of one request with the sparse, memory-bound decoder of another, using spatial multiplexing to fill
idle resources and raise overall utilization
6 Conclusion
This paper introduces SpaceServe, a novel MLLM serving system featuring two key innovations:
fine-grained GPU resource management and an advanced scheduling framework. This design enables
concurrent low-latency inference and high-throughput for multimodal LLMs, outperforming SOTA
systems by up to 28.9 ×.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have clearly stated the main claims made in the abstract and introduction,
which accurately reflect the paper’s contributions and scope. The claims are supported by
theoretical and experimental results, and we have discussed the limitations of our work.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitation of SpaceServe in Appendix A
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: We use well-known roofline model to guide the system design, no new theory
proposed.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our experimental results are reproducible, we conducted multiple experiments
in an 8-card A100 server environment, and the code will be open-sourced later
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We will open source the SpaceServe after paper acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We detailed the settings in Section 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The experiments are very computationally exhaustive, therefore impractical to
create enough data for meaningful statistical tests.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We state it in §§ 4.1

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We follow the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our work is of inspirational significance to the reasoning acceleration of
multimodal large models, see § 6

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: the paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have properly credited the creators or original owners of assets used in the
paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our work does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We do not use crowdsourcing or human subjects in our research.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We do not use crowdsourcing or human subjects in our research.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Limitations and future work

While SpaceServe effectively addresses the challenge of extended Time Per Output Token (TPOT)
in multimodal large language model inference, another critical performance indicator, Time To
First Token (TTFT), remains a significant consideration. TTFT directly reflects the system’s initial
responsiveness and is paramount for a positive user experience. In its current state, SpaceServe
maintains TTFT performance comparable to existing state-of-the-art frameworks, such as vLLM-
v1. However, substantially reducing the execution latency of a single encoder pass—the primary
determinant of TTFT—continues to be a demanding task. Optimizing this single-encoder latency to
further enhance TTFT represents an important avenue for our future research.

B Experiments for TTFT metric

Table 4: Time To First Token (TTFT) comparison across different models with varying Request Per
Second (RPS), lower TTFT↓ is better

Method Time To First Token (TTFT) (s) ↓
RPS 2 4 6 8 10

Qwen-2-VL-2B
vLLM 12.068 16.180 18.655 23.035 26.038
SpaceServe 13.324 17.515 21.114 24.726 27.437

Qwen-2-VL-7B
vLLM 19.492 22.033 30.306 34.745 38.795
SpaceServe 18.832 22.419 32.050 36.533 39.086

Qwen-2.5-VL-32B
vLLM 16.553 32.631 41.849 46.440 47.547
SpaceServe 17.131 33.242 42.489 47.144 48.966

Qwen-2-VL-72B
vLLM 14.872 26.647 35.717 39.780 42.067
SpaceServe 14.810 26.633 36.321 38.378 43.834
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Figure 5: Ablation study of Qwen-2-VL-7B with TTFT

C Arithmetic Intensity Modeling for Encoder

Taking vision encoders for example, the patch generation characteristics can be formulated as:

H ′=S

⌈
H

S

⌉
, W ′=S

⌈
W

S

⌉
⇒ Lpatches=

⌈
H ′

L

⌉
×
⌈
W ′

L

⌉
(1)

21



where S denotes image padding strides, H denotes the original image height, H’ denotes the nor-
malized height, W denotes the original image width, and W’ denotes the normalized width. And
L denotes the patch size, Lpatches denotes the total patches after preprocessing. During the encoder
stage, the FLOPs can be formulated as :

FLOPsvision = (2Lpatchesdvision︸ ︷︷ ︸
Embedding

+8Lpatchesd
2
vision + 4L2

patchesdvision︸ ︷︷ ︸
Attention

+16Lpatchesd
2
vision︸ ︷︷ ︸

FFN

) ∗ Layers (2)

The overall Arithmetic Intensity can be approximated by:

FLOPsvision

Memoryweight
(3)

D Arithmetic Intensity Modeling for LLM

LLM Prefill Stage Before autoregressive token generation, the Large Language Model (LLM)
processes the entire input prompt (with sequence length Sprompt) in a single, parallel forward
pass. This ’prefill’ stage is essential for computing the initial set of Key-Value (KV) states for all
tokens in the prompt. To optimize this process, particularly for managing the memory footprint and
computational cost of the attention mechanism, techniques like Grouped-Query Attention (GQA)
are often employed. These initial KV states, potentially generated using GQA, are then cached and
utilized by the subsequent decoding steps.

LLM Prefill: FLOPs. Let Lllm be the number of LLM layers, dllm be the hidden dimension
(consistent with the decoding stage notation), Sprompt be the input prompt length, and V be the
vocabulary size. The FFN expansion factor is c (typically c = 4). The FLOPs for the Transformer
backbone during prefill are primarily from self-attention and FFN computations:

• Self-Attention per layer: ≈ (8Sprompt6d
2
llm + 4S2

promptdllm) FLOPs. This encompasses
Q,K,V projections (6Spromptd

2
llm), attention score calculations (QKT ) and application to

Values (4S2
promptdllm), and the output projection (2Spromptd

2
llm).

• FFN per layer: ≈ 4cSpromptd
2
llm FLOPs. For c = 4, this is 16Spromptd

2
llm.

The total FLOPs for the Transformer blocks during prefill (FLOPsPrefill_Transformer) are:

FLOPsPrefill_Transformer ≈ Lllm((8 + 4c)Spromptd
2
llm + 4S2

promptdllm) (4)

Assuming c = 4:

FLOPsPrefill_Transformer ≈ Lllm(24Spromptd
2
llm + 4S2

promptdllm) (5)

If output logits are computed for the entire prompt (e.g., for training or certain inference strategies),
the LM head adds FLOPsLM_Head_Prefill ≈ 2SpromptdllmV .

LLM Prefill: Memory Access. Memory operations during prefill include:

• Model Weights (Memoryweights_LLM ): Accessing the model parameters
Ntotal_params_LLM , where Memoryweights_LLM ≈ Ntotal_params_LLM ×
bytes_per_parameter.

• Input Data & Activations: Reading input prompt embeddings and handling intermediate
activations for the Sprompt length sequence across layers.

• KV Cache Generation: Writing the KV pairs for all Sprompt tokens. The size of this cache
is MemoryKV _cache_prompt = Sprompt × Lllm × 2× dllm × bytes_per_element.

LLM Prefill: Arithmetic Intensity (AI). The Arithmetic Intensity for prefill is AIPrefill =
Equation 5/(Memory Access for Weights, Input, Activations, and KV Cache Write).

AIPrefill =
Lllm((8 + 4c)Spromptd

2
llm + 4S2

promptdllm)

MemoryAccess_Prefill

(6)
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The 4LllmS2
promptdllm term in the FLOPs (Equation 5) means that for long prompts (Sprompt), the

prefill AI can be substantial, potentially making this phase compute-intensive. This contrasts with the
characteristics of the subsequent decoding phase.

In contrast, the Arithmetic Intensity of the LLM component is significantly lower. The LLM decoding
stage operates autoregressively, generating one token at a time. Its computational characteristics are
modeled as follows:

LLM Decoding: FLOPs (Per Token Generation) For the generation of a single token, let Lllm

be the number of LLM layers, dllm be the hidden dimension, Slen be the current sequence length
(context from previously generated tokens), and V be the vocabulary size. The primary FLOPs
contributions are:

• Transformer Decoder Layers (with KV Cache): For each token, each layer involves:
– Self-Attention (new token Q, K, V projections; attention with cached K, V): Approxi-

mately 8d2llm + 4Slendllm FLOPs. This includes Q, K, V projections for the current
token (≈ 6d2llm), interaction with the Slen cached tokens (≈ 4Slendllm for QK⊤ and
score-V multiplication), and the output projection (≈ 22d2llm).

– Feed-Forward Network (FFN): Typically 16d2llm FLOPs (assuming a 4× dllm interme-
diate expansion).

Thus, per layer FLOPs are approximately 24d2llm + 4Slendllm.
• LM Head: Mapping the final hidden state to vocabulary logits: ≈ 2dllmV FLOPs.

The total FLOPs for generating a single token (FLOPsLLM_decode_token) can be expressed as:

FLOPsLLM_decode_token ≈ Lllm(24d2llm + 4Slendllm) + 2dllmV (7)
A common simplified approximation for FLOPs per token (especially when Slen is moderate) is
2 × Nparams_non_embedding, where Nparams_non_embedding are the non-embedding parameters of
the LLM, primarily from FFN and attention projection matrices.

LLM Decoding: Memory Access (Per Token Generation) Memory access during LLM decoding
is dominated by:

• Model Weights (Memoryweights_LLM ): Parameters of the Transformer layers and LM
head.

Memoryweights_LLM ≈ Ntotal_params_LLM × bytes_per_parameter (8)

• KV Cache (MemoryKV _cache): Stores Key (K) and Value (V) vectors for Slen previous
tokens across Lllm layers.

MemoryKV _cache = Slen × Lllm × 2× dllm × bytes_per_element (9)
The critical dynamic memory access per token involves reading from and writing to this KV
cache, along with accessing the relevant model weights for the current token’s computation.

LLM Decoding: Arithmetic Intensity (AI) The Arithmetic Intensity for LLM decoding is
FLOPsLLM_decode_token/MemoryAccess_per_token. If we primarily consider the model weights
for memory access (as their total size is loaded and parts are accessed for each token generation), a
simplified AI is:

AILLM_decode ≈
2×Nparams_non_embedding

Nparams_total_LLM × bytes_per_parameter
(10)

Given that Nparams_non_embedding is a large fraction of Nparams_total_LLM , and FLOPs for core
matrix multiplies are roughly 2× parameters involved, if we consider all parameters:

AILLM_decode ≈
2×Nparams_total_LLM

Nparams_total_LLM × bytes_per_parameter
=

2

bytes_per_parameter
(11)

For FP16/BF16 (2 bytes/parameter), AILLM_decode ≈ 1 FLOP/Byte. This low AI signifies that
LLM decoding is predominantly memory-bandwidth bound. The substantial memory footprint
of weights and the dynamically accessed KV cache, relative to the per-token computational work,
contributess to this characteristic.
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E Chunked Prefill Scheduling with Vision Cache Check

Pre-Scheduling Check: Prior to each scheduling iteration, the scheduler examines the
Queueencoder_result to determine if any requests have completed encoding. Completed encoding
results from the Encoder process are cached in the LLM process’s vision token cache ChunkedPrefill
Execution:

During scheduling of prefill-stage requests: The scheduler verifies whether the candidate tokens
contain vision tokens If required vision tokens are not present in the vision cache: Only the preceding
text prompt portion is scheduled Vision token processing is deferred until encoding completion

Scheduling Priority: Strict FCFS ordering maintains request sequence integrity Within the Chun-
kedPrefill framework: Decoding-stage requests receive scheduling priority over prefill requests. This
ensures optimal throughput while preserving fairness

Algorithm 3 Chunked Prefill Scheduling with Vision Cache Check

Input: • Waiting prefill requests queue Qprefill

• During decoding requests queue Qdecoding

• Token budget B (max_num_batched_tokens)
• Chunk prefill size Batchchunksize

• Vision cache V
• Chunking enabled flag C

Output: Scheduled batch Batch containing decode and prefill chunks
1: Initialize empty batch: Batch← []
2: for each request d in Qdecoding do
3: Append d to Batch
4: Update B ← B− tokens needed by d
5: end for
6: while B > 0 and Qprefill not empty do
7: r ← Qprefill.peek() {Next prefill request}
8: vpos ← position of first vision token in r
9: if vpos exists and vision tokens at vpos not in V then

10: t← number of prompt tokens before vpos
11: Schedule prefill chunk with tokens [startpos, vpos) in Batch
12: else
13: t← tokens needed for next chunk of r
14: if t > B and C is enabled then
15: Split r into chunk of size exactly B (take next B tokens)
16: Schedule this chunk for prefill in Batch
17: Remove these B tokens from r
18: t← B
19: break
20: else if t ≤ B then
21: Schedule full prefill request r in Batch
22: Remove r from Qprefill

23: else
24: break {No budget left}
25: end if
26: end if
27: B ← B − t
28: end while
29: Execute scheduled Batch (decode + chunked prefill)
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F SM Partition Algorithm

Algorithm 4 FindOptimalSMPartition

Input:
1: ME {Encoder request metadata} RCE {Encoder Resource-Utility Curve}
2: Lctx {Decoder context length} CD {Decoder chunk configuration} RCD {Decoder Resource-

Utility Curve}
3: SMtotal {Total allocatable SMs} SMmin_alloc {Minimum SMs per component (e.g., ≥ 1)}

Output: (sm∗
E , sm

∗
D) {Optimal SM allocation for Encoder, Decoder}

4: Let LatE(sE) be the latency function for Encoder derived from RCE using ME .
5: Let LatD(sD) be the latency function for Decoder derived from RCD using CD, Lctx.
6: sm∗

E ← null
7: sm∗

D ← null
8: L∗

makespan ←∞
9: found_valid_allocation← false

10: for sE from SMmin_alloc to SMtotal − SMmin_alloc do
11: sD ← SMtotal − sE
12: if sD < SMmin_alloc then
13: continue
14: end if
15: current_Lmakespan ← max(LatE(sE), LatD(sD))
16: if current_Lmakespan < L∗

makespan then
17: L∗

makespan ← current_Lmakespan

18: sm∗
E ← sE

19: sm∗
D ← sD

20: found_valid_allocation← true
21: end if
22: end for
23: if found_valid_allocation then
24: return (sm∗

E , sm
∗
D), L∗

makespan

25: else
26: return (null, null),∞ {No valid allocation found}
27: end if

G Implementation Details

System stack and versions. SpaceServe is implemented on top of vLLM 0.7.2. We integrate at
the scheduler and engine layers, keeping the model execution interface unchanged so that existing
MLLM checkpoints can be served without modification.2

Concurrency via CUDA MPS. We enable NVIDIA CUDA Multi-Process Service (MPS) so
that the vision encoder and the text decoder run as separate worker processes on the same GPU and
submit kernels concurrently..

SM partitioning primitive. To realize space multiplexing, SpaceServe uses libsmctrl as the
low-level primitive to partition GPU Streaming Multiprocessors (SMs) across worker processes. The
Space-Inference Scheduler (SIS) chooses an SM quota for each worker according to a resource-utility
curve and the current TWSRFT admission state, then applies the quota through libsmctrl.

2Code: https://github.com/gofreelee/SpaceServe

25

https://github.com/gofreelee/SpaceServe

	Introduction
	Motivation: From time-Multiplexing to space-Multiplexing
	Preliminary
	Resource footprint complementary: A quantitative analysis
	Toward Space-Multiplexed Serving

	SpaceServe: Design
	Hierarchical Operator-level Profiling for Resource-Utility Curves
	Encoder Stage: TWSRFT Scheduler
	Co-Locating Stage: Space Inference Scheduler for Space Multiplexing
	GPU Runtime: Fine-grained Resource Partition
	Request-aware SM Partition


	Evaluation
	Experimental Setup
	End-to-End Evaluation Results
	Ablation Study
	Ablation Study: Space Inference Scheduler vs. MPS
	Ablation Study: TWSRFT Scheduler vs. vLLM Default Scheduler

	Performance on Modern MoE-based Architectures
	Performance Scaling with Input Resolution

	Related Work
	Conclusion
	Limitations and future work
	Experiments for TTFT metric
	Arithmetic Intensity Modeling for Encoder
	Arithmetic Intensity Modeling for LLM
	Chunked Prefill Scheduling with Vision Cache Check
	SM Partition Algorithm
	Implementation Details

